Sample records for distributed sensing systems

  1. Distributed gas sensing with optical fibre photothermal interferometry.

    PubMed

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  2. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  3. State estimation for distributed systems with sensing delay

    NASA Astrophysics Data System (ADS)

    Alexander, Harold L.

    1991-08-01

    Control of complex systems such as remote robotic vehicles requires combining data from many sensors where the data may often be delayed by sensory processing requirements. The number and variety of sensors make it desirable to distribute the computational burden of sensing and estimation among multiple processors. Classic Kalman filters do not lend themselves to distributed implementations or delayed measurement data. The alternative Kalman filter designs presented in this paper are adapted for delays in sensor data generation and for distribution of computation for sensing and estimation over a set of networked processors.

  4. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  5. Research on distributed optical fiber sensing data processing method based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  6. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    PubMed

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  7. Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel

    2009-01-01

    We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.

  8. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  9. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  10. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    PubMed Central

    2017-01-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259

  11. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    PubMed

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  12. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  13. Characterization of time-resolved fluorescence response measurements for distributed optical-fiber sensing.

    PubMed

    Sinchenko, Elena; Gibbs, W E Keith; Davis, Claire E; Stoddart, Paul R

    2010-11-20

    A distributed optical-fiber sensing system based on pulsed excitation and time-gated photon counting has been used to locate a fluorescent region along the fiber. The complex Alq3 and the infrared dye IR-125 were examined with 405 and 780 nm excitation, respectively. A model to characterize the response of the distributed fluorescence sensor to a Gaussian input pulse was developed and tested. Analysis of the Alq3 fluorescent response confirmed the validity of the model and enabled the fluorescence lifetime to be determined. The intrinsic lifetime obtained (18.2±0.9 ns) is in good agreement with published data. The decay rate was found to be proportional to concentration, which is indicative of collisional deactivation. The model allows the spatial resolution of a distributed sensing system to be improved for fluorophores with lifetimes that are longer than the resolution of the sensing system.

  14. Online catalog access and distribution of remotely sensed information

    NASA Astrophysics Data System (ADS)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  15. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    PubMed Central

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  16. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  17. New measuring system for the distribution of a magnetic force by using an optical fiber

    NASA Astrophysics Data System (ADS)

    Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.

    1993-01-01

    A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.

  18. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    PubMed

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  19. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  20. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing.

    PubMed

    Ölçer, İbrahim; Öncü, Ahmet

    2017-06-05

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.

  1. Adaptive Temporal Matched Filtering for Noise Suppression in Fiber Optic Distributed Acoustic Sensing

    PubMed Central

    Ölçer, İbrahim; Öncü, Ahmet

    2017-01-01

    Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240

  2. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    NASA Astrophysics Data System (ADS)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  3. Application of distributed optical fiber sensing technologies to the monitoring of leakage and abnormal disturbance of oil pipeline

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui

    2017-10-01

    To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.

  4. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis.

    PubMed

    Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can

    2016-02-08

    Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

  5. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  6. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    DOT National Transportation Integrated Search

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  7. M-OTDR sensing system based on 3D encoded microstructures

    PubMed Central

    Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping

    2017-01-01

    In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132

  8. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 4 : web-based bridge information database--visualization analytics and distributed sensing.

    DOT National Transportation Integrated Search

    2012-03-01

    This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...

  9. Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1983-01-01

    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification.

  10. Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing

    PubMed Central

    Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing

    2016-01-01

    The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967

  11. An approach to improve the spatial resolution of a force mapping sensing system

    NASA Astrophysics Data System (ADS)

    Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José

    2016-02-01

    This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.

  12. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  13. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    USDA-ARS?s Scientific Manuscript database

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  14. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  15. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Treesearch

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  16. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  17. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  18. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  19. Advanced end-to-end fiber optic sensing systems for demanding environments

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  20. RCTS: A flexible environment for sensor integration and control of robot systems; the distributed processing approach

    NASA Technical Reports Server (NTRS)

    Allard, R.; Mack, B.; Bayoumi, M. M.

    1989-01-01

    Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.

  1. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe

    NASA Astrophysics Data System (ADS)

    Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim

    2018-03-01

    In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.

  2. Development of multifunctional materials exhibiting distributed sensing and actuation inspired by fish

    NASA Astrophysics Data System (ADS)

    Philen, Michael

    2011-04-01

    This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.

  3. An international organization for remote sensing

    NASA Technical Reports Server (NTRS)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  4. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  5. Mechanics of Multifunctional Materials & Microsystems

    DTIC Science & Technology

    2012-03-09

    Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self

  6. Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.

    2017-04-01

    In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.

  7. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  8. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis.

    PubMed

    Xu, Pengbai; Dong, Yongkang; Zhang, Juwang; Zhou, Dengwang; Jiang, Taofei; Xu, Jinlong; Zhang, Hongying; Zhu, Tao; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2015-08-24

    We propose a bend-insensitive distributed Brillouin optical fiber sensing by using a singlemode-multimode-singlemode optical fiber structure for the first time to the best of our knowledge. The sensing fiber is a graded-index multimode fiber (GI-MMF) sandwiched by two standard single-mode fibers (SMFs) with central-alignment splicing at the interface between GI-MMF and SMF to excite the fundamental mode in GI-MMF. The sensing system can resist a minimal bend radius of 1.25mm while maintain the measurement performance, with which the measured coefficients of strain and temperature are 421.6MHz/% and 0.826MHz/°C, respectively. We also demonstrate that the higher-order modes excited in GI-MMF can be easily influenced by bending, so that exciting the fundamental mode is essential for bend-insensitive distributed sensing.

  9. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  10. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  11. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  12. THE SPATIAL DISTRIBUTION OF PHYTOPLANKTON CHLOROPHYLL CONCENTRATIONS IN NARRAGANSETT BAY USING AIRCRAFT REMOTE SENSING

    EPA Science Inventory

    During the summer of 2002, phytoplankton chlorophyll concentrations were determined in Narragansett Bay, Rhode Island using a light aircraft equipped with the MicroSAS remote sensing system. From an altitude of 300 m, the three sensor system measured sea surface radiance (Lt), sk...

  13. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  14. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing.

    PubMed

    Hoes, O A C; Schilperoort, R P S; Luxemburg, W M J; Clemens, F H L R; van de Giesen, N C

    2009-12-01

    A newly developed technique using distributed temperature sensing (DTS) has been developed to find illicit household sewage connections to storm water systems in the Netherlands. DTS allows for the accurate measurement of temperature along a fiber-optic cable, with high spatial (2m) and temporal (30s) resolution. We inserted a fiber-optic cable of 1300m in two storm water drains. At certain locations, significant temperature differences with an intermittent character were measured, indicating inflow of water that was not storm water. In all cases, we found that foul water from households or companies entered the storm water system through an illicit sewage connection. The method of using temperature differences for illicit connection detection in storm water networks is discussed. The technique of using fiber-optic cables for distributed temperature sensing is explained in detail. The DTS method is a reliable, inexpensive and practically feasible method to detect illicit connections to storm water systems, which does not require access to private property.

