Sample records for distributed query processing

  1. Distributed query plan generation using multiobjective genetic algorithm.

    PubMed

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  2. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  3. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  4. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data.

    PubMed

    Putri, Fadhilah Kurnia; Song, Giltae; Kwon, Joonho; Rao, Praveen

    2017-09-25

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query ( DISPAQ ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation's Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data.

  5. DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data †

    PubMed Central

    Putri, Fadhilah Kurnia; Song, Giltae; Rao, Praveen

    2017-01-01

    One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query (DISPAQ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation’s Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data. PMID:28946679

  6. A Framework for WWW Query Processing

    NASA Technical Reports Server (NTRS)

    Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).

  7. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  8. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  9. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  10. Database technology and the management of multimedia data in the Mirror project

    NASA Astrophysics Data System (ADS)

    de Vries, Arjen P.; Blanken, H. M.

    1998-10-01

    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.

  11. a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.

    2017-10-01

    Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

  12. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  13. A distributed query execution engine of big attributed graphs.

    PubMed

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  14. Evolution of Query Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hameurlain, Abdelkader; Morvan, Franck

    Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).

  15. Lyceum: A Multi-Protocol Digital Library Gateway

    NASA Technical Reports Server (NTRS)

    Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.

  16. Parallel multi-join query optimization algorithm for distributed sensor network in the internet of things

    NASA Astrophysics Data System (ADS)

    Zheng, Yan

    2015-03-01

    Internet of things (IoT), focusing on providing users with information exchange and intelligent control, attracts a lot of attention of researchers from all over the world since the beginning of this century. IoT is consisted of large scale of sensor nodes and data processing units, and the most important features of IoT can be illustrated as energy confinement, efficient communication and high redundancy. With the sensor nodes increment, the communication efficiency and the available communication band width become bottle necks. Many research work is based on the instance which the number of joins is less. However, it is not proper to the increasing multi-join query in whole internet of things. To improve the communication efficiency between parallel units in the distributed sensor network, this paper proposed parallel query optimization algorithm based on distribution attributes cost graph. The storage information relations and the network communication cost are considered in this algorithm, and an optimized information changing rule is established. The experimental result shows that the algorithm has good performance, and it would effectively use the resource of each node in the distributed sensor network. Therefore, executive efficiency of multi-join query between different nodes could be improved.

  17. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    NASA Astrophysics Data System (ADS)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  18. Benchmarking distributed data warehouse solutions for storing genomic variant information

    PubMed Central

    Wiewiórka, Marek S.; Wysakowicz, Dawid P.; Okoniewski, Michał J.

    2017-01-01

    Abstract Genomic-based personalized medicine encompasses storing, analysing and interpreting genomic variants as its central issues. At a time when thousands of patientss sequenced exomes and genomes are becoming available, there is a growing need for efficient database storage and querying. The answer could be the application of modern distributed storage systems and query engines. However, the application of large genomic variant databases to this problem has not been sufficiently far explored so far in the literature. To investigate the effectiveness of modern columnar storage [column-oriented Database Management System (DBMS)] and query engines, we have developed a prototypic genomic variant data warehouse, populated with large generated content of genomic variants and phenotypic data. Next, we have benchmarked performance of a number of combinations of distributed storages and query engines on a set of SQL queries that address biological questions essential for both research and medical applications. In addition, a non-distributed, analytical database (MonetDB) has been used as a baseline. Comparison of query execution times confirms that distributed data warehousing solutions outperform classic relational DBMSs. Moreover, pre-aggregation and further denormalization of data, which reduce the number of distributed join operations, significantly improve query performance by several orders of magnitude. Most of distributed back-ends offer a good performance for complex analytical queries, while the Optimized Row Columnar (ORC) format paired with Presto and Parquet with Spark 2 query engines provide, on average, the lowest execution times. Apache Kudu on the other hand, is the only solution that guarantees a sub-second performance for simple genome range queries returning a small subset of data, where low-latency response is expected, while still offering decent performance for running analytical queries. In summary, research and clinical applications that require the storage and analysis of variants from thousands of samples can benefit from the scalability and performance of distributed data warehouse solutions. Database URL: https://github.com/ZSI-Bio/variantsdwh PMID:29220442

  19. TopFed: TCGA tailored federated query processing and linking to LOD.

    PubMed

    Saleem, Muhammad; Padmanabhuni, Shanmukha S; Ngomo, Axel-Cyrille Ngonga; Iqbal, Aftab; Almeida, Jonas S; Decker, Stefan; Deus, Helena F

    2014-01-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to catalogue genetic mutations responsible for cancer using genome analysis techniques. One of the aims of this project is to create a comprehensive and open repository of cancer related molecular analysis, to be exploited by bioinformaticians towards advancing cancer knowledge. However, devising bioinformatics applications to analyse such large dataset is still challenging, as it often requires downloading large archives and parsing the relevant text files. Therefore, it is making it difficult to enable virtual data integration in order to collect the critical co-variates necessary for analysis. We address these issues by transforming the TCGA data into the Semantic Web standard Resource Description Format (RDF), link it to relevant datasets in the Linked Open Data (LOD) cloud and further propose an efficient data distribution strategy to host the resulting 20.4 billion triples data via several SPARQL endpoints. Having the TCGA data distributed across multiple SPARQL endpoints, we enable biomedical scientists to query and retrieve information from these SPARQL endpoints by proposing a TCGA tailored federated SPARQL query processing engine named TopFed. We compare TopFed with a well established federation engine FedX in terms of source selection and query execution time by using 10 different federated SPARQL queries with varying requirements. Our evaluation results show that TopFed selects on average less than half of the sources (with 100% recall) with query execution time equal to one third to that of FedX. With TopFed, we aim to offer biomedical scientists a single-point-of-access through which distributed TCGA data can be accessed in unison. We believe the proposed system can greatly help researchers in the biomedical domain to carry out their research effectively with TCGA as the amount and diversity of data exceeds the ability of local resources to handle its retrieval and parsing.

  20. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a grant from the NASA AISR program.

  1. The Localized Discovery and Recovery for Query Packet Losses in Wireless Sensor Networks with Distributed Detector Clusters

    PubMed Central

    Teng, Rui; Leibnitz, Kenji; Miura, Ryu

    2013-01-01

    An essential application of wireless sensor networks is to successfully respond to user queries. Query packet losses occur in the query dissemination due to wireless communication problems such as interference, multipath fading, packet collisions, etc. The losses of query messages at sensor nodes result in the failure of sensor nodes reporting the requested data. Hence, the reliable and successful dissemination of query messages to sensor nodes is a non-trivial problem. The target of this paper is to enable highly successful query delivery to sensor nodes by localized and energy-efficient discovery, and recovery of query losses. We adopt local and collective cooperation among sensor nodes to increase the success rate of distributed discoveries and recoveries. To enable the scalability in the operations of discoveries and recoveries, we employ a distributed name resolution mechanism at each sensor node to allow sensor nodes to self-detect the correlated queries and query losses, and then efficiently locally respond to the query losses. We prove that the collective discovery of query losses has a high impact on the success of query dissemination and reveal that scalability can be achieved by using the proposed approach. We further study the novel features of the cooperation and competition in the collective recovery at PHY and MAC layers, and show that the appropriate number of detectors can achieve optimal successful recovery rate. We evaluate the proposed approach with both mathematical analyses and computer simulations. The proposed approach enables a high rate of successful delivery of query messages and it results in short route lengths to recover from query losses. The proposed approach is scalable and operates in a fully distributed manner. PMID:23748172

  2. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    NASA Astrophysics Data System (ADS)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  3. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    DTIC Science & Technology

    2014-07-01

    to the query graph, or subgraph permutations with the same mismatch cost (often the case for homogeneous and/or symmetrical data/query). To avoid...decisions are generated in a bottom-up manner using the metric of entropy at the cluster level (Figure 9c). Using the definition of belief messages...for a cluster and a set of data nodes in this cluster , we compute the entropy for forward and backward messages as (,) = −∑ (

  4. Executing SPARQL Queries over the Web of Linked Data

    NASA Astrophysics Data System (ADS)

    Hartig, Olaf; Bizer, Christian; Freytag, Johann-Christoph

    The Web of Linked Data forms a single, globally distributed dataspace. Due to the openness of this dataspace, it is not possible to know in advance all data sources that might be relevant for query answering. This openness poses a new challenge that is not addressed by traditional research on federated query processing. In this paper we present an approach to execute SPARQL queries over the Web of Linked Data. The main idea of our approach is to discover data that might be relevant for answering a query during the query execution itself. This discovery is driven by following RDF links between data sources based on URIs in the query and in partial results. The URIs are resolved over the HTTP protocol into RDF data which is continuously added to the queried dataset. This paper describes concepts and algorithms to implement our approach using an iterator-based pipeline. We introduce a formalization of the pipelining approach and show that classical iterators may cause blocking due to the latency of HTTP requests. To avoid blocking, we propose an extension of the iterator paradigm. The evaluation of our approach shows its strengths as well as the still existing challenges.

  5. Query Health: standards-based, cross-platform population health surveillance

    PubMed Central

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Objective Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Materials and methods Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. Results We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. Discussions This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Conclusions Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. PMID:24699371

  6. Query Health: standards-based, cross-platform population health surveillance.

    PubMed

    Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N

    2014-01-01

    Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Design considerations, architecture, and use of the Mini-Sentinel distributed data system.

    PubMed

    Curtis, Lesley H; Weiner, Mark G; Boudreau, Denise M; Cooper, William O; Daniel, Gregory W; Nair, Vinit P; Raebel, Marsha A; Beaulieu, Nicolas U; Rosofsky, Robert; Woodworth, Tiffany S; Brown, Jeffrey S

    2012-01-01

    We describe the design, implementation, and use of a large, multiorganizational distributed database developed to support the Mini-Sentinel Pilot Program of the US Food and Drug Administration (FDA). As envisioned by the US FDA, this implementation will inform and facilitate the development of an active surveillance system for monitoring the safety of medical products (drugs, biologics, and devices) in the USA. A common data model was designed to address the priorities of the Mini-Sentinel Pilot and to leverage the experience and data of participating organizations and data partners. A review of existing common data models informed the process. Each participating organization designed a process to extract, transform, and load its source data, applying the common data model to create the Mini-Sentinel Distributed Database. Transformed data were characterized and evaluated using a series of programs developed centrally and executed locally by participating organizations. A secure communications portal was designed to facilitate queries of the Mini-Sentinel Distributed Database and transfer of confidential data, analytic tools were developed to facilitate rapid response to common questions, and distributed querying software was implemented to facilitate rapid querying of summary data. As of July 2011, information on 99,260,976 health plan members was included in the Mini-Sentinel Distributed Database. The database includes 316,009,067 person-years of observation time, with members contributing, on average, 27.0 months of observation time. All data partners have successfully executed distributed code and returned findings to the Mini-Sentinel Operations Center. This work demonstrates the feasibility of building a large, multiorganizational distributed data system in which organizations retain possession of their data that are used in an active surveillance system. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Multidimensional indexing structure for use with linear optimization queries

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)

    2002-01-01

    Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.

  9. Shark: SQL and Analytics with Cost-Based Query Optimization on Coarse-Grained Distributed Memory

    DTIC Science & Technology

    2014-01-13

    RDBMS and contains a database (often MySQL or Derby) with a namespace for tables, table metadata and partition information. Table data is stored in an...serialization/deserialization) Java interface implementations with corresponding object inspectors. The Hive driver controls the processing of queries, coordinat...native API, RDD operations are invoked through a functional interface similar to DryadLINQ [32] in Scala, Java or Python. For example, the Scala code for

  10. Cross-domain active learning for video concept detection

    NASA Astrophysics Data System (ADS)

    Li, Huan; Li, Chao; Shi, Yuan; Xiong, Zhang; Hauptmann, Alexander G.

    2011-08-01

    As video data from a variety of different domains (e.g., news, documentaries, entertainment) have distinctive data distributions, cross-domain video concept detection becomes an important task, in which one can reuse the labeled data of one domain to benefit the learning task in another domain with insufficient labeled data. In this paper, we approach this problem by proposing a cross-domain active learning method which iteratively queries labels of the most informative samples in the target domain. Traditional active learning assumes that the training (source domain) and test data (target domain) are from the same distribution. However, it may fail when the two domains have different distributions because querying informative samples according to a base learner that initially learned from source domain may no longer be helpful for the target domain. In our paper, we use the Gaussian random field model as the base learner which has the advantage of exploring the distributions in both domains, and adopt uncertainty sampling as the query strategy. Additionally, we present an instance weighting trick to accelerate the adaptability of the base learner, and develop an efficient model updating method which can significantly speed up the active learning process. Experimental results on TRECVID collections highlight the effectiveness.

  11. DREAM: Classification scheme for dialog acts in clinical research query mediation.

    PubMed

    Hoxha, Julia; Chandar, Praveen; He, Zhe; Cimino, James; Hanauer, David; Weng, Chunhua

    2016-02-01

    Clinical data access involves complex but opaque communication between medical researchers and query analysts. Understanding such communication is indispensable for designing intelligent human-machine dialog systems that automate query formulation. This study investigates email communication and proposes a novel scheme for classifying dialog acts in clinical research query mediation. We analyzed 315 email messages exchanged in the communication for 20 data requests obtained from three institutions. The messages were segmented into 1333 utterance units. Through a rigorous process, we developed a classification scheme and applied it for dialog act annotation of the extracted utterances. Evaluation results with high inter-annotator agreement demonstrate the reliability of this scheme. This dataset is used to contribute preliminary understanding of dialog acts distribution and conversation flow in this dialog space. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Integrating a local database into the StarView distributed user interface

    NASA Technical Reports Server (NTRS)

    Silberberg, D. P.

    1992-01-01

    A distributed user interface to the Space Telescope Data Archive and Distribution Service (DADS) known as StarView is being developed. The DADS architecture consists of the data archive as well as a relational database catalog describing the archive. StarView is a client/server system in which the user interface is the front-end client to the DADS catalog and archive servers. Users query the DADS catalog from the StarView interface. Query commands are transmitted via a network and evaluated by the database. The results are returned via the network and are displayed on StarView forms. Based on the results, users decide which data sets to retrieve from the DADS archive. Archive requests are packaged by StarView and sent to DADS, which returns the requested data sets to the users. The advantages of distributed client/server user interfaces over traditional one-machine systems are well known. Since users run software on machines separate from the database, the overall client response time is much faster. Also, since the server is free to process only database requests, the database response time is much faster. Disadvantages inherent in this architecture are slow overall database access time due to the network delays, lack of a 'get previous row' command, and that refinements of a previously issued query must be submitted to the database server, even though the domain of values have already been returned by the previous query. This architecture also does not allow users to cross correlate DADS catalog data with other catalogs. Clearly, a distributed user interface would be more powerful if it overcame these disadvantages. A local database is being integrated into StarView to overcome these disadvantages. When a query is made through a StarView form, which is often composed of fields from multiple tables, it is translated to an SQL query and issued to the DADS catalog. At the same time, a local database table is created to contain the resulting rows of the query. The returned rows are displayed on the form as well as inserted into the local database table. Identical results are produced by reissuing the query to either the DADS catalog or to the local table. Relational databases do not provide a 'get previous row' function because of the inherent complexity of retrieving previous rows of multiple-table joins. However, since this function is easily implemented on a single table, StarView uses the local table to retrieve the previous row. Also, StarView issues subsequent query refinements to the local table instead of the DADS catalog, eliminating the network transmission overhead. Finally, other catalogs can be imported into the local database for cross correlation with local tables. Overall, it is believe that this is a more powerful architecture for distributed, database user interfaces.

  13. Reflections on organizational issues in developing, implementing, and maintaining state Web-based data query systems.

    PubMed

    Love, Denise; Shah, Gulzar H

    2006-01-01

    Emerging technologies, such as Web-based data query systems (WDQSs), provide opportunities for state and local agencies to systematically organize and disseminate data to broad audiences and streamline the data distribution process. Despite the progress in WDQSs' implementation, led by agencies considered the "early adopters," there are still agencies left behind. This article explores the organizational issues and barriers to development of WDQSs in public health agencies and highlights factors facilitating the implementation of WDQSs.

  14. SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases.

    PubMed

    Chiba, Hirokazu; Uchiyama, Ikuo

    2017-02-08

    Toward improved interoperability of distributed biological databases, an increasing number of datasets have been published in the standardized Resource Description Framework (RDF). Although the powerful SPARQL Protocol and RDF Query Language (SPARQL) provides a basis for exploiting RDF databases, writing SPARQL code is burdensome for users including bioinformaticians. Thus, an easy-to-use interface is necessary. We developed SPANG, a SPARQL client that has unique features for querying RDF datasets. SPANG dynamically generates typical SPARQL queries according to specified arguments. It can also call SPARQL template libraries constructed in a local system or published on the Web. Further, it enables combinatorial execution of multiple queries, each with a distinct target database. These features facilitate easy and effective access to RDF datasets and integrative analysis of distributed data. SPANG helps users to exploit RDF datasets by generation and reuse of SPARQL queries through a simple interface. This client will enhance integrative exploitation of biological RDF datasets distributed across the Web. This software package is freely available at http://purl.org/net/spang .

  15. Fuzzy Relational Databases: Representational Issues and Reduction Using Similarity Measures.

    ERIC Educational Resources Information Center

    Prade, Henri; Testemale, Claudette

    1987-01-01

    Compares and expands upon two approaches to dealing with fuzzy relational databases. The proposed similarity measure is based on a fuzzy Hausdorff distance and estimates the mismatch between two possibility distributions using a reduction process. The consequences of the reduction process on query evaluation are studied. (Author/EM)

  16. Design of a graphical user interface for an intelligent multimedia information system for radiology research

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.

    1995-05-01

    With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).

  17. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  18. Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    PubMed Central

    Ahmed, Khandakar; Gregory, Mark A.

    2015-01-01

    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. PMID:25751081

  19. Characterizing Listener Engagement with Popular Songs Using Large-Scale Music Discovery Data

    PubMed Central

    Kaneshiro, Blair; Ruan, Feng; Baker, Casey W.; Berger, Jonathan

    2017-01-01

    Music discovery in everyday situations has been facilitated in recent years by audio content recognition services such as Shazam. The widespread use of such services has produced a wealth of user data, specifying where and when a global audience takes action to learn more about music playing around them. Here, we analyze a large collection of Shazam queries of popular songs to study the relationship between the timing of queries and corresponding musical content. Our results reveal that the distribution of queries varies over the course of a song, and that salient musical events drive an increase in queries during a song. Furthermore, we find that the distribution of queries at the time of a song's release differs from the distribution following a song's peak and subsequent decline in popularity, possibly reflecting an evolution of user intent over the “life cycle” of a song. Finally, we derive insights into the data size needed to achieve consistent query distributions for individual songs. The combined findings of this study suggest that music discovery behavior, and other facets of the human experience of music, can be studied quantitatively using large-scale industrial data. PMID:28386241

  20. Characterizing Listener Engagement with Popular Songs Using Large-Scale Music Discovery Data.

    PubMed

    Kaneshiro, Blair; Ruan, Feng; Baker, Casey W; Berger, Jonathan

    2017-01-01

    Music discovery in everyday situations has been facilitated in recent years by audio content recognition services such as Shazam. The widespread use of such services has produced a wealth of user data, specifying where and when a global audience takes action to learn more about music playing around them. Here, we analyze a large collection of Shazam queries of popular songs to study the relationship between the timing of queries and corresponding musical content. Our results reveal that the distribution of queries varies over the course of a song, and that salient musical events drive an increase in queries during a song. Furthermore, we find that the distribution of queries at the time of a song's release differs from the distribution following a song's peak and subsequent decline in popularity, possibly reflecting an evolution of user intent over the "life cycle" of a song. Finally, we derive insights into the data size needed to achieve consistent query distributions for individual songs. The combined findings of this study suggest that music discovery behavior, and other facets of the human experience of music, can be studied quantitatively using large-scale industrial data.

  1. Executor Framework for DIRAC

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Graciani Diaz, R.

    2012-12-01

    DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.

  2. The Design and Implementation of a Relational to Network Query Translator for a Distributed Database Management System.

    DTIC Science & Technology

    1985-12-01

    RELATIONAL TO NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM TH ESI S .L Kevin H. Mahoney -- Captain, USAF AFIT/GCS/ENG/85D-7...NETWORK QUERY TRANSLATOR FOR A DISTRIBUTED DATABASE MANAGEMENT SYSTEM - THESIS Presented to the Faculty of the School of Engineering of the Air Force...Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Systems - Kevin H. Mahoney

  3. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hao, Liang; Zhao, Lian-Jie

    2011-08-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed.

  4. A two-level cache for distributed information retrieval in search engines.

    PubMed

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  5. A Two-Level Cache for Distributed Information Retrieval in Search Engines

    PubMed Central

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache. PMID:24363621

  6. Analysis of DNS Cache Effects on Query Distribution

    PubMed Central

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally. PMID:24396313

  7. Analysis of DNS cache effects on query distribution.

    PubMed

    Wang, Zheng

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally.

  8. Practical private database queries based on a quantum-key-distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Markus; Humboldt-Universitaet zu Berlin, D-10117 Berlin; Simon, Christoph

    2011-02-15

    Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing which element she is interested in, while limiting her information about the other elements. We propose to implement private queries based on a quantum-key-distribution protocol, with changes only in the classical postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions inmore » order to protect both the user and the database. We think that the scope exists for such practical private queries to become another remarkable application of quantum information in the footsteps of quantum key distribution.« less

  9. Remembrance of inferences past: Amortization in human hypothesis generation.

    PubMed

    Dasgupta, Ishita; Schulz, Eric; Goodman, Noah D; Gershman, Samuel J

    2018-05-21

    Bayesian models of cognition assume that people compute probability distributions over hypotheses. However, the required computations are frequently intractable or prohibitively expensive. Since people often encounter many closely related distributions, selective reuse of computations (amortized inference) is a computationally efficient use of the brain's limited resources. We present three experiments that provide evidence for amortization in human probabilistic reasoning. When sequentially answering two related queries about natural scenes, participants' responses to the second query systematically depend on the structure of the first query. This influence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than storing the entire distribution. These findings support the view that the brain trades off accuracy and computational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nearest private query based on quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Xu, Min; Shi, Run-hua; Luo, Zhen-yu; Peng, Zhen-wan

    2017-12-01

    Nearest private query is a special private query which involves two parties, a user and a data owner, where the user has a private input (e.g., an integer) and the data owner has a private data set, and the user wants to query which element in the owner's private data set is the nearest to his input without revealing their respective private information. In this paper, we first present a quantum protocol for nearest private query, which is based on quantum oblivious key distribution (QOKD). Compared to the classical related protocols, our protocol has the advantages of the higher security and the better feasibility, so it has a better prospect of applications.

  11. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This invention enables wide-area sensing and employs numerous globally distributed sensing devices that observe the physical world through the existing sensor network. This innovation enables distributed storage, distributed processing, distributed intelligence, and the availability of DiaK (Data, Information, and Knowledge) to any element as needed. It also enables the simultaneous execution of multiple processes, and represents models that contribute to the determination of the condition and health of each element in the system. The NCAP (intelligent process) can configure data-collection and filtering processes in reaction to sensed data, allowing it to decide when and how to adapt collection and processing with regard to sophisticated analysis of data derived from multiple sensors. The user will be able to view the sensing device network as a single unit that supports a high-level query language. Each query would be able to operate over data collected from across the global sensor network just as a search query encompasses millions of Web pages. The sensor web can preserve ubiquitous information access between the querier and the queried data. Pervasive monitoring of the physical world raises significant data and privacy concerns. This innovation enables different authorities to control portions of the sensing infrastructure, and sensor service authors may wish to compose services across authority boundaries.

  12. Privacy-Preserving Location-Based Query Using Location Indexes and Parallel Searching in Distributed Networks

    PubMed Central

    Liu, Lei; Zhao, Jing

    2014-01-01

    An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users. PMID:24790579

  13. Privacy-preserving location-based query using location indexes and parallel searching in distributed networks.

    PubMed

    Zhong, Cheng; Liu, Lei; Zhao, Jing

    2014-01-01

    An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users.

  14. Classification of Automated Search Traffic

    NASA Astrophysics Data System (ADS)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  15. EarthServer: a Summary of Achievements in Technology, Services, and Standards

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2015-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data, according to ISO and OGC defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timese ries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The transatlantic EarthServer initiative, running from 2011 through 2014, has united 11 partners to establish Big Earth Data Analytics. A key ingredient has been flexibility for users to ask whatever they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level, standards-based query languages which unify data and metadata search in a simple, yet powerful way. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing cod e has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, the pioneer and leading Array DBMS built for any-size multi-dimensional raster data being extended with support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level coverage query language. Reviewers have attested EarthServer that "With no doubt the project has been shaping the Big Earth Data landscape through the standardization activities within OGC, ISO and beyond". We present the project approach, its outcomes and impact on standardization and Big Data technology, and vistas for the future.

  16. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-02-02

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less

  17. A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Holder, Larry; Chin, George

    2015-05-27

    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less

  18. Harvesting implementation for the GI-cat distributed catalog

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Bigagli, Lorenzo; Mazzetti, Paolo

    2010-05-01

    GI-cat framework implements a distributed catalog service supporting different international standards and interoperability arrangements in use by the geoscientific community. The distribution functionality in conjunction with the mediation functionality allows to seamlessly query remote heterogeneous data sources, including OGC Web Services - e.e. OGC CSW, WCS, WFS and WMS, community standards such as UNIDATA THREDDS/OPeNDAP, SeaDataNet CDI (Common Data Index), GBIF (Global Biodiversity Information Facility) services and OpenSearch engines. In the GI-cat modular architecture a distributor component carry out the distribution functionality by query delegation to the mediator components (one for each different data source). Each of these mediator components is able to query a specific data source and convert back the results by mapping of the foreign data model to the GI-cat internal one, based on ISO 19139. In order to cope with deployment scenarios in which local data is expected, an harvesting approach has been experimented. The new strategy comes in addition to the consolidated distributed approach, allowing the user to switch between a remote and a local search at will for each federated resource; this extends GI-cat configuration possibilities. The harvesting strategy is designed in GI-cat by the use at the core of a local cache component, implemented as a native XML database and based on eXist. The different heterogeneous sources are queried for the bulk of available data; this data is then injected into the cache component after being converted to the GI-cat data model. The query and conversion steps are performed by the mediator components that were are part of the GI-cat framework. Afterward each new query can be exercised against local data that have been stored in the cache component. Considering both advantages and shortcomings that affect harvesting and query distribution approaches, it comes out that a user driven tuning is required to take the best of them. This is often related to the specific user scenarios to be implemented. GI-cat proved to be a flexible framework to address user need. The GI-cat configurator tool was updated to make such a tuning possible: each data source can be configured to enable either harvesting or query distribution approaches; in the former case an appropriate harvesting interval can be set.

  19. LAILAPS-QSM: A RESTful API and JAVA library for semantic query suggestions.

    PubMed

    Chen, Jinbo; Scholz, Uwe; Zhou, Ruonan; Lange, Matthias

    2018-03-01

    In order to access and filter content of life-science databases, full text search is a widely applied query interface. But its high flexibility and intuitiveness is paid for with potentially imprecise and incomplete query results. To reduce this drawback, query assistance systems suggest those combinations of keywords with the highest potential to match most of the relevant data records. Widespread approaches are syntactic query corrections that avoid misspelling and support expansion of words by suffixes and prefixes. Synonym expansion approaches apply thesauri, ontologies, and query logs. All need laborious curation and maintenance. Furthermore, access to query logs is in general restricted. Approaches that infer related queries by their query profile like research field, geographic location, co-authorship, affiliation etc. require user's registration and its public accessibility that contradict privacy concerns. To overcome these drawbacks, we implemented LAILAPS-QSM, a machine learning approach that reconstruct possible linguistic contexts of a given keyword query. The context is referred from the text records that are stored in the databases that are going to be queried or extracted for a general purpose query suggestion from PubMed abstracts and UniProt data. The supplied tool suite enables the pre-processing of these text records and the further computation of customized distributed word vectors. The latter are used to suggest alternative keyword queries. An evaluated of the query suggestion quality was done for plant science use cases. Locally present experts enable a cost-efficient quality assessment in the categories trait, biological entity, taxonomy, affiliation, and metabolic function which has been performed using ontology term similarities. LAILAPS-QSM mean information content similarity for 15 representative queries is 0.70, whereas 34% have a score above 0.80. In comparison, the information content similarity for human expert made query suggestions is 0.90. The software is either available as tool set to build and train dedicated query suggestion services or as already trained general purpose RESTful web service. The service uses open interfaces to be seamless embeddable into database frontends. The JAVA implementation uses highly optimized data structures and streamlined code to provide fast and scalable response for web service calls. The source code of LAILAPS-QSM is available under GNU General Public License version 2 in Bitbucket GIT repository: https://bitbucket.org/ipk_bit_team/bioescorte-suggestion.

  20. Model-based query language for analyzing clinical processes.

    PubMed

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    Nowadays large databases of clinical process data exist in hospitals. However, these data are rarely used in full scope. In order to perform queries on hospital processes, one must either choose from the predefined queries or develop queries using MS Excel-type software system, which is not always a trivial task. In this paper we propose a new query language for analyzing clinical processes that is easily perceptible also by non-IT professionals. We develop this language based on a process modeling language which is also described in this paper. Prototypes of both languages have already been verified using real examples from hospitals.

  1. Group-oriented coordination models for distributed client-server computing

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Hughes, Craig S.

    1994-01-01

    This paper describes group-oriented control models for distributed client-server interactions. These models transparently coordinate requests for services that involve multiple servers, such as queries across distributed databases. Specific capabilities include: decomposing and replicating client requests; dispatching request subtasks or copies to independent, networked servers; and combining server results into a single response for the client. The control models were implemented by combining request broker and process group technologies with an object-oriented communication middleware tool. The models are illustrated in the context of a distributed operations support application for space-based systems.

  2. Seismic Search Engine: A distributed database for mining large scale seismic data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  3. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  4. Syndromic surveillance models using Web data: the case of scarlet fever in the UK.

    PubMed

    Samaras, Loukas; García-Barriocanal, Elena; Sicilia, Miguel-Angel

    2012-03-01

    Recent research has shown the potential of Web queries as a source for syndromic surveillance, and existing studies show that these queries can be used as a basis for estimation and prediction of the development of a syndromic disease, such as influenza, using log linear (logit) statistical models. Two alternative models are applied to the relationship between cases and Web queries in this paper. We examine the applicability of using statistical methods to relate search engine queries with scarlet fever cases in the UK, taking advantage of tools to acquire the appropriate data from Google, and using an alternative statistical method based on gamma distributions. The results show that using logit models, the Pearson correlation factor between Web queries and the data obtained from the official agencies must be over 0.90, otherwise the prediction of the peak and the spread of the distributions gives significant deviations. In this paper, we describe the gamma distribution model and show that we can obtain better results in all cases using gamma transformations, and especially in those with a smaller correlation factor.