  15. Control and Communication for a Secure and Reconfigurable Power Distribution System

    NASA Astrophysics Data System (ADS)

    Giacomoni, Anthony Michael

    A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the advantages of an IDSC architecture are highlighted when an intermittent DER is present on the system.

  16. Distributed acoustic sensing: how to make the best out of the Rayleigh-backscattered energy?

    NASA Astrophysics Data System (ADS)

    Eyal, A.; Gabai, H.; Shpatz, I.

    2017-04-01

    Coherent fading noise (also known as speckle noise) affects the SNR and sensitivity of Distributed Acoustic Sensing (DAS) systems and makes them random processes of position and time. As in speckle noise, the statistical distribution of DAS SNR is particularly wide and its standard deviation (STD) roughly equals its mean (σSNR/ ≍ 0.89). Trading resolution for SNR may improve the mean SNR but not necessarily narrow its distribution. Here a new approach to achieve both SNR improvement (by sacrificing resolution) and narrowing of the distribution is introduced. The method is based on acquiring high resolution complex backscatter profiles of the sensing fiber, using them to compute complex power profiles of the fiber which retain phase variation information and filtering of the power profiles. The approach is tested via a computer simulation and demonstrates distribution narrowing up to σSNR/ < 0.2.

  17. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  18. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  19. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  20. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  1. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  2. Short circuit protection for a power distribution system

    NASA Technical Reports Server (NTRS)

    Owen, J. R., III

    1969-01-01

    Sensing circuit detects when the output from a matrix is present and when it should be present. The circuit provides short circuit protection for a power distribution system where the selection of the driven load is accomplished by digital logic.

  3. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  4. Distributed Compressive Sensing vs. Dynamic Compressive Sensing: Improving the Compressive Line Sensing Imaging System through Their Integration

    DTIC Science & Technology

    2015-01-01

    streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications

  5. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  6. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  7. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  8. Operating tool for a distributed data and information management system

    NASA Astrophysics Data System (ADS)

    Reck, C.; Mikusch, E.; Kiemle, S.; Wolfmüller, M.; Böttcher, M.

    2002-07-01

    The German Remote Sensing Data Center has developed the Data Information and Management System DIMS which provides multi-mission ground system services for earth observation product processing, archiving, ordering and delivery. DIMS successfully uses newest technologies within its services. This paper presents the solution taken to simplify operation tasks for this large and distributed system.

  9. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  10. Development of multi-mission satellite data systems at the German Remote Sensing Data Centre

    NASA Astrophysics Data System (ADS)

    Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.

    1998-11-01

    This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.

  11. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.

  12. Spatially distributed modal signals of free shallow membrane shell structronic system

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    2008-11-01

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  13. φ-OTDR sensing system with bidirectional pumped fiber Raman amplifier and unbalanced MZ interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Tian, Ming; Dong, Lei

    2017-10-01

    In order to improve the detection distance and the sensitivity, we propose a novel distributed optical fiber sensing system. This system is composed of bidirectional pumping fiber Raman amplifier and unbalanced fiber Mach-Zehnder interferometer. Based on the interference mechanism of phase sensitive optical time domain reflectometer (φ-OTDR), the system can get the sensing information of the whole optical fiber by analyzing the backward scattered light. The interferometer is used as the demodulator of the sensing system, which consists of a 3×3 coupler and two faraday rotator mirrors. By means of the demodulator, the signal light is divided into three beams with fixed phase difference. To deal with these three signals, we can get the vibration information directly on the optical fiber. Through experimental study, this system has a high sensitivity. The maximum sensing length and the spatial resolution of the φ-OTDR system are 100 km and 10 m. The signal to noise ratio about 18 dB is achieved.

  14. NDSI products system based on Hadoop platform

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui

    2015-12-01

    Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.

  15. Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Masoudi, A.; Newson, T. P.

    2017-04-01

    A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.

  16. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  17. Distributed Issues for Ada Real-Time Systems

    DTIC Science & Technology

    1990-07-23

    NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term

  18. Mobile hybrid LiDAR & infrared sensing for natural gas pipeline monitoring, final report.

    DOT National Transportation Integrated Search

    2016-01-01

    The natural gas distribution system in the U.S. has a total of 1.2 million miles of mains and about 65 million service lines as of 2012 [1]. This distribution system consists of various material types and is subjected to various threats which vary ac...

  19. Research on distributed temperature sensor (DTS) applied in underground tunnel

    NASA Astrophysics Data System (ADS)

    Hu, Chuanlong; Wang, Jianfeng; Zhang, Zaixuan; Shen, Changyu; Jin, Yongxing; Jin, Shangzhong

    2011-11-01

    A distributed temperature sensor (DTS) system with a sensing distance of 4 km was developed for applications in tunnel temperature measurement and fire alarm. Characteristics of DTS and experiment results are introduced. The results show that DTS system can play an important role in tunnel fire alarm.

  20. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  1. Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  2. Distributed Sensing and Processing for Multi-Camera Networks

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  3. Progress in distributed fiber optic temperature sensing

    NASA Astrophysics Data System (ADS)

    Hartog, Arthur H.

    2002-02-01

    The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.

  4. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  5. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.

    PubMed

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-07-22

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).

  6. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †

    PubMed Central

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-01-01

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277

  7. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and transmission to humans. Maps delineating the geographic areas in Virginia with highest risk for RVF establishment in mosquito populations and RVF disease transmission to human populations were generated in a GIS using human, domestic animal, and white-tailed deer population estimates and the MaxEnt potential RVF competent vector species distribution prediction. The candidate RVF competent vector predicted distribution and RVF risk maps presented in this study can help vector control agencies and public health officials focus Rift Valley fever surveillance efforts in geographic areas with large co-located populations of potential RVF competent vectors and human, domestic animal, and wildlife hosts. Keywords. Rift Valley fever, risk assessment, Ecological Niche Modeling, MaxEnt, Geographic Information System, remote sensing, Pearson's Product-Moment Correlation Coefficient, vectors, mosquito distribution, mosquito density, mosquito surveillance, United States, Virginia, domestic animals, white-tailed deer, ArcGIS

  8. The quantitative control and matching of an optical false color composite imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi

    1993-10-01

    Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.