  5. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less

  6. A fusion approach for coarse-to-fine target recognition

    NASA Astrophysics Data System (ADS)

    Folkesson, Martin; Grönwall, Christina; Jungert, Erland

    2006-04-01

    A fusion approach in a query based information system is presented. The system is designed for querying multimedia data bases, and here applied to target recognition using heterogeneous data sources. The recognition process is coarse-to-fine, with an initial attribute estimation step and a following matching step. Several sensor types and algorithms are involved in each of these two steps. An independence of the matching results, on the origin of the estimation results, is observed. It allows for distribution of data between algorithms in an intermediate fusion step, without risk of data incest. This increases the overall chance of recognising the target. An implementation of the system is described.

  7. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  8. KA-SB: from data integration to large scale reasoning

    PubMed Central

    Roldán-García, María del Mar; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Molina-Castro, Joaquín; Aldana-Montes, José F

    2009-01-01

    Background The analysis of information in the biological domain is usually focused on the analysis of data from single on-line data sources. Unfortunately, studying a biological process requires having access to disperse, heterogeneous, autonomous data sources. In this context, an analysis of the information is not possible without the integration of such data. Methods KA-SB is a querying and analysis system for final users based on combining a data integration solution with a reasoner. Thus, the tool has been created with a process divided into two steps: 1) KOMF, the Khaos Ontology-based Mediator Framework, is used to retrieve information from heterogeneous and distributed databases; 2) the integrated information is crystallized in a (persistent and high performance) reasoner (DBOWL). This information could be further analyzed later (by means of querying and reasoning). Results In this paper we present a novel system that combines the use of a mediation system with the reasoning capabilities of a large scale reasoner to provide a way of finding new knowledge and of analyzing the integrated information from different databases, which is retrieved as a set of ontology instances. This tool uses a graphical query interface to build user queries easily, which shows a graphical representation of the ontology and allows users o build queries by clicking on the ontology concepts. Conclusion These kinds of systems (based on KOMF) will provide users with very large amounts of information (interpreted as ontology instances once retrieved), which cannot be managed using traditional main memory-based reasoners. We propose a process for creating persistent and scalable knowledgebases from sets of OWL instances obtained by integrating heterogeneous data sources with KOMF. This process has been applied to develop a demo tool , which uses the BioPax Level 3 ontology as the integration schema, and integrates UNIPROT, KEGG, CHEBI, BRENDA and SABIORK databases. PMID:19796402

  9. Private database queries based on counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Li; Guo, Fen-Zhuo; Gao, Fei; Liu, Bin; Wen, Qiao-Yan

    2013-08-01

    Based on the fundamental concept of quantum counterfactuality, we propose a protocol to achieve quantum private database queries, which is a theoretical study of how counterfactuality can be employed beyond counterfactual quantum key distribution (QKD). By adding crucial detecting apparatus to the device of QKD, the privacy of both the distrustful user and the database owner can be guaranteed. Furthermore, the proposed private-database-query protocol makes full use of the low efficiency in the counterfactual QKD, and by adjusting the relevant parameters, the protocol obtains excellent flexibility and extensibility.

  10. Diamond Eye: a distributed architecture for image data mining

    NASA Astrophysics Data System (ADS)

    Burl, Michael C.; Fowlkes, Charless; Roden, Joe; Stechert, Andre; Mukhtar, Saleem

    1999-02-01

    Diamond Eye is a distributed software architecture, which enables users (scientists) to analyze large image collections by interacting with one or more custom data mining servers via a Java applet interface. Each server is coupled with an object-oriented database and a computational engine, such as a network of high-performance workstations. The database provides persistent storage and supports querying of the 'mined' information. The computational engine provides parallel execution of expensive image processing, object recognition, and query-by-content operations. Key benefits of the Diamond Eye architecture are: (1) the design promotes trial evaluation of advanced data mining and machine learning techniques by potential new users (all that is required is to point a web browser to the appropriate URL), (2) software infrastructure that is common across a range of science mining applications is factored out and reused, and (3) the system facilitates closer collaborations between algorithm developers and domain experts.

  11. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  12. Processing SPARQL queries with regular expressions in RDF databases

    PubMed Central

    2011-01-01

    Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225

  13. Processing SPARQL queries with regular expressions in RDF databases.

    PubMed

    Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon

    2011-03-29

    As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  14. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Merticariu, Vlad; Baumann, Peter

    2017-04-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well. This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics. We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  15. Agile Datacube Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2016-12-01

    Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well.This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics.We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.

  16. Heterogeneous distributed query processing: The DAVID system

    NASA Technical Reports Server (NTRS)

    Jacobs, Barry E.

    1985-01-01

    The objective of the Distributed Access View Integrated Database (DAVID) project is the development of an easy to use computer system with which NASA scientists, engineers and administrators can uniformly access distributed heterogeneous databases. Basically, DAVID will be a database management system that sits alongside already existing database and file management systems. Its function is to enable users to access the data in other languages and file systems without having to learn the data manipulation languages. Given here is an outline of a talk on the DAVID project and several charts.

  17. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

    NASA Astrophysics Data System (ADS)

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-12-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.

  18. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

    PubMed Central

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-01-01

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary. PMID:25518810

  19. Multi-Bit Quantum Private Query

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing

    2015-09-01

    Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.

  20. Data Processing Factory for the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Stoughton, Christopher; Adelman, Jennifer; Annis, James T.; Hendry, John; Inkmann, John; Jester, Sebastian; Kent, Steven M.; Kuropatkin, Nickolai; Lee, Brian; Lin, Huan; Peoples, John, Jr.; Sparks, Robert; Tucker, Douglas; Vanden Berk, Dan; Yanny, Brian; Yocum, Dan

    2002-12-01

    The Sloan Digital Sky Survey (SDSS) data handling presents two challenges: large data volume and timely production of spectroscopic plates from imaging data. A data processing factory, using technologies both old and new, handles this flow. Distribution to end users is via disk farms, to serve corrected images and calibrated spectra, and a database, to efficiently process catalog queries. For distribution of modest amounts of data from Apache Point Observatory to Fermilab, scripts use rsync to update files, while larger data transfers are accomplished by shipping magnetic tapes commercially. All data processing pipelines are wrapped in scripts to address consecutive phases: preparation, submission, checking, and quality control. We constructed the factory by chaining these pipelines together while using an operational database to hold processed imaging catalogs. The science database catalogs all imaging and spectroscopic object, with pointers to the various external files associated with them. Diverse computing systems address particular processing phases. UNIX computers handle tape reading and writing, as well as calibration steps that require access to a large amount of data with relatively modest computational demands. Commodity CPUs process steps that require access to a limited amount of data with more demanding computations requirements. Disk servers optimized for cost per Gbyte serve terabytes of processed data, while servers optimized for disk read speed run SQLServer software to process queries on the catalogs. This factory produced data for the SDSS Early Data Release in June 2001, and it is currently producing Data Release One, scheduled for January 2003.

  1. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    PubMed

    Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  2. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level raster query language. We present the EarthServer project with its vision and approaches, relate it to the current state of standardization, and demonstrate it by way of large-scale data centers and their services using rasdaman.

  3. RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks

    PubMed Central

    Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng

    2017-01-01

    Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197

  4. Child pornography in peer-to-peer networks.

    PubMed

    Steel, Chad M S

    2009-08-01

    The presence of child pornography in peer-to-peer networks is not disputed, but there has been little effort done to quantify and analyze the distribution and nature of that content to-date. By performing an analysis of queries and query hits on the largest peer-to-peer network, we are able to both quantify and describe the nature of querying by child pornographers as well as the content they are sharing. Child pornography related content was identified and analyzed in 235,513 user queries and 194,444 query hits. The research confirmed a large amount of peer-to-peer traffic is dedicated to child pornography, but supply and demand must be separated for a better understanding. The most prevalent query and the top two most prevalent filenames returned as query hits were child pornography related. However, it would be inaccurate to state child pornography dominates peer-to-peer as 1% of all queries were related to child pornography and 1.45% of all query hits (unique filenames) were related to child pornography, consistent with a smaller study (Hughes et al., 2008). In addition to the above, research indicates that the median age searched for was 13 years old, and the majority of queries were gender-neutral, but of those with gender-related terms, 79% were female-oriented. Distribution-wise, the vast majority of content-specific searches are for movies at 99%, though images are still the most prevalent in availability. There is no shortage of child pornography supply and demand on peer-to-peer networks and by analyzing how consumers seek and distributors advertise content we can better understand their motivations. Understanding the behavior of child pornographers and how they search for content when contrasted with those sharing content provides a basis for finding and combating that behavior. For law enforcement, knowing the specific terms used allows more timely and accurate forensics and better identification of those seeking and distributing child pornography. For Internet researchers, better filtering and monitoring is possible. For mental health professionals, understanding the preferences and behaviors of those searching supports more effective treatment.

  5. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  6. An index-based algorithm for fast on-line query processing of latent semantic analysis

    PubMed Central

    Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747

  7. An index-based algorithm for fast on-line query processing of latent semantic analysis.

    PubMed

    Zhang, Mingxi; Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm.

  8. DownscaleConcept 2.3 User Manual. Downscaled, Spatially Distributed Soil Moisture Calculator

    DTIC Science & Technology

    2011-01-01

    be first presented with the dataset 28 results to your query. From this page, check the box next to the ASTER GDEM dataset and press the "List...information for verification. No charge will be associated with GDEM data archives. 14. Select "Submit Order Now!" to process your order. 15. Wait for

  9. Information Network Model Query Processing

    NASA Astrophysics Data System (ADS)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  10. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  11. Power Distribution Analysis For Electrical Usage In Province Area Using Olap (Online Analytical Processing)

    NASA Astrophysics Data System (ADS)

    Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi

    2018-02-01

    The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.

  12. Indexing and retrieving DICOM data in disperse and unstructured archives.

    PubMed

    Costa, Carlos; Freitas, Filipe; Pereira, Marco; Silva, Augusto; Oliveira, José L

    2009-01-01

    This paper proposes an indexing and retrieval solution to gather information from distributed DICOM documents by allowing searches and access to the virtual data repository using a Google-like process. The medical imaging modalities are becoming more powerful and less expensive. The result is the proliferation of equipment acquisition by imaging centers, including the small ones. With this dispersion of data, it is not easy to take advantage of all the information that can be retrieved from these studies. Furthermore, many of these small centers do not have large enough requirements to justify the acquisition of a traditional PACS. A peer-to-peer PACS platform to index and query DICOM files over a set of distributed repositories that are logically viewed as a single federated unit. The solution is based on a public domain document-indexing engine and extends traditional PACS query and retrieval mechanisms. This proposal deals well with complex searching requirements, from a single desktop environment to distributed scenarios. The solution performance and robustness were demonstrated in trials. The characteristics of presented PACS platform make it particularly important for small institutions, including educational and research groups.

  13. Ontological Approach to Military Knowledge Modeling and Management

    DTIC Science & Technology

    2004-03-01

    federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries

  14. a Spatiotemporal Aggregation Query Method Using Multi-Thread Parallel Technique Based on Regional Division

    NASA Astrophysics Data System (ADS)

    Liao, S.; Chen, L.; Li, J.; Xiong, W.; Wu, Q.

    2015-07-01

    Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.

  15. Database architectures for Space Telescope Science Institute

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  16. An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data

    NASA Technical Reports Server (NTRS)

    Lammers, Matthew; Kuo, Kwo-Sen

    2017-01-01

    The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code.

  17. System for Performing Single Query Searches of Heterogeneous and Dispersed Databases

    NASA Technical Reports Server (NTRS)

    Maluf, David A. (Inventor); Okimura, Takeshi (Inventor); Gurram, Mohana M. (Inventor); Tran, Vu Hoang (Inventor); Knight, Christopher D. (Inventor); Trinh, Anh Ngoc (Inventor)

    2017-01-01

    The present invention is a distributed computer system of heterogeneous databases joined in an information grid and configured with an Application Programming Interface hardware which includes a search engine component for performing user-structured queries on multiple heterogeneous databases in real time. This invention reduces overhead associated with the impedance mismatch that commonly occurs in heterogeneous database queries.

  18. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol.

    PubMed

    Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin

    2014-12-18

    Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message a1a2···al from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each a(i) contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.

  19. Datacube Services in Action, Using Open Source and Open Standards

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2016-12-01

    Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.

  20. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs

    PubMed Central

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410

  1. StarView: The object oriented design of the ST DADS user interface

    NASA Technical Reports Server (NTRS)

    Williams, J. D.; Pollizzi, J. A.

    1992-01-01

    StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.

  2. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care.

    PubMed

    Brown, Jeffrey S; Holmes, John H; Shah, Kiran; Hall, Ken; Lazarus, Ross; Platt, Richard

    2010-06-01

    Comparative effectiveness research, medical product safety evaluation, and quality measurement will require the ability to use electronic health data held by multiple organizations. There is no consensus about whether to create regional or national combined (eg, "all payer") databases for these purposes, or distributed data networks that leave most Protected Health Information and proprietary data in the possession of the original data holders. Demonstrate functions of a distributed research network that supports research needs and also address data holders concerns about participation. Key design functions included strong local control of data uses and a centralized web-based querying interface. We implemented a pilot distributed research network and evaluated the design considerations, utility for research, and the acceptability to data holders of methods for menu-driven querying. We developed and tested a central, web-based interface with supporting network software. Specific functions assessed include query formation and distribution, query execution and review, and aggregation of results. This pilot successfully evaluated temporal trends in medication use and diagnoses at 5 separate sites, demonstrating some of the possibilities of using a distributed research network. The pilot demonstrated the potential utility of the design, which addressed the major concerns of both users and data holders. No serious obstacles were identified that would prevent development of a fully functional, scalable network. Distributed networks are capable of addressing nearly all anticipated uses of routinely collected electronic healthcare data. Distributed networks would obviate the need for centralized databases, thus avoiding numerous obstacles.

  3. The distribution and query systems of the RCSB Protein Data Bank

    PubMed Central

    Bourne, Philip E.; Addess, Kenneth J.; Bluhm, Wolfgang F.; Chen, Li; Deshpande, Nita; Feng, Zukang; Fleri, Ward; Green, Rachel; Merino-Ott, Jeffrey C.; Townsend-Merino, Wayne; Weissig, Helge; Westbrook, John; Berman, Helen M.

    2004-01-01

    The Protein Data Bank (PDB; http://www.pdb.org) is the primary source of information on the 3D structure of biological macromolecules. The PDB’s mandate is to disseminate this information in the most usable form and as widely as possible. The current query and distribution system is described and an alpha version of the future re-engineered system introduced. PMID:14681399

  4. A high performance, ad-hoc, fuzzy query processing system for relational databases

    NASA Technical Reports Server (NTRS)

    Mansfield, William H., Jr.; Fleischman, Robert M.

    1992-01-01

    Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.

  5. Federated ontology-based queries over cancer data

    PubMed Central

    2012-01-01

    Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043

  6. A stochastic evolutionary model generating a mixture of exponential distributions

    NASA Astrophysics Data System (ADS)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2016-02-01

    Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.

  7. Implementation of the common phrase index method on the phrase query for information retrieval

    NASA Astrophysics Data System (ADS)

    Fatmawati, Triyah; Zaman, Badrus; Werdiningsih, Indah

    2017-08-01

    As the development of technology, the process of finding information on the news text is easy, because the text of the news is not only distributed in print media, such as newspapers, but also in electronic media that can be accessed using the search engine. In the process of finding relevant documents on the search engine, a phrase often used as a query. The number of words that make up the phrase query and their position obviously affect the relevance of the document produced. As a result, the accuracy of the information obtained will be affected. Based on the outlined problem, the purpose of this research was to analyze the implementation of the common phrase index method on information retrieval. This research will be conducted in English news text and implemented on a prototype to determine the relevance level of the documents produced. The system is built with the stages of pre-processing, indexing, term weighting calculation, and cosine similarity calculation. Then the system will display the document search results in a sequence, based on the cosine similarity. Furthermore, system testing will be conducted using 100 documents and 20 queries. That result is then used for the evaluation stage. First, determine the relevant documents using kappa statistic calculation. Second, determine the system success rate using precision, recall, and F-measure calculation. In this research, the result of kappa statistic calculation was 0.71, so that the relevant documents are eligible for the system evaluation. Then the calculation of precision, recall, and F-measure produces precision of 0.37, recall of 0.50, and F-measure of 0.43. From this result can be said that the success rate of the system to produce relevant documents is low.

  8. Real-time community detection in full social networks on a laptop

    PubMed Central

    Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive

    2018-01-01

    For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158

  9. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  10. Simulation of Tasks Distribution in Horizontally Scalable Management System

    NASA Astrophysics Data System (ADS)

    Kustov, D.; Sherstneva, A.; Botygin, I.

    2016-08-01

    This paper presents an imitational model of the task distribution system for the components of territorially-distributed automated management system with a dynamically changing topology. Each resource of the distributed automated management system is represented with an agent, which allows to set behavior of every resource in the best possible way and ensure their interaction. The agent work load imitation was done via service query imitation formed in a system dynamics style using a stream diagram. The query generation took place in the abstract-represented center - afterwards, they were sent to the drive to be distributed to management system resources according to a ranking table.

  11. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  12. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  13. Virtual Solar Observatory Distributed Query Construction

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.

    2003-01-01

    Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.

  14. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  15. Query Language for Location-Based Services: A Model Checking Approach

    NASA Astrophysics Data System (ADS)

    Hoareau, Christian; Satoh, Ichiro

    We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.

  16. Secure and Efficient k-NN Queries⋆

    PubMed Central

    Asif, Hafiz; Vaidya, Jaideep; Shafiq, Basit; Adam, Nabil

    2017-01-01

    Given the morass of available data, ranking and best match queries are often used to find records of interest. As such, k-NN queries, which give the k closest matches to a query point, are of particular interest, and have many applications. We study this problem in the context of the financial sector, wherein an investment portfolio database is queried for matching portfolios. Given the sensitivity of the information involved, our key contribution is to develop a secure k-NN computation protocol that can enable the computation k-NN queries in a distributed multi-party environment while taking domain semantics into account. The experimental results show that the proposed protocols are extremely efficient. PMID:29218333

  17. 41. DISCOVERY, SEARCH, AND COMMUNICATION OF TEXTUAL KNOWLEDGE RESOURCES IN DISTRIBUTED SYSTEMS a. Discovering and Utilizing Knowledge Sources for Metasearch Knowledge Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Antonio

    Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less

  18. Combination of Evidence for Effective Web Search

    DTIC Science & Technology

    2010-11-01

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the Nineteenth Text REtrieval Conference (TREC...use that page to expand. This happens often with named entity queries (such as ‘the secret garden’ or ‘ starbucks ’). However, when the query is

  19. An incremental database access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, Nicholas; Sellis, Timos

    1994-01-01

    We investigated a number of design and performance issues of interoperable database management systems (DBMS's). The major results of our investigation were obtained in the areas of client-server database architectures for heterogeneous DBMS's, incremental computation models, buffer management techniques, and query optimization. We finished a prototype of an advanced client-server workstation-based DBMS which allows access to multiple heterogeneous commercial DBMS's. Experiments and simulations were then run to compare its performance with the standard client-server architectures. The focus of this research was on adaptive optimization methods of heterogeneous database systems. Adaptive buffer management accounts for the random and object-oriented access methods for which no known characterization of the access patterns exists. Adaptive query optimization means that value distributions and selectives, which play the most significant role in query plan evaluation, are continuously refined to reflect the actual values as opposed to static ones that are computed off-line. Query feedback is a concept that was first introduced to the literature by our group. We employed query feedback for both adaptive buffer management and for computing value distributions and selectivities. For adaptive buffer management, we use the page faults of prior executions to achieve more 'informed' management decisions. For the estimation of the distributions of the selectivities, we use curve-fitting techniques, such as least squares and splines, for regressing on these values.

  20. Data Sharing in DHT Based P2P Systems

    NASA Astrophysics Data System (ADS)

    Roncancio, Claudia; Del Pilar Villamil, María; Labbé, Cyril; Serrano-Alvarado, Patricia

    The evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the “extreme” characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases for providing data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identifies important future research trends in data management in P2P DHT systems.

  1. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    NASA Astrophysics Data System (ADS)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  2. A SOA broker solution for standard discovery and access services: the GI-cat framework

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico

    2010-05-01

    GI-cat ideal users are data providers or service providers within the geoscience community. The former have their data already available through an access service (e.g. an OGC Web Service) and would have it published through a standard catalog service, in a seamless way. The latter would develop a catalog broker and let users query and access different geospatial resources through one or more standard interfaces and Application Profiles (AP) (e.g. OGC CSW ISO AP, CSW ebRIM/EO AP, etc.). GI-cat actually implements a broker components (i.e. a middleware service) which carries out distribution and mediation functionalities among "well-adopted" catalog interfaces and data access protocols. GI-cat also publishes different discovery interfaces: the OGC CSW ISO and ebRIM Application Profiles (the latter coming with support for the EO and CIM extension packages) and two different OpenSearch interfaces developed in order to explore Web 2.0 possibilities. An extended interface is also available to exploit all available GI-cat features, such as interruptible incremental queries and queries feedback. Interoperability tests performed in the context of different projects have also pointed out the importance to enforce compatibility with existing and wide-spread tools of the open source community (e.g. GeoNetwork and Deegree catalogs), which was then achieved. Based on a service-oriented framework of modular components, GI-cat can effectively be customized and tailored to support different deployment scenarios. In addition to the distribution functionality an harvesting approach has been lately experimented, allowing the user to switch between a distributed and a local search giving thus more possibilities to support different deployment scenarios. A configurator tool is available in order to enable an effective high level configuration of the broker service. A specific geobrowser was also naturally developed, for demonstrating the advanced GI-cat functionalities. This client, called GI-go, is an example of the possible applications which may be built on top of the GI-cat broker component. GI-go allows discovering and browsing of the available datasets, retrieving and evaluating their description and performing distributed queries according to any combination of the following criteria: geographic area, temporal interval, topic of interest (free-text and/or keyword selection are allowed) and data source (i.e. where, when, what, who). The results set of a query (e.g. datasets metadata) are then displayed in an incremental way leveraging the asynchronous interactions approach implemented by GI-cat. This feature allows the user to access the intermediate query results. Query interruption and feedback features are also provided to the user. Alternatively, user may perform a browsing task by selecting a catalog resource from the current configuration and navigate through its aggregated and/or leaf datasets. In both cases datasets metadata, expressed according to ISO 19139 (and also Dublin Core and ebRIM if available), are displayed for download, along with a resource portrayal and actual data access (when this is meaningful and possible). The GI-cat distributed catalog service has been successfully deployed and experimented in the framework of different projects and initiative, including the SeaDataNet FP6 project, GEOSS IP3 (Interoperability Process Pilot Project), GEOSS AIP-2 (Architectural Implementation Project - Phase 2), FP7 GENESI-DR, CNR GIIDA, FP7 EUROGEOSS and ESA HMA project.

  3. Secure Skyline Queries on Cloud Platform.

    PubMed

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-04-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

  4. OASIS: A Data Fusion System Optimized for Access to Distributed Archives

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Kong, M.; Good, J. C.

    2002-05-01

    The On-Line Archive Science Information Services (OASIS) is accessible as a java applet through the NASA/IPAC Infrared Science Archive home page. It uses Geographical Information System (GIS) technology to provide data fusion and interaction services for astronomers. These services include the ability to process and display arbitrarily large image files, and user-controlled contouring, overlay regeneration and multi-table/image interactions. OASIS has been optimized for access to distributed archives and data sets. Its second release (June 2002) provides a mechanism that enables access to OASIS from "third-party" services and data providers. That is, any data provider who creates a query form to an archive containing a collection of data (images, catalogs, spectra) can direct the result files from the query into OASIS. Similarly, data providers who serve links to datasets or remote services on a web page can access all of these data with one instance of OASIS. In this was any data or service provider is given access to the full suite of capabilites of OASIS. We illustrate the "third-party" access feature with two examples: queries to the high-energy image datasets accessible from GSFC SkyView, and links to data that are returned from a target-based query to the NASA Extragalactic Database (NED). The second release of OASIS also includes a file-transfer manager that reports the status of multiple data downloads from remote sources to the client machine. It is a prototype for a request management system that will ultimately control and manage compute-intensive jobs submitted through OASIS to computing grids, such as request for large scale image mosaics and bulk statistical analysis.

  5. Cognitive search model and a new query paradigm

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghui

    2001-06-01

    This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.

  6. An effective model for store and retrieve big health data in cloud computing.

    PubMed

    Goli-Malekabadi, Zohreh; Sargolzaei-Javan, Morteza; Akbari, Mohammad Kazem

    2016-08-01

    The volume of healthcare data including different and variable text types, sounds, and images is increasing day to day. Therefore, the storage and processing of these data is a necessary and challenging issue. Generally, relational databases are used for storing health data which are not able to handle the massive and diverse nature of them. This study aimed at presenting the model based on NoSQL databases for the storage of healthcare data. Despite different types of NoSQL databases, document-based DBs were selected by a survey on the nature of health data. The presented model was implemented in the Cloud environment for accessing to the distribution properties. Then, the data were distributed on the database by applying the Shard property. The efficiency of the model was evaluated in comparison with the previous data model, Relational Database, considering query time, data preparation, flexibility, and extensibility parameters. The results showed that the presented model approximately performed the same as SQL Server for "read" query while it acted more efficiently than SQL Server for "write" query. Also, the performance of the presented model was better than SQL Server in the case of flexibility, data preparation and extensibility. Based on these observations, the proposed model was more effective than Relational Databases for handling health data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  8. Query-Based Outlier Detection in Heterogeneous Information Networks.

    PubMed

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-03-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.

  9. Query-Based Outlier Detection in Heterogeneous Information Networks

    PubMed Central

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-01-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397

  10. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    NASA Astrophysics Data System (ADS)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  11. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records.

    PubMed

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.

  12. Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records

    PubMed Central

    Luo, Yuan; Szolovits, Peter

    2016-01-01

    In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379

  13. Advanced Query Formulation in Deductive Databases.

    ERIC Educational Resources Information Center

    Niemi, Timo; Jarvelin, Kalervo

    1992-01-01

    Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…

  14. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  15. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  16. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution.

    PubMed

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-08-19

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security.

  17. Design notes for the next generation persistent object manager for CAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isely, M.; Fischler, M.; Galli, M.

    1995-05-01

    The CAP query system software at Fermilab has several major components, including SQS (for managing the query), the retrieval system (for fetching auxiliary data), and the query software itself. The central query software in particular is essentially a modified version of the `ptool` product created at UIC (University of Illinois at Chicago) as part of the PASS project under Bob Grossman. The original UIC version was designed for use in a single-user non-distributed Unix environment. The Fermi modifications were an attempt to permit multi-user access to a data set distributed over a set of storage nodes. (The hardware is anmore » IBM SP-x system - a cluster of AIX POWER2 nodes with an IBM-proprietary high speed switch interconnect). Since the implementation work of the Fermi-ized ptool, the CAP members have learned quite a bit about the nature of queries and where the current performance bottlenecks exist. This has lead them to design a persistent object manager that will overcome these problems. For backwards compatibility with ptool, the ptool persistent object API will largely be retained, but the implementation will be entirely different.« less

  18. Queries over Unstructured Data: Probabilistic Methods to the Rescue

    NASA Astrophysics Data System (ADS)

    Sarawagi, Sunita

    Unstructured data like emails, addresses, invoices, call transcripts, reviews, and press releases are now an integral part of any large enterprise. A challenge of modern business intelligence applications is analyzing and querying data seamlessly across structured and unstructured sources. This requires the development of automated techniques for extracting structured records from text sources and resolving entity mentions in data from various sources. The success of any automated method for extraction and integration depends on how effectively it unifies diverse clues in the unstructured source and in existing structured databases. We argue that statistical learning techniques like Conditional Random Fields (CRFs) provide a accurate, elegant and principled framework for tackling these tasks. Given the inherent noise in real-world sources, it is important to capture the uncertainty of the above operations via imprecise data models. CRFs provide a sound probability distribution over extractions but are not easy to represent and query in a relational framework. We present methods of approximating this distribution to query-friendly row and column uncertainty models. Finally, we present models for representing the uncertainty of de-duplication and algorithms for various Top-K count queries on imprecise duplicates.

  19. Cognitive issues in searching images with visual queries

    NASA Astrophysics Data System (ADS)

    Yu, ByungGu; Evens, Martha W.

    1999-01-01

    In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.

  20. Secure Skyline Queries on Cloud Platform

    PubMed Central

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-01-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions. PMID:28883710

  1. Implementation of a Distributed Object-Oriented Database Management System

    DTIC Science & Technology

    1989-03-01

    and heuristic algorithms. A method for determining ueit allocation by splitting relations in the conceptual schema base on queries and updates is...level framworks can provide to the user the appearance of many tools to be closely integrated. In particular, the KBSA tools use many high level...development process should begin first with conceptual design of the system. Approximately one month should be used to decide how the new projects

  2. Array Processing in the Cloud: the rasdaman Approach

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Dumitru, Alex

    2015-04-01

    The multi-dimensional array data model is gaining more and more attention when dealing with Big Data challenges in a variety of domains such as climate simulations, geographic information systems, medical imaging or astronomical observations. Solutions provided by classical Big Data tools such as Key-Value Stores and MapReduce, as well as traditional relational databases, proved to be limited in domains associated with multi-dimensional data. This problem has been addressed by the field of array databases, in which systems provide database services for raster data, without imposing limitations on the number of dimensions that a dataset can have. Examples of datasets commonly handled by array databases include 1-dimensional sensor data, 2-D satellite imagery, 3-D x/y/t image time series as well as x/y/z geophysical voxel data, and 4-D x/y/z/t weather data. And this can grow as large as simulations of the whole universe when it comes to astrophysics. rasdaman is a well established array database, which implements many optimizations for dealing with large data volumes and operation complexity. Among those, the latest one is intra-query parallelization support: a network of machines collaborate for answering a single array database query, by dividing it into independent sub-queries sent to different servers. This enables massive processing speed-ups, which promise solutions to research challenges on multi-Petabyte data cubes. There are several correlated factors which influence the speedup that intra-query parallelisation brings: the number of servers, the capabilities of each server, the quality of the network, the availability of the data to the server that needs it in order to compute the result and many more. In the effort of adapting the engine to cloud processing patterns, two main components have been identified: one that handles communication and gathers information about the arrays sitting on every server, and a processing unit responsible with dividing work among available nodes and executing operations on local data. The federation daemon collects and stores statistics from the other network nodes and provides real time updates about local changes. Information exchanged includes available datasets, CPU load and memory usage per host. The processing component is represented by the rasdaman server. Using information from the federation daemon it breaks queries into subqueries to be executed on peer nodes, ships them, and assembles the intermediate results. Thus, we define a rasdaman network node as a pair of a federation daemon and a rasdaman server. Any node can receive a query and will subsequently act as this query's dispatcher, so all peers are at the same level and there is no single point of failure. Should a node become inaccessible then the peers will recognize this and will not any longer consider this peer for distribution. Conversely, a peer at any time can join the network. To assess the feasibility of our approach, we deployed a rasdaman network in the Amazon Elastic Cloud environment on 1001 nodes, and observed that this feature can greatly increase the performance and scalability of the system, offering a large throughput of processed data.

  3. Efficient LIDAR Point Cloud Data Managing and Processing in a Hadoop-Based Distributed Framework

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Sha, D.; Han, X.