  9. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  10. Decentralized Observer with a Consensus Filter for Distributed Discrete-Time Linear Systems

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Mandic, Milan

    2011-01-01

    This paper presents a decentralized observer with a consensus filter for the state observation of a discrete-time linear distributed systems. In this setup, each agent in the distributed system has an observer with a model of the plant that utilizes the set of locally available measurements, which may not make the full plant state detectable. This lack of detectability is overcome by utilizing a consensus filter that blends the state estimate of each agent with its neighbors' estimates. We assume that the communication graph is connected for all times as well as the sensing graph. It is proven that the state estimates of the proposed observer asymptotically converge to the actual plant states under arbitrarily changing, but connected, communication and sensing topologies. As a byproduct of this research, we also obtained a result on the location of eigenvalues, the spectrum, of the Laplacian for a family of graphs with self-loops.

  11. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  12. Distributed vibration fiber sensing system based on Polarization Diversity Receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming

    2016-10-01

    In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.

  13. Distributed Optimization Design of Continuous-Time Multiagent Systems With Unknown-Frequency Disturbances.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu

    2017-05-24

    In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.

  14. A model-based analysis of extinction ratio effects on phase-OTDR distributed acoustic sensing system performance

    NASA Astrophysics Data System (ADS)

    Aktas, Metin; Maral, Hakan; Akgun, Toygar

    2018-02-01

    Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.

  15. Lessons from the Power Company.

    ERIC Educational Resources Information Center

    Dagley, Dave

    1992-01-01

    Numerous studies have used the power metaphor in the physical science sense to describe power in the organizational sense. This paper views school as an electrical distribution system to illustrate how power operates in schools and offers eight lessons for administrators desiring to effect positive empowerment results in school settings. (26…

  16. Human-Robot Interaction: A Survey

    DTIC Science & Technology

    2007-01-01

    breaks with the monolithic sense- plan -act loop of a centralized system, and instead uses distributed sense-response loops to generate appropriate...one of the first modern robots, cour- tesy of SRI International, Menlo Park, CA [279]; Kismet — an anthropomorphic robot with exaggerated emotion...linguis- tics. A common autonomy approach is sometimes referred to as the sense- plan -act model of decision-making [196]. This model has been a target

  17. Summary of the First Network-Centric Sensing Community Workshop, ’Netted Sensors: A Government, Industry and Academia Dialogue’

    DTIC Science & Technology

    2006-04-01

    and Scalability, (2) Sensors and Platforms, (3) Distributed Computing and Processing , (4) Information Management, (5) Fusion and Resource Management...use of the deployed system. 3.3 Distributed Computing and Processing Session The Distributed Computing and Processing Session consisted of three

  18. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.

    PubMed

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-04-27

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  19. Bioinspired magnetic reception and multimodal sensing.

    PubMed

    Taylor, Brian K

    2017-08-01

    Several animals use Earth's magnetic field in concert with other sensor modes to accomplish navigational tasks ranging from local homing to continental scale migration. However, despite extensive research, animal magnetic reception remains poorly understood. Similarly, the Earth's magnetic field offers a signal that engineered systems can leverage to navigate in environments where man-made positioning systems such as GPS are either unavailable or unreliable. This work uses a behavioral strategy inspired by the migratory behavior of sea turtles to locate a magnetic goal and respond to wind when it is present. Sensing is performed using a number of distributed sensors. Based on existing theoretical biology considerations, data processing is performed using combinations of circles and ellipses to exploit the distributed sensing paradigm. Agent-based simulation results indicate that this approach is capable of using two separate magnetic properties to locate a goal from a variety of initial conditions in both noiseless and noisy sensory environments. The system's ability to locate the goal appears robust to noise at the cost of overall path length.

  20. On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data - A simulation study

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.

    1981-01-01

    The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.

  1. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  2. Pervasive sensing

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  3. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    PubMed

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  4. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry.

    PubMed

    Lu, Xin; Soto, Marcelo A; Thévenaz, Luc

    2017-07-10

    A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.

  5. Design and implementation of sensor systems for control of a closed-loop life support system

    NASA Technical Reports Server (NTRS)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  6. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-12-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  7. A versatile fibre optic sensor interrogation system for the Ariane Launcher based on an electro-optically tuneable laser diode

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.

    2017-11-01

    Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].

  8. Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)

    DOE Data Explorer

    Lancelle, Chelsea

    2013-09-10

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes one 45 kN shear shaker (called “large shaker” on the basemap) test for three different measurement systems. The shaker swept from a rest, up to 10 Hz, and back down to a rest over 60 seconds. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm1/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  9. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.

  10. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  11. Failure detection and fault management techniques for flush airdata sensing systems

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.

    1992-01-01

    A high-angle-of-attack flush airdata sensing system was installed and flight tested on the F-18 High Alpha Research Vehicle at NASA-Dryden. This system uses a matrix of pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack, angles of sideslip, dynamic pressure, and static pressure as well as other airdata parameters. Results presented use an arrangement of 11 symmetrically distributed ports on the aircraft nose. Experience with this sensing system data indicates that the primary concern for real-time implementation is the detection and management of overall system and individual pressure sensor failures. The multiple port sensing system is more tolerant to small disturbances in the measured pressure data than conventional probe-based intrusive airdata systems. However, under adverse circumstances, large undetected failures in individual pressure ports can result in algorithm divergence and catastrophic failure of the entire system. How system and individual port failures may be detected using chi sq. analysis is shown. Once identified, the effects of failures are eliminated using weighted least squares.

  12. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  13. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.

  14. Distributed sensing signal analysis of deformable plate/membrane mirrors

    NASA Astrophysics Data System (ADS)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  15. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  16. USGS remote sensing coordination for the 2010 Haiti earthquake

    USGS Publications Warehouse

    Duda, Kenneth A.; Jones, Brenda

    2011-01-01

    In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.

  17. Natural Resource Monitoring of Rheum tanguticum by Multilevel Remote Sensing

    PubMed Central

    Xie, Caixiang; Song, Jingyuan; Suo, Fengmei; Li, Xiwen; Li, Ying; Yu, Hua; Xu, Xiaolan; Luo, Kun; Li, Qiushi; Xin, Tianyi; Guan, Meng; Xu, Xiuhai; Miki, Eiji; Takeda, Osami; Chen, Shilin

    2014-01-01

    Remote sensing has been extensively applied in agriculture for its objectiveness and promptness. However, few applications are available for monitoring natural medicinal plants. In the paper, a multilevel monitoring system, which includes satellite and aerial remote sensing, as well as ground investigation, was initially proposed to monitor natural Rheum tanguticum resource in Baihe Pasture, Zoige County, Sichuan Province. The amount of R. tanguticum from images is M = S*ρ and S is vegetation coverage obtained by satellite imaging, whereas ρ is R. tanguticum density obtained by low-altitude imaging. Only the R. tanguticum which coverages exceeded 1 m2 could be recognized from the remote sensing image because of the 0.1 m resolution of the remote sensing image (called effective resource at that moment), and the results of ground investigation represented the amounts of R. tanguticum resource in all sizes (called the future resource). The data in paper showed that the present available amount of R. tanguticum accounted for 4% to 5% of the total quantity. The quantity information and the population structure of R. tanguticum in the Baihe Pasture were initially confirmed by this system. It is feasible to monitor the quantitative distribution for natural medicinal plants with scattered distribution. PMID:25101134

  18. Distributed multifunctional sensor network for composite structural state sensing

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wang, Yishou; Gao, Limin; Kumar, Amrita

    2012-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and strong designability. In order to take full advantages of composite materials, there is a need to develop an embeddable multifunctional sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multifunctional sensor network integrated with a structure, similar to the human nervous system, has been developed. Different types of network sensors are permanently integrated within a composite structure to sense structural strain, temperature, moisture, aerodynamic pressure; monitor external impact on the structure; and detect structural damages. Utilizing this revolutionary concept, future composite structures can be designed and manufactured to provide multiple modes of information, so that the structures have the capabilities for intelligent sensing, environmental adaptation and multi-functionality. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the paper.