    2017-10-01

    Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop's storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

  4. Semi-automatic semantic annotation of PubMed Queries: a study on quality, efficiency, satisfaction

    PubMed Central

    Névéol, Aurélie; Islamaj-Doğan, Rezarta; Lu, Zhiyong

    2010-01-01

    Information processing algorithms require significant amounts of annotated data for training and testing. The availability of such data is often hindered by the complexity and high cost of production. In this paper, we investigate the benefits of a state-of-the-art tool to help with the semantic annotation of a large set of biomedical information queries. Seven annotators were recruited to annotate a set of 10,000 PubMed® queries with 16 biomedical and bibliographic categories. About half of the queries were annotated from scratch, while the other half were automatically pre-annotated and manually corrected. The impact of the automatic pre-annotations was assessed on several aspects of the task: time, number of actions, annotator satisfaction, inter-annotator agreement, quality and number of the resulting annotations. The analysis of annotation results showed that the number of required hand annotations is 28.9% less when using pre-annotated results from automatic tools. As a result, the overall annotation time was substantially lower when pre-annotations were used, while inter-annotator agreement was significantly higher. In addition, there was no statistically significant difference in the semantic distribution or number of annotations produced when pre-annotations were used. The annotated query corpus is freely available to the research community. This study shows that automatic pre-annotations are found helpful by most annotators. Our experience suggests using an automatic tool to assist large-scale manual annotation projects. This helps speed-up the annotation time and improve annotation consistency while maintaining high quality of the final annotations. PMID:21094696

  5. Searching and Filtering Tweets: CSIRO at the TREC 2012 Microblog Track

    DTIC Science & Technology

    2012-11-01

    stages. We first evaluate the effect of tweet corpus pre- processing in vanilla runs (no query expansion), and then assess the effect of query expansion...Effect of a vanilla run on D4 index (both realtime and non-real-time), and query expansion methods based on the submitted runs for two sets of queries

  6. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  7. MDPHnet: Secure, Distributed Sharing of Electronic Health Record Data for Public Health Surveillance, Evaluation, and Planning

    PubMed Central

    Vogel, Joshua; Brown, Jeffrey S.; Land, Thomas; Platt, Richard

    2014-01-01

    Electronic health record systems contain clinically detailed data from large populations of patients that could significantly enrich public health surveillance. Clinical practices’ security, privacy, and proprietary concerns, however, have limited their willingness to share these data with public health agencies. We describe a novel distributed network for public health surveillance called MDPHnet. The system allows the Massachusetts Department of Public Health (MDPH) to initiate custom queries against participating practices’ electronic health records while the data remain behind each practice’s firewall. Practices can review proposed queries before execution and approve query results before releasing them to the health department. MDPH is using the system for routine surveillance for priority conditions and to evaluate the impact of public health interventions. PMID:25322301

  8. Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution

    PubMed Central

    Li, Jian; Yang, Yu-Guang; Chen, Xiu-Bo; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    A novel quantum private database query protocol is proposed, based on passive round-robin differential phase-shift quantum key distribution. Compared with previous quantum private database query protocols, the present protocol has the following unique merits: (i) the user Alice can obtain one and only one key bit so that both the efficiency and security of the present protocol can be ensured, and (ii) it does not require to change the length difference of the two arms in a Mach-Zehnder interferometer and just chooses two pulses passively to interfere with so that it is much simpler and more practical. The present protocol is also proved to be secure in terms of the user security and database security. PMID:27539654

  9. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop.

    PubMed

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig's scalability over many computing nodes and illustrate its use with example scripts. Available under the open source MIT license at http://sourceforge.net/projects/seqpig/

  10. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOEpatents

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2004-01-13

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  11. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOEpatents

    Moore, Reagan W [San Diego, CA; Rajasekar, Arcot [Del Mar, CA; Wan, Michael Y [San Diego, CA

    2007-09-11

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the re quest, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  12. System of and method for transparent management of data objects in containers across distributed heterogenous resources

    DOEpatents

    Moore, Reagan W.; Rajasekar, Arcot; Wan, Michael Y.

    2010-09-21

    A system of and method for maintaining data objects in containers across a network of distributed heterogeneous resources in a manner which is transparent to a client. A client request pertaining to containers is resolved by querying meta data for the container, processing the request through one or more copies of the container maintained on the system, updating the meta data for the container to reflect any changes made to the container as a result processing the request, and, if a copy of the container has changed, changing the status of the copy to indicate dirty status or synchronizing the copy to one or more other copies that may be present on the system.

  13. The EuroGEOSS Advanced Operating Capacity

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Vaccari, L.; Stock, K.; Diaz, L.; Santoro, M.

    2012-04-01

    The concept of multidisciplinary interoperability for managing societal issues is a major challenge presently faced by the Earth and Space Science Informatics community. With this in mind, EuroGEOSS project was launched on May 1st 2009 for a three year period aiming to demonstrate the added value to the scientific community and society of providing existing earth observing systems and applications in an interoperable manner and used within the GEOSS and INSPIRE frameworks. In the first period, the project built an Initial Operating Capability (IOC) in the three strategic areas of Drought, Forestry and Biodiversity; this was then enhanced into an Advanced Operating Capacity (AOC) for multidisciplinary interoperability. Finally, the project extended the infrastructure to other scientific domains (geology, hydrology, etc.). The EuroGEOSS multidisciplinary AOC is based on the Brokering Approach. This approach aims to achieve multidisciplinary interoperability by developing an extended SOA (Service Oriented Architecture) where a new type of "expert" components is introduced: the Broker. These implement all mediation and distribution functionalities needed to interconnect the distributed and heterogeneous resources characterizing a System of Systems (SoS) environment. The EuroGEOSS AOC is comprised of the following components: • EuroGEOSS Discovery Broker: providing harmonized discovery functionalities by mediating and distributing user queries against tens of heterogeneous services; • EuroGEOSS Access Broker: enabling users to seamlessly access and use heterogeneous remote resources via a unique and standard service; • EuroGEOSS Web 2.0 Broker: enhancing the capabilities of the Discovery Broker with queries towards the new Web 2.0 services; • EuroGEOSS Semantic Discovery Broker: enhancing the capabilities of the Discovery Broker with semantic query-expansion; • EuroGEOSS Natural Language Search Component: providing users with the possibilities to search for resources using natural language queries; • Service Composition Broker: allowing users to compose and execute complex Business Processes, based on the technology developed by the FP7 UncertWeb project. Recently, the EuroGEOSS Brokering framework was presented at the GEO-VIII Plenary and Exhibition in Istanbul and introduced into the GEOSS Common Infrastructure.

  14. Constraint-based Data Mining

    NASA Astrophysics Data System (ADS)

    Boulicaut, Jean-Francois; Jeudy, Baptiste

    Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.

  15. Knowledge and Theme Discovery across Very Large Biological Data Sets Using Distributed Queries: A Prototype Combining Unstructured and Structured Data

    PubMed Central

    Repetski, Stephen; Venkataraman, Girish; Che, Anney; Luke, Brian T.; Girard, F. Pascal; Stephens, Robert M.

    2013-01-01

    As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes of noisy and complex biological data, it has become evident that available methods for deriving meaningful information from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of highly structured and high-throughput data such as human variation or expression data from very large cohorts, is especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data structures and data models are best mapped to the proper computational framework. PMID:24312478

  16. Knowledge and theme discovery across very large biological data sets using distributed queries: a prototype combining unstructured and structured data.

    PubMed

    Mudunuri, Uma S; Khouja, Mohamad; Repetski, Stephen; Venkataraman, Girish; Che, Anney; Luke, Brian T; Girard, F Pascal; Stephens, Robert M

    2013-01-01

    As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes of noisy and complex biological data, it has become evident that available methods for deriving meaningful information from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of highly structured and high-throughput data such as human variation or expression data from very large cohorts, is especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data structures and data models are best mapped to the proper computational framework.

  17. SP2Bench: A SPARQL Performance Benchmark

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg

    A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.

  18. Distributed EDLSI, BM25, and Power Norm at TREC 2008

    DTIC Science & Technology

    2008-11-01

    LSI would work on the IIT Complex Document Information Processing (IIT CDIP ) test collection, which contains approximately 7 million documents (57 GB...requirements, specifically the memory, for EDLSI are reduced over LSI, they are still significant, especially for a corpus the size of IIT CDIP . After...data, for training purposes. Initially we ran the 2006 and 2007 queries against the IIT CDIP corpus and developed a pseudo submis- sion file containing

  19. An adaptable architecture for patient cohort identification from diverse data sources.

    PubMed

    Bache, Richard; Miles, Simon; Taweel, Adel

    2013-12-01

    We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity.

  20. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  1. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  2. Squid - a simple bioinformatics grid.

    PubMed

    Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M

    2005-08-03

    BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example.

  3. Exploring Diverse Data Sets and Developing New Theories and Ideas With Project Integration Architecture

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.; Jones, William H.

    2005-01-01

    The development of new ideas is the essence of scientific research. This is frequently done by developing models of physical processes and comparing model predictions with results from experiments. With models becoming ever more complex and data acquisition systems becoming more powerful, the researcher is burdened with wading through data ranging in volume up to a level of many terabytes and beyond. These data often come from multiple, heterogeneous sources and usually the methods for searching through it are at or near the manual level. In addition, current documentation methods are generally limited to researchers pen-and-paper style notebooks. Researchers may want to form constraint-based queries on a body of existing knowledge that is, itself, distributed over many different machines and environments and from the results of such queries then spawn additional queries, simulations, and data analyses in order to discover new insights into the problem being investigated. Currently, researchers are restricted to working within the boundaries of tools that are inefficient at probing current and legacy data to extend the knowledge of the problem at hand and reveal innovative and efficient solutions. A framework called the Project Integration Architecture is discussed that can address these desired functionalities.

  4. FAWKES Information Management for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Spetka, S.; Ramseyer, G.; Tucker, S.

    2010-09-01

    Current space situational awareness assets can be fully utilized by managing their inputs and outputs in real time. Ideally, sensors are tasked to perform specific functions to maximize their effectiveness. Many sensors are capable of collecting more data than is needed for a particular purpose, leading to the potential to enhance a sensor’s utilization by allowing it to be re-tasked in real time when it is determined that sufficient data has been acquired to meet the first task’s requirements. In addition, understanding a situation involving fast-traveling objects in space may require inputs from more than one sensor, leading to a need for information sharing in real time. Observations that are not processed in real time may be archived to support forensic analysis for accidents and for long-term studies. Space Situational Awareness (SSA) requires an extremely robust distributed software platform to appropriately manage the collection and distribution for both real-time decision-making as well as for analysis. FAWKES is being developed as a Joint Space Operations Center (JSPOC) Mission System (JMS) compliant implementation of the AFRL Phoenix information management architecture. It implements a pub/sub/archive/query (PSAQ) approach to communications designed for high performance applications. FAWKES provides an easy to use, reliable interface for structuring parallel processing, and is particularly well suited to the requirements of SSA. In addition to supporting point-to-point communications, it offers an elegant and robust implementation of collective communications, to scatter, gather and reduce values. A query capability is also supported that enhances reliability. Archived messages can be queried to re-create a computation or to selectively retrieve previous publications. PSAQ processes express their role in a computation by subscribing to their inputs and by publishing their results. Sensors on the edge can subscribe to inputs by appropriately authorized users, allowing dynamic tasking capabilities. Previously, the publication of sensor data collected by mobile systems was demonstrated. Thumbnails of infrared imagery that were imaged in real time by an aircraft [1] were published over a grid. This airborne system subscribed to requests for and then published the requested detailed images. In another experiment a system employing video subscriptions [2] drove the analysis of live video streams, resulting in a published stream of processed video output. We are currently implementing an SSA system that uses FAWKES to deliver imagery from telescopes through a pipeline of processing steps that are performed on high performance computers. PSAQ facilitates the decomposition of a problem into components that can be distributed across processing assets from the smallest sensors in space to the largest high performance computing (HPC) centers, as well as the integration and distribution of the results, all in real time. FAWKES supports the real-time latency requirements demanded by all of these applications. It also enhances reliability by easily supporting redundant computation. This study shows how FAWKES/PSAQ is utilized in SSA applications, and presents performance results for latency and throughput that meet these needs.

  5. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A data and information system for processing, archival, and distribution of data for global change research

    NASA Technical Reports Server (NTRS)

    Graves, Sara J.

    1994-01-01

    Work on this project was focused on information management techniques for Marshall Space Flight Center's EOSDIS Version 0 Distributed Active Archive Center (DAAC). The centerpiece of this effort has been participation in EOSDIS catalog interoperability research, the result of which is a distributed Information Management System (IMS) allowing the user to query the inventories of all the DAAC's from a single user interface. UAH has provided the MSFC DAAC database server for the distributed IMS, and has contributed to definition and development of the browse image display capabilities in the system's user interface. Another important area of research has been in generating value-based metadata through data mining. In addition, information management applications for local inventory and archive management, and for tracking data orders were provided.

  7. Coaching the exploration and exploitation in active learning for interactive video retrieval.

    PubMed

    Wei, Xiao-Yong; Yang, Zhen-Qun

    2013-03-01

    Conventional active learning approaches for interactive video/image retrieval usually assume the query distribution is unknown, as it is difficult to estimate with only a limited number of labeled instances available. Thus, it is easy to put the system in a dilemma whether to explore the feature space in uncertain areas for a better understanding of the query distribution or to harvest in certain areas for more relevant instances. In this paper, we propose a novel approach called coached active learning that makes the query distribution predictable through training and, therefore, avoids the risk of searching on a completely unknown space. The estimated distribution, which provides a more global view of the feature space, can be used to schedule not only the timing but also the step sizes of the exploration and the exploitation in a principled way. The results of the experiments on a large-scale data set from TRECVID 2005-2009 validate the efficiency and effectiveness of our approach, which demonstrates an encouraging performance when facing domain-shift, outperforms eight conventional active learning methods, and shows superiority to six state-of-the-art interactive video retrieval systems.

  8. Object-Oriented Query Language For Events Detection From Images Sequences

    NASA Astrophysics Data System (ADS)

    Ganea, Ion Eugen

    2015-09-01

    In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.

  9. A Modular Framework for Transforming Structured Data into HTML with Machine-Readable Annotations

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; West, P.; Rozell, E.; Zheng, J.

    2010-12-01

    There is a plethora of web-based Content Management Systems (CMS) available for maintaining projects and data, i.a. However, each system varies in its capabilities and often content is stored separately and accessed via non-uniform web interfaces. Moving from one CMS to another (e.g., MediaWiki to Drupal) can be cumbersome, especially if a large quantity of data must be adapted to the new system. To standardize the creation, display, management, and sharing of project information, we have assembled a framework that uses existing web technologies to transform data provided by any service that supports the SPARQL Protocol and RDF Query Language (SPARQL) queries into HTML fragments, allowing it to be embedded in any existing website. The framework utilizes a two-tier XML Stylesheet Transformation (XSLT) that uses existing ontologies (e.g., Friend-of-a-Friend, Dublin Core) to interpret query results and render them as HTML documents. These ontologies can be used in conjunction with custom ontologies suited to individual needs (e.g., domain-specific ontologies for describing data records). Furthermore, this transformation process encodes machine-readable annotations, namely, the Resource Description Framework in attributes (RDFa), into the resulting HTML, so that capable parsers and search engines can extract the relationships between entities (e.g, people, organizations, datasets). To facilitate editing of content, the framework provides a web-based form system, mapping each query to a dynamically generated form that can be used to modify and create entities, while keeping the native data store up-to-date. This open framework makes it easy to duplicate data across many different sites, allowing researchers to distribute their data in many different online forums. In this presentation we will outline the structure of queries and the stylesheets used to transform them, followed by a brief walkthrough that follows the data from storage to human- and machine-accessible web page. We conclude with a discussion on content caching and steps toward performing queries across multiple domains.

  10. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  11. Targeted exploration and analysis of large cross-platform human transcriptomic compendia

    PubMed Central

    Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.

    2016-01-01

    We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801

  12. Graphical modeling and query language for hospitals.

    PubMed

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia and working with real data from these hospitals. Our third step is to develop an efficient implementation of the query language.

  13. A Designers’ Guide to Reliable Distributed Systems: Design and Analysis Methods. An Example Design. Volume 1

    DTIC Science & Technology

    1988-08-01

    exchanged between the cells, thus requiring existence of fast , high capacity, high availability communication channels. The same arguments indicate...mininet - loss of a cell - intermittent communications failure in the maxinet - partitioning of the maxinet or the mininet o Query decomposition. 3.3...take place. A new sequencer is selected by the timeout mechanism described above. This process Pj must set its priority to 0 in order to ensure fast

  14. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  15. An adaptable architecture for patient cohort identification from diverse data sources

    PubMed Central

    Bache, Richard; Miles, Simon; Taweel, Adel

    2013-01-01

    Objective We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. Method The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. Results We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Discussion Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. Conclusions The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity. PMID:24064442

  16. Matching health information seekers' queries to medical terms

    PubMed Central

    2012-01-01

    Background The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. Methods In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. Results According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Conclusions Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved the results for misspelling correction of user queries. Accuracy is improved by combining spelling, phoneme-based information and string normalizations and segmentations into medical terms. These encouraging results have enabled the integration of this method into two projects funded by the French National Research Agency-Technologies for Health Care. The first aims to facilitate the coding process of clinical free texts contained in Electronic Health Records and discharge summaries, whereas the second aims at improving information retrieval through Electronic Health Records. PMID:23095521

  17. CMCC Data Distribution Centre

    NASA Astrophysics Data System (ADS)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  18. Internet Distribution of Spacecraft Telemetry Data

    NASA Technical Reports Server (NTRS)

    Specht, Ted; Noble, David

    2006-01-01

    Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.

  19. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  20. Efficient processing of multiple nested event pattern queries over multi-dimensional event streams based on a triaxial hierarchical model.

    PubMed

    Xiao, Fuyuan; Aritsugi, Masayoshi; Wang, Qing; Zhang, Rong

    2016-09-01

    For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper. Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them. According to the triaxial hierarchical model, we can also calculate how to reuse the results of the common sub-expressions in multiple queries. By integrating the optimised query execution plan with the reuse schemes, a multi-query optimisation strategy is developed to accomplish efficient processing of multiple nested event pattern queries. We present empirical studies in which the performance of multi-query optimisation strategy was examined under various stream input rates and workloads. Specifically, the workloads of pattern queries can be used for supporting monitoring patients' conditions. On the other hand, experiments with varying input rates of streams can correspond to changes of the numbers of patients that a system should manage, whereas burst input rates can correspond to changes of rushes of patients to be taken care of. The experimental results have shown that, in Workload 1, our proposal can improve about 4 and 2 times throughput comparing with the relative works, respectively; in Workload 2, our proposal can improve about 3 and 2 times throughput comparing with the relative works, respectively; in Workload 3, our proposal can improve about 6 times throughput comparing with the relative work. The experimental results demonstrated that our proposal was able to process complex queries efficiently which can support health information systems and further decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The application of connectionism to query planning/scheduling in intelligent user interfaces

    NASA Technical Reports Server (NTRS)

    Short, Nicholas, Jr.; Shastri, Lokendra

    1990-01-01

    In the mid nineties, the Earth Observing System (EOS) will generate an estimated 10 terabytes of data per day. This enormous amount of data will require the use of sophisticated technologies from real time distributed Artificial Intelligence (AI) and data management. Without regard to the overall problems in distributed AI, efficient models were developed for doing query planning and/or scheduling in intelligent user interfaces that reside in a network environment. Before intelligent query/planning can be done, a model for real time AI planning and/or scheduling must be developed. As Connectionist Models (CM) have shown promise in increasing run times, a connectionist approach to AI planning and/or scheduling is proposed. The solution involves merging a CM rule based system to a general spreading activation model for the generation and selection of plans. The system was implemented in the Rochester Connectionist Simulator and runs on a Sun 3/260.

  2. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  3. ClimateSpark: An in-memory distributed computing framework for big climate data analytics

    NASA Astrophysics Data System (ADS)

    Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei

    2018-06-01

    The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.

  4. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    PubMed

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  5. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    PubMed Central

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  6. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed

    Dugan, J M; Berrios, D C; Liu, X; Kim, D K; Kaizer, H; Fagan, L M

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models.

  7. Spatial aggregation query in dynamic geosensor networks

    NASA Astrophysics Data System (ADS)

    Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun

    2007-11-01

    Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.

  8. An Intelligent System for Document Retrieval in Distributed Office Environments.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Uttam; And Others

    1986-01-01

    MINDS (Multiple Intelligent Node Document Servers) is a distributed system of knowledge-based query engines for efficiently retrieving multimedia documents in an office environment of distributed workstations. By learning document distribution patterns and user interests and preferences during system usage, it customizes document retrievals for…

  9. Child Pornography in Peer-to-Peer Networks

    ERIC Educational Resources Information Center

    Steel, Chad M. S.

    2009-01-01

    Objective: The presence of child pornography in peer-to-peer networks is not disputed, but there has been little effort done to quantify and analyze the distribution and nature of that content to-date. By performing an analysis of queries and query hits on the largest peer-to-peer network, we are able to both quantify and describe the nature of…

  10. Optimizing a Query by Transformation and Expansion.

    PubMed

    Glocker, Katrin; Knurr, Alexander; Dieter, Julia; Dominick, Friederike; Forche, Melanie; Koch, Christian; Pascoe Pérez, Analie; Roth, Benjamin; Ückert, Frank

    2017-01-01

    In the biomedical sector not only the amount of information produced and uploaded into the web is enormous, but also the number of sources where these data can be found. Clinicians and researchers spend huge amounts of time on trying to access this information and to filter the most important answers to a given question. As the formulation of these queries is crucial, automated query expansion is an effective tool to optimize a query and receive the best possible results. In this paper we introduce the concept of a workflow for an optimization of queries in the medical and biological sector by using a series of tools for expansion and transformation of the query. After the definition of attributes by the user, the query string is compared to previous queries in order to add semantic co-occurring terms to the query. Additionally, the query is enlarged by an inclusion of synonyms. The translation into database specific ontologies ensures the optimal query formulation for the chosen database(s). As this process can be performed in various databases at once, the results are ranked and normalized in order to achieve a comparable list of answers for a question.

  11. Merging OLTP and OLAP - Back to the Future

    NASA Astrophysics Data System (ADS)

    Lehner, Wolfgang

    When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.

  12. Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404

  13. A Simple Blueprint for Automatic Boolean Query Processing.

    ERIC Educational Resources Information Center

    Salton, G.

    1988-01-01

    Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…

  14. In-network processing of joins in wireless sensor networks.

    PubMed

    Kang, Hyunchul

    2013-03-11

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.

  15. In-Network Processing of Joins in Wireless Sensor Networks

    PubMed Central

    Kang, Hyunchul

    2013-01-01

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603

  16. Distributed XQuery-Based Integration and Visualization of Multimodality Brain Mapping Data

    PubMed Central

    Detwiler, Landon T.; Suciu, Dan; Franklin, Joshua D.; Moore, Eider B.; Poliakov, Andrew V.; Lee, Eunjung S.; Corina, David P.; Ojemann, George A.; Brinkley, James F.

    2008-01-01

    This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts. PMID:19198662

  17. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop

    PubMed Central

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Summary: Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig’s scalability over many computing nodes and illustrate its use with example scripts. Availability and Implementation: Available under the open source MIT license at http://sourceforge.net/projects/seqpig/ Contact: andre.schumacher@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24149054

  18. Querying and Extracting Timeline Information from Road Traffic Sensor Data

    PubMed Central

    Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen

    2016-01-01

    The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900

  19. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  20. Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal

    PubMed Central

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen

    2014-01-01

    Background The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. Objective The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Methods Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic’s consumer health information website. We performed analyses on “Queries with considering repetition counts (QwR)” and “Queries without considering repetition counts (QwoR)”. The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Results Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are “Symptoms” (1 in 3 search queries), “Causes”, and “Treatments & Drugs”. The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. Conclusions This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed. PMID:25000537

  1. Comparative analysis of online health queries originating from personal computers and smart devices on a consumer health information portal.

    PubMed

    Jadhav, Ashutosh; Andrews, Donna; Fiksdal, Alexander; Kumbamu, Ashok; McCormick, Jennifer B; Misitano, Andrew; Nelsen, Laurie; Ryu, Euijung; Sheth, Amit; Wu, Stephen; Pathak, Jyotishman

    2014-07-04

    The number of people using the Internet and mobile/smart devices for health information seeking is increasing rapidly. Although the user experience for online health information seeking varies with the device used, for example, smart devices (SDs) like smartphones/tablets versus personal computers (PCs) like desktops/laptops, very few studies have investigated how online health information seeking behavior (OHISB) may differ by device. The objective of this study is to examine differences in OHISB between PCs and SDs through a comparative analysis of large-scale health search queries submitted through Web search engines from both types of devices. Using the Web analytics tool, IBM NetInsight OnDemand, and based on the type of devices used (PCs or SDs), we obtained the most frequent health search queries between June 2011 and May 2013 that were submitted on Web search engines and directed users to the Mayo Clinic's consumer health information website. We performed analyses on "Queries with considering repetition counts (QwR)" and "Queries without considering repetition counts (QwoR)". The dataset contains (1) 2.74 million and 3.94 million QwoR, respectively for PCs and SDs, and (2) more than 100 million QwR for both PCs and SDs. We analyzed structural properties of the queries (length of the search queries, usage of query operators and special characters in health queries), types of search queries (keyword-based, wh-questions, yes/no questions), categorization of the queries based on health categories and information mentioned in the queries (gender, age-groups, temporal references), misspellings in the health queries, and the linguistic structure of the health queries. Query strings used for health information searching via PCs and SDs differ by almost 50%. The most searched health categories are "Symptoms" (1 in 3 search queries), "Causes", and "Treatments & Drugs". The distribution of search queries for different health categories differs with the device used for the search. Health queries tend to be longer and more specific than general search queries. Health queries from SDs are longer and have slightly fewer spelling mistakes than those from PCs. Users specify words related to women and children more often than that of men and any other age group. Most of the health queries are formulated using keywords; the second-most common are wh- and yes/no questions. Users ask more health questions using SDs than PCs. Almost all health queries have at least one noun and health queries from SDs are more descriptive than those from PCs. This study is a large-scale comparative analysis of health search queries to understand the effects of device type (PCs vs. SDs) used on OHISB. The study indicates that the device used for online health information search plays an important role in shaping how health information searches by consumers and patients are executed.

  2. Multidatabase Query Processing with Uncertainty in Global Keys and Attribute Values.

    ERIC Educational Resources Information Center

    Scheuermann, Peter; Li, Wen-Syan; Clifton, Chris

    1998-01-01

    Presents an approach for dynamic database integration and query processing in the absence of information about attribute correspondences and global IDs. Defines different types of equivalence conditions for the construction of global IDs. Proposes a strategy based on ranked role-sets that makes use of an automated semantic integration procedure…

  3. Unstructured medical image query using big data - An epilepsy case study.

    PubMed

    Istephan, Sarmad; Siadat, Mohammad-Reza

    2016-02-01

    Big data technologies are critical to the medical field which requires new frameworks to leverage them. Such frameworks would benefit medical experts to test hypotheses by querying huge volumes of unstructured medical data to provide better patient care. The objective of this work is to implement and examine the feasibility of having such a framework to provide efficient querying of unstructured data in unlimited ways. The feasibility study was conducted specifically in the epilepsy field. The proposed framework evaluates a query in two phases. In phase 1, structured data is used to filter the clinical data warehouse. In phase 2, feature extraction modules are executed on the unstructured data in a distributed manner via Hadoop to complete the query. Three modules have been created, volume comparer, surface to volume conversion and average intensity. The framework allows for user-defined modules to be imported to provide unlimited ways to process the unstructured data hence potentially extending the application of this framework beyond epilepsy field. Two types of criteria were used to validate the feasibility of the proposed framework - the ability/accuracy of fulfilling an advanced medical query and the efficiency that Hadoop provides. For the first criterion, the framework executed an advanced medical query that spanned both structured and unstructured data with accurate results. For the second criterion, different architectures were explored to evaluate the performance of various Hadoop configurations and were compared to a traditional Single Server Architecture (SSA). The surface to volume conversion module performed up to 40 times faster than the SSA (using a 20 node Hadoop cluster) and the average intensity module performed up to 85 times faster than the SSA (using a 40 node Hadoop cluster). Furthermore, the 40 node Hadoop cluster executed the average intensity module on 10,000 models in 3h which was not even practical for the SSA. The current study is limited to epilepsy field and further research and more feature extraction modules are required to show its applicability in other medical domains. The proposed framework advances data-driven medicine by unleashing the content of unstructured medical data in an efficient and unlimited way to be harnessed by medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Toward a Data Scalable Solution for Facilitating Discovery of Science Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jesse R.; Castellana, Vito G.; Morari, Alessandro

    Science is increasingly motivated by the need to process larger quantities of data. It is facing severe challenges in data collection, management, and processing, so much so that the computational demands of “data scaling” are competing with, and in many fields surpassing, the traditional objective of decreasing processing time. Example domains with large datasets include astronomy, biology, genomics, climate/weather, and material sciences. This paper presents a real-world use case in which we wish to answer queries pro- vided by domain scientists in order to facilitate discovery of relevant science resources. The problem is that the metadata for these science resourcesmore » is very large and is growing quickly, rapidly increasing the need for a data scaling solution. We propose a system – SGEM – designed for answering graph-based queries over large datasets on cluster architectures, and we re- port performance results for queries on the current RDESC dataset of nearly 1.4 billion triples, and on the well-known BSBM SPARQL query benchmark.« less

  5. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  6. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1992-01-01

    One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.

  7. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed Central

    Dugan, J. M.; Berrios, D. C.; Liu, X.; Kim, D. K.; Kaizer, H.; Fagan, L. M.

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:10566457

  8. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  9. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  10. Querying Archetype-Based Electronic Health Records Using Hadoop and Dewey Encoding of openEHR Models.

    PubMed

    Sundvall, Erik; Wei-Kleiner, Fang; Freire, Sergio M; Lambrix, Patrick

    2017-01-01

    Archetype-based Electronic Health Record (EHR) systems using generic reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update and reconfigure with new types (or versions) of data models or entries, ideally with very limited programming or manual database tweaking. Exploratory research (e.g. epidemiology) leading to ad-hoc querying on a population-wide scale can be a challenge in such environments. This publication describes implementation and test of an archetype-aware Dewey encoding optimization that can be used to produce such systems in environments supporting relational operations, e.g. RDBMs and distributed map-reduce frameworks like Hadoop. Initial testing was done using a nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of targeted extracts from 4+ million real patient EHRs, query results with sub-minute response time were obtained.

  11. Collaborative Supervised Learning for Sensor Networks

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Rebbapragada, Umaa; Lane, Terran

    2011-01-01

    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time.