  19. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  20. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    PubMed Central

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-01-01

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring. PMID:29702554

  1. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  2. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    PubMed

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  3. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  4. Fast coarse-fine locating method for φ-OTDR.

    PubMed

    Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun

    2018-02-05

    We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.

  5. Seismic damage identification for steel structures using distributed fiber optics.

    PubMed

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  6. Distributed optimization system and method

    DOEpatents

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  7. Distributed Optimization System

    DOEpatents

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  8. Distribution automation applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold; Johnston, A.; Friend, H.

    1989-01-01

    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined.

  9. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2012-09-30

    Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with

  10. Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR

    PubMed Central

    Fu, Yun; Zhu, Richeng; Xue, Naitian; Lu, Chongyu; Zhang, Bin; Yang, Le; Atubga, David; Rao, Yunjiang

    2018-01-01

    In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale. PMID:29587407

  11. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8199 ● NOV 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview by Roger P...TITLE AND SUBTITLE US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview 5a. CONTRACT NUMBER 5b. GRANT

  12. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    PubMed

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

  13. Intelligent infrastructure for sustainable potable water: a roundtable for emerging transnational research and technology development needs.

    PubMed

    Adriaens, Peter; Goovaerts, Pierre; Skerlos, Steven; Edwards, Elizabeth; Egli, Thomas

    2003-12-01

    Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.

  14. Development and Operation of the Americas ALOS Data Node

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Marlin, R. H.; La Belle-Hamer, A. L.

    2004-12-01

    In the spring of 2005, the Japanese Aerospace Exploration Agency (JAXA) will launch the next generation in advanced, remote sensing satellites. The Advanced Land Observing Satellite (ALOS) includes three sensors, two visible imagers and one L-band polarimetric SAR, providing high-quality remote sensing data to the scientific and commercial communities throughout the world. Focusing on remote sensing and scientific pursuits, ALOS will image nearly the entire Earth using all three instruments during its expected three-year lifetime. These data sets offer the potential for data continuation of older satellite missions as well as new products for the growing user community. One of the unique features of the ALOS mission is the data distribution approach. JAXA has created a worldwide cooperative data distribution network. The data nodes are NOAA /ASF representing the Americas ALOS Data Node (AADN), ESA representing the ALOS European and African Node (ADEN), Geoscience Australia representing Oceania and JAXA representing the Asian continent. The AADN is the sole agency responsible for archival, processing and distribution of L0 and L1 products to users in both North and South America. In support of this mission, AADN is currently developing a processing and distribution infrastructure to provide easy access to these data sets. Utilizing a custom, grid-based process controller and media generation system, the overall infrastructure has been designed to provide maximum throughput while requiring a minimum of operator input and maintenance. This paper will present an overview of the ALOS system, details of each sensor's capabilities and of the processing and distribution system being developed by AADN to provide these valuable data sets to users throughout North and South America.

  15. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.

    PubMed

    Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-05-29

    The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.

  16. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    NASA Astrophysics Data System (ADS)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  17. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo; Yu, Zhihao

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. Duringmore » the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.« less

  18. Distributed fiber optic moisture intrusion sensing system

    DOEpatents

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  19. Monitoring the performance of a storm water separating manifold with distributed temperature sensing.

    PubMed

    Langeveld, J G; de Haan, C; Klootwijk, M; Schilperoort, R P S

    2012-01-01

    Storm water separating manifolds in house connections have been introduced as a cost effective solution to disconnect impervious areas from combined sewers. Such manifolds have been applied by the municipality of Breda, the Netherlands. In order to investigate the performance of the manifolds, a monitoring technique (distributed temperature sensing or DTS) using fiber optic cables has been applied in the sewer system of Breda. This paper describes the application of DTS as a research tool in sewer systems. DTS proves to be a powerful tool to monitor the performance of (parts of) a sewer system in time and space. The research project showed that DTS is capable of monitoring the performance of house connections and identifying locations of inflow of both sewage and storm runoff. The research results show that the performance of storm water separating manifolds varies over time, thus making them unreliable.

  20. Research on fully distributed optical fiber sensing security system localization algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  1. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    NASA Astrophysics Data System (ADS)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.

  2. Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids.

    PubMed

    TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi

    2017-08-01

    Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.

  3. Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.

    2017-05-01

    Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.

  4. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This invention enables wide-area sensing and employs numerous globally distributed sensing devices that observe the physical world through the existing sensor network. This innovation enables distributed storage, distributed processing, distributed intelligence, and the availability of DiaK (Data, Information, and Knowledge) to any element as needed. It also enables the simultaneous execution of multiple processes, and represents models that contribute to the determination of the condition and health of each element in the system. The NCAP (intelligent process) can configure data-collection and filtering processes in reaction to sensed data, allowing it to decide when and how to adapt collection and processing with regard to sophisticated analysis of data derived from multiple sensors. The user will be able to view the sensing device network as a single unit that supports a high-level query language. Each query would be able to operate over data collected from across the global sensor network just as a search query encompasses millions of Web pages. The sensor web can preserve ubiquitous information access between the querier and the queried data. Pervasive monitoring of the physical world raises significant data and privacy concerns. This innovation enables different authorities to control portions of the sensing infrastructure, and sensor service authors may wish to compose services across authority boundaries.

  5. Mapping the Distribution of Potential Land Drought in Batam Island Using the Integration of Remote Sensing and Geographic Information Systems (GIS)

    NASA Astrophysics Data System (ADS)

    Lubis, M. Z.; Taki, H. M.; Anurogo, W.; Pamungkas, D. S.; Wicaksono, P.; Aprilliyanti, T.