  12. The role of organizational research in implementing evidence-based practice: QUERI Series

    PubMed Central

    Yano, Elizabeth M

    2008-01-01

    Background Health care organizations exert significant influence on the manner in which clinicians practice and the processes and outcomes of care that patients experience. A greater understanding of the organizational milieu into which innovations will be introduced, as well as the organizational factors that are likely to foster or hinder the adoption and use of new technologies, care arrangements and quality improvement (QI) strategies are central to the effective implementation of research into practice. Unfortunately, much implementation research seems to not recognize or adequately address the influence and importance of organizations. Using examples from the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI), we describe the role of organizational research in advancing the implementation of evidence-based practice into routine care settings. Methods Using the six-step QUERI process as a foundation, we present an organizational research framework designed to improve and accelerate the implementation of evidence-based practice into routine care. Specific QUERI-related organizational research applications are reviewed, with discussion of the measures and methods used to apply them. We describe these applications in the context of a continuum of organizational research activities to be conducted before, during and after implementation. Results Since QUERI's inception, various approaches to organizational research have been employed to foster progress through QUERI's six-step process. We report on how explicit integration of the evaluation of organizational factors into QUERI planning has informed the design of more effective care delivery system interventions and enabled their improved "fit" to individual VA facilities or practices. We examine the value and challenges in conducting organizational research, and briefly describe the contributions of organizational theory and environmental context to the research framework. Conclusion Understanding the organizational context of delivering evidence-based practice is a critical adjunct to efforts to systematically improve quality. Given the size and diversity of VA practices, coupled with unique organizational data sources, QUERI is well-positioned to make valuable contributions to the field of implementation science. More explicit accommodation of organizational inquiry into implementation research agendas has helped QUERI researchers to better frame and extend their work as they move toward regional and national spread activities. PMID:18510749

  13. Gene Expression Omnibus (GEO): Microarray data storage, submission, retrieval, and analysis

    PubMed Central

    Barrett, Tanya

    2006-01-01

    The Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information (NCBI) archives and freely distributes high-throughput molecular abundance data, predominantly gene expression data generated by DNA microarray technology. The database has a flexible design that can handle diverse styles of both unprocessed and processed data in a MIAME- (Minimum Information About a Microarray Experiment) supportive infrastructure that promotes fully annotated submissions. GEO currently stores about a billion individual gene expression measurements, derived from over 100 organisms, submitted by over 1,500 laboratories, addressing a wide range of biological phenomena. To maximize the utility of these data, several user-friendly Web-based interfaces and applications have been implemented that enable effective exploration, query, and visualization of these data, at the level of individual genes or entire studies. This chapter describes how the data are stored, submission procedures, and mechanisms for data retrieval and query. GEO is publicly accessible at http://www.ncbi.nlm.nih.gov/projects/geo/. PMID:16939800

  14. Towards a distributed information architecture for avionics data

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  15. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  16. OpenSearch technology for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a set of services for discovery, access, and processing of geospatial resources in a SOA framework. GI-cat is a distributed CSW framework implementation developed by the ESSI Lab of the Italian National Research Council (CNR-IMAA) and the University of Florence. It provides brokering and mediation functionalities towards heterogeneous resources and inventories, exposing several standard interfaces for query distribution. This work focuses on a new GI-cat interface which allows the catalog to be queried according to the OpenSearch syntax specification, thus filling the gap between the SOA architectural design of the CSW and the Web 2.0. At the moment, there is no OGC standard specification about this topic, but an official change request has been proposed in order to enable the OGC catalogues to support OpenSearch queries. In this change request, an OpenSearch extension is proposed providing a standard mechanism to query a resource based on temporal and geographic extents. Two new catalog operations are also proposed, in order to publish a suitable OpenSearch interface. This extended interface is implemented by the modular GI-cat architecture adding a new profiling module called "OpenSearch profiler". Since GI-cat also acts as a clearinghouse catalog, another component called "OpenSearch accessor" is added in order to access OpenSearch compliant services. An important role in the GI-cat extension, is played by the adopted mapping strategy. Two different kind of mappings are required: query, and response elements mapping. Query mapping is provided in order to fit the simple OpenSearch query syntax to the complex CSW query expressed by the OGC Filter syntax. GI-cat internal data model is based on the ISO-19115 profile, that is more complex than the simple XML syndication formats, such as RSS 2.0 and Atom 1.0, suggested by OpenSearch. Once response elements are available, in order to be presented, they need to be translated from the GI-cat internal data model, to the above mentioned syndication formats; the mapping processing, is bidirectional. When GI-cat is used to access OpenSearch compliant services, the CSW query must be mapped to the OpenSearch query, and the response elements, must be translated according to the GI-cat internal data model. As results of such extensions, GI-cat provides a user friendly facade to the complex CSW interface, thus enabling it to be queried, for example, using a browser toolbar.

  17. Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kei; Yoshida, Kaori; Oie, Yuji

    We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.

  18. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  19. Exploring Contextual Models in Chemical Patent Search

    NASA Astrophysics Data System (ADS)

    Urbain, Jay; Frieder, Ophir

    We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections.

  20. Supporting diagnosis and treatment in medical care based on Big Data processing.

    PubMed

    Lupşe, Oana-Sorina; Crişan-Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara; Bernard, Elena

    2014-01-01

    With information and data in all domains growing every day, it is difficult to manage and extract useful knowledge for specific situations. This paper presents an integrated system architecture to support the activity in the Ob-Gin departments with further developments in using new technology to manage Big Data processing - using Google BigQuery - in the medical domain. The data collected and processed with Google BigQuery results from different sources: two Obstetrics & Gynaecology Departments, the TreatSuggest application - an application for suggesting treatments, and a home foetal surveillance system. Data is uploaded in Google BigQuery from Bega Hospital Timişoara, Romania. The analysed data is useful for the medical staff, researchers and statisticians from public health domain. The current work describes the technological architecture and its processing possibilities that in the future will be proved based on quality criteria to lead to a better decision process in diagnosis and public health.

  1. Drexel at TREC 2014 Federated Web Search Track

    DTIC Science & Technology

    2014-11-01

    of its input RS results. 1. INTRODUCTION Federated Web Search is the task of searching multiple search engines simultaneously and combining their...or distributed properly[5]. The goal of RS is then, for a given query, to select only the most promising search engines from all those available. Most...result pages of 149 search engines . 4000 queries are used in building the sample set. As a part of the Vertical Selection task, search engines are

  2. LSD: Large Survey Database framework

    NASA Astrophysics Data System (ADS)

    Juric, Mario

    2012-09-01

    The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures.

  3. SAFE: SPARQL Federation over RDF Data Cubes with Access Control.

    PubMed

    Khan, Yasar; Saleem, Muhammad; Mehdi, Muntazir; Hogan, Aidan; Mehmood, Qaiser; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2017-02-01

    Several query federation engines have been proposed for accessing public Linked Open Data sources. However, in many domains, resources are sensitive and access to these resources is tightly controlled by stakeholders; consequently, privacy is a major concern when federating queries over such datasets. In the Healthcare and Life Sciences (HCLS) domain real-world datasets contain sensitive statistical information: strict ownership is granted to individuals working in hospitals, research labs, clinical trial organisers, etc. Therefore, the legal and ethical concerns on (i) preserving the anonymity of patients (or clinical subjects); and (ii) respecting data ownership through access control; are key challenges faced by the data analytics community working within the HCLS domain. Likewise statistical data play a key role in the domain, where the RDF Data Cube Vocabulary has been proposed as a standard format to enable the exchange of such data. However, to the best of our knowledge, no existing approach has looked to optimise federated queries over such statistical data. We present SAFE: a query federation engine that enables policy-aware access to sensitive statistical datasets represented as RDF data cubes. SAFE is designed specifically to query statistical RDF data cubes in a distributed setting, where access control is coupled with source selection, user profiles and their access rights. SAFE proposes a join-aware source selection method that avoids wasteful requests to irrelevant and unauthorised data sources. In order to preserve anonymity and enforce stricter access control, SAFE's indexing system does not hold any data instances-it stores only predicates and endpoints. The resulting data summary has a significantly lower index generation time and size compared to existing engines, which allows for faster updates when sources change. We validate the performance of the system with experiments over real-world datasets provided by three clinical organisations as well as legacy linked datasets. We show that SAFE enables granular graph-level access control over distributed clinical RDF data cubes and efficiently reduces the source selection and overall query execution time when compared with general-purpose SPARQL query federation engines in the targeted setting.

  4. Computerized Monitoring of the Inventory and Distribution of Research Chemicals

    ERIC Educational Resources Information Center

    And Others; Frycki, Stephen J.

    1973-01-01

    A one-time data entry system, coupled with an efficient use of the computer, which provides inventory management, distribution, and audit reporting, the ability to answer special queries, and to produce customized reports is described. (3 references) (Author)

  5. Hybrid Schema Matching for Deep Web

    NASA Astrophysics Data System (ADS)

    Chen, Kerui; Zuo, Wanli; He, Fengling; Chen, Yongheng

    Schema matching is the process of identifying semantic mappings, or correspondences, between two or more schemas. Schema matching is a first step and critical part of data integration. For schema matching of deep web, most researches only interested in query interface, while rarely pay attention to abundant schema information contained in query result pages. This paper proposed a mixed schema matching technique, which combines attributes that appeared in query structures and query results of different data sources, and mines the matched schemas inside. Experimental results prove the effectiveness of this method for improving the accuracy of schema matching.

  6. Enabling Incremental Query Re-Optimization.

    PubMed

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  7. A Search Strategy of Level-Based Flooding for the Internet of Things

    PubMed Central

    Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian

    2012-01-01

    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594

  8. Enabling Incremental Query Re-Optimization

    PubMed Central

    Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau

    2017-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658

  9. Development of a web-based video management and application processing system

    NASA Astrophysics Data System (ADS)

    Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting

    2001-07-01

    How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.

  10. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  11. Array Databases: Agile Analytics (not just) for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2015-12-01

    Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.

  12. Nosql for Storage and Retrieval of Large LIDAR Data Collections

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Liu, K.

    2015-08-01

    Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed.

  13. Rasdaman for Big Spatial Raster Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.

    2015-12-01

    Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.

  14. Mashups over the Deep Web

    NASA Astrophysics Data System (ADS)

    Hornung, Thomas; Simon, Kai; Lausen, Georg

    Combining information from different Web sources often results in a tedious and repetitive process, e.g. even simple information requests might require to iterate over a result list of one Web query and use each single result as input for a subsequent query. One approach for this chained queries are data-centric mashups, which allow to visually model the data flow as a graph, where the nodes represent the data source and the edges the data flow.

  15. A Natural Language Interface Concordant with a Knowledge Base.

    PubMed

    Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young

    2016-01-01

    The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.

  16. Large Survey Database: A Distributed Framework for Storage and Analysis of Large Datasets

    NASA Astrophysics Data System (ADS)

    Juric, Mario

    2011-01-01

    The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures. An LSD database consists of a set of vertically and horizontally partitioned tables, physically stored as compressed HDF5 files. Vertically, we partition the tables into groups of related columns ('column groups'), storing together logically related data (e.g., astrometry, photometry). Horizontally, the tables are partitioned into partially overlapping ``cells'' by position in space (lon, lat) and time (t). This organization allows for fast lookups based on spatial and temporal coordinates, as well as data and task distribution. The design was inspired by the success of Google BigTable (Chang et al., 2006). Our programming model is a pipelined extension of MapReduce (Dean and Ghemawat, 2004). An SQL-like query language is used to access data. For complex tasks, map-reduce ``kernels'' that operate on query results on a per-cell basis can be written, with the framework taking care of scheduling and execution. The combination leverages users' familiarity with SQL, while offering a fully distributed computing environment. LSD adds little overhead compared to direct Python file I/O. In tests, we sweeped through 1.1 Grows of PanSTARRS+SDSS data (220GB) less than 15 minutes on a dual CPU machine. In a cluster environment, we achieved bandwidths of 17Gbits/sec (I/O limited). Based on current experience, we believe LSD should scale to be useful for analysis and storage of LSST-scale datasets. It can be downloaded from http://mwscience.net/lsd.

  17. Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Rajput, B. S.

    2016-03-01

    Recall operations of quantum associative memory (QuAM) have been conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary and non- unitary operators respectively by separately choosing our recently derived maximally entangled states (Singh-Rajput MES) and Bell's MES as memory states for various queries and it has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much more suitable than those of Bell's MES. it has been demonstrated that in both the types of recall processes the first and the fourth states of Singh-Rajput MES are most suitable choices as memory states for the queries `11' and `00' respectively while none of the Bell's MES is a suitable choice as valid memory state in these recall processes. It has been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory states for the queries `1?', `?1', `?0' and `0?' while none of the Bell's MES is suitable choice as the valid memory state for these queries also.

  18. Advanced technologies for scalable ATLAS conditions database access on the grid

    NASA Astrophysics Data System (ADS)

    Basset, R.; Canali, L.; Dimitrov, G.; Girone, M.; Hawkings, R.; Nevski, P.; Valassi, A.; Vaniachine, A.; Viegas, F.; Walker, R.; Wong, A.

    2010-04-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  19. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  20. Content-Aware DataGuide with Incremental Index Update using Frequently Used Paths

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Duhan, Neelam; Khattar, Priyanka

    2010-11-01

    Size of the WWW is increasing day by day. Due to the absence of structured data on the Web, it becomes very difficult for information retrieval tools to fully utilize the Web information. As a solution to this problem, XML pages come into play, which provide structural information to the users to some extent. Without efficient indexes, query processing can be quite inefficient due to an exhaustive traversal on XML data. In this paper an improved content-centric approach of Content-Aware DataGuide, which is an indexing technique for XML databases, is being proposed that uses frequently used paths from historical query logs to improve query performance. The index can be updated incrementally according to the changes in query workload and thus, the overhead of reconstruction can be minimized. Frequently used paths are extracted using any Sequential Pattern mining algorithm on subsequent queries in the query workload. After this, the data structures are incrementally updated. This indexing technique proves to be efficient as partial matching queries can be executed efficiently and users can now get the more relevant documents in results.

  1. Evaluating non-relational storage technology for HEP metadata and meta-data catalog

    NASA Astrophysics Data System (ADS)

    Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.

    2016-10-01

    Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.

  2. Enriching text with images and colored light

    NASA Astrophysics Data System (ADS)

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  3. Index Compression and Efficient Query Processing in Large Web Search Engines

    ERIC Educational Resources Information Center

    Ding, Shuai

    2013-01-01

    The inverted index is the main data structure used by all the major search engines. Search engines build an inverted index on their collection to speed up query processing. As the size of the web grows, the length of the inverted list structures, which can easily grow to hundreds of MBs or even GBs for common terms (roughly linear in the size of…

  4. An SQL query generator for CLIPS

    NASA Technical Reports Server (NTRS)

    Snyder, James; Chirica, Laurian

    1990-01-01

    As expert systems become more widely used, their access to large amounts of external information becomes increasingly important. This information exists in several forms such as statistical, tabular data, knowledge gained by experts and large databases of information maintained by companies. Because many expert systems, including CLIPS, do not provide access to this external information, much of the usefulness of expert systems is left untapped. The scope of this paper is to describe a database extension for the CLIPS expert system shell. The current industry standard database language is SQL. Due to SQL standardization, large amounts of information stored on various computers, potentially at different locations, will be more easily accessible. Expert systems should be able to directly access these existing databases rather than requiring information to be re-entered into the expert system environment. The ORACLE relational database management system (RDBMS) was used to provide a database connection within the CLIPS environment. To facilitate relational database access a query generation system was developed as a CLIPS user function. The queries are entered in a CLlPS-like syntax and are passed to the query generator, which constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are asserted as CLIPS facts. The query generator was developed primarily for use within the ICADS project (Intelligent Computer Aided Design System) currently being developed by the CAD Research Unit in the California Polytechnic State University (Cal Poly). In ICADS, there are several parallel or distributed expert systems accessing a common knowledge base of facts. Expert system has a narrow domain of interest and therefore needs only certain portions of the information. The query generator provides a common method of accessing this information and allows the expert system to specify what data is needed without specifying how to retrieve it.

  5. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  6. Distributed Computation of the knn Graph for Large High-Dimensional Point Sets

    PubMed Central

    Plaku, Erion; Kavraki, Lydia E.

    2009-01-01

    High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors. PMID:19847318

  7. The Hub Population Health System: distributed ad hoc queries and alerts

    PubMed Central

    Anane, Sheila; Taverna, John; Amirfar, Sam; Stubbs-Dame, Remle; Singer, Jesse

    2011-01-01

    The Hub Population Health System enables the creation and distribution of queries for aggregate count information, clinical decision support alerts at the point-of-care for patients who meet specified conditions, and secure messages sent directly to provider electronic health record (EHR) inboxes. Using a metronidazole medication recall, the New York City Department of Health was able to determine the number of affected patients and message providers, and distribute an alert to participating practices. As of September 2011, the system is live in 400 practices and within a year will have over 532 practices with 2500 providers, representing over 2.5 million New Yorkers. The Hub can help public health experts to evaluate population health and quality improvement activities throughout the ambulatory care network. Multiple EHR vendors are building these features in partnership with the department's regional extension center in anticipation of new meaningful use requirements. PMID:22071531

  8. A natural language query system for Hubble Space Telescope proposal selection

    NASA Technical Reports Server (NTRS)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  9. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  10. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  11. Accelerating Research Impact in a Learning Health Care System

    PubMed Central

    Elwy, A. Rani; Sales, Anne E.; Atkins, David

    2017-01-01

    Background: Since 1998, the Veterans Health Administration (VHA) Quality Enhancement Research Initiative (QUERI) has supported more rapid implementation of research into clinical practice. Objectives: With the passage of the Veterans Access, Choice and Accountability Act of 2014 (Choice Act), QUERI further evolved to support VHA’s transformation into a Learning Health Care System by aligning science with clinical priority goals based on a strategic planning process and alignment of funding priorities with updated VHA priority goals in response to the Choice Act. Design: QUERI updated its strategic goals in response to independent assessments mandated by the Choice Act that recommended VHA reduce variation in care by providing a clear path to implement best practices. Specifically, QUERI updated its application process to ensure its centers (Programs) focus on cross-cutting VHA priorities and specify roadmaps for implementation of research-informed practices across different settings. QUERI also increased funding for scientific evaluations of the Choice Act and other policies in response to Commission on Care recommendations. Results: QUERI’s national network of Programs deploys effective practices using implementation strategies across different settings. QUERI Choice Act evaluations informed the law’s further implementation, setting the stage for additional rigorous national evaluations of other VHA programs and policies including community provider networks. Conclusions: Grounded in implementation science and evidence-based policy, QUERI serves as an example of how to operationalize core components of a Learning Health Care System, notably through rigorous evaluation and scientific testing of implementation strategies to ultimately reduce variation in quality and improve overall population health. PMID:27997456

  12. Heterogeneous database integration in biomedicine.

    PubMed

    Sujansky, W

    2001-08-01

    The rapid expansion of biomedical knowledge, reduction in computing costs, and spread of internet access have created an ocean of electronic data. The decentralized nature of our scientific community and healthcare system, however, has resulted in a patchwork of diverse, or heterogeneous, database implementations, making access to and aggregation of data across databases very difficult. The database heterogeneity problem applies equally to clinical data describing individual patients and biological data characterizing our genome. Specifically, databases are highly heterogeneous with respect to the data models they employ, the data schemas they specify, the query languages they support, and the terminologies they recognize. Heterogeneous database systems attempt to unify disparate databases by providing uniform conceptual schemas that resolve representational heterogeneities, and by providing querying capabilities that aggregate and integrate distributed data. Research in this area has applied a variety of database and knowledge-based techniques, including semantic data modeling, ontology definition, query translation, query optimization, and terminology mapping. Existing systems have addressed heterogeneous database integration in the realms of molecular biology, hospital information systems, and application portability.

  13. Software-Enabled Distributed Network Governance: The PopMedNet Experience.

    PubMed

    Davies, Melanie; Erickson, Kyle; Wyner, Zachary; Malenfant, Jessica; Rosen, Rob; Brown, Jeffrey

    2016-01-01

    The expanded availability of electronic health information has led to increased interest in distributed health data research networks. The distributed research network model leaves data with and under the control of the data holder. Data holders, network coordinating centers, and researchers have distinct needs and challenges within this model. The concerns of network stakeholders are addressed in the design and governance models of the PopMedNet software platform. PopMedNet features include distributed querying, customizable workflows, and auditing and search capabilities. Its flexible role-based access control system enables the enforcement of varying governance policies. Four case studies describe how PopMedNet is used to enforce network governance models. Trust is an essential component of a distributed research network and must be built before data partners may be willing to participate further. The complexity of the PopMedNet system must be managed as networks grow and new data, analytic methods, and querying approaches are developed. The PopMedNet software platform supports a variety of network structures, governance models, and research activities through customizable features designed to meet the needs of network stakeholders.

  14. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1993-01-01

    One of the biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental data base access method, VIEWCACHE, provides such an interface for accessing distributed datasets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image datasets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate database search.

  15. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  16. Spatial Knowledge Infrastructures - Creating Value for Policy Makers and Benefits the Community

    NASA Astrophysics Data System (ADS)

    Arnold, L. M.

    2016-12-01

    The spatial data infrastructure is arguably one of the most significant advancements in the spatial sector. It's been a game changer for governments, providing for the coordination and sharing of spatial data across organisations and the provision of accessible information to the broader community of users. Today however, end-users such as policy-makers require far more from these spatial data infrastructures. They want more than just data; they want the knowledge that can be extracted from data and they don't want to have to download, manipulate and process data in order to get the knowledge they seek. It's time for the spatial sector to reduce its focus on data in spatial data infrastructures and take a more proactive step in emphasising and delivering the knowledge value. Nowadays, decision-makers want to be able to query at will the data to meet their immediate need for knowledge. This is a new value proposal for the decision-making consumer and will require a shift in thinking. This paper presents a model for a Spatial Knowledge Infrastructure and underpinning methods that will realise a new real-time approach to delivering knowledge. The methods embrace the new capabilities afforded through the sematic web, domain and process ontologies and natural query language processing. Semantic Web technologies today have the potential to transform the spatial industry into more than just a distribution channel for data. The Semantic Web RDF (Resource Description Framework) enables meaning to be drawn from data automatically. While pushing data out to end-users will remain a central role for data producers, the power of the semantic web is that end-users have the ability to marshal a broad range of spatial resources via a query to extract knowledge from available data. This can be done without actually having to configure systems specifically for the end-user. All data producers need do is make data accessible in RDF and the spatial analytics does the rest.

  17. Enhancing SAMOS Data Access in DOMS via a Neo4j Property Graph Database.

    NASA Astrophysics Data System (ADS)

    Stallard, A. P.; Smith, S. R.; Elya, J. L.

    2016-12-01

    The Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative provides routine access to high-quality marine meteorological and near-surface oceanographic observations from research vessels. The Distributed Oceanographic Match-Up Service (DOMS) under development is a centralized service that allows researchers to easily match in situ and satellite oceanographic data from distributed sources to facilitate satellite calibration, validation, and retrieval algorithm development. The service currently uses Apache Solr as a backend search engine on each node in the distributed network. While Solr is a high-performance solution that facilitates creation and maintenance of indexed data, it is limited in the sense that its schema is fixed. The property graph model escapes this limitation by creating relationships between data objects. The authors will present the development of the SAMOS Neo4j property graph database including new search possibilities that take advantage of the property graph model, performance comparisons with Apache Solr, and a vision for graph databases as a storage tool for oceanographic data. The integration of the SAMOS Neo4j graph into DOMS will also be described. Currently, Neo4j contains spatial and temporal records from SAMOS which are modeled into a time tree and r-tree using Graph Aware and Spatial plugin tools for Neo4j. These extensions provide callable Java procedures within CYPHER (Neo4j's query language) that generate in-graph structures. Once generated, these structures can be queried using procedures from these libraries, or directly via CYPHER statements. Neo4j excels at performing relationship and path-based queries, which challenge relational-SQL databases because they require memory intensive joins due to the limitation of their design. Consider a user who wants to find records over several years, but only for specific months. If a traditional database only stores timestamps, this type of query would be complex and likely prohibitively slow. Using the time tree model, one can specify a path from the root to the data which restricts resolutions to certain timeframes (e.g., months). This query can be executed without joins, unions, or other compute-intensive operations, putting Neo4j at a computational advantage to the SQL database alternative.

  18. Toward a Cognitive Task Analysis for Biomedical Query Mediation

    PubMed Central

    Hruby, Gregory W.; Cimino, James J.; Patel, Vimla; Weng, Chunhua

    2014-01-01

    In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM. PMID:25954589

  19. Toward a cognitive task analysis for biomedical query mediation.

    PubMed

    Hruby, Gregory W; Cimino, James J; Patel, Vimla; Weng, Chunhua

    2014-01-01

    In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM.

  20. Structuring Legacy Pathology Reports by openEHR Archetypes to Enable Semantic Querying.

    PubMed

    Kropf, Stefan; Krücken, Peter; Mueller, Wolf; Denecke, Kerstin

    2017-05-18

    Clinical information is often stored as free text, e.g. in discharge summaries or pathology reports. These documents are semi-structured using section headers, numbered lists, items and classification strings. However, it is still challenging to retrieve relevant documents since keyword searches applied on complete unstructured documents result in many false positive retrieval results. We are concentrating on the processing of pathology reports as an example for unstructured clinical documents. The objective is to transform reports semi-automatically into an information structure that enables an improved access and retrieval of relevant data. The data is expected to be stored in a standardized, structured way to make it accessible for queries that are applied to specific sections of a document (section-sensitive queries) and for information reuse. Our processing pipeline comprises information modelling, section boundary detection and section-sensitive queries. For enabling a focused search in unstructured data, documents are automatically structured and transformed into a patient information model specified through openEHR archetypes. The resulting XML-based pathology electronic health records (PEHRs) are queried by XQuery and visualized by XSLT in HTML. Pathology reports (PRs) can be reliably structured into sections by a keyword-based approach. The information modelling using openEHR allows saving time in the modelling process since many archetypes can be reused. The resulting standardized, structured PEHRs allow accessing relevant data by retrieving data matching user queries. Mapping unstructured reports into a standardized information model is a practical solution for a better access to data. Archetype-based XML enables section-sensitive retrieval and visualisation by well-established XML techniques. Focussing the retrieval to particular sections has the potential of saving retrieval time and improving the accuracy of the retrieval.

  1. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  2. Query-based biclustering of gene expression data using Probabilistic Relational Models.

    PubMed

    Zhao, Hui; Cloots, Lore; Van den Bulcke, Tim; Wu, Yan; De Smet, Riet; Storms, Valerie; Meysman, Pieter; Engelen, Kristof; Marchal, Kathleen

    2011-02-15

    With the availability of large scale expression compendia it is now possible to view own findings in the light of what is already available and retrieve genes with an expression profile similar to a set of genes of interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to extract the information contained within the seed set. We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons with potentially novel members. We compared ProBic's performance with previously published query-based biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the outcome against noisy seed sets and biological relevance.This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their seed genes and that it is particularly strong in handling noisy seeds. ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when dealing with low quality seed sets.

  3. Extending the Query Language of a Data Warehouse for Patient Recruitment.

    PubMed

    Dietrich, Georg; Ertl, Maximilian; Fette, Georg; Kaspar, Mathias; Krebs, Jonathan; Mackenrodt, Daniel; Störk, Stefan; Puppe, Frank

    2017-01-01

    Patient recruitment for clinical trials is a laborious task, as many texts have to be screened. Usually, this work is done manually and takes a lot of time. We have developed a system that automates the screening process. Besides standard keyword queries, the query language supports extraction of numbers, time-spans and negations. In a feasibility study for patient recruitment from a stroke unit with 40 patients, we achieved encouraging extraction rates above 95% for numbers and negations and ca. 86% for time spans.

  4. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less

  5. Distributed Data Service for Data Management in Internet of Things Middleware.

    PubMed

    Cruz Huacarpuma, Ruben; de Sousa Junior, Rafael Timoteo; de Holanda, Maristela Terto; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-04-27

    The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.

  6. A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Bowen, M. K.; Li, Z.; Schnase, J. L.; Duffy, D.; Lee, T. J.; Yang, C. P.

    2015-12-01

    Large collections of observational, reanalysis, and climate model output data may grow to as large as a 100 PB in the coming years, so climate dataset is in the Big Data domain, and various distributed computing frameworks have been utilized to address the challenges by big climate data analysis. However, due to the binary data format (NetCDF, HDF) with high spatial and temporal dimensions, the computing frameworks in Apache Hadoop ecosystem are not originally suited for big climate data. In order to make the computing frameworks in Hadoop ecosystem directly support big climate data, we propose a columnar storage format with spatiotemporal index to store climate data, which will support any project in the Apache Hadoop ecosystem (e.g. MapReduce, Spark, Hive, Impala). With this approach, the climate data will be transferred into binary Parquet data format, a columnar storage format, and spatial and temporal index will be built and attached into the end of Parquet files to enable real-time data query. Then such climate data in Parquet data format could be available to any computing frameworks in Hadoop ecosystem. The proposed approach is evaluated using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. Experimental results show that this approach could efficiently overcome the gap between the big climate data and the distributed computing frameworks, and the spatiotemporal index could significantly accelerate data querying and processing.

  7. A Spatiotemporal Indexing Approach for Efficient Processing of Big Array-Based Climate Data with MapReduce

    NASA Technical Reports Server (NTRS)

    Li, Zhenlong; Hu, Fei; Schnase, John L.; Duffy, Daniel Q.; Lee, Tsengdar; Bowen, Michael K.; Yang, Chaowei

    2016-01-01

    Climate observations and model simulations are producing vast amounts of array-based spatiotemporal data. Efficient processing of these data is essential for assessing global challenges such as climate change, natural disasters, and diseases. This is challenging not only because of the large data volume, but also because of the intrinsic high-dimensional nature of geoscience data. To tackle this challenge, we propose a spatiotemporal indexing approach to efficiently manage and process big climate data with MapReduce in a highly scalable environment. Using this approach, big climate data are directly stored in a Hadoop Distributed File System in its original, native file format. A spatiotemporal index is built to bridge the logical array-based data model and the physical data layout, which enables fast data retrieval when performing spatiotemporal queries. Based on the index, a data-partitioning algorithm is applied to enable MapReduce to achieve high data locality, as well as balancing the workload. The proposed indexing approach is evaluated using the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. The experimental results show that the index can significantly accelerate querying and processing (10 speedup compared to the baseline test using the same computing cluster), while keeping the index-to-data ratio small (0.0328). The applicability of the indexing approach is demonstrated by a climate anomaly detection deployed on a NASA Hadoop cluster. This approach is also able to support efficient processing of general array-based spatiotemporal data in various geoscience domains without special configuration on a Hadoop cluster.