    2017-12-01

    Potential land drought mapping on Batam is needed to determine the distribution of areas that are very potential to the physical drought of the land. It is because the drought is always threatening on the long dry season. This research integrates remote sensing science with Geographic Information System (GIS). This research aims to map the distribution of land drought potential in Batam Island. The parameters used in this research are land use, Land Surface Temperature (LST), Potential dryness of land on the Batam island. The resulting map indicates the existence of five potential drought classes on the island of Batam. The area of very low drought potential is 2629.45 ha, mostly located in the Sungai Beduk sub-district. High drought potential with an area of 7081.39 ha is located in Sekupang sub-district. The distribution of very high land drought potential is in Batam city and Nongsa sub-district with area of 15600.12 ha. The coefficient of determination (R 2) is 0.6279. This indicates a strong positive relationship between field LST and modelled LST.

  6. Utilization of negative beat-frequencies for maximizing the update-rate of OFDR

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay

    2015-07-01

    In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.

  7. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less

  8. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  9. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    PubMed

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  10. Aerospace applications of mass market MEMS products

    NASA Astrophysics Data System (ADS)

    Bauer, Karin; Kroetz, Gerhard; Schalk, Josef; Mueller, Gerhard

    2002-07-01

    Aerospace applications of MEMS products, originally developed for automotive mass markets, are discussed. Various sensor examples with a high dual use potential are presented: inertial sensing, flow and gas sensing, robust micro sensors including SiC- and GaN-based devices, as well as first approaches towards flexible and distributed microsystems. In Europe the automotive industry is one of the main MEMS market drivers, simply because of the sheer size of this market and Europe's strong position in this industrial field. Main MEMS activities are development and integration of vehicle dynamics sensing systems, passenger safety and navigation systems, air and fuel intake systems, as well as sensor systems for exhaust gas after treatment and climate control. Benefits on the customer side are increased safety, passenger comfort and reduced fuel consumption. Benefits on the manufacturer's side are increased sub-system integration, modularity and reduced production cost. In the future the aerospace industry is likely to benefit from the introduction of micro-systems for the same reasons as the automotive industry. Interests of the aerospace industry are increasing safety and reliability of airplane operation, health and state monitoring of fuselage and airplane subsystems as well as improving service and maintenance procedures. In comparison to automotive applications, the numbers of devices needed is likely to be much smaller, however, new challenges arise in so far as distributed sensing and actuating microsystems will be needed. The idea is to identify and to exploit synergies between automotive mass market MEMS applications and lower-volume aerospace ones. The effort necessary to meet aerospace requirements and the extent of necessary trade-offs in customizing automotive MEMS is addressed considering the above-mentioned examples.

  11. Bio-inspired sensing and control for disturbance rejection and stabilization

    NASA Astrophysics Data System (ADS)

    Gremillion, Gregory; Humbert, James S.

    2015-05-01

    The successful operation of small unmanned aircraft systems (sUAS) in dynamic environments demands robust stability in the presence of exogenous disturbances. Flying insects are sensor-rich platforms, with highly redundant arrays of sensors distributed across the insect body that are integrated to extract rich information with diminished noise. This work presents a novel sensing framework in which measurements from an array of accelerometers distributed across a simulated flight vehicle are linearly combined to directly estimate the applied forces and torques with improvements in SNR. In simulation, the estimation performance is quantified as a function of sensor noise level, position estimate error, and sensor quantity.

  12. [94 km Brillouin distributed optical fiber sensors based on ultra-long fiber ring laser pumping].

    PubMed

    Yuan, Cheng-Xu; Wang, Zi-Nan; Jia, Xin-Hong; Li, Jin; Yan, Xiao-Dong; Cui, An-Bin

    2014-05-01

    A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1. 4 degree C.

  13. Remote sensing and human health: new sensors and new opportunities.

    PubMed

    Beck, L R; Lobitz, B M; Wood, B L

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  14. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  15. What Are the Relationships between Teachers' Engagement with Management Information Systems and Their Sense of Accountability?

    ERIC Educational Resources Information Center

    Perelman, Uri

    2014-01-01

    Many public and private sector organizations are supported by Management Information Systems (MIS) for collection, management, analysis, and distribution of the data needed for effective decision-making and enhanced organizational management. The existing body of research on MIS in education focuses on the systems' contribution to achieving…

  16. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    NASA Technical Reports Server (NTRS)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.

  17. 151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater

    NASA Astrophysics Data System (ADS)

    Song, Muping; Zhu, Weiji; Xia, Qiaolan; Yin, Cong; Lu, Yan; Wu, Ying; Zhuang, Shouwang

    2018-02-01

    A phase-sensitive optical time-domain reflectometry (ϕOTDR) system that can detect intrusion over 150 km is presented. The ϕOTDR system uses nonbalanced optical repeaters to extend the sensing distance. The repeater consists of two erbium-doped optical fiber amplifiers (EDFAs) and one Raman amplifier (RA). One EDFA power amplifier amplifies the forward-transmitting pulse, and one EDFA preamplifier is used for the backscattering signal, respectively. The RA helps keeping the power along the fiber stable. The optical repeater is installed at the connection of two adjacent fibers to compensate the power decline due to fiber loss. It is easy to install the repeater midway among the fiber links in the system for longer-distance sensing since there is no need of modifying the original sensing system. The theoretical analysis of the repeater is given to describe its effect on the distributed sensing. In experiments, several ϕOTDR traces show a good agreement with theoretical results. Using the optical repeater, 35-Hz vibration at 151 km is successfully measured with signal-to-noise ratio of 8 dB without extra signal processing.

  18. Commercial potential of remote sensing data from the Earth observing system

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.; Tomlin, Sandra M.

    1992-01-01

    The purpose was to assess the market potential of remote sensing value-added products from the Earth Observing System (EOS) platform. Sensors on the EOS platform were evaluated to determine which qualities and capabilities could be useful to the commercial user. The approach was to investigate past and future satellite data distribution programs. A questionnaire was developed for use in a telephone survey. Based on the results of the survey of companies that add value to remotely sensed data, conversations with the principal investigators in charge of each EOS sensor, a study of past commercial satellite data ventures, and reading from the commercial remote sensing industry literature, three recommendations were developed: develop a strategic plan for commercialization of EOS data, define a procedure for commercial users within the EOS data stream, and develop an Earth Observations Commercial Applications Program-like demonstration program within NASA using EOS simulated data.

  19. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  20. A study using a Monte Carlo method of the optimal configuration of a distribution network in terms of power loss sensing.

    PubMed

    Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul

    2011-01-01

    Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.

  1. Sharp conditions for global stability of Lotka-Volterra systems with distributed delays

    NASA Astrophysics Data System (ADS)

    Faria, Teresa

    We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.

  2. A Distributed Data Architecture for 2001 Mars Odyssey Data Distribution

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel J.; Hughes, J. Steven; Kelly, Sean

    2003-01-01

    Newer instruments and communications techniques have given scientists unprecedented amounts of data, more than can be feasibly distributed through traditional methods such as mailed CD-ROM's. Leveraging the web makes sense since it enables scientists to request specific data and retrieve products as soon as they're available. Yet defining the middleware system to support such an application has remained just out of reach, until Odyssey. For the first time ever, data from all Odyssey mission instruments were made available through a single system immediately upon delivery to the Planetary Data System (PDS). The Object Oriented Data Technology (OODT) software made such an application possible.