  8. Visual query tool for finding patient cohorts from a clinical data warehouse of the partners HealthCare system

    PubMed Central

    Murphy, SN; Barnett, GO; Chueh, HC

    2000-01-01

    The patient base of the Partners HealthCare System in Boston exceeds 1.8 million. Many of these patients are desirable for participation in research studies. To facilitate their discovery, we developed a data warehouse to contain clinical characteristics of these patients. The data warehouse contains diagnosis and procedures from administrative databases. The patients are indexed across institutions and their demographics provided by an Enterprise Master Patient Indexing service. Characteristics of the diagnoses and procedures such as associated providers, dates of service, inpatient/outpatient status, and other visit-related characteristics are also fed from the administrative systems. The targeted users of this system are research clinician s interested in finding patient cohorts for research studies. Their data requirements were analyzed and have been reported elsewhere. We did not expect the clinicians to become expert users of the system. Tools for querying healthcare data have traditionally been text based, although graphical interfaces have been pursued. In order to support the simple drag and drop visual model, as well as the identification and distribution of the patient data, a three-tier software architecture was developed. The user interface was developed in Visual Basic and distributed as an ActiveX object embedded in an HTML page. The middle layer was developed in Java and Microsoft COM. The queries are represented throughout their lifetime as XML objects, and the Microsoft SQL7 database is queried and managed in standard SQL. PMID:11080028

  9. Visual query tool for finding patient cohorts from a clinical data warehouse of the partners HealthCare system

    PubMed

    Murphy; Barnett; Chueh

    2000-01-01

    The patient base of the Partners HealthCare System in Boston exceeds 1.8 million. Many of these patients are desirable for participation in research studies. To facilitate their discovery, we developed a data warehouse to contain clinical characteristics of these patients. The data warehouse contains diagnosis and procedures from administrative databases. The patients are indexed across institutions and their demographics provided by an Enterprise Master Patient Indexing service. Characteristics of the diagnoses and procedures such as associated providers, dates of service, inpatient/outpatient status, and other visit-related characteristics are also fed from the administrative systems. The targeted users of this system are research clinician s interested in finding patient cohorts for research studies. Their data requirements were analyzed and have been reported elsewhere. We did not expect the clinicians to become expert users of the system. Tools for querying healthcare data have traditionally been text based, although graphical interfaces have been pursued. In order to support the simple drag and drop visual model, as well as the identification and distribution of the patient data, a three-tier software architecture was developed. The user interface was developed in Visual Basic and distributed as an ActiveX object embedded in an HTML page. The middle layer was developed in Java and Microsoft COM. The queries are represented throughout their lifetime as XML objects, and the Microsoft SQL7 database is queried and managed in standard SQL.

  10. BioFed: federated query processing over life sciences linked open data.

    PubMed

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the endpoint's availability based on the EndpointData graph. Our evaluation of BioFed against FedX is based on 20 heterogeneous federated SPARQL queries and shows competitive execution performance in comparison to FedX, which can be attributed to the provision of provenance information for the source selection. Developing and testing federated query engines for life sciences data is still a challenging task. According to our findings, it is advantageous to optimise the source selection. The cataloguing of SPARQL endpoints, including type and property indexing, leads to efficient querying of data resources over the Web of Data. This could even be further improved through the use of ontologies, e.g., for abstract normalisation of query terms.

  11. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  12. Army technology development. IBIS query. Software to support the Image Based Information System (IBIS) expansion for mapping, charting and geodesy

    NASA Technical Reports Server (NTRS)

    Friedman, S. Z.; Walker, R. E.; Aitken, R. B.

    1986-01-01

    The Image Based Information System (IBIS) has been under development at the Jet Propulsion Laboratory (JPL) since 1975. It is a collection of more than 90 programs that enable processing of image, graphical, tabular data for spatial analysis. IBIS can be utilized to create comprehensive geographic data bases. From these data, an analyst can study various attributes describing characteristics of a given study area. Even complex combinations of disparate data types can be synthesized to obtain a new perspective on spatial phenomena. In 1984, new query software was developed enabling direct Boolean queries of IBIS data bases through the submission of easily understood expressions. An improved syntax methodology, a data dictionary, and display software simplified the analysts' tasks associated with building, executing, and subsequently displaying the results of a query. The primary purpose of this report is to describe the features and capabilities of the new query software. A secondary purpose of this report is to compare this new query software to the query software developed previously (Friedman, 1982). With respect to this topic, the relative merits and drawbacks of both approaches are covered.

  13. Representation and alignment of sung queries for music information retrieval

    NASA Astrophysics Data System (ADS)

    Adams, Norman H.; Wakefield, Gregory H.

    2005-09-01

    The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.

  14. The Use of Dynamic Segment Scoring for Language-Independent Question Answering

    DTIC Science & Technology

    2001-01-01

    initial window with one sentence is compared to scores corre- his/PRONOUN brother/ CONSANGUINITY like/SIMILARITY his/PRONOUN call/NOMENCLATURE he/PRONOUN...the query processing mod- ule. Using the differences between index numbers to specify phys- ical distance relationships among query keywords, we can

  15. Data Processing on Database Management Systems with Fuzzy Query

    NASA Astrophysics Data System (ADS)

    Şimşek, Irfan; Topuz, Vedat

    In this study, a fuzzy query tool (SQLf) for non-fuzzy database management systems was developed. In addition, samples of fuzzy queries were made by using real data with the tool developed in this study. Performance of SQLf was tested with the data about the Marmara University students' food grant. The food grant data were collected in MySQL database by using a form which had been filled on the web. The students filled a form on the web to describe their social and economical conditions for the food grant request. This form consists of questions which have fuzzy and crisp answers. The main purpose of this fuzzy query is to determine the students who deserve the grant. The SQLf easily found the eligible students for the grant through predefined fuzzy values. The fuzzy query tool (SQLf) could be used easily with other database system like ORACLE and SQL server.

  16. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  17. Reproducible Research in the Geosciences at Scale: Achievable Goal or Elusive Dream?

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Evans, B. J. K.

    2016-12-01

    Reproducibility is a fundamental tenant of the scientific method: it implies that any researcher, or a third party working independently, can duplicate any experiment or investigation and produce the same results. Historically computationally based research involved an individual using their own data and processing it in their own private area, often using software they wrote or inherited from close collaborators. Today, a researcher is likely to be part of a large team that will use a subset of data from an external repository and then process the data on a public or private cloud or on a large centralised supercomputer, using a mixture of their own code, third party software and libraries, or global community codes. In 'Big Geoscience' research it is common for data inputs to be extracts from externally managed dynamic data collections, where new data is being regularly appended, or existing data is revised when errors are detected and/or as processing methods are improved. New workflows increasingly use services to access data dynamically to create subsets on-the-fly from distributed sources, each of which can have a complex history. At major computational facilities, underlying systems, libraries, software and services are being constantly tuned and optimised, or as new or replacement infrastructure being installed. Likewise code used from a community repository is continually being refined, re-packaged and ported to the target platform. To achieve reproducibility, today's researcher increasingly needs to track their workflow, including querying information on the current or historical state of facilities used. Versioning methods are standard practice for software repositories or packages, but it is not common for either data repositories or data services to provide information about their state, or for systems to provide query-able access to changes in the underlying software. While a researcher can achieve transparency and describe steps in their workflow so that others can repeat them and replicate processes undertaken, they cannot achieve exact reproducibility or even transparency of results generated. In Big Geoscience, full reproducibiliy will be an elusive dream until data repositories and compute facilities can provide provenance information in a standards compliant, machine query-able way.

  18. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  19. Nonmaterialized Relations and the Support of Information Retrieval Applications by Relational Database Systems.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.

    1991-01-01

    Describes several aspects of the problem of supporting information retrieval system query requirements in the relational database management system (RDBMS) environment and proposes an extension to query processing called nonmaterialized relations. User interactions with information retrieval systems are discussed, and nonmaterialized relations are…

  20. Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search

    DTIC Science & Technology

    2012-06-01

    graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area

  1. Hybrid Filtering in Semantic Query Processing

    ERIC Educational Resources Information Center

    Jeong, Hanjo

    2011-01-01

    This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…

  2. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.

    PubMed

    Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin

    2010-04-16

    Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.

  3. Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS

    PubMed Central

    2010-01-01

    Background Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time. PMID:20406504

  4. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  5. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  6. Joint Experimentation on Scalable Parallel Processors (JESPP)

    DTIC Science & Technology

    2006-04-01

    made use of local embedded relational databases, implemented using sqlite on each node of an SPP to execute queries and return results via an ad hoc ...rl.af.mil 12a. DISTRIBUTION / AVAILABILITY STATEENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 12b. DISTRIBUTION CODE 13. ABSTRACT...Experimentation Directorate (J9) required expansion of its joint semi-automated forces (JSAF) code capabilities; including number of entities, behavior complexity

  7. Annotating images by mining image search results.

    PubMed

    Wang, Xin-Jing; Zhang, Lei; Li, Xirong; Ma, Wei-Ying

    2008-11-01

    Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are leveraged-one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.

  8. Privacy-Aware Location Database Service for Granular Queries

    NASA Astrophysics Data System (ADS)

    Kiyomoto, Shinsaku; Martin, Keith M.; Fukushima, Kazuhide

    Future mobile markets are expected to increasingly embrace location-based services. This paper presents a new system architecture for location-based services, which consists of a location database and distributed location anonymizers. The service is privacy-aware in the sense that the location database always maintains a degree of anonymity. The location database service permits three different levels of query and can thus be used to implement a wide range of location-based services. Furthermore, the architecture is scalable and employs simple functions that are similar to those found in general database systems.

  9. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  10. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  11. Ontology-Based Peer Exchange Network (OPEN)

    ERIC Educational Resources Information Center

    Dong, Hui

    2010-01-01

    In current Peer-to-Peer networks, distributed and semantic free indexing is widely used by systems adopting "Distributed Hash Table" ("DHT") mechanisms. Although such systems typically solve a. user query rather fast in a deterministic way, they only support a very narrow search scheme, namely the exact hash key match. Furthermore, DHT systems put…

  12. Engineering a Multi-Purpose Test Collection for Web Retrieval Experiments.

    ERIC Educational Resources Information Center

    Bailey, Peter; Craswell, Nick; Hawking, David

    2003-01-01

    Describes a test collection that was developed as a multi-purpose testbed for experiments on the Web in distributed information retrieval, hyperlink algorithms, and conventional ad hoc retrieval. Discusses inter-server connectivity, integrity of server holdings, inclusion of documents related to a wide spread of likely queries, and distribution of…

  13. Monotonically improving approximate answers to relational algebra queries

    NASA Technical Reports Server (NTRS)

    Smith, Kenneth P.; Liu, J. W. S.

    1989-01-01

    We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.

  14. Private and Efficient Query Processing on Outsourced Genomic Databases.

    PubMed

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  15. Private and Efficient Query Processing on Outsourced Genomic Databases

    PubMed Central

    Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-01-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660

  16. Storage and Retrieval of Large RDF Graph Using Hadoop and MapReduce

    NASA Astrophysics Data System (ADS)

    Farhan Husain, Mohammad; Doshi, Pankil; Khan, Latifur; Thuraisingham, Bhavani

    Handling huge amount of data scalably is a matter of concern for a long time. Same is true for semantic web data. Current semantic web frameworks lack this ability. In this paper, we describe a framework that we built using Hadoop to store and retrieve large number of RDF triples. We describe our schema to store RDF data in Hadoop Distribute File System. We also present our algorithms to answer a SPARQL query. We make use of Hadoop's MapReduce framework to actually answer the queries. Our results reveal that we can store huge amount of semantic web data in Hadoop clusters built mostly by cheap commodity class hardware and still can answer queries fast enough. We conclude that ours is a scalable framework, able to handle large amount of RDF data efficiently.

  17. Secure image retrieval with multiple keys

    NASA Astrophysics Data System (ADS)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  18. Using ontology databases for scalable query answering, inconsistency detection, and data integration

    PubMed Central

    Dou, Dejing

    2011-01-01

    An ontology database is a basic relational database management system that models an ontology plus its instances. To reason over the transitive closure of instances in the subsumption hierarchy, for example, an ontology database can either unfold views at query time or propagate assertions using triggers at load time. In this paper, we use existing benchmarks to evaluate our method—using triggers—and we demonstrate that by forward computing inferences, we not only improve query time, but the improvement appears to cost only more space (not time). However, we go on to show that the true penalties were simply opaque to the benchmark, i.e., the benchmark inadequately captures load-time costs. We have applied our methods to two case studies in biomedicine, using ontologies and data from genetics and neuroscience to illustrate two important applications: first, ontology databases answer ontology-based queries effectively; second, using triggers, ontology databases detect instance-based inconsistencies—something not possible using views. Finally, we demonstrate how to extend our methods to perform data integration across multiple, distributed ontology databases. PMID:22163378

  19. Performance of Point and Range Queries for In-memory Databases using Radix Trees on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Maksudul; Yoginath, Srikanth B; Perumalla, Kalyan S

    In in-memory database systems augmented by hardware accelerators, accelerating the index searching operations can greatly increase the runtime performance of database queries. Recently, adaptive radix trees (ART) have been shown to provide very fast index search implementation on the CPU. Here, we focus on an accelerator-based implementation of ART. We present a detailed performance study of our GPU-based adaptive radix tree (GRT) implementation over a variety of key distributions, synthetic benchmarks, and actual keys from music and book data sets. The performance is also compared with other index-searching schemes on the GPU. GRT on modern GPUs achieves some of themore » highest rates of index searches reported in the literature. For point queries, a throughput of up to 106 million and 130 million lookups per second is achieved for sparse and dense keys, respectively. For range queries, GRT yields 600 million and 1000 million lookups per second for sparse and dense keys, respectively, on a large dataset of 64 million 32-bit keys.« less

  20. Titanbrowse: a new paradigm for access, visualization and analysis of hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Penteado, Paulo F.

    2016-10-01

    Currently there are archives and tools to explore remote sensing imaging, but these lack some functionality needed for hyperspectral imagers: 1) Querying and serving only whole datacubes is not enough, since in each cube there is typically a large variation in observation geometry over the spatial pixels. Thus, often the most useful unit for selecting observations of interest is not a whole cube but rather a single spectrum. 2) Pixel-specific geometric data included in the standard pipelines is calculated at only one point per pixel. Particularly for selections of pixels from many different cubes, or observations near the limb, it is necessary to know the actual extent of each pixel. 3) Database queries need not only metadata, but also by the spectral data. For instance, one query might look for atypical values of some band, or atypical relations between bands, denoting spectral features (such as ratios or differences between bands). 4) There is the need to evaluate arbitrary, dynamically-defined, complex functions of the data (beyond just simple arithmetic operations), both for selection in the queries, and for visualization, to interactively tune the queries to the observations of interest. 5) Making the most useful query for some analysis often requires interactive visualization integrated with data selection and processing, because the user needs to explore how different functions of the data vary over the observations without having to download data and import it into visualization software. 6) Complementary to interactive use, an API allowing programmatic access to the system is needed for systematic data analyses. 7) Direct access to calibrated and georeferenced data, without the need to download data and software and learn to process it.We present titanbrowse, a database, exploration and visualization system for Cassini VIMS observations of Titan, designed to fullfill the aforementioned needs. While it originallly ran on data in the user's computer, we are now developing an online version, so that users do not need to download software and data. The server, which we maintain, processes the queries and communicates the results to the client the user runs. http://ppenteado.net/titanbrowse.

  1. Foraging patterns in online searches.

    PubMed

    Wang, Xiangwen; Pleimling, Michel

    2017-03-01

    Nowadays online searches are undeniably the most common form of information gathering, as witnessed by billions of clicks generated each day on search engines. In this work we describe online searches as foraging processes that take place on the semi-infinite line. Using a variety of quantities like probability distributions and complementary cumulative distribution functions of step length and waiting time as well as mean square displacements and entropies, we analyze three different click-through logs that contain the detailed information of millions of queries submitted to search engines. Notable differences between the different logs reveal an increased efficiency of the search engines. In the language of foraging, the newer logs indicate that online searches overwhelmingly yield local searches (i.e., on one page of links provided by the search engines), whereas for the older logs the foraging processes are a combination of local searches and relocation phases that are power law distributed. Our investigation of click logs of search engines therefore highlights the presence of intermittent search processes (where phases of local explorations are separated by power law distributed relocation jumps) in online searches. It follows that good search engines enable the users to find the information they are looking for through a local exploration of a single page with search results, whereas for poor search engine users are often forced to do a broader exploration of different pages.

  2. Foraging patterns in online searches

    NASA Astrophysics Data System (ADS)

    Wang, Xiangwen; Pleimling, Michel

    2017-03-01

    Nowadays online searches are undeniably the most common form of information gathering, as witnessed by billions of clicks generated each day on search engines. In this work we describe online searches as foraging processes that take place on the semi-infinite line. Using a variety of quantities like probability distributions and complementary cumulative distribution functions of step length and waiting time as well as mean square displacements and entropies, we analyze three different click-through logs that contain the detailed information of millions of queries submitted to search engines. Notable differences between the different logs reveal an increased efficiency of the search engines. In the language of foraging, the newer logs indicate that online searches overwhelmingly yield local searches (i.e., on one page of links provided by the search engines), whereas for the older logs the foraging processes are a combination of local searches and relocation phases that are power law distributed. Our investigation of click logs of search engines therefore highlights the presence of intermittent search processes (where phases of local explorations are separated by power law distributed relocation jumps) in online searches. It follows that good search engines enable the users to find the information they are looking for through a local exploration of a single page with search results, whereas for poor search engine users are often forced to do a broader exploration of different pages.

  3. Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data

    PubMed Central

    Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick

    2016-01-01

    This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest. PMID:26958859

  4. Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data.

    PubMed

    Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick

    2016-01-01

    This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest.

  5. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  6. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  7. Labeling RDF Graphs for Linear Time and Space Querying

    NASA Astrophysics Data System (ADS)

    Furche, Tim; Weinzierl, Antonius; Bry, François

    Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.

  8. Fast Inbound Top-K Query for Random Walk with Restart.

    PubMed

    Zhang, Chao; Jiang, Shan; Chen, Yucheng; Sun, Yidan; Han, Jiawei

    2015-09-01

    Random walk with restart (RWR) is widely recognized as one of the most important node proximity measures for graphs, as it captures the holistic graph structure and is robust to noise in the graph. In this paper, we study a novel query based on the RWR measure, called the inbound top-k (Ink) query. Given a query node q and a number k , the Ink query aims at retrieving k nodes in the graph that have the largest weighted RWR scores to q . Ink queries can be highly useful for various applications such as traffic scheduling, disease treatment, and targeted advertising. Nevertheless, none of the existing RWR computation techniques can accurately and efficiently process the Ink query in large graphs. We propose two algorithms, namely Squeeze and Ripple, both of which can accurately answer the Ink query in a fast and incremental manner. To identify the top- k nodes, Squeeze iteratively performs matrix-vector multiplication and estimates the lower and upper bounds for all the nodes in the graph. Ripple employs a more aggressive strategy by only estimating the RWR scores for the nodes falling in the vicinity of q , the nodes outside the vicinity do not need to be evaluated because their RWR scores are propagated from the boundary of the vicinity and thus upper bounded. Ripple incrementally expands the vicinity until the top- k result set can be obtained. Our extensive experiments on real-life graph data sets show that Ink queries can retrieve interesting results, and the proposed algorithms are orders of magnitude faster than state-of-the-art method.

  9. Recommender System for Learning SQL Using Hints

    ERIC Educational Resources Information Center

    Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž

    2017-01-01

    Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…

  10. Exploration of Web Users' Search Interests through Automatic Subject Categorization of Query Terms.

    ERIC Educational Resources Information Center

    Pu, Hsiao-tieh; Yang, Chyan; Chuang, Shui-Lung

    2001-01-01

    Proposes a mechanism that carefully integrates human and machine efforts to explore Web users' search interests. The approach consists of a four-step process: extraction of core terms; construction of subject taxonomy; automatic subject categorization of query terms; and observation of users' search interests. Research findings are proved valuable…

  11. Web Searching: A Process-Oriented Experimental Study of Three Interactive Search Paradigms.

    ERIC Educational Resources Information Center

    Dennis, Simon; Bruza, Peter; McArthur, Robert

    2002-01-01

    Compares search effectiveness when using query-based Internet search via the Google search engine, directory-based search via Yahoo, and phrase-based query reformulation-assisted search via the Hyperindex browser by means of a controlled, user-based experimental study of undergraduates at the University of Queensland. Discusses cognitive load,…

  12. Breaking the Curse of Cardinality on Bitmap Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Wu, Kesheng; Stockinger, Kurt

    2008-04-04

    Bitmap indexes are known to be efficient for ad-hoc range queries that are common in data warehousing and scientific applications. However, they suffer from the curse of cardinality, that is, their efficiency deteriorates as attribute cardinalities increase. A number of strategies have been proposed, but none of them addresses the problem adequately. In this paper, we propose a novel binned bitmap index that greatly reduces the cost to answer queries, and therefore breaks the curse of cardinality. The key idea is to augment the binned index with an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure significantly reduces the I/Omore » operations needed to resolve records that cannot be resolved with the bitmaps. To further improve the proposed index structure, we also present a strategy to create single-valued bins for frequent values. This strategy reduces index sizes and improves query processing speed. Overall, the binned indexes with OrBiC great improves the query processing speed, and are 3 - 25 times faster than the best available indexes for high-cardinality data.« less

  13. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  14. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi

    The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less

  15. The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC

    DOE PAGES

    Kuznetsov, Valentin; Fischer, Nils Leif; Guo, Yuyi

    2018-03-19

    The CMS experiment at the CERN LHC developed the Workflow Management Archive system to persistently store unstructured framework job report documents produced by distributed workflow management agents. In this paper we present its architecture, implementation, deployment, and integration with the CMS and CERN computing infrastructures, such as central HDFS and Hadoop Spark cluster. The system leverages modern technologies such as a document oriented database and the Hadoop eco-system to provide the necessary flexibility to reliably process, store, and aggregatemore » $$\\mathcal{O}$$(1M) documents on a daily basis. We describe the data transformation, the short and long term storage layers, the query language, along with the aggregation pipeline developed to visualize various performance metrics to assist CMS data operators in assessing the performance of the CMS computing system.« less

  16. BEANS - a software package for distributed Big Data analysis

    NASA Astrophysics Data System (ADS)

    Hypki, Arkadiusz

    2018-07-01

    BEANS software is a web-based, easy to install and maintain, new tool to store and analyse in a distributed way a massive amount of data. It provides a clear interface for querying, filtering, aggregating, and plotting data from an arbitrary number of data sets. Its main purpose is to simplify the process of storing, examining, and finding new relations in huge data sets. The software is an answer to a growing need of the astronomical community to have a versatile tool to store, analyse, and compare the complex astrophysical numerical simulations with observations (e.g. simulations of the Galaxy or star clusters with the Gaia archive). However, this software was built in a general form and it is ready to use in any other research field. It can be used as a building block for other open-source software too.

  17. BEANS - a software package for distributed Big Data analysis

    NASA Astrophysics Data System (ADS)

    Hypki, Arkadiusz

    2018-03-01

    BEANS software is a web based, easy to install and maintain, new tool to store and analyse in a distributed way a massive amount of data. It provides a clear interface for querying, filtering, aggregating, and plotting data from an arbitrary number of datasets. Its main purpose is to simplify the process of storing, examining and finding new relations in huge datasets. The software is an answer to a growing need of the astronomical community to have a versatile tool to store, analyse and compare the complex astrophysical numerical simulations with observations (e.g. simulations of the Galaxy or star clusters with the Gaia archive). However, this software was built in a general form and it is ready to use in any other research field. It can be used as a building block for other open source software too.

  18. Secure Naming and Addressing Operations for Store, Carry and Forward Networks

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Ivancic, William D.; Iannicca, Dennis C.; Ishac, Joseph; Hylton, Alan G.

    2014-01-01

    This paper describes concepts for secure naming and addressing directed at Store, Carry and Forward (SCF) distributed applications, where disconnection and intermittent connectivity between forwarding systems is the norm. The paper provides a brief overview of store, carry and forward distributed applications followed by an in depth discussion of how to securely: create a namespace; allocate names within the namespace; query for names known within a local processing system or connected subnetwork; validate ownership of a given name; authenticate data from a given name; and, encrypt data to a given name. Critical issues such as revocation of names, mobility and the ability to use various namespaces to secure operations or for Quality-of-Service are also presented. Although the concepts presented for naming and addressing have been developed for SCF, they are directly applicable to fully connected systems.

  19. EOSDIS - Its role in the EOS program and its importance to the scientific community. [Data and Information System

    NASA Technical Reports Server (NTRS)

    Price, Robert D.; Pedelty, Kathleen S.; Ardanuy, Philip E.; Hobish, Mitchell K.

    1993-01-01

    In order to manage the global data sets required to understand the earth as a system, the EOS Data and Information System (EOSDIS) will collect and store satellite, aircraft, and in situ measurements and their resultant data products, and will distribute the data conveniently. EOSDIS will also provide product generation and science computing facilities to support the development, processing, and validation of standard EOS science data products. The overall architecture of EOSDIS, and how the Distributed Active Archive Centers fit into that structure, are shown. EOSDIS will enable users to query data bases nationally, make use of keywords and other mnemonic identifiers, and see graphic images of subsets of available data prior to ordering full (or selected pieces of) data sets for use in their 'home' environment.

  20. A database de-identification framework to enable direct queries on medical data for secondary use.

    PubMed

    Erdal, B S; Liu, J; Ding, J; Chen, J; Marsh, C B; Kamal, J; Clymer, B D

    2012-01-01

    To qualify the use of patient clinical records as non-human-subject for research purpose, electronic medical record data must be de-identified so there is minimum risk to protected health information exposure. This study demonstrated a robust framework for structured data de-identification that can be applied to any relational data source that needs to be de-identified. Using a real world clinical data warehouse, a pilot implementation of limited subject areas were used to demonstrate and evaluate this new de-identification process. Query results and performances are compared between source and target system to validate data accuracy and usability. The combination of hashing, pseudonyms, and session dependent randomizer provides a rigorous de-identification framework to guard against 1) source identifier exposure; 2) internal data analyst manually linking to source identifiers; and 3) identifier cross-link among different researchers or multiple query sessions by the same researcher. In addition, a query rejection option is provided to refuse queries resulting in less than preset numbers of subjects and total records to prevent users from accidental subject identification due to low volume of data. This framework does not prevent subject re-identification based on prior knowledge and sequence of events. Also, it does not deal with medical free text de-identification, although text de-identification using natural language processing can be included due its modular design. We demonstrated a framework resulting in HIPAA Compliant databases that can be directly queried by researchers. This technique can be augmented to facilitate inter-institutional research data sharing through existing middleware such as caGrid.

  1. Towards a Cloud Based Smart Traffic Management Framework

    NASA Astrophysics Data System (ADS)

    Rahimi, M. M.; Hakimpour, F.

    2017-09-01

    Traffic big data has brought many opportunities for traffic management applications. However several challenges like heterogeneity, storage, management, processing and analysis of traffic big data may hinder their efficient and real-time applications. All these challenges call for well-adapted distributed framework for smart traffic management that can efficiently handle big traffic data integration, indexing, query processing, mining and analysis. In this paper, we present a novel, distributed, scalable and efficient framework for traffic management applications. The proposed cloud computing based framework can answer technical challenges for efficient and real-time storage, management, process and analyse of traffic big data. For evaluation of the framework, we have used OpenStreetMap (OSM) real trajectories and road network on a distributed environment. Our evaluation results indicate that speed of data importing to this framework exceeds 8000 records per second when the size of datasets is near to 5 million. We also evaluate performance of data retrieval in our proposed framework. The data retrieval speed exceeds 15000 records per second when the size of datasets is near to 5 million. We have also evaluated scalability and performance of our proposed framework using parallelisation of a critical pre-analysis in transportation applications. The results show that proposed framework achieves considerable performance and efficiency in traffic management applications.

  2. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    NASA Astrophysics Data System (ADS)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  3. Generating and Executing Complex Natural Language Queries across Linked Data.

    PubMed

    Hamon, Thierry; Mougin, Fleur; Grabar, Natalia

    2015-01-01

    With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.

  4. Noncredit Activities in Institutions of Higher Education, 1967-68, Institutional Distribution.

    ERIC Educational Resources Information Center

    Kemp, Florence B.

    Of 2336 institutions of higher education queried on the distribution of noncredit activities in 1967-68, 1102 responded affirmatively. The bulk of this study is comprised of tables and charts based upon information received from these institutions. Highlights are summarized. A questionnaire, which is appended, was used to gather data. Some of the…

  5. Training Needs Assessment of Technical Skills in Managers of Tehran Electricity Distribution Company

    ERIC Educational Resources Information Center

    Koohi, Amir Hasan; Ghandali, Fatemeh; Dehghan, Hasan; Ghandali, Najme

    2016-01-01

    Current dissertation has been conducted in order to investigate and detect training needs of the mangers (top and middle) in Tehran Electricity Distribution Company. Research method is applied kind based on its purpose. Due to data collection method, this query is descriptive-survey type. Statistical population in this study is all of managers in…

  6. Improving healthcare services using web based platform for management of medical case studies.

    PubMed

    Ogescu, Cristina; Plaisanu, Claudiu; Udrescu, Florian; Dumitru, Silviu

    2008-01-01

    The paper presents a web based platform for management of medical cases, support for healthcare specialists in taking the best clinical decision. Research has been oriented mostly on multimedia data management, classification algorithms for querying, retrieving and processing different medical data types (text and images). The medical case studies can be accessed by healthcare specialists and by students as anonymous case studies providing trust and confidentiality in Internet virtual environment. The MIDAS platform develops an intelligent framework to manage sets of medical data (text, static or dynamic images), in order to optimize the diagnosis and the decision process, which will reduce the medical errors and will increase the quality of medical act. MIDAS is an integrated project working on medical information retrieval from heterogeneous, distributed medical multimedia database.

  7. Optimizability of OGC Standards Implementations - a Case Study

    NASA Astrophysics Data System (ADS)

    Misev, D.; Baumann, P.

    2012-04-01

    Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.

  8. Distributed Data Service for Data Management in Internet of Things Middleware

    PubMed Central

    Cruz Huacarpuma, Ruben; de Sousa Junior, Rafael Timoteo; de Holanda, Maristela Terto; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-01-01

    The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware. PMID:28448469

  9. Semantic integration of information about orthologs and diseases: the OGO system.

    PubMed

    Miñarro-Gimenez, Jose Antonio; Egaña Aranguren, Mikel; Martínez Béjar, Rodrigo; Fernández-Breis, Jesualdo Tomás; Madrid, Marisa

    2011-12-01

    Semantic Web technologies like RDF and OWL are currently applied in life sciences to improve knowledge management by integrating disparate information. Many of the systems that perform such task, however, only offer a SPARQL query interface, which is difficult to use for life scientists. We present the OGO system, which consists of a knowledge base that integrates information of orthologous sequences and genetic diseases, providing an easy to use ontology-constrain driven query interface. Such interface allows the users to define SPARQL queries through a graphical process, therefore not requiring SPARQL expertise. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Advances in nowcasting influenza-like illness rates using search query logs

    NASA Astrophysics Data System (ADS)

    Lampos, Vasileios; Miller, Andrew C.; Crossan, Steve; Stefansen, Christian

    2015-08-01

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  11. Measuring Up: Implementing a Dental Quality Measure in the Electronic Health Record Context

    PubMed Central

    Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F

    2015-01-01

    Background Quality improvement requires quality measures that are validly implementable. In this work, we assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure (percentage of children who received fluoride varnish). Methods We defined how to implement the automated measure queries in a dental electronic health record (EHR). Within records identified through automated query, we manually reviewed a subsample to assess the performance of the query. Results The automated query found 71.0% of patients to have had fluoride varnish compared to 77.6% found using the manual chart review. The automated quality measure performance was 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. Conclusions Our findings support the feasibility of automated dental quality measure queries in the context of sufficient structured data. Information noted only in the free text rather than in structured data would require natural language processing approaches to effectively query. Practical Implications To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation in order to support near-term automated calculation of quality measures. PMID:26562736

  12. Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram

    2013-01-01

    The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less

  13. Advances in nowcasting influenza-like illness rates using search query logs.

    PubMed

    Lampos, Vasileios; Miller, Andrew C; Crossan, Steve; Stefansen, Christian

    2015-08-03

    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.