  3. 24 CFR 3280.609 - Water distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and temperature relief valve installed for this purpose shall have the temperature sensing element...) Size of branch. Start at the most remote outlet on any branch of the hot or cold water piping and...

  4. Distributed acoustic sensing technique and its field trial in SAGD well

    NASA Astrophysics Data System (ADS)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  5. Flood Management Enhancement Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Romanowski, Gregory J.

    1997-01-01

    SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which began on 1 October 1996 and ended on 31 January 1997. In addition, it provides a summary of the entire project.

  6. How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2017-04-01

    In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.

  7. Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce

    2002-01-01

    Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.

  8. Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Itsweire, Eric C.; Esaias, Wayne E.

    1992-01-01

    Remote sensing measurements of the distribution of phytoplankton chlorophyll concentrations in Chesapeake Bay during 1989 are described. It is shown that remote sensing from light aircraft can complement and extend measurements made from traditional platforms and provide data of improved temporal and spatial resolution, leading to a better understanding of phytoplankton dynamics in the estuary. The developments of the winter-spring diatom bloom in the polyhaline to mesohaline regions of the estuary and of the late-spring and summer dinoflagellate blooms in oligohaline and mesohaline regions are traced. The study presents the local chlorophyll algorithm developed using the NASA Ocean Data Acquisition System data and in situ chlorophyll data, interpolated maps of chlorophyll concentration generated by applying the algorithm to aircraft radiance data, ancillary in situ data on nutrients, turbidity, streamflow, and light availability, and an interpretation of phytoplankton dynamics in terms of the chlorophyll distribution in Chesapeake Bay during 1989.

  9. A wearable sensor system for lower-limb rehabilitation evaluation using the GRF and CoP distributions

    NASA Astrophysics Data System (ADS)

    Tao, Weijun; Zhang, Jianyun; Li, Guangyi; Liu, Tao; Liu, Fengping; Yi, Jingang; Wang, Hesheng; Inoue, Yoshio

    2016-02-01

    Wearable sensors are attractive for gait analysis because these systems can measure and obtain real-time human gait and motion information outside of the laboratory for a longer duration. In this paper, we present a new wearable ground reaction force (GRF) sensing system for ambulatory gait measurement. In addition, the GRF sensor system is also used to quantify the patients' lower-limb gait rehabilitation. We conduct a validation experiment for the sensor system on seven volunteer subjects (weight 62.39 +/- 9.69 kg and height 169.13 +/- 5.64 cm). The experiments include the use of the GRF sensing system for the subjects in the following conditions: (1) normal walking; (2) walking with the rehabilitation training device; and (3) walking with a knee brace and the rehabilitation training device. The experiment results support the hypothesis that the wearable GRF sensor system is capable of quantifying patients' lower-limb rehabilitation. The proposed GRF sensing system can also be used for assessing the effectiveness of a gait rehabilitation system and for providing bio-feedback information to the subjects.

  10. A Spectrum Sensing Network for Cognitive PMSE Systems

    NASA Astrophysics Data System (ADS)

    Brendel, Johannes; Riess, Steffen; Stoeckle, Andreas; Rummel, Rafael; Fischer, Georg

    2012-09-01

    This article is about a Spectrum Sensing Network (SSN) which generates an accurate radio environment map (e.g. power over frequency, time, and location) from a given application area. It is intended to be used in combination with cognitive Program Making and Special Events (PMSE) devices (e.g. wireless microphones) to improve their operation reliability. The SSN consists of a distributed network of multiple scanning radio receivers and a central data management and storage unit. The parts of the SSN are presented in detail and the advantages and use cases of such a sensing network structure will be outlined.

  11. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns and 10 kHz respectively. Meanwhile, triangle and cosine amplitude-modulated (AM) dynamic strain applied on the fiber are successfully discriminated. The artificial reflectors based on FC/PCs were easily assembled and maintained, and the method of vibration transmission closely resembled the real circumstance than PZT. Therefore, these advantages will extend the potential of this Φ-OTDR technology in structure health monitoring.

  12. Smart intimation and location of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Hari Krishna, K.; Srinivasa Rao, B.

    2018-04-01

    Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.

  13. Differentially Private Distributed Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could bemore » maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.« less

  14. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  15. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  16. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  17. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  18. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  19. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    PubMed

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  20. Incorporating remotely sensed tree canopy cover data into broad scale assessments of wildlife habitat distribution and conservation

    Treesearch

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Kerri T. Vierling; Andrew T. Hudak

    2009-01-01

    Remote sensing provides critical information for broad scale assessments of wildlife habitat distribution and conservation. However, such efforts have been typically unable to incorporate information about vegetation structure, a variable important for explaining the distribution of many wildlife species. We evaluated the consequences of incorporating remotely sensed...

  1. Mobile Autonomous Sensing Unit (MASU): A Framework That Supports Distributed Pervasive Data Sensing

    PubMed Central

    Medina, Esunly; Lopez, David; Meseguer, Roc; Ochoa, Sergio F.; Royo, Dolors; Santos, Rodrigo

    2016-01-01

    Pervasive data sensing is a major issue that transverses various research areas and application domains. It allows identifying people’s behaviour and patterns without overwhelming the monitored persons. Although there are many pervasive data sensing applications, they are typically focused on addressing specific problems in a single application domain, making them difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data sensing impose restrictions to the devices and operational environments that make them unsuitable for monitoring loosely-coupled or fully distributed work. In order to help address this challenge this paper present a framework that supports distributed pervasive data sensing in a generic way. Developers can use this framework to facilitate the implementations of their applications, thus reducing complexity and effort in such an activity. The framework was evaluated using simulations and also through an empirical test, and the obtained results indicate that it is useful to support such a sensing activity in loosely-coupled or fully distributed work scenarios. PMID:27409617

  2. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  3. High Resolution Sensing and Control of Urban Water Networks

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  4. Decentralized Resource Management in Distributed Computer Systems.

    DTIC Science & Technology

    1982-02-01

    directly exchanging user state information. Eventcounts and sequencers correspond to semaphores in the sense that synchronization primitives are used to...and techniques are required to achieve synchronization in distributed computers without reliance on any centralized entity such as a semaphore ...known solutions to the access synchronization problem was Dijkstra’s semaphore [12]. The importance of the semaphore is that it correctly addresses the

  5. Statistical, Graphical, and Learning Methods for Sensing, Surveillance, and Navigation Systems

    DTIC Science & Technology

    2016-06-28

    harsh propagation environments. Conventional filtering techniques fail to provide satisfactory performance in many important nonlinear or non...Gaussian scenarios. In addition, there is a lack of a unified methodology for the design and analysis of different filtering techniques. To address...these problems, we have proposed a new filtering methodology called belief condensation (BC) DISTRIBUTION A: Distribution approved for public release

  6. Evaluation of a spatially-distributed Thornthwaite water-balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lough, J.A.