  14. Comparing NetCDF and SciDB on managing and querying 5D hydrologic dataset

    NASA Astrophysics Data System (ADS)

    Liu, Haicheng; Xiao, Xiao

    2016-11-01

    Efficiently extracting information from high dimensional hydro-meteorological modelling datasets requires smart solutions. Traditional methods are mostly based on files, which can be edited and accessed handily. But they have problems of efficiency due to contiguous storage structure. Others propose databases as an alternative for advantages such as native functionalities for manipulating multidimensional (MD) arrays, smart caching strategy and scalability. In this research, NetCDF file based solutions and the multidimensional array database management system (DBMS) SciDB applying chunked storage structure are benchmarked to determine the best solution for storing and querying 5D large hydrologic modelling dataset. The effect of data storage configurations including chunk size, dimension order and compression on query performance is explored. Results indicate that dimension order to organize storage of 5D data has significant influence on query performance if chunk size is very large. But the effect becomes insignificant when chunk size is properly set. Compression of SciDB mostly has negative influence on query performance. Caching is an advantage but may be influenced by execution of different query processes. On the whole, NetCDF solution without compression is in general more efficient than the SciDB DBMS.

  15. Shuttle-Data-Tape XML Translator

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    JSDTImport is a computer program for translating native Shuttle Data Tape (SDT) files from American Standard Code for Information Interchange (ASCII) format into databases in other formats. JSDTImport solves the problem of organizing the SDT content, affording flexibility to enable users to choose how to store the information in a database to better support client and server applications. JSDTImport can be dynamically configured by use of a simple Extensible Markup Language (XML) file. JSDTImport uses this XML file to define how each record and field will be parsed, its layout and definition, and how the resulting database will be structured. JSDTImport also includes a client application programming interface (API) layer that provides abstraction for the data-querying process. The API enables a user to specify the search criteria to apply in gathering all the data relevant to a query. The API can be used to organize the SDT content and translate into a native XML database. The XML format is structured into efficient sections, enabling excellent query performance by use of the XPath query language. Optionally, the content can be translated into a Structured Query Language (SQL) database for fast, reliable SQL queries on standard database server computers.

  16. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  17. EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-16

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less

  18. Loss-tolerant measurement-device-independent quantum private queries

    NASA Astrophysics Data System (ADS)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  19. Loss-tolerant measurement-device-independent quantum private queries.

    PubMed

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-04

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user's and database's privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user's imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  20. The Ned IIS project - forest ecosystem management

    Treesearch

    W. Potter; D. Nute; J. Wang; F. Maier; Michael Twery; H. Michael Rauscher; P. Knopp; S. Thomasma; M. Dass; H. Uchiyama

    2002-01-01

    For many years we have held to the notion that an Intelligent Information System (IIS) is composed of a unified knowledge base, database, and model base. The main idea behind this notion is the transparent processing of user queries. The system is responsible for "deciding" which information sources to access in order to fulfil a query regardless of whether...

  1. The Effectiveness of Stemming for Natural-Language Access to Slovene Textual Data.

    ERIC Educational Resources Information Center

    Popovic, Mirko; Willett, Peter

    1992-01-01

    Reports on the use of stemming for Slovene language documents and queries in free-text retrieval systems and demonstrates that an appropriate stemming algorithm results in an increase in retrieval effectiveness when compared with nonstemming processing. A comparison is made with stemming of English versions of the same documents and queries. (24…

  2. Finding Relevant Data in a Sea of Languages

    DTIC Science & Technology

    2016-04-26

    full machine-translated text , unbiased word clouds , query-biased word clouds , and query-biased sentence...and information retrieval to automate language processing tasks so that the limited number of linguists available for analyzing text and spoken...the crime (stock market). The Cross-LAnguage Search Engine (CLASE) has already preprocessed the documents, extracting text to identify the language

  3. Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform

    NASA Astrophysics Data System (ADS)

    Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.

    2012-12-01

    This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.

  4. Insertion algorithms for network model database management systems

    NASA Astrophysics Data System (ADS)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  5. A data analysis expert system for large established distributed databases

    NASA Technical Reports Server (NTRS)

    Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick

    1987-01-01

    A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.

  6. Implementing and evaluating a regional strategy to improve testing rates in VA patients at risk for HIV, utilizing the QUERI process as a guiding framework: QUERI Series.

    PubMed

    Goetz, Matthew B; Bowman, Candice; Hoang, Tuyen; Anaya, Henry; Osborn, Teresa; Gifford, Allen L; Asch, Steven M

    2008-03-19

    We describe how we used the framework of the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) to develop a program to improve rates of diagnostic testing for the Human Immunodeficiency Virus (HIV). This venture was prompted by the observation by the CDC that 25% of HIV-infected patients do not know their diagnosis - a point of substantial importance to the VA, which is the largest provider of HIV care in the United States. Following the QUERI steps (or process), we evaluated: 1) whether undiagnosed HIV infection is a high-risk, high-volume clinical issue within the VA, 2) whether there are evidence-based recommendations for HIV testing, 3) whether there are gaps in the performance of VA HIV testing, and 4) the barriers and facilitators to improving current practice in the VA.Based on our findings, we developed and initiated a QUERI step 4/phase 1 pilot project using the precepts of the Chronic Care Model. Our improvement strategy relies upon electronic clinical reminders to provide decision support; audit/feedback as a clinical information system, and appropriate changes in delivery system design. These activities are complemented by academic detailing and social marketing interventions to achieve provider activation. Our preliminary formative evaluation indicates the need to ensure leadership and team buy-in, address facility-specific barriers, refine the reminder, and address factors that contribute to inter-clinic variances in HIV testing rates. Preliminary unadjusted data from the first seven months of our program show 3-5 fold increases in the proportion of at-risk patients who are offered HIV testing at the VA sites (stations) where the pilot project has been undertaken; no change was seen at control stations. This project demonstrates the early success of the application of the QUERI process to the development of a program to improve HIV testing rates. Preliminary unadjusted results show that the coordinated use of audit/feedback, provider activation, and organizational change can increase HIV testing rates for at-risk patients. We are refining our program prior to extending our work to a small-scale, multi-site evaluation (QUERI step 4/phase 2). We also plan to evaluate the durability/sustainability of the intervention effect, the costs of HIV testing, and the number of newly identified HIV-infected patients. Ultimately, we will evaluate this program in other geographically dispersed stations (QUERI step 4/phases 3 and 4).

  7. Implementing and evaluating a regional strategy to improve testing rates in VA patients at risk for HIV, utilizing the QUERI process as a guiding framework: QUERI Series

    PubMed Central

    Goetz, Matthew B; Bowman, Candice; Hoang, Tuyen; Anaya, Henry; Osborn, Teresa; Gifford, Allen L; Asch, Steven M

    2008-01-01

    Background We describe how we used the framework of the U.S. Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) to develop a program to improve rates of diagnostic testing for the Human Immunodeficiency Virus (HIV). This venture was prompted by the observation by the CDC that 25% of HIV-infected patients do not know their diagnosis – a point of substantial importance to the VA, which is the largest provider of HIV care in the United States. Methods Following the QUERI steps (or process), we evaluated: 1) whether undiagnosed HIV infection is a high-risk, high-volume clinical issue within the VA, 2) whether there are evidence-based recommendations for HIV testing, 3) whether there are gaps in the performance of VA HIV testing, and 4) the barriers and facilitators to improving current practice in the VA. Based on our findings, we developed and initiated a QUERI step 4/phase 1 pilot project using the precepts of the Chronic Care Model. Our improvement strategy relies upon electronic clinical reminders to provide decision support; audit/feedback as a clinical information system, and appropriate changes in delivery system design. These activities are complemented by academic detailing and social marketing interventions to achieve provider activation. Results Our preliminary formative evaluation indicates the need to ensure leadership and team buy-in, address facility-specific barriers, refine the reminder, and address factors that contribute to inter-clinic variances in HIV testing rates. Preliminary unadjusted data from the first seven months of our program show 3–5 fold increases in the proportion of at-risk patients who are offered HIV testing at the VA sites (stations) where the pilot project has been undertaken; no change was seen at control stations. Discussion This project demonstrates the early success of the application of the QUERI process to the development of a program to improve HIV testing rates. Preliminary unadjusted results show that the coordinated use of audit/feedback, provider activation, and organizational change can increase HIV testing rates for at-risk patients. We are refining our program prior to extending our work to a small-scale, multi-site evaluation (QUERI step 4/phase 2). We also plan to evaluate the durability/sustainability of the intervention effect, the costs of HIV testing, and the number of newly identified HIV-infected patients. Ultimately, we will evaluate this program in other geographically dispersed stations (QUERI step 4/phases 3 and 4). PMID:18353185

  8. Modelling the spatial distribution of Fasciola hepatica in bovines using decision tree, logistic regression and GIS query approaches for Brazil.

    PubMed

    Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I

    2017-11-01

    Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.

  9. GO2PUB: Querying PubMed with semantic expansion of gene ontology terms

    PubMed Central

    2012-01-01

    Background With the development of high throughput methods of gene analyses, there is a growing need for mining tools to retrieve relevant articles in PubMed. As PubMed grows, literature searches become more complex and time-consuming. Automated search tools with good precision and recall are necessary. We developed GO2PUB to automatically enrich PubMed queries with gene names, symbols and synonyms annotated by a GO term of interest or one of its descendants. Results GO2PUB enriches PubMed queries based on selected GO terms and keywords. It processes the result and displays the PMID, title, authors, abstract and bibliographic references of the articles. Gene names, symbols and synonyms that have been generated as extra keywords from the GO terms are also highlighted. GO2PUB is based on a semantic expansion of PubMed queries using the semantic inheritance between terms through the GO graph. Two experts manually assessed the relevance of GO2PUB, GoPubMed and PubMed on three queries about lipid metabolism. Experts’ agreement was high (kappa = 0.88). GO2PUB returned 69% of the relevant articles, GoPubMed: 40% and PubMed: 29%. GO2PUB and GoPubMed have 17% of their results in common, corresponding to 24% of the total number of relevant results. 70% of the articles returned by more than one tool were relevant. 36% of the relevant articles were returned only by GO2PUB, 17% only by GoPubMed and 14% only by PubMed. For determining whether these results can be generalized, we generated twenty queries based on random GO terms with a granularity similar to those of the first three queries and compared the proportions of GO2PUB and GoPubMed results. These were respectively of 77% and 40% for the first queries, and of 70% and 38% for the random queries. The two experts also assessed the relevance of seven of the twenty queries (the three related to lipid metabolism and four related to other domains). Expert agreement was high (0.93 and 0.8). GO2PUB and GoPubMed performances were similar to those of the first queries. Conclusions We demonstrated that the use of genes annotated by either GO terms of interest or a descendant of these GO terms yields some relevant articles ignored by other tools. The comparison of GO2PUB, based on semantic expansion, with GoPubMed, based on text mining techniques, showed that both tools are complementary. The analysis of the randomly-generated queries suggests that the results obtained about lipid metabolism can be generalized to other biological processes. GO2PUB is available at http://go2pub.genouest.org. PMID:22958570

  10. Situation awareness acquired from monitoring process plants - the Process Overview concept and measure.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-07-01

    We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.

  11. Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.

    PubMed

    Weskamp, Nils

    2016-07-01

    Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Device-independent quantum private query

    NASA Astrophysics Data System (ADS)

    Maitra, Arpita; Paul, Goutam; Roy, Sarbani

    2017-04-01

    In quantum private query (QPQ), a client obtains values corresponding to his or her query only, and nothing else from the server, and the server does not get any information about the queries. V. Giovannetti et al. [Phys. Rev. Lett. 100, 230502 (2008)], 10.1103/PhysRevLett.100.230502 gave the first QPQ protocol and since then quite a few variants and extensions have been proposed. However, none of the existing protocols are device independent; i.e., all of them assume implicitly that the entangled states supplied to the client and the server are of a certain form. In this work, we exploit the idea of a local CHSH game and connect it with the scheme of Y. G. Yang et al. [Quantum Info. Process. 13, 805 (2014)], 10.1007/s11128-013-0692-8 to present the concept of a device-independent QPQ protocol.

  13. Bin-Hash Indexing: A Parallel Method for Fast Query Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng

    2008-06-27

    This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not bemore » resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.« less

  14. A PDA study management tool (SMT) utilizing wireless broadband and full DICOM viewing capability

    NASA Astrophysics Data System (ADS)

    Documet, Jorge; Liu, Brent; Zhou, Zheng; Huang, H. K.; Documet, Luis

    2007-03-01

    During the last 4 years IPI (Image Processing and Informatics) Laboratory has been developing a web-based Study Management Tool (SMT) application that allows Radiologists, Film librarians and PACS-related (Picture Archiving and Communication System) users to dynamically and remotely perform Query/Retrieve operations in a PACS network. The users utilizing a regular PDA (Personal Digital Assistant) can remotely query a PACS archive to distribute any study to an existing DICOM (Digital Imaging and Communications in Medicine) node. This application which has proven to be convenient to manage the Study Workflow [1, 2] has been extended to include a DICOM viewing capability in the PDA. With this new feature, users can take a quick view of DICOM images providing them mobility and convenience at the same time. In addition, we are extending this application to Metropolitan-Area Wireless Broadband Networks. This feature requires Smart Phones that are capable of working as a PDA and have access to Broadband Wireless Services. With the extended application to wireless broadband technology and the preview of DICOM images, the Study Management Tool becomes an even more powerful tool for clinical workflow management.

  15. Using an image-extended relational database to support content-based image retrieval in a PACS.

    PubMed

    Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M

    2005-12-01

    This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.

  16. A Distributed Multi-Agent System for Collaborative Information Management and Learning

    NASA Technical Reports Server (NTRS)

    Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.

  17. Quality assurance for the query and distribution systems of the RCSB Protein Data Bank

    PubMed Central

    Bluhm, Wolfgang F.; Beran, Bojan; Bi, Chunxiao; Dimitropoulos, Dimitris; Prlić, Andreas; Quinn, Gregory B.; Rose, Peter W.; Shah, Chaitali; Young, Jasmine; Yukich, Benjamin; Berman, Helen M.; Bourne, Philip E.

    2011-01-01

    The RCSB Protein Data Bank (RCSB PDB, www.pdb.org) is a key online resource for structural biology and related scientific disciplines. The website is used on average by 165 000 unique visitors per month, and more than 2000 other websites link to it. The amount and complexity of PDB data as well as the expectations on its usage are growing rapidly. Therefore, ensuring the reliability and robustness of the RCSB PDB query and distribution systems are crucially important and increasingly challenging. This article describes quality assurance for the RCSB PDB website at several distinct levels, including: (i) hardware redundancy and failover, (ii) testing protocols for weekly database updates, (iii) testing and release procedures for major software updates and (iv) miscellaneous monitoring and troubleshooting tools and practices. As such it provides suggestions for how other websites might be operated. Database URL: www.pdb.org PMID:21382834

  18. WellnessRules: A Web 3.0 Case Study in RuleML-Based Prolog-N3 Profile Interoperation

    NASA Astrophysics Data System (ADS)

    Boley, Harold; Osmun, Taylor Michael; Craig, Benjamin Larry

    An interoperation study, WellnessRules, is described, where rules about wellness opportunities are created by participants in rule languages such as Prolog and N3, and translated within a wellness community using RuleML/XML. The wellness rules are centered around participants, as profiles, encoding knowledge about their activities conditional on the season, the time-of-day, the weather, etc. This distributed knowledge base extends FOAF profiles with a vocabulary and rules about wellness group networking. The communication between participants is organized through Rule Responder, permitting wellness-profile translation and distributed querying across engines. WellnessRules interoperates between rules and queries in the relational (Datalog) paradigm of the pure-Prolog subset of POSL and in the frame (F-logic) paradigm of N3. An evaluation of Rule Responder instantiated for WellnessRules revealed acceptable Web response times.

  19. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing

    PubMed Central

    Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-01-01

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles. PMID:28786943

  20. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    PubMed

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  1. Data discretization for novel resource discovery in large medical data sets.

    PubMed Central

    Benoît, G.; Andrews, J. E.

    2000-01-01

    This paper is motivated by the problems of dealing with large data sets in information retrieval. The authors suggest an information retrieval framework based on mathematical principles to organize and permit end-user manipulation of a retrieval set. By adjusting through the interface the weights and types of relationships between query and set members, it is possible to expose unanticipated, novel relationships between the query/document pair. The retrieval set as a whole is parsed into discrete concept-oriented subsets (based on within-set similarity measures) and displayed on screen as interactive "graphic nodes" in an information space, distributed at first based on the vector model (similarity measure of set to query). The result is a visualized map wherein it is possible to identify main concept regions and multiple sub-regions as dimensions of the same data. Users may examine the membership within sub-regions. Based on this framework, a data visualization user interface was designed to encourage users to work with the data on multiple levels to find novel relationships between the query and retrieval set members. Space constraints prohibit addressing all aspects of this project. PMID:11079845

  2. Federated queries of clinical data repositories: the sum of the parts does not equal the whole

    PubMed Central

    Weber, Griffin M

    2013-01-01

    Background and objective In 2008 we developed a shared health research information network (SHRINE), which for the first time enabled research queries across the full patient populations of four Boston hospitals. It uses a federated architecture, where each hospital returns only the aggregate count of the number of patients who match a query. This allows hospitals to retain control over their local databases and comply with federal and state privacy laws. However, because patients may receive care from multiple hospitals, the result of a federated query might differ from what the result would be if the query were run against a single central repository. This paper describes the situations when this happens and presents a technique for correcting these errors. Methods We use a one-time process of identifying which patients have data in multiple repositories by comparing one-way hash values of patient demographics. This enables us to partition the local databases such that all patients within a given partition have data at the same subset of hospitals. Federated queries are then run separately on each partition independently, and the combined results are presented to the user. Results Using theoretical bounds and simulated hospital networks, we demonstrate that once the partitions are made, SHRINE can produce more precise estimates of the number of patients matching a query. Conclusions Uncertainty in the overlap of patient populations across hospitals limits the effectiveness of SHRINE and other federated query tools. Our technique reduces this uncertainty while retaining an aggregate federated architecture. PMID:23349080

  3. Distributed Multi-interface Catalogue for Geospatial Data

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Bigagli, L.; Mazzetti, P.; Mattia, U.; Boldrini, E.

    2007-12-01

    Several geosciences communities (e.g. atmospheric science, oceanography, hydrology) have developed tailored data and metadata models and service protocol specifications for enabling online data discovery, inventory, evaluation, access and download. These specifications are conceived either profiling geospatial information standards or extending the well-accepted geosciences data models and protocols in order to capture more semantics. These artifacts have generated a set of related catalog -and inventory services- characterizing different communities, initiatives and projects. In fact, these geospatial data catalogs are discovery and access systems that use metadata as the target for query on geospatial information. The indexed and searchable metadata provide a disciplined vocabulary against which intelligent geospatial search can be performed within or among communities. There exists a clear need to conceive and achieve solutions to implement interoperability among geosciences communities, in the context of the more general geospatial information interoperability framework. Such solutions should provide search and access capabilities across catalogs, inventory lists and their registered resources. Thus, the development of catalog clearinghouse solutions is a near-term challenge in support of fully functional and useful infrastructures for spatial data (e.g. INSPIRE, GMES, NSDI, GEOSS). This implies the implementation of components for query distribution and virtual resource aggregation. These solutions must implement distributed discovery functionalities in an heterogeneous environment, requiring metadata profiles harmonization as well as protocol adaptation and mediation. We present a catalog clearinghouse solution for the interoperability of several well-known cataloguing systems (e.g. OGC CSW, THREDDS catalog and data services). The solution implements consistent resource discovery and evaluation over a dynamic federation of several well-known cataloguing and inventory systems. Prominent features include: 1)Support to distributed queries over a hierarchical data model, supporting incremental queries (i.e. query over collections, to be subsequently refined) and opaque/translucent chaining; 2)Support to several client protocols, through a compound front-end interface module. This allows to accommodate a (growing) number of cataloguing standards, or profiles thereof, including the OGC CSW interface, ebRIM Application Profile (for Core ISO Metadata and other data models), and the ISO Application Profile. The presented catalog clearinghouse supports both the opaque and translucent pattern for service chaining. In fact, the clearinghouse catalog may be configured either to completely hide the underlying federated services or to provide clients with services information. In both cases, the clearinghouse solution presents a higher level interface (i.e. OGC CSW) which harmonizes multiple lower level services (e.g. OGC CSW, WMS and WCS, THREDDS, etc.), and handles all control and interaction with them. In the translucent case, client has the option to directly access the lower level services (e.g. to improve performances). In the GEOSS context, the solution has been experimented both as a stand-alone user application and as a service framework. The first scenario allows a user to download a multi-platform client software and query a federation of cataloguing systems, that he can customize at will. The second scenario support server-side deployment and can be flexibly adapted to several use-cases, such as intranet proxy, catalog broker, etc.

  4. Bio-TDS: bioscience query tool discovery system.

    PubMed

    Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M

    2017-01-04

    Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  6. An Intelligent Information System for forest management: NED/FVS integration

    Treesearch

    J. Wang; W.D. Potter; D. Nute; F. Maier; H. Michael Rauscher; M.J. Twery; S. Thomasma; P. Knopp

    2002-01-01

    An Intelligent Information System (IIS) is viewed as composed of a unified knowledge base, database, and model base. This allows an IIS to provide responses to user queries regardless of whether the query process involves a data retrieval, an inference, a computational method, a problem solving module, or some combination of these. NED-2 is a full-featured intelligent...

  7. Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries

    ERIC Educational Resources Information Center

    Toh, Huey Ling

    2010-01-01

    Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…

  8. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  9. QATT: a Natural Language Interface for QPE. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    White, Douglas Robert-Graham

    1989-01-01

    QATT, a natural language interface developed for the Qualitative Process Engine (QPE) system is presented. The major goal was to evaluate the use of a preexisting natural language understanding system designed to be tailored for query processing in multiple domains of application. The other goal of QATT is to provide a comfortable environment in which to query envisionments in order to gain insight into the qualitative behavior of physical systems. It is shown that the use of the preexisting system made possible the development of a reasonably useful interface in a few months.

  10. EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models

    NASA Astrophysics Data System (ADS)

    Laxton, John; Sen, Marcus; Passmore, James

    2013-04-01

    EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be constructed to calculate, for example, the thickness between two surfaces in a 3D model or the depth from ground surface to the top of a particular geologic unit. In the first version of the service a simple interface showing some example queries has been implemented in order to show the potential of the technologies. The project aims to develop the services available in light of user feedback, both in terms of the data available, the functionality and the interface. User feedback on the services guides the software and standards development aspects of the project, leading to enhanced versions of the software which will be implemented in upgraded versions of the services during the lifetime of the project.

  11. Optimizing Maintenance of Constraint-Based Database Caches

    NASA Astrophysics Data System (ADS)

    Klein, Joachim; Braun, Susanne

    Caching data reduces user-perceived latency and often enhances availability in case of server crashes or network failures. DB caching aims at local processing of declarative queries in a DBMS-managed cache close to the application. Query evaluation must produce the same results as if done at the remote database backend, which implies that all data records needed to process such a query must be present and controlled by the cache, i. e., to achieve “predicate-specific” loading and unloading of such record sets. Hence, cache maintenance must be based on cache constraints such that “predicate completeness” of the caching units currently present can be guaranteed at any point in time. We explore how cache groups can be maintained to provide the data currently needed. Moreover, we design and optimize loading and unloading algorithms for sets of records keeping the caching units complete, before we empirically identify the costs involved in cache maintenance.

  12. Design and Implementation of User-Created Information Systems with Mobile RFID

    NASA Astrophysics Data System (ADS)

    Lee, Jae Kwoen; Chin, Sungho; Kim, Hee Cheon; Chung, Kwang Sik

    RFID (Radio Frequency Identification) has been usually applied at physical distribution field. The Mobile RFID can be the only technology that we can lead the market. In our country, ETRI standardizes MOBION (MOBile Identification ON), and the mobile-telecommunication companies provide the trial-mobile RFID service from 2006. In the trial-mobile RFID services, the Broker model is used to decode the mobile RFID code. However, the Broker model has some problems, such as communication overhead caused by the frequent ODS query, service performance, and various services for users. In this paper, we developed device application that is capable for filtering unrelated code from RFID service to improve the decoding performance. We also improve the performance through simplifying connection process between device application and the broker. Finally, we propose and develop the user-created information system to widely distribute the Mobile RFID service.

  13. Evaluation of Secure Computation in a Distributed Healthcare Setting.

    PubMed

    Kimura, Eizen; Hamada, Koki; Kikuchi, Ryo; Chida, Koji; Okamoto, Kazuya; Manabe, Shirou; Kuroda, Tomohiko; Matsumura, Yasushi; Takeda, Toshihiro; Mihara, Naoki

    2016-01-01

    Issues related to ensuring patient privacy and data ownership in clinical repositories prevent the growth of translational research. Previous studies have used an aggregator agent to obscure clinical repositories from the data user, and to ensure the privacy of output using statistical disclosure control. However, there remain several issues that must be considered. One such issue is that a data breach may occur when multiple nodes conspire. Another is that the agent may eavesdrop on or leak a user's queries and their results. We have implemented a secure computing method so that the data used by each party can be kept confidential even if all of the other parties conspire to crack the data. We deployed our implementation at three geographically distributed nodes connected to a high-speed layer two network. The performance of our method, with respect to processing times, suggests suitability for practical use.

  14. Streaming data analytics via message passing with application to graph algorithms

    DOE PAGES

    Plimpton, Steven J.; Shead, Tim

    2014-05-06

    The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less

  15. A journey to Semantic Web query federation in the life sciences.

    PubMed

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-10-01

    As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community.

  16. A journey to Semantic Web query federation in the life sciences

    PubMed Central

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-01-01

    Background As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. Methods and results We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. Conclusion We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community. PMID:19796394

  17. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    NASA Astrophysics Data System (ADS)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  18. Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining

    PubMed Central

    Sadesh, S.; Suganthe, R. C.

    2015-01-01

    Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626

  19. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    NASA Astrophysics Data System (ADS)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.

  20. Optimizing Interactive Development of Data-Intensive Applications

    PubMed Central

    Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd

    2017-01-01

    Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637

  1. Modeling relief.

    PubMed

    Sumner, Walton; Xu, Jin Zhong; Roussel, Guy; Hagen, Michael D

    2007-10-11

    The American Board of Family Medicine deployed virtual patient simulations in 2004 to evaluate Diplomates' diagnostic and management skills. A previously reported dynamic process generates general symptom histories from time series data representing baseline values and reactions to medications. The simulator also must answer queries about details such as palliation and provocation. These responses often describe some recurring pattern, such as, "this medicine relieves my symptoms in a few minutes." The simulator can provide a detail stored as text, or it can evaluate a reference to a second query object. The second query object can generate details using a single Bayesian network to evaluate the effect of each drug in a virtual patient's medication list. A new medication option may not require redesign of the second query object if its implementation is consistent with related drugs. We expect this mechanism to maintain realistic responses to detail questions in complex simulations.

  2. Innovations in individual feature history management - The significance of feature-based temporal model

    USGS Publications Warehouse

    Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.

    2008-01-01

    A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.

  3. Using a data base management system for modelling SSME test history data

    NASA Technical Reports Server (NTRS)

    Abernethy, K.

    1985-01-01

    The usefulness of a data base management system (DBMS) for modelling historical test data for the complete series of static test firings for the Space Shuttle Main Engine (SSME) was assessed. From an analysis of user data base query requirements, it became clear that a relational DMBS which included a relationally complete query language would permit a model satisfying the query requirements. Representative models and sample queries are discussed. A list of environment-particular evaluation criteria for the desired DBMS was constructed; these criteria include requirements in the areas of user-interface complexity, program independence, flexibility, modifiability, and output capability. The evaluation process included the construction of several prototype data bases for user assessement. The systems studied, representing the three major DBMS conceptual models, were: MIRADS, a hierarchical system; DMS-1100, a CODASYL-based network system; ORACLE, a relational system; and DATATRIEVE, a relational-type system.

  4. Towards computational improvement of DNA database indexing and short DNA query searching.

    PubMed

    Stojanov, Done; Koceski, Sašo; Mileva, Aleksandra; Koceska, Nataša; Bande, Cveta Martinovska

    2014-09-03

    In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning, employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we observed that hits at starting positions [Formula: see text] are not reported, if the database is searched against a query shorter than [Formula: see text] nucleotides, such that [Formula: see text] is the length of the DNA database words being mapped and [Formula: see text] is the length of the query. A solution of this drawback is also presented.

  5. Python Winding Itself Around Datacubes: How to Access Massive Multi-Dimensional Arrays in a Pythonic Way

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Misev, Dimitar; Baumann, Peter

    2017-04-01

    While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.

  6. Exposing the cancer genome atlas as a SPARQL endpoint

    PubMed Central

    Deus, Helena F.; Veiga, Diogo F.; Freire, Pablo R.; Weinstein, John N.; Mills, Gordon B.; Almeida, Jonas S.

    2011-01-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to characterize several types of cancer. Datasets from biomedical domains such as TCGA present a particularly challenging task for those interested in dynamically aggregating its results because the data sources are typically both heterogeneous and distributed. The Linked Data best practices offer a solution to integrate and discover data with those characteristics, namely through exposure of data as Web services supporting SPARQL, the Resource Description Framework query language. Most SPARQL endpoints, however, cannot easily be queried by data experts. Furthermore, exposing experimental data as SPARQL endpoints remains a challenging task because, in most cases, data must first be converted to Resource Description Framework triples. In line with those requirements, we have developed an infrastructure to expose clinical, demographic and molecular data elements generated by TCGA as a SPARQL endpoint by assigning elements to entities of the Simple Sloppy Semantic Database (S3DB) management model. All components of the infrastructure are available as independent Representational State Transfer (REST) Web services to encourage reusability, and a simple interface was developed to automatically assemble SPARQL queries by navigating a representation of the TCGA domain. A key feature of the proposed solution that greatly facilitates assembly of SPARQL queries is the distinction between the TCGA domain descriptors and data elements. Furthermore, the use of the S3DB management model as a mediator enables queries to both public and protected data without the need for prior submission to a single data source. PMID:20851208

  7. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.

    PubMed

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2014-10-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.

  8. The Application Research of Modern Intelligent Cold Chain Distribution System Based on Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Fan, Dehui; Gao, Shan

    This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.

  9. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability between desktop GIS, web applications and geographic web services and interactive scientific applications (MATLAB, IPython). The system is also automatically ingesting direct readout data from meteorological and research satellites in near-real time with distributed acquisition workflows managed by Taverna workflow engine [2]. The system has demonstrated its utility in performing non-trivial analytic processing such as the computation of the Robust Satellite Technique (RST) indices [3]. It had been useful in different tasks such as studying urban heat islands, analyzing patterns in the distribution of wildfire occurrences, detecting phenomena related to seismic and earthquake activity. Initial experience has highlighted several limitations of the proposed approach yet it has demonstrated ability to facilitate the use of large archives of remote sensing data by geoscientists. 1. J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA Earth science data. EOS Trans. AGU, 2007, 88(2), P. 14-17. 2. D. Hull, K. Wolsfencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li and T. Oinn, Taverna: a tool for building and running workflows of services. Nucleic Acids Research. 2006. V. 34. P. W729-W732. 3. V. Tramutoli, G. Di Bello, N. Pergola, S. Piscitelli, Robust satellite techniques for remote sensing of seismically active areas // Annals of Geophysics. 2001. no. 44(2). P. 295-312.

  10. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers navigate directly to relevant data sets and query, subset, retrieve and compare the measurement and calculation data they contain. A critical part of developing semantically-enabled data distribution capabilities is developing an ontology that adequately describes 1) the data products - their structure, their content, and any supporting documentation; 2) the data domain - the objects and processes that the products denote; and 3) the relationship between the data and the domain. The ontology, in addition, should be machine readable and capable of integrating with the larger data distribution system to provide an interactive user experience. We will demonstrate how a formal, high-fidelity, queriable ontology representing the atmospheric science domain objects and data products, together with a robust set of inference rules for generating interactive graphs, allows researchers to navigate quickly and painlessly through the large volume of data at the ASDC. Scientists will be able to discover data products that exactly meet their particular criteria, link to information about the instruments and processing methods that generated the data; and compare and contrast related products.

  11. A natural language interface plug-in for cooperative query answering in biological databases.

    PubMed

    Jamil, Hasan M

    2012-06-11

    One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.

  12. An online analytical processing multi-dimensional data warehouse for malaria data

    PubMed Central

    Madey, Gregory R; Vyushkov, Alexander; Raybaud, Benoit; Burkot, Thomas R; Collins, Frank H

    2017-01-01

    Abstract Malaria is a vector-borne disease that contributes substantially to the global burden of morbidity and mortality. The management of malaria-related data from heterogeneous, autonomous, and distributed data sources poses unique challenges and requirements. Although online data storage systems exist that address specific malaria-related issues, a globally integrated online resource to address different aspects of the disease does not exist. In this article, we describe the design, implementation, and applications of a multi-dimensional, online analytical processing data warehouse, named the VecNet Data Warehouse (VecNet-DW). It is the first online, globally-integrated platform that provides efficient search, retrieval and visualization of historical, predictive, and static malaria-related data, organized in data marts. Historical and static data are modelled using star schemas, while predictive data are modelled using a snowflake schema. The major goals, characteristics, and components of the DW are described along with its data taxonomy and ontology, the external data storage systems and the logical modelling and physical design phases. Results are presented as screenshots of a Dimensional Data browser, a Lookup Tables browser, and a Results Viewer interface. The power of the DW emerges from integrated querying of the different data marts and structuring those queries to the desired dimensions, enabling users to search, view, analyse, and store large volumes of aggregated data, and responding better to the increasing demands of users. Database URL https://dw.vecnet.org/datawarehouse/ PMID:29220463

  13. EmptyHeaded: A Relational Engine for Graph Processing

    PubMed Central

    Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912

  14. Loss-tolerant measurement-device-independent quantum private queries

    PubMed Central

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors. PMID:28051101

  15. Small numbers, disclosure risk, security, and reliability issues in Web-based data query systems.

    PubMed

    Rudolph, Barbara A; Shah, Gulzar H; Love, Denise

    2006-01-01

    This article describes the process for developing consensus guidelines and tools for releasing public health data via the Web and highlights approaches leading agencies have taken to balance disclosure risk with public dissemination of reliable health statistics. An agency's choice of statistical methods for improving the reliability of released data for Web-based query systems is based upon a number of factors, including query system design (dynamic analysis vs preaggregated data and tables), population size, cell size, data use, and how data will be supplied to users. The article also describes those efforts that are necessary to reduce the risk of disclosure of an individual's protected health information.

  16. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  17. A publicly available benchmark for biomedical dataset retrieval: the reference standard for the 2016 bioCADDIE dataset retrieval challenge

    PubMed Central

    Gururaj, Anupama E.; Chen, Xiaoling; Pournejati, Saeid; Alter, George; Hersh, William R.; Demner-Fushman, Dina; Ohno-Machado, Lucila

    2017-01-01

    Abstract The rapid proliferation of publicly available biomedical datasets has provided abundant resources that are potentially of value as a means to reproduce prior experiments, and to generate and explore novel hypotheses. However, there are a number of barriers to the re-use of such datasets, which are distributed across a broad array of dataset repositories, focusing on different data types and indexed using different terminologies. New methods are needed to enable biomedical researchers to locate datasets of interest within this rapidly expanding information ecosystem, and new resources are needed for the formal evaluation of these methods as they emerge. In this paper, we describe the design and generation of a benchmark for information retrieval of biomedical datasets, which was developed and used for the 2016 bioCADDIE Dataset Retrieval Challenge. In the tradition of the seminal Cranfield experiments, and as exemplified by the Text Retrieval Conference (TREC), this benchmark includes a corpus (biomedical datasets), a set of queries, and relevance judgments relating these queries to elements of the corpus. This paper describes the process through which each of these elements was derived, with a focus on those aspects that distinguish this benchmark from typical information retrieval reference sets. Specifically, we discuss the origin of our queries in the context of a larger collaborative effort, the biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium, and the distinguishing features of biomedical dataset retrieval as a task. The resulting benchmark set has been made publicly available to advance research in the area of biomedical dataset retrieval. Database URL: https://biocaddie.org/benchmark-data PMID:29220453

  18. SeqWare Query Engine: storing and searching sequence data in the cloud.

    PubMed

    O'Connor, Brian D; Merriman, Barry; Nelson, Stanley F

    2010-12-21

    Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets.

  19. SeqWare Query Engine: storing and searching sequence data in the cloud

    PubMed Central

    2010-01-01

    Background Since the introduction of next-generation DNA sequencers the rapid increase in sequencer throughput, and associated drop in costs, has resulted in more than a dozen human genomes being resequenced over the last few years. These efforts are merely a prelude for a future in which genome resequencing will be commonplace for both biomedical research and clinical applications. The dramatic increase in sequencer output strains all facets of computational infrastructure, especially databases and query interfaces. The advent of cloud computing, and a variety of powerful tools designed to process petascale datasets, provide a compelling solution to these ever increasing demands. Results In this work, we present the SeqWare Query Engine which has been created using modern cloud computing technologies and designed to support databasing information from thousands of genomes. Our backend implementation was built using the highly scalable, NoSQL HBase database from the Hadoop project. We also created a web-based frontend that provides both a programmatic and interactive query interface and integrates with widely used genome browsers and tools. Using the query engine, users can load and query variants (SNVs, indels, translocations, etc) with a rich level of annotations including coverage and functional consequences. As a proof of concept we loaded several whole genome datasets including the U87MG cell line. We also used a glioblastoma multiforme tumor/normal pair to both profile performance and provide an example of using the Hadoop MapReduce framework within the query engine. This software is open source and freely available from the SeqWare project (http://seqware.sourceforge.net). Conclusions The SeqWare Query Engine provided an easy way to make the U87MG genome accessible to programmers and non-programmers alike. This enabled a faster and more open exploration of results, quicker tuning of parameters for heuristic variant calling filters, and a common data interface to simplify development of analytical tools. The range of data types supported, the ease of querying and integrating with existing tools, and the robust scalability of the underlying cloud-based technologies make SeqWare Query Engine a nature fit for storing and searching ever-growing genome sequence datasets. PMID:21210981

  20. Data Warehousing at the Marine Corps Institute

    DTIC Science & Technology

    2003-09-01

    applications exists for several reasons. It allows for data to be extracted from many sources, by “cleaned”, and stored into one large data facility ...exists. Key individuals at MCI, or the so called “knowledge workers” will be educated , and try to brainstorm possible data relationships that can...They include querying and reporting, On-Line Analytical Processing (OLAP) and statistical analysis, and data mining. 1. Queries and Reports The

  1. Comment on "flexible protocol for quantum private query based on B92 protocol"

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Zhu, Jing-Min

    2017-03-01

    In a recent paper (Quantum Inf Process 13:805-813, 2014), a flexible quantum private query (QPQ) protocol based on B92 protocol is presented. Here we point out that the B92-based QPQ protocol is insecure in database security when the channel has loss, that is, the user (Alice) will know more records in Bob's database compared with she has bought.

  2. Sundanese ancient manuscripts search engine using probability approach

    NASA Astrophysics Data System (ADS)

    Suryani, Mira; Hadi, Setiawan; Paulus, Erick; Nurma Yulita, Intan; Supriatna, Asep K.

    2017-10-01

    Today, Information and Communication Technology (ICT) has become a regular thing for every aspect of live include cultural and heritage aspect. Sundanese ancient manuscripts as Sundanese heritage are in damage condition and also the information that containing on it. So in order to preserve the information in Sundanese ancient manuscripts and make them easier to search, a search engine has been developed. The search engine must has good computing ability. In order to get the best computation in developed search engine, three types of probabilistic approaches: Bayesian Networks Model, Divergence from Randomness with PL2 distribution, and DFR-PL2F as derivative form DFR-PL2 have been compared in this study. The three probabilistic approaches supported by index of documents and three different weighting methods: term occurrence, term frequency, and TF-IDF. The experiment involved 12 Sundanese ancient manuscripts. From 12 manuscripts there are 474 distinct terms. The developed search engine tested by 50 random queries for three types of query. The experiment results showed that for the single query and multiple query, the best searching performance given by the combination of PL2F approach and TF-IDF weighting method. The performance has been evaluated using average time responds with value about 0.08 second and Mean Average Precision (MAP) about 0.33.

  3. Designing integrated computational biology pipelines visually.

    PubMed

    Jamil, Hasan M

    2013-01-01

    The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.

  4. Mobile agent location in distributed environments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Argyropoulos, I. P.

    2012-12-01

    An agent is a small program acting on behalf of a user or an application which plays the role of a user. Artificial intelligence can be encapsulated in agents so that they can be capable of both behaving autonomously and showing an elementary decision ability regarding movement and some specific actions. Therefore they are often called autonomous mobile agents. In a distributed system, they can move themselves from one processing node to another through the interconnecting network infrastructure. Their purpose is to collect useful information and to carry it back to their user. Also, agents are used to start, monitor and stop processes running on the individual interconnected processing nodes of computer cluster systems. An agent has a unique id to discriminate itself from other agents and a current position. The position can be expressed as the address of the processing node which currently hosts the agent. Very often, it is necessary for a user, a processing node or another agent to know the current position of an agent in a distributed system. Several procedures and algorithms have been proposed for the purpose of position location of mobile agents. The most basic of all employs a fixed computing node, which acts as agent position repository, receiving messages from all the moving agents and keeping records of their current positions. The fixed node, responds to position queries and informs users, other nodes and other agents about the position of an agent. Herein, a model is proposed that considers pairs and triples of agents instead of single ones. A location method, which is investigated in this paper, attempts to exploit this model.

  5. GeoNetwork powered GI-cat: a geoportal hybrid solution

    NASA Astrophysics Data System (ADS)

    Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo

    2010-05-01

    To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed according to the interface protocols exposed by GI-cat into the multiple query dialects spoken by the resource service providers. Currently, a number of well-accepted catalog and inventory services are supported, including several OGC Web Services, THREDDS Data Server, SeaDataNet Common Data Index, GBIF and OpenSearch engines. A GeoNetwork powered GI-cat has been developed in order to exploit the best of the two frameworks. The new system uses a modified version of GeoNetwork web interface in order to add the capability of querying also the specified GI-cat catalog and not only the GeoNetwork internal database. The resulting system consists in a geoportal in which GI-cat plays the role of the search engine. This new system allows to distribute the query on the different types of data sources linked to a GI-cat. The metadata results of the query are then visualized by the Geonetwork web interface. This configuration was experimented in the framework of GIIDA, a project of the Italian National Research Council (CNR) focused on data accessibility and interoperability. A second advantage of this solution is achieved setting up a GeoNetwork catalog amongst the accessors of the GI-cat instance. Such a configuration will allow in turn GI-cat to run the query against the internal GeoNetwork database. This allows to have both the harvesting and the metadata editor functionalities provided by GeoNetwork and the distributed search functionality of GI-cat available in a consistent way through the same web interface.

  6. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  7. Melody Alignment and Similarity Metric for Content-Based Music Retrieval

    NASA Astrophysics Data System (ADS)

    Zhu, Yongwei; Kankanhalli, Mohan S.

    2003-01-01

    Music query-by-humming has attracted much research interest recently. It is a challenging problem since the hummed query inevitably contains much variation and inaccuracy. Furthermore, the similarity computation between the query tune and the reference melody is not easy due to the difficulty in ensuring proper alignment. This is because the query tune can be rendered at an unknown speed and it is usually an arbitrary subsequence of the target reference melody. Many of the previous methods, which adopt note segmentation and string matching, suffer drastically from the errors in the note segmentation, which affects retrieval accuracy and efficiency. Some methods solve the alignment issue by controlling the speed of the articulation of queries, which is inconvenient because it forces users to hum along a metronome. Some other techniques introduce arbitrary rescaling in time but this is computationally very inefficient. In this paper, we introduce a melody alignment technique, which addresses the robustness and efficiency issues. We also present a new melody similarity metric, which is performed directly on melody contours of the query data. This approach cleanly separates the alignment and similarity measurement in the search process. We show how to robustly and efficiently align the query melody with the reference melodies and how to measure the similarity subsequently. We have carried out extensive experiments. Our melody alignment method can reduce the matching candidate to 1.7% with 95% correct alignment rate. The overall retrieval system achieved 80% recall in the top 10 rank list. The results demonstrate the robustness and effectiveness the proposed methods.

  8. Tick bite and Lyme disease-related emergency department encounters in New Hampshire, 2010-2014.

    PubMed

    Daly, E R; Fredette, C; Mathewson, A A; Dufault, K; Swenson, D J; Chan, B P

    2017-12-01

    Lyme disease (LD) is a common tick-borne disease in New Hampshire (NH). While LD is a reportable condition and cases are counted for public health surveillance, many more people receive care for tick bites or diagnoses of LD than are reflected in surveillance data. NH's emergency department (ED) data system was queried for tick bite and LD-related encounters. Chief complaint text was queried for words related to LD or tick bites. International Classification of Diseases 9th Revision (ICD-9) codes were queried for the LD diagnosis code (088.81). Emergency department patient data were matched to reportable disease data to determine the proportion of ED patients reported to the health department as a suspected LD case. Data were analysed to calculate frequencies for key demographic and reporting characteristics. From 2010 to 2014, 13,615 tick bite or LD-related ED encounters were identified in NH, with most due to tick bites (76%). Of 3,256 patients with a LD-related ED encounter, 738 (23%) were reported to the health department as a suspected LD case. The geographic distribution of ED patients was similar to reported LD cases; however, the regions of the state that experienced higher rates of ED encounters were different than the regions that observed higher rates of reported LD cases. Seasonal distribution of ED encounters peaked earlier than reported LD cases with a second peak in the fall. While age and sex distribution was similar among ED patients and reported LD cases, the rates for children 5 years and younger and adults 65 years and older were greater for ED encounters. Patients frequently visit the ED to seek care for tick bites and suspected LD. Results of ED data analyses can be used to target education, in particular for ED providers and the public through timely distribution of evidence-based educational materials and training programmes. © 2017 Blackwell Verlag GmbH.

  9. Data Management and Site-Visit Monitoring of the Multi-Center Registry in the Korean Neonatal Network.

    PubMed

    Choi, Chang Won; Park, Moon Sung

    2015-10-01

    The Korean Neonatal Network (KNN), a nationwide prospective registry of very-low-birth-weight (VLBW, < 1,500 g at birth) infants, was launched in April 2013. Data management (DM) and site-visit monitoring (SVM) were crucial in ensuring the quality of the data collected from 55 participating hospitals across the country on 116 clinical variables. We describe the processes and results of DM and SVM performed during the establishment stage of the registry. The DM procedure included automated proof checks, electronic data validation, query creation, query resolution, and revalidation of the corrected data. SVM included SVM team organization, identification of unregistered cases, source document verification, and post-visit report production. By March 31, 2015, 4,063 VLBW infants were registered and 1,693 queries were produced. Of these, 1,629 queries were resolved and 64 queries remain unresolved. By November 28, 2014, 52 participating hospitals were visited, with 136 site-visits completed since April 2013. Each participating hospital was visited biannually. DM and SVM were performed to ensure the quality of the data collected for the KNN registry. Our experience with DM and SVM can be applied for similar multi-center registries with large numbers of participating centers.

  10. Asynchronous Data Retrieval from an Object-Oriented Database

    NASA Astrophysics Data System (ADS)

    Gilbert, Jonathan P.; Bic, Lubomir

    We present an object-oriented semantic database model which, similar to other object-oriented systems, combines the virtues of four concepts: the functional data model, a property inheritance hierarchy, abstract data types and message-driven computation. The main emphasis is on the last of these four concepts. We describe generic procedures that permit queries to be processed in a purely message-driven manner. A database is represented as a network of nodes and directed arcs, in which each node is a logical processing element, capable of communicating with other nodes by exchanging messages. This eliminates the need for shared memory and for centralized control during query processing. Hence, the model is suitable for implementation on a multiprocessor computer architecture, consisting of large numbers of loosely coupled processing elements.

  11. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  12. An asynchronous traversal engine for graph-based rich metadata management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Carns, Philip; Ross, Robert B.

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  13. An asynchronous traversal engine for graph-based rich metadata management

    DOE PAGES

    Dai, Dong; Carns, Philip; Ross, Robert B.; ...

    2016-06-23

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  14. Knowledge-based engineering of a PLC controlled telescope

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Raskin, Gert; Saey, Philippe; Van Winckel, Hans; Deconinck, Geert

    2016-08-01

    As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to demonstrate the added value that technologies such as soft-PLCs and DSL-scripts and design methodologies such as knowledge-based engineering can bring to astronomical instrumentation.

  15. A multi-site cognitive task analysis for biomedical query mediation.

    PubMed

    Hruby, Gregory W; Rasmussen, Luke V; Hanauer, David; Patel, Vimla L; Cimino, James J; Weng, Chunhua

    2016-09-01

    To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: "Identify potential index phenotype," "If needed, request EHR database access rights," and "Perform query and present output to medical researcher", and 8 are invalid. We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A Multi-Site Cognitive Task Analysis for Biomedical Query Mediation

    PubMed Central

    Hruby, Gregory W.; Rasmussen, Luke V.; Hanauer, David; Patel, Vimla; Cimino, James J.; Weng, Chunhua

    2016-01-01

    Objective To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. Materials and Methods We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. Results The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: “Identify potential index phenotype,” “If needed, request EHR database access rights,” and “Perform query and present output to medical researcher”, and 8 are invalid. Discussion We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. Conclusions We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. PMID:27435950

  17. Ordered Backward XPath Axis Processing against XML Streams

    NASA Astrophysics Data System (ADS)

    Nizar M., Abdul; Kumar, P. Sreenivasa

    Processing of backward XPath axes against XML streams is challenging for two reasons: (i) Data is not cached for future access. (ii) Query contains steps specifying navigation to the data that already passed by. While there are some attempts to process parent and ancestor axes, there are very few proposals to process ordered backward axes namely, preceding and preceding-sibling. For ordered backward axis processing, the algorithm, in addition to overcoming the limitations on data availability, has to take care of ordering constraints imposed by these axes. In this paper, we show how backward ordered axes can be effectively represented using forward constraints. We then discuss an algorithm for XML stream processing of XPath expressions containing ordered backward axes. The algorithm uses a layered cache structure to systematically accumulate query results. Our experiments show that the new algorithm gains remarkable speed up over the existing algorithm without compromising on bufferspace requirement.

  18. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  19. Exposing the cancer genome atlas as a SPARQL endpoint.

    PubMed

    Deus, Helena F; Veiga, Diogo F; Freire, Pablo R; Weinstein, John N; Mills, Gordon B; Almeida, Jonas S

    2010-12-01

    The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to characterize several types of cancer. Datasets from biomedical domains such as TCGA present a particularly challenging task for those interested in dynamically aggregating its results because the data sources are typically both heterogeneous and distributed. The Linked Data best practices offer a solution to integrate and discover data with those characteristics, namely through exposure of data as Web services supporting SPARQL, the Resource Description Framework query language. Most SPARQL endpoints, however, cannot easily be queried by data experts. Furthermore, exposing experimental data as SPARQL endpoints remains a challenging task because, in most cases, data must first be converted to Resource Description Framework triples. In line with those requirements, we have developed an infrastructure to expose clinical, demographic and molecular data elements generated by TCGA as a SPARQL endpoint by assigning elements to entities of the Simple Sloppy Semantic Database (S3DB) management model. All components of the infrastructure are available as independent Representational State Transfer (REST) Web services to encourage reusability, and a simple interface was developed to automatically assemble SPARQL queries by navigating a representation of the TCGA domain. A key feature of the proposed solution that greatly facilitates assembly of SPARQL queries is the distinction between the TCGA domain descriptors and data elements. Furthermore, the use of the S3DB management model as a mediator enables queries to both public and protected data without the need for prior submission to a single data source. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  1. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.

    PubMed

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2008-09-01

    A method to functionally annotate structural genomics targets, based on a novel structural alignment scoring function, is proposed. In the proposed score, position-specific scoring matrices are used to weight structurally aligned residue pairs to highlight evolutionarily conserved motifs. The functional form of the score is first optimized for discriminating domains belonging to the same Pfam family from domains belonging to different families but the same CATH or SCOP superfamily. In the optimization stage, we consider four standard weighting functions as well as our own, the "maximum substitution probability," and combinations of these functions. The optimized score achieves an area of 0.87 under the receiver-operating characteristic curve with respect to identifying Pfam families within a sequence-unique benchmark set of domain pairs. Confidence measures are then derived from the benchmark distribution of true-positive scores. The alignment method is next applied to the task of functionally annotating 230 query proteins released to the public as part of the Protein 3000 structural genomics project in Japan. Of these queries, 78 were found to align to templates with the same Pfam family as the query or had sequence identities > or = 30%. Another 49 queries were found to match more distantly related templates. Within this group, the template predicted by our method to be the closest functional relative was often not the most structurally similar. Several nontrivial cases are discussed in detail. Finally, 103 queries matched templates at the fold level, but not the family or superfamily level, and remain functionally uncharacterized. 2008 Wiley-Liss, Inc.

  2. Quantum private query based on single-photon interference

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Wei; Sun, Ying; Lin, Song

    2016-08-01

    Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.

  3. GOES-R User Data Types and Structure

    NASA Astrophysics Data System (ADS)

    Royle, A. W.

    2012-12-01

    GOES-R meteorological data is provided to the operational and science user community through four main distribution mechanisms. The GOES-R Ground Segment (GS) generates a set of Level 1b (L1b) data from each of the six primary satellite instruments and formats the data into a direct broadcast stream known as GOES Rebroadcast (GRB). Terrestrially, cloud and moisture imagery data is provided to forecasters at the National Weather Service (NWS) through a direct interface to the Advanced Weather Interactive Processing System (AWIPS). A secondary pathway for the user community to receive data terrestrially is via NOAA's Environmental Satellite Processing and Distribution System (ESPDS) Product Distribution and Access (PDA) system. The ESPDS PDA will service the NWS and other meteorological users through a data portal, which provides both a subscription service and an ad hoc query capability. Finally, GOES-R data is made available to NOAA's Comprehensive Large Array-Data Stewardship System (CLASS) for long-term archive. CLASS data includes the L1b and L2+ products sent to PDA, along with the Level 0 data used to create these products, and other data used for product generation and processing. This session will provide a summary description of the data types and formats associated with each of the four primary distribution pathways for user data from GOES-R. It will discuss the resources that are being developed by GOES-R to document the data structures and formats. It will also provide a brief introduction to the types of metadata associated with each of the primary data flows.

  4. Towards a light-weight query engine for accessing health sensor data in a fall prevention system.

    PubMed

    Kreiner, Karl; Gossy, Christian; Drobics, Mario

    2014-01-01

    Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system.

  5. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing

    PubMed Central

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2015-01-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA’s CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream. Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels. PMID:26566545

  6. A Random Walk Approach to Query Informative Constraints for Clustering.

    PubMed

    Abin, Ahmad Ali

    2017-08-09

    This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.

  7. Hierarchical data security in a Query-By-Example interface for a shared database.

    PubMed

    Taylor, Merwyn

    2002-06-01

    Whenever a shared database resource, containing critical patient data, is created, protecting the contents of the database is a high priority goal. This goal can be achieved by developing a Query-By-Example (QBE) interface, designed to access a shared database, and embedding within the QBE a hierarchical security module that limits access to the data. The security module ensures that researchers working in one clinic do not get access to data from another clinic. The security can be based on a flexible taxonomy structure that allows ordinary users to access data from individual clinics and super users to access data from all clinics. All researchers submit queries through the same interface and the security module processes the taxonomy and user identifiers to limit access. Using this system, two different users with different access rights can submit the same query and get different results thus reducing the need to create different interfaces for different clinics and access rights.

  8. Adding Data Management Services to Parallel File Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Scott

    2015-03-04

    The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decadesmore » the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce’s failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford’s Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.« less

  9. An XML-Based Manipulation and Query Language for Rule-Based Information

    NASA Astrophysics Data System (ADS)

    Mansour, Essam; Höpfner, Hagen

    Rules are utilized to assist in the monitoring process that is required in activities, such as disease management and customer relationship management. These rules are specified according to the application best practices. Most of research efforts emphasize on the specification and execution of these rules. Few research efforts focus on managing these rules as one object that has a management life-cycle. This paper presents our manipulation and query language that is developed to facilitate the maintenance of this object during its life-cycle and to query the information contained in this object. This language is based on an XML-based model. Furthermore, we evaluate the model and language using a prototype system applied to a clinical case study.

  10. System, method and apparatus for generating phrases from a database

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.

  11. Big Data Provenance: Challenges, State of the Art and Opportunities.

    PubMed

    Wang, Jianwu; Crawl, Daniel; Purawat, Shweta; Nguyen, Mai; Altintas, Ilkay

    2015-01-01

    Ability to track provenance is a key feature of scientific workflows to support data lineage and reproducibility. The challenges that are introduced by the volume, variety and velocity of Big Data, also pose related challenges for provenance and quality of Big Data, defined as veracity. The increasing size and variety of distributed Big Data provenance information bring new technical challenges and opportunities throughout the provenance lifecycle including recording, querying, sharing and utilization. This paper discusses the challenges and opportunities of Big Data provenance related to the veracity of the datasets themselves and the provenance of the analytical processes that analyze these datasets. It also explains our current efforts towards tracking and utilizing Big Data provenance using workflows as a programming model to analyze Big Data.

  12. Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.

    2012-09-01

    SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.

  13. PRIDE: new developments and new datasets.

    PubMed

    Jones, Philip; Côté, Richard G; Cho, Sang Yun; Klie, Sebastian; Martens, Lennart; Quinn, Antony F; Thorneycroft, David; Hermjakob, Henning

    2008-01-01

    The PRIDE (http://www.ebi.ac.uk/pride) database of protein and peptide identifications was previously described in the NAR Database Special Edition in 2006. Since this publication, the volume of public data in the PRIDE relational database has increased by more than an order of magnitude. Several significant public datasets have been added, including identifications and processed mass spectra generated by the HUPO Brain Proteome Project and the HUPO Liver Proteome Project. The PRIDE software development team has made several significant changes and additions to the user interface and tool set associated with PRIDE. The focus of these changes has been to facilitate the submission process and to improve the mechanisms by which PRIDE can be queried. The PRIDE team has developed a Microsoft Excel workbook that allows the required data to be collated in a series of relatively simple spreadsheets, with automatic generation of PRIDE XML at the end of the process. The ability to query PRIDE has been augmented by the addition of a BioMart interface allowing complex queries to be constructed. Collaboration with groups outside the EBI has been fruitful in extending PRIDE, including an approach to encode iTRAQ quantitative data in PRIDE XML.

  14. Active Learning Using Arbitrary Binary Valued Queries

    DTIC Science & Technology

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  15. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    PubMed

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  16. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data*

    PubMed Central

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev

    2017-01-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821

  17. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  18. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.

  19. search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information

    PubMed Central

    2013-01-01

    Background Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. Results We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user’s query, advanced data searching based on the specified user’s query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. Conclusions search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/. PMID:23452691

  20. search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information.

    PubMed

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Siążnik, Artur

    2013-03-01

    Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user's query, advanced data searching based on the specified user's query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/.

  1. Measuring up: Implementing a dental quality measure in the electronic health record context.

    PubMed

    Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F

    2016-01-01

    Quality improvement requires using quality measures that can be implemented in a valid manner. Using guidelines set forth by the Meaningful Use portion of the Health Information Technology for Economic and Clinical Health Act, the authors assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure to determine the percentage of children who received fluoride varnish. The authors defined how to implement the automated measure queries in a dental electronic health record. Within records identified through automated query, the authors manually reviewed a subsample to assess the performance of the query. The automated query results revealed that 71.0% of patients had fluoride varnish compared with the manual chart review results that indicated 77.6% of patients had fluoride varnish. The automated quality measure performance results indicated 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. The authors' findings support the feasibility of using automated dental quality measure queries in the context of sufficient structured data. Information noted only in free text rather than in structured data would require using natural language processing approaches to effectively query electronic health records. To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation to support near-term automated calculation of quality measures. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRIS is a search tool plug-in that is used to implement latent topic feedback for enhancing text navigation. It accepts a list of returned documents from an information retrieval wywtem that is generated from keyword search queries. Data is pulled directly from a topic information database and processed by IRIS to determine the most prominent and relevant topics, along with topic-ngrams, associated with the list of returned documents. User selected topics are then used to expand the query and presumabley refine the search results.

  3. Aligning HST Images to Gaia: A Faster Mosaicking Workflow

    NASA Astrophysics Data System (ADS)

    Bajaj, V.

    2017-11-01

    We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.

  4. Wireless remote control clinical image workflow: utilizing a PDA for offsite distribution

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Documet, Luis; Documet, Jorge; Huang, H. K.; Muldoon, Jean

    2004-04-01

    Last year we presented in RSNA an application to perform wireless remote control of PACS image distribution utilizing a handheld device such as a Personal Digital Assistant (PDA). This paper describes the clinical experiences including workflow scenarios of implementing the PDA application to route exams from the clinical PACS archive server to various locations for offsite distribution of clinical PACS exams. By utilizing this remote control application, radiologists can manage image workflow distribution with a single wireless handheld device without impacting their clinical workflow on diagnostic PACS workstations. A PDA application was designed and developed to perform DICOM Query and C-Move requests by a physician from a clinical PACS Archive to a CD-burning device for automatic burning of PACS data for the distribution to offsite. In addition, it was also used for convenient routing of historical PACS exams to the local web server, local workstations, and teleradiology systems. The application was evaluated by radiologists as well as other clinical staff who need to distribute PACS exams to offsite referring physician"s offices and offsite radiologists. An application for image workflow management utilizing wireless technology was implemented in a clinical environment and evaluated. A PDA application was successfully utilized to perform DICOM Query and C-Move requests from the clinical PACS archive to various offsite exam distribution devices. Clinical staff can utilize the PDA to manage image workflow and PACS exam distribution conveniently for offsite consultations by referring physicians and radiologists. This solution allows the radiologist to expand their effectiveness in health care delivery both within the radiology department as well as offisite by improving their clinical workflow.