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted formore » the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.« less

  7. A WebGIS system on the base of satellite data processing system for marine application

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Huang, Haiqing; Chen, Jianyu

    2007-10-01

    From 2002 to 2004, a satellite data processing system for marine application had been built up in State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, State Oceanic Administration). The system received satellite data from TERRA, AQUA, NOAA-12/15/16/17/18, FY-1D and automatically generated Level3 products and Level4 products(products of single orbit and merged multi-orbits products) deriving from Level0 data, which is controlled by an operational control sub-system. Currently, the products created by this system play an important role in the marine environment monitoring, disaster monitoring and researches. Now a distribution platform has been developed on this foundation, namely WebGIS system for querying and browsing of oceanic remote sensing data. This system is based upon large database system-Oracle. We made use of the space database engine of ArcSDE and other middleware to perform database operation in addition. J2EE frame was adopted as development model, and Oracle 9.2 DBMS as database background and server. Simply using standard browsers(such as IE6.0), users can visit and browse the public service information that provided by system, including browsing for oceanic remote sensing data, and enlarge, contract, move, renew, traveling, further data inquiry, attribution search and data download etc. The system is still under test now. Founding of such a system will become an important distribution platform of Chinese satellite oceanic environment products of special topic and category (including Sea surface temperature, Concentration of chlorophyll, and so on), for the exaltation of satellite products' utilization and promoting the data share and the research of the oceanic remote sensing platform.

  8. Fiber-optic technology for transport aircraft

    NASA Astrophysics Data System (ADS)

    1993-07-01

    A development status evaluation is presented for fiber-optic devices that are advantageously applicable to commercial aircraft. Current developmental efforts at a major U.S. military and commercial aircraft manufacturer encompass installation techniques and data distribution practices, as well as the definition and refinement of an optical propulsion management interface system, environmental sensing systems, and component-qualification criteria. Data distribution is the most near-term implementable of fiber-optic technologies aboard commercial aircraft in the form of onboard local-area networks for intercomputer connections and passenger entertainment.

  9. Field size, length, and width distributions based on LACIE ground truth data. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Badhwar, G.

    1980-01-01

    The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.

  10. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

    PubMed Central

    Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.

    2018-01-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352

  11. Distributed wireless sensing for methane leak detection technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente; van Kesse, Theodor

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  12. Distributed wireless sensing for fugitive methane leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  13. Distributed wireless sensing for fugitive methane leak detection

    DOE PAGES

    Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv; ...

    2017-12-11

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  14. Nuclear Proximity of Mtr4 with RNA exosome restricts DNA mutational asymmetry

    PubMed Central

    Lim, Junghyun; Giri, Pankaj Kumar; Kazadi, David; Laffleur, Brice; Zhang, Wanwei; Grinstein, Veronika; Pefanis, Evangelos; Brown, Lewis M.; Ladewig, Erik; Martin, Ophélie; Chen, Yuling; Rabadan, Raul; Boyer, François; Rothschild, Gerson; Cogné, Michel; Pinaud, Eric; Deng, Haiteng; Basu, Uttiya

    2017-01-01

    SUMMARY The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and Senataxin) with the noncoding RNA processing function of RNA exosome determine the strand specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development. PMID:28431250

  15. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.

    PubMed

    Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R

    2016-04-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

  16. Hazards Data Distribution System (HDDS)

    USGS Publications Warehouse

    Jones, Brenda; Lamb, Rynn M.

    2015-07-09

    When emergencies occur, first responders and disaster response teams often need rapid access to aerial photography and satellite imagery that is acquired before and after the event. The U.S. Geological Survey (USGS) Hazards Data Distribution System (HDDS) provides quick and easy access to pre- and post-event imagery and geospatial datasets that support emergency response and recovery operations. The HDDS provides a single, consolidated point-of-entry and distribution system for USGS-hosted remotely sensed imagery and other geospatial datasets related to an event response. The data delivery services are provided through an interactive map-based interface that allows emergency response personnel to rapidly select and download pre-event ("baseline") and post-event emergency response imagery.

  17. HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica

    Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.

  18. Remote Sensing Systems to Detect and Analyze Oil Spills on the U.S. Outer Continental Shelf - A State of the Art Assessment

    DTIC Science & Technology

    2016-08-18

    multi- sensor remote sensing approach to describe the distribution of oil from the DWH spill. They used airborne and satellite , multi- and hyperspectral...Experimental Sensors e.g., Acoustic and Nuclear Magnetic Resonance (NMR) (Fingas and Brown, 2012; Puestow et al., 2013). These are further...ship, aerial - aircraft, aerostat or UAV, or satellite ), among other classification criteria. A comprehensive review of sensor categories employed

  19. Using Distributed Fiber Optic Sensing to Monitor Large Scale Permafrost Transitions: Preliminary Results from a Controlled Thaw Experiment

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Wagner, A. M.; Lindsey, N.; Dou, S.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Ulrich, C.; Gelvin, A.; Morales, A.; James, S. R.; Saari, S.; Ekblaw, I.; Wood, T.; Robertson, M.; Martin, E. R.

    2016-12-01

    In a warming world, permafrost landscapes are being rapidly transformed by thaw, yielding surface subsidence and groundwater flow alteration. The same transformations pose a threat to arctic infrastructure and can induce catastrophic failure of the roads, runways, and pipelines on which human habitation depends. Scalable solutions to monitoring permafrost thaw dynamics are required to both quantitatively understand biogeochemical feedbacks as well as to protect built infrastructure from damage. Unfortunately, permafrost alteration happens over the time scale of climate change, years to decades, a decided challenge for testing new sensing technologies in a limited context. One solution is to engineer systems capable of rapidly thawing large permafrost units to allow short duration experiments targeting next-generation sensing approaches. We present preliminary results from a large-scale controlled permafrost thaw experiment designed to evaluate the utility of different geophysical approaches for tracking the cause, precursors, and early phases of thaw subsidence. We focus on the use of distributed fiber optic sensing for this challenge and deployed distributed temperature (DTS), strain (DSS), and acoustic (DAS) sensing systems in a 2D array to detect thaw signatures. A 10 x 15 x 1 m section of subsurface permafrost was heated using an array of 120 downhole heaters (60 w) at an experimental site near Fairbanks, AK. Ambient noise analysis of DAS datasets collected at the plot, coupled to shear wave inversion, was utilized to evaluate changes in shear wave velocity associated with heating and thaw. These measurements were confirmed by seismic surveys collected using a semi-permanent orbital seismic source activated on a daily basis. Fiber optic measurements were complemented by subsurface thermistor and thermocouple arrays, timelapse total station surveys, LIDAR, secondary seismic measurements (geophone and broadband recordings), timelapse ERT, borehole NMR, soil moisture measurements, hydrologic measurements, and multi-angle photogrammetry. This unusually dense combination of measurement techniques provides an excellent opportunity to characterize the geophysical signatures of permafrost thaw in a controlled environment.