  5. Field Ground Truthing Data Collector - a Mobile Toolkit for Image Analysis and Processing

    NASA Astrophysics Data System (ADS)

    Meng, X.

    2012-07-01

    Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1) Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use) and health conditions of ecosystems and environments in the vicinity of the flight field; 2) Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3) Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.

  6. Improving the analysis, storage and sharing of neuroimaging data using relational databases and distributed computing.

    PubMed

    Hasson, Uri; Skipper, Jeremy I; Wilde, Michael J; Nusbaum, Howard C; Small, Steven L

    2008-01-15

    The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data.

  7. Improving the Analysis, Storage and Sharing of Neuroimaging Data using Relational Databases and Distributed Computing

    PubMed Central

    Hasson, Uri; Skipper, Jeremy I.; Wilde, Michael J.; Nusbaum, Howard C.; Small, Steven L.

    2007-01-01

    The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data. PMID:17964812

  8. Computing health quality measures using Informatics for Integrating Biology and the Bedside.

    PubMed

    Klann, Jeffrey G; Murphy, Shawn N

    2013-04-19

    The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers.

  9. Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside

    PubMed Central

    Murphy, Shawn N

    2013-01-01

    Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers. PMID:23603227

  10. Using patient lists to add value to integrated data repositories.

    PubMed

    Wade, Ted D; Zelarney, Pearlanne T; Hum, Richard C; McGee, Sylvia; Batson, Deborah H

    2014-12-01

    Patient lists are project-specific sets of patients that can be queried in integrated data repositories (IDR's). By allowing a set of patients to be an addition to the qualifying conditions of a query, returned results will refer to, and only to, that set of patients. We report a variety of use cases for such lists, including: restricting retrospective chart review to a defined set of patients; following a set of patients for practice management purposes; distributing "honest-brokered" (deidentified) data; adding phenotypes to biosamples; and enhancing the content of study or registry data. Among the capabilities needed to implement patient lists in an IDR are: capture of patient identifiers from a query and feedback of these into the IDR; the existence of a permanent internal identifier in the IDR that is mappable to external identifiers; the ability to add queryable attributes to the IDR; the ability to merge data from multiple queries; and suitable control over user access and de-identification of results. We implemented patient lists in a custom IDR of our own design. We reviewed capabilities of other published IDRs for focusing on sets of patients. The widely used i2b2 IDR platform has various ways to address patient sets, and it could be modified to add the low-overhead version of patient lists that we describe. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914

  12. Survey of Event Processing

    DTIC Science & Technology

    2007-12-01

    1 A Brief History of Event Processing... history of event processing. The Applications section defines several application domains and use cases for event processing technology. Event...subscription” and “subscription language” will be used where some will often use “(continuous) query” or “query language.” A Brief History of

  13. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.

  14. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    PubMed

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  16. Standard biological parts knowledgebase.

    PubMed

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  17. Query-based learning for aerospace applications.

    PubMed

    Saad, E W; Choi, J J; Vian, J L; Wunsch, D C Ii

    2003-01-01

    Models of real-world applications often include a large number of parameters with a wide dynamic range, which contributes to the difficulties of neural network training. Creating the training data set for such applications becomes costly, if not impossible. In order to overcome the challenge, one can employ an active learning technique known as query-based learning (QBL) to add performance-critical data to the training set during the learning phase, thereby efficiently improving the overall learning/generalization. The performance-critical data can be obtained using an inverse mapping called network inversion (discrete network inversion and continuous network inversion) followed by oracle query. This paper investigates the use of both inversion techniques for QBL learning, and introduces an original heuristic to select the inversion target values for continuous network inversion method. Efficiency and generalization was further enhanced by employing node decoupled extended Kalman filter (NDEKF) training and a causality index (CI) as a means to reduce the input search dimensionality. The benefits of the overall QBL approach are experimentally demonstrated in two aerospace applications: a classification problem with large input space and a control distribution problem.

  18. What Is Spatio-Temporal Data Warehousing?

    NASA Astrophysics Data System (ADS)

    Vaisman, Alejandro; Zimányi, Esteban

    In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.

  19. Boiler: lossy compression of RNA-seq alignments using coverage vectors

    PubMed Central

    Pritt, Jacob; Langmead, Ben

    2016-01-01

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. PMID:27298258

  20. Towards a Simple and Efficient Web Search Framework

    DTIC Science & Technology

    2014-11-01

    any useful information about the various aspects of a topic. For example, for the query “ raspberry pi ”, it covers topics such as “what is raspberry pi ...topics generated by the LDA topic model for query ” raspberry pi ”. One simple explanation is that web texts are too noisy and unfocused for the LDA process...making a rasp- berry pi ”. However, the topics generated based on the 10 top ranked documents do not make much sense to us in terms of their keywords

  1. FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.

    PubMed

    Shapiro, Jessica; Brutlag, Douglas

    2004-07-01

    The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.

  2. Approach to Privacy-Preserve Data in Two-Tiered Wireless Sensor Network Based on Linear System and Histogram

    NASA Astrophysics Data System (ADS)

    Dang, Van H.; Wohlgemuth, Sven; Yoshiura, Hiroshi; Nguyen, Thuc D.; Echizen, Isao

    Wireless sensor network (WSN) has been one of key technologies for the future with broad applications from the military to everyday life [1,2,3,4,5]. There are two kinds of WSN model models with sensors for sensing data and a sink for receiving and processing queries from users; and models with special additional nodes capable of storing large amounts of data from sensors and processing queries from the sink. Among the latter type, a two-tiered model [6,7] has been widely adopted because of its storage and energy saving benefits for weak sensors, as proved by the advent of commercial storage node products such as Stargate [8] and RISE. However, by concentrating storage in certain nodes, this model becomes more vulnerable to attack. Our novel technique, called zip-histogram, contributes to solving the problems of previous studies [6,7] by protecting the stored data's confidentiality and integrity (including data from the sensor and queries from the sink) against attackers who might target storage nodes in two-tiered WSNs.

  3. Preliminary Results on Uncertainty Quantification for Pattern Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stracuzzi, David John; Brost, Randolph; Chen, Maximillian Gene

    2015-09-01

    This report summarizes preliminary research into uncertainty quantification for pattern ana- lytics within the context of the Pattern Analytics to Support High-Performance Exploitation and Reasoning (PANTHER) project. The primary focus of PANTHER was to make large quantities of remote sensing data searchable by analysts. The work described in this re- port adds nuance to both the initial data preparation steps and the search process. Search queries are transformed from does the specified pattern exist in the data? to how certain is the system that the returned results match the query? We show example results for both data processing and search,more » and discuss a number of possible improvements for each.« less

  4. Towards Direct Manipulation and Remixing of Massive Data: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2012-04-01

    Complex analytics on "big data" is one of the core challenges of current Earth science, generating strong requirements for on-demand processing and fil tering of massive data sets. Issues under discussion include flexibility, performance, scalability, and the heterogeneity of the information types invo lved. In other domains, high-level query languages (such as those offered by database systems) have proven successful in the quest for flexible, scalable data access interfaces to massive amounts of data. However, due to the lack of support for many of the Earth science data structures, database systems are only used for registries and catalogs, but not for the bulk of spatio-temporal data. One core information category in this field is given by coverage data. ISO 19123 defines coverages, simplifying, as a representation of a "space-time varying phenomenon". This model can express a large class of Earth science data structures, including rectified and non-rectified rasters, curvilinear grids, point clouds, TINs, general meshes, trajectories, surfaces, and solids. This abstract definition, which is too high-level to establish interoperability, is concretized by the OGC GML 3.2.1 Application Schema for Coverages Standard into an interoperable representation. The OGC Web Coverage Processing Service (WCPS) Standard defines a declarative query language on multi-dimensional raster-type coverages, such as 1D in-situ sensor timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. Hence, important ingredients for versatile coverage retrieval are given - however, this potential has not been fully unleashed by service architectures up to now. The EU FP7-INFRA project EarthServer, launched in September 2011, aims at enabling standards-based on-demand analytics over the Web for Earth science data based on an integration of W3C XQuery for alphanumeric data and OGC-WCPS for raster data. Ultimately, EarthServer will support all OGC coverage types. The platform used by EarthServer is the rasdaman raster database system. To exploit heterogeneous multi-parallel platforms, automatic request distribution and orchestration is being established. Client toolkits are under development which will allow to quickly compose bespoke interactive clients, ranging from mobile devices over Web clients to high-end immersive virtual reality. The EarthServer platform has been deployed in six large-scale data centres with the aim of setting up Lighthouse Applications addressing all Earth Sciences, including satellite and airborne earth observation as well as use cases from atmosphere, ocean, snow, and ice monitoring, and geology on Earth and Mars. These services, each of which will ultimately host at least 100 TB, will form a peer cloud with distributed query processing for arbitrarily mixing database and in-situ access. With its ability to directly manipulate, analyze and remix massive data, the goal of EarthServer is to lift the data providers' semantic level from data stewardship to service stewardship.

  5. A Semantic Approach for Geospatial Information Extraction from Unstructured Documents

    NASA Astrophysics Data System (ADS)

    Sallaberry, Christian; Gaio, Mauro; Lesbegueries, Julien; Loustau, Pierre

    Local cultural heritage document collections are characterized by their content, which is strongly attached to a territory and its land history (i.e., geographical references). Our contribution aims at making the content retrieval process more efficient whenever a query includes geographic criteria. We propose a core model for a formal representation of geographic information. It takes into account characteristics of different modes of expression, such as written language, captures of drawings, maps, photographs, etc. We have developed a prototype that fully implements geographic information extraction (IE) and geographic information retrieval (IR) processes. All PIV prototype processing resources are designed as Web Services. We propose a geographic IE process based on semantic treatment as a supplement to classical IE approaches. We implement geographic IR by using intersection computing algorithms that seek out any intersection between formal geocoded representations of geographic information in a user query and similar representations in document collection indexes.

  6. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less

  7. Petaminer: Using ROOT for efficient data storage in MySQL database

    NASA Astrophysics Data System (ADS)

    Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.

    2010-04-01

    High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.

  8. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    NASA Astrophysics Data System (ADS)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  9. Using discordance to improve classification in narrative clinical databases: an application to community-acquired pneumonia.

    PubMed

    Hripcsak, George; Knirsch, Charles; Zhou, Li; Wilcox, Adam; Melton, Genevieve B

    2007-03-01

    Data mining in electronic medical records may facilitate clinical research, but much of the structured data may be miscoded, incomplete, or non-specific. The exploitation of narrative data using natural language processing may help, although nesting, varying granularity, and repetition remain challenges. In a study of community-acquired pneumonia using electronic records, these issues led to poor classification. Limiting queries to accurate, complete records led to vastly reduced, possibly biased samples. We exploited knowledge latent in the electronic records to improve classification. A similarity metric was used to cluster cases. We defined discordance as the degree to which cases within a cluster give different answers for some query that addresses a classification task of interest. Cases with higher discordance are more likely to be incorrectly classified, and can be reviewed manually to adjust the classification, improve the query, or estimate the likely accuracy of the query. In a study of pneumonia--in which the ICD9-CM coding was found to be very poor--the discordance measure was statistically significantly correlated with classification correctness (.45; 95% CI .15-.62).

  10. The Geodetic Seamless Archive Centers Service Layer: A System Architecture for Federating Geodesy Data Repositories

    NASA Astrophysics Data System (ADS)

    McWhirter, J.; Boler, F. M.; Bock, Y.; Jamason, P.; Squibb, M. B.; Noll, C. E.; Blewitt, G.; Kreemer, C. W.

    2010-12-01

    Three geodesy Archive Centers, Scripps Orbit and Permanent Array Center (SOPAC), NASA's Crustal Dynamics Data Information System (CDDIS) and UNAVCO are engaged in a joint effort to define and develop a common Web Service Application Programming Interface (API) for accessing geodetic data holdings. This effort is funded by the NASA ROSES ACCESS Program to modernize the original GPS Seamless Archive Centers (GSAC) technology which was developed in the 1990s. A new web service interface, the GSAC-WS, is being developed to provide uniform and expanded mechanisms through which users can access our data repositories. In total, our respective archives hold tens of millions of files and contain a rich collection of site/station metadata. Though we serve similar user communities, we currently provide a range of different access methods, query services and metadata formats. This leads to a lack of consistency in the userís experience and a duplication of engineering efforts. The GSAC-WS API and its reference implementation in an underlying Java-based GSAC Service Layer (GSL) supports metadata and data queries into site/station oriented data archives. The general nature of this API makes it applicable to a broad range of data systems. The overall goals of this project include providing consistent and rich query interfaces for end users and client programs, the development of enabling technology to facilitate third party repositories in developing these web service capabilities and to enable the ability to perform data queries across a collection of federated GSAC-WS enabled repositories. A fundamental challenge faced in this project is to provide a common suite of query services across a heterogeneous collection of data yet enabling each repository to expose their specific metadata holdings. To address this challenge we are developing a "capabilities" based service where a repository can describe its specific query and metadata capabilities. Furthermore, the architecture of the GSL is based on a model-view paradigm that decouples the underlying data model semantics from particular representations of the data model. This will allow for the GSAC-WS enabled repositories to evolve their service offerings to incorporate new metadata definition formats (e.g., ISO-19115, FGDC, JSON, etc.) and new techniques for accessing their holdings. Building on the core GSAC-WS implementations the project is also developing a federated/distributed query service. This service will seamlessly integrate with the GSAC Service Layer and will support data and metadata queries across a collection of federated GSAC repositories.

  11. Profile-IQ: Web-based data query system for local health department infrastructure and activities.

    PubMed

    Shah, Gulzar H; Leep, Carolyn J; Alexander, Dayna

    2014-01-01

    To demonstrate the use of National Association of County & City Health Officials' Profile-IQ, a Web-based data query system, and how policy makers, researchers, the general public, and public health professionals can use the system to generate descriptive statistics on local health departments. This article is a descriptive account of an important health informatics tool based on information from the project charter for Profile-IQ and the authors' experience and knowledge in design and use of this query system. Profile-IQ is a Web-based data query system that is based on open-source software: MySQL 5.5, Google Web Toolkit 2.2.0, Apache Commons Math library, Google Chart API, and Tomcat 6.0 Web server deployed on an Amazon EC2 server. It supports dynamic queries of National Profile of Local Health Departments data on local health department finances, workforce, and activities. Profile-IQ's customizable queries provide a variety of statistics not available in published reports and support the growing information needs of users who do not wish to work directly with data files for lack of staff skills or time, or to avoid a data use agreement. Profile-IQ also meets the growing demand of public health practitioners and policy makers for data to support quality improvement, community health assessment, and other processes associated with voluntary public health accreditation. It represents a step forward in the recent health informatics movement of data liberation and use of open source information technology solutions to promote public health.

  12. Retrieval of diagnostic and treatment studies for clinical use through PubMed and PubMed's Clinical Queries filters.

    PubMed

    Lokker, Cynthia; Haynes, R Brian; Wilczynski, Nancy L; McKibbon, K Ann; Walter, Stephen D

    2011-01-01

    Clinical Queries filters were developed to improve the retrieval of high-quality studies in searches on clinical matters. The study objective was to determine the yield of relevant citations and physician satisfaction while searching for diagnostic and treatment studies using the Clinical Queries page of PubMed compared with searching PubMed without these filters. Forty practicing physicians, presented with standardized treatment and diagnosis questions and one question of their choosing, entered search terms which were processed in a random, blinded fashion through PubMed alone and PubMed Clinical Queries. Participants rated search retrievals for applicability to the question at hand and satisfaction. For treatment, the primary outcome of retrieval of relevant articles was not significantly different between the groups, but a higher proportion of articles from the Clinical Queries searches met methodologic criteria (p=0.049), and more articles were published in core internal medicine journals (p=0.056). For diagnosis, the filtered results returned more relevant articles (p=0.031) and fewer irrelevant articles (overall retrieval less, p=0.023); participants needed to screen fewer articles before arriving at the first relevant citation (p<0.05). Relevance was also influenced by content terms used by participants in searching. Participants varied greatly in their search performance. Clinical Queries filtered searches returned more high-quality studies, though the retrieval of relevant articles was only statistically different between the groups for diagnosis questions. Retrieving clinically important research studies from Medline is a challenging task for physicians. Methodological search filters can improve search retrieval.

  13. Big Data Provenance: Challenges, State of the Art and Opportunities

    PubMed Central

    Wang, Jianwu; Crawl, Daniel; Purawat, Shweta; Nguyen, Mai; Altintas, Ilkay

    2017-01-01

    Ability to track provenance is a key feature of scientific workflows to support data lineage and reproducibility. The challenges that are introduced by the volume, variety and velocity of Big Data, also pose related challenges for provenance and quality of Big Data, defined as veracity. The increasing size and variety of distributed Big Data provenance information bring new technical challenges and opportunities throughout the provenance lifecycle including recording, querying, sharing and utilization. This paper discusses the challenges and opportunities of Big Data provenance related to the veracity of the datasets themselves and the provenance of the analytical processes that analyze these datasets. It also explains our current efforts towards tracking and utilizing Big Data provenance using workflows as a programming model to analyze Big Data. PMID:29399671

  14. Remembering the Important Things: Semantic Importance in Stream Reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Rui; Greaves, Mark T.; Smith, William P.

    Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less

  15. Composable Distributed Access Control and Integrity Policies for Query-Based Wireless Sensor Networks

    DTIC Science & Technology

    2008-03-01

    unaltered during transmission and verified with data authentication. Data Freshness describes the ordering and currency of data. Strong freshness is a total...Advances in Cryptology — Crypto ’97, volume 1294 of Lecture Notes in Computer Science, pages 180–197. Springer-Verlag, Berlin, 1997. GS04. Saurabh

  16. Comparing IndexedHBase and Riak for Serving Truthy: Performance of Data Loading and Query Evaluation

    DTIC Science & Technology

    2013-08-01

    Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS performance evaluation, distributed database, noSQL , HBase, indexing Xiaoming Gao, Judy Qiu...common hashtags created during a given time window. With the purpose of finding a solution for these challenges, we evaluate NoSQL databases such as

  17. Flora-On: Occurrence data of the vascular flora of mainland Portugal.

    PubMed

    Pereira, Ana Júlia; Francisco, Ana; Porto, Miguel

    2016-01-01

    The Flora-On dataset currently includes 253,310 occurrence records for the class Embryopsidae (vascular plants), comprising data collated via the platform http://flora-on.pt/ relating to observation records of vascular plants across mainland Portugal. Observations are uploaded directly to the database primarily by experienced botanists and naturalists, typically on a weekly basis, and consist of geo-referenced data points for species (or infraspecific taxa) along with their date of observation and phenological state. The Flora-On project aims to compile and make publicly accessible chorological, ecological, morphological and photographic information for the entire vascular flora of Portugal. The project's website offers powerful query and visualization capabilities, of which we highlight the probabilistic bioclimatic and phenological queries which operate based on the empirical density distributions of species in those variables. Flora-On was created and continues to be maintained by volunteers who are Associate members of Sociedade Portuguesa de Botânica (Botanical Society of Portugal). Given its focus on research-grade and current data, the Flora-On project represents a significant contribution to the knowledge of the present distribution and status of the Portuguese flora.

  18. Query Auto-Completion Based on Word2vec Semantic Similarity

    NASA Astrophysics Data System (ADS)

    Shao, Taihua; Chen, Honghui; Chen, Wanyu

    2018-04-01

    Query auto-completion (QAC) is the first step of information retrieval, which helps users formulate the entire query after inputting only a few prefixes. Regarding the models of QAC, the traditional method ignores the contribution from the semantic relevance between queries. However, similar queries always express extremely similar search intention. In this paper, we propose a hybrid model FS-QAC based on query semantic similarity as well as the query frequency. We choose word2vec method to measure the semantic similarity between intended queries and pre-submitted queries. By combining both features, our experiments show that FS-QAC model improves the performance when predicting the user’s query intention and helping formulate the right query. Our experimental results show that the optimal hybrid model contributes to a 7.54% improvement in terms of MRR against a state-of-the-art baseline using the public AOL query logs.

  19. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Antonio; Blazier, Nicholas Paul

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less

  20. An organizational framework and strategic implementation for system-level change to enhance research-based practice: QUERI Series

    PubMed Central

    Stetler, Cheryl B; McQueen, Lynn; Demakis, John; Mittman, Brian S

    2008-01-01

    Background The continuing gap between available evidence and current practice in health care reinforces the need for more effective solutions, in particular related to organizational context. Considerable advances have been made within the U.S. Veterans Health Administration (VA) in systematically implementing evidence into practice. These advances have been achieved through a system-level program focused on collaboration and partnerships among policy makers, clinicians, and researchers. The Quality Enhancement Research Initiative (QUERI) was created to generate research-driven initiatives that directly enhance health care quality within the VA and, simultaneously, contribute to the field of implementation science. This paradigm-shifting effort provided a natural laboratory for exploring organizational change processes. This article describes the underlying change framework and implementation strategy used to operationalize QUERI. Strategic approach to organizational change QUERI used an evidence-based organizational framework focused on three contextual elements: 1) cultural norms and values, in this case related to the role of health services researchers in evidence-based quality improvement; 2) capacity, in this case among researchers and key partners to engage in implementation research; 3) and supportive infrastructures to reinforce expectations for change and to sustain new behaviors as part of the norm. As part of a QUERI Series in Implementation Science, this article describes the framework's application in an innovative integration of health services research, policy, and clinical care delivery. Conclusion QUERI's experience and success provide a case study in organizational change. It demonstrates that progress requires a strategic, systems-based effort. QUERI's evidence-based initiative involved a deliberate cultural shift, requiring ongoing commitment in multiple forms and at multiple levels. VA's commitment to QUERI came in the form of visionary leadership, targeted allocation of resources, infrastructure refinements, innovative peer review and study methods, and direct involvement of key stakeholders. Stakeholders included both those providing and managing clinical care, as well as those producing relevant evidence within the health care system. The organizational framework and related implementation interventions used to achieve contextual change resulted in engaged investigators and enhanced uptake of research knowledge. QUERI's approach and progress provide working hypotheses for others pursuing similar system-wide efforts to routinely achieve evidence-based care. PMID:18510750

  1. Mercury Toolset for Spatiotemporal Metadata

    NASA Technical Reports Server (NTRS)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  2. Mercury Toolset for Spatiotemporal Metadata

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  3. SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands

    NASA Astrophysics Data System (ADS)

    Ho, Chris M. W.; Marshall, Garland R.

    1993-12-01

    SPLICE is a program that processes partial query solutions retrieved from 3D, structural databases to generate novel, aggregate ligands. It is designed to interface with the database searching program FOUNDATION, which retrieves fragments containing any combination of a user-specified minimum number of matching query elements. SPLICE eliminates aspects of structures that are physically incapable of binding within the active site. Then, a systematic rule-based procedure is performed upon the remaining fragments to ensure receptor complementarity. All modifications are automated and remain transparent to the user. Ligands are then assembled by linking components into composite structures through overlapping bonds. As a control experiment, FOUNDATION and SPLICE were used to reconstruct a know HIV-1 protease inhibitor after it had been fragmented, reoriented, and added to a sham database of fifty different small molecules. To illustrate the capabilities of this program, a 3D search query containing the pharmacophoric elements of an aspartic proteinase-inhibitor crystal complex was searched using FOUNDATION against a subset of the Cambridge Structural Database. One hundred thirty-one compounds were retrieved, each containing any combination of at least four query elements. Compounds were automatically screened and edited for receptor complementarity. Numerous combinations of fragments were discovered that could be linked to form novel structures, containing a greater number of pharmacophoric elements than any single retrieved fragment.

  4. Improved Information Retrieval Performance on SQL Database Using Data Adapter

    NASA Astrophysics Data System (ADS)

    Husni, M.; Djanali, S.; Ciptaningtyas, H. T.; Wicaksana, I. G. N. A.

    2018-02-01

    The NoSQL databases, short for Not Only SQL, are increasingly being used as the number of big data applications increases. Most systems still use relational databases (RDBs), but as the number of data increases each year, the system handles big data with NoSQL databases to analyze and access data more quickly. NoSQL emerged as a result of the exponential growth of the internet and the development of web applications. The query syntax in the NoSQL database differs from the SQL database, therefore requiring code changes in the application. Data adapter allow applications to not change their SQL query syntax. Data adapters provide methods that can synchronize SQL databases with NotSQL databases. In addition, the data adapter provides an interface which is application can access to run SQL queries. Hence, this research applied data adapter system to synchronize data between MySQL database and Apache HBase using direct access query approach, where system allows application to accept query while synchronization process in progress. From the test performed using data adapter, the results obtained that the data adapter can synchronize between SQL databases, MySQL, and NoSQL database, Apache HBase. This system spends the percentage of memory resources in the range of 40% to 60%, and the percentage of processor moving from 10% to 90%. In addition, from this system also obtained the performance of database NoSQL better than SQL database.

  5. EquiX-A Search and Query Language for XML.

    ERIC Educational Resources Information Center

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  6. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure

    NASA Astrophysics Data System (ADS)

    Abdelrahim, Mohamed Mahmoud Hosny

    2001-11-01

    In this research, an "Intelligent Imagery System Prototype" (IISP) was developed. IISP is an integration tool that facilitates the environment for active, direct, and on-the-fly usage of high resolution imagery, internally linked to hidden GIS vector layers, to query the real world phenomena and, consequently, to perform exploratory types of spatial analysis based on a clear/undisturbed image scene. The IISP was designed and implemented using the software components approach to verify the hypothesis that a fully rectified, partially rectified, or even unrectified digital image can be internally linked to a variety of different hidden vector databases/layers covering the end user area of interest, and consequently may be reliably used directly as a base for "on-the-fly" querying of real-world phenomena and for performing exploratory types of spatial analysis. Within IISP, differentially rectified, partially rectified (namely, IKONOS GEOCARTERRA(TM)), and unrectified imagery (namely, scanned aerial photographs and captured video frames) were investigated. The system was designed to handle four types of spatial functions, namely, pointing query, polygon/line-based image query, database query, and buffering. The system was developed using ESRI MapObjects 2.0a as the core spatial component within Visual Basic 6.0. When used to perform the pre-defined spatial queries using different combinations of image and vector data, the IISP provided the same results as those obtained by querying pre-processed vector layers even when the image used was not orthorectified and the vector layers had different parameters. In addition, the real-time pixel location orthorectification technique developed and presented within the IKONOS GEOCARTERRA(TM) case provided a horizontal accuracy (RMSE) of +/- 2.75 metres. This accuracy is very close to the accuracy level obtained when purchasing the orthorectified IKONOS PRECISION products (RMSE of +/- 1.9 metre). The latter cost approximately four times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)

  7. An efficient compression scheme for bitmap indices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2004-04-13

    When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap codemore » (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.« less

  8. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  9. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  10. SPARK: Adapting Keyword Query to Semantic Search

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  11. Searching for rare diseases in PubMed: a blind comparison of Orphanet expert query and query based on terminological knowledge.

    PubMed

    Griffon, N; Schuers, M; Dhombres, F; Merabti, T; Kerdelhué, G; Rollin, L; Darmoni, S J

    2016-08-02

    Despite international initiatives like Orphanet, it remains difficult to find up-to-date information about rare diseases. The aim of this study is to propose an exhaustive set of queries for PubMed based on terminological knowledge and to evaluate it versus the queries based on expertise provided by the most frequently used resource in Europe: Orphanet. Four rare disease terminologies (MeSH, OMIM, HPO and HRDO) were manually mapped to each other permitting the automatic creation of expended terminological queries for rare diseases. For 30 rare diseases, 30 citations retrieved by Orphanet expert query and/or query based on terminological knowledge were assessed for relevance by two independent reviewers unaware of the query's origin. An adjudication procedure was used to resolve any discrepancy. Precision, relative recall and F-measure were all computed. For each Orphanet rare disease (n = 8982), there was a corresponding terminological query, in contrast with only 2284 queries provided by Orphanet. Only 553 citations were evaluated due to queries with 0 or only a few hits. There were no significant differences between the Orpha query and terminological query in terms of precision, respectively 0.61 vs 0.52 (p = 0.13). Nevertheless, terminological queries retrieved more citations more often than Orpha queries (0.57 vs. 0.33; p = 0.01). Interestingly, Orpha queries seemed to retrieve older citations than terminological queries (p < 0.0001). The terminological queries proposed in this study are now currently available for all rare diseases. They may be a useful tool for both precision or recall oriented literature search.

  12. Representation and Integration of Scientific Information

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The objective of this Joint Research Interchange with NASA-Ames was to investigate how the Tsimmis technology could be used to represent and integrate scientific information. The main goal of the Tsimmis project is to allow a decision maker to find information of interest from such sources, fuse it, and process it (e.g., summarize it, visualize it, discover trends). Another important goal is the easy incorporation of new sources, as well the ability to deal with sources whose structure or services evolve. During the Interchange we had research meetings approximately every month or two. The funds provided by NASA supported work that lead to the following two papers: Fusion Queries over Internet Databases; Efficient Query Subscription Processing in a Multicast Environment.

  13. Informatics Resources to Support Health Care Quality Improvement in the Veterans Health Administration

    PubMed Central

    Hynes, Denise M.; Perrin, Ruth A.; Rappaport, Steven; Stevens, Joanne M.; Demakis, John G.

    2004-01-01

    Information systems are increasingly important for measuring and improving health care quality. A number of integrated health care delivery systems use advanced information systems and integrated decision support to carry out quality assurance activities, but none as large as the Veterans Health Administration (VHA). The VHA's Quality Enhancement Research Initiative (QUERI) is a large-scale, multidisciplinary quality improvement initiative designed to ensure excellence in all areas where VHA provides health care services, including inpatient, outpatient, and long-term care settings. In this paper, we describe the role of information systems in the VHA QUERI process, highlight the major information systems critical to this quality improvement process, and discuss issues associated with the use of these systems. PMID:15187063

  14. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  15. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  16. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China.

    PubMed

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-10-06

    Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Ecological study. Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011-2014. Analyses were conducted at aggregate level and no confidential information was involved. A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. A high correlation between HFMD incidence and BDI ( r =0.794, p<0.001) or temperature ( r =0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of -345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China

    PubMed Central

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-01-01

    Objectives Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Design Ecological study. Setting and participants Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011–2014. Analyses were conducted at aggregate level and no confidential information was involved. Outcome measures A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. Results A high correlation between HFMD incidence and BDI (r=0.794, p<0.001) or temperature (r=0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of −345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. Conclusions An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. PMID:28988169

  18. Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Grzetic, Shelby Mariah

    Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.

  19. Spatial Data Services for Interdisciplinary Applications from the NASA Socioeconomic Data and Applications Center

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.

    2016-12-01

    The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance of the infrastructure, in conjunction with external services, to meet both research and operational needs.

  20. SPARQL Query Re-writing Using Partonomy Based Transformation Rules

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.

    Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.

Top