  20. Biomimetric sentinel reef structures for optical sensing and communications

    NASA Astrophysics Data System (ADS)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  1. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  2. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  3. Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Torbol, Marco; Kim, Sehwan; Chien, Ting-Chou; Shinozuka, Masanobu

    2013-04-01

    The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment.

  4. Secure distribution for high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sun, Jing; Xu, Zheng Q.

    2010-09-01

    The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.

  5. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  6. OTDR fiber-optical chemical sensor system for detection and location of hydrocarbon leakage.

    PubMed

    Buerck, J; Roth, S; Kraemer, K; Mathieu, H

    2003-08-15

    A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.

  7. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  8. Remote Sensing Decision Support System for Optimal Access Restoration in Post Disaster Environments

    DOT National Transportation Integrated Search

    2017-01-01

    Access restoration is an extremely important part of disaster response. Without access to the site, critically important emergency functions like search and rescue, emergency evacuation, and relief distribution, cannot commence. Frequently, roads are...

  9. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    NASA Astrophysics Data System (ADS)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  10. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  11. [Application of remote sensing and GIS in study of suitability distribution of Swertia mussotii, a Tibetan medicine in Sichuan province].

    PubMed

    Dong, Yong-Bo; Luo, Yao; Zhu, Cong; Peng, Wen-Fu; Xu, Xin-Liang; Fang, Qing-Mao

    2017-11-01

    Swertia mussotii is a kind of rare medicinal materials, the relevant researches are mainly concentrated on its medicinal efficacy and medicinal value till now, researches of adaptive distribution by applying remote sensing and GIS are relatively less. This study is to analyze the adaptive distribution of S.mussotii in Sichuan province by applying remote sensing and GIS technology, and provide scientific basis for the protection and development of wild resources, artificial cultivation and adjustment of Chinese medicine industrial distribution in Sichuan province. Based on literature review and ecological factors such as altitude, annual precipitation and annual average temperature, this study extracted ecological factors, overlay analysis in GIS, as well as combining GPS field validation data by means of remote sensing and GIS, discusses the adaptive distribution of SMF sin Sichuan province. ①The area of adaptive distribution of S. mussotii in Sichuan province is 1 543.749 km², mainly in Dege county, Ganzi county, Daofu county, Kangding county, Barkam, Jinchuan county, Xiaojin county, Danba county, Daocheng county, Xiangcheng county, Xinlong county, Aba county, Muli county and other counties and cities, accounts for about 7.25% in total area. ② Combining statistical information and field validation, this study found that S. mussotii adaptive distribution gained by remote sensing and GIS is in conformity with its actual distribution. The study shows that remote sensing and GIS technology are feasible to obtain the S. mussotii adaptive distribution, they can further be applied to studies on adaptive distributions of other rare Chinese medicinal herb. Copyright© by the Chinese Pharmaceutical Association.

  12. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  13. Co-Adaptive Aiding and Automation Enhance Operator Performance

    DTIC Science & Technology

    2013-03-01

    activation system. There is a close relation between physiologically activated adaptive aiding and brain- computer interfaces ( BCI ). BCI here refers...classification of EEG signals (Farwell & Donchin, 1988). Physiologically activated adaptive aiding is, in a sense, a special case of BCI wherein the...as passive BCI , e.g. Zander, Kothe, Jatzev, & 3 Distribution A: Approved for public release; distribution unlimited. 88 ABW Cleared 05/13/2013

  14. CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc

    2011-12-10

    The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and alsomore » contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.« less

  15. Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.

  16. Development of fiber optic sensing interrogators for launchers

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible future application for the SL interrogator.

  17. Distributed video data fusion and mining

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Wang, Yuan-Fang; Rodoplu, Volkan

    2004-09-01

    This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.

  18. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The human brain is superior to most existing computer systems in rapidly extracting relevant information from blurred, noisy, and redundant images. From a theoretical viewpoint, this means that the available bandwidth is not exploited in an optimal way. While image-processing techniques can manipulate, condense and focus the information (e.g., Fourier Transforms), keeping the mapping as direct and simple as possible might also reduce the risk of accidentally filtering out important clues. After all, especially a perfect non-redundant sound representation is prone to loss of relevant information in the non-perfect human hearing system. Also, a complicated non-redundant image-to-sound mapping may well be far more difficult to learn and comprehend than a straightforward mapping, while the mapping system would increase in complexity and cost. This work will demonstrate some basic information processing for optimal information capture for headmounted systems.

  19. A Study Using a Monte Carlo Method of the Optimal Configuration of a Distribution Network in Terms of Power Loss Sensing

    PubMed Central

    Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul

    2011-01-01

    Recently there have been many studies of power systems with a focus on “New and Renewable Energy” as part of “New Growth Engine Industry” promoted by the Korean government. “New And Renewable Energy”—especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels—is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI’s IntelliGrid research program. The European Union (EU), which represents Europe’s Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation. PMID:22164047

  20. Reflective ghost imaging through turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Nicholas D.; Shapiro, Jeffrey H.

    2011-12-15

    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghostmore » imager.« less

  1. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  2. Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Tairych, Andreas; Anderson, Iain A.

    2015-04-01

    We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.

  3. Fibre-optic distributed temperature sensing in combined sewer systems.

    PubMed

    Schilperoort, R P S; Clemens, F H L R

    2009-01-01

    This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.

  4. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  5. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-06-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Gowri, Krishnan; Hernandez, George

    This paper describes one such reference process that can be deployed to provide continuous automated conditioned-based maintenance management for buildings that have BIM, a building automation system (BAS) and a computerized maintenance management software (CMMS) systems. The process can be deployed using an open source transactional network platform, VOLTTRON™, designed for distributed sensing and controls and supports both energy efficiency and grid services.

  7. Redox sensing: Orthogonal control in cell cycle and apoptosis signaling

    PubMed Central

    Jones, Dean P.

    2010-01-01

    Living systems have three major types of cell signaling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion gating mechanisms. Development of integrated systems biology descriptions of cell signaling require conceptual models incorporating all three. Recent advances in redox biology show that thiol/disulfide redox systems are regulated under dynamic, non-equilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials among subcellular compartments. The present article uses these observations as a basis to distinguish “redox-sensing” mechanisms, which are more global biologic redox control mechanisms, from “redox signaling”, which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signaling use sulfur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signaling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion gating and redox-signaling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signaling proteins. Effects mediated through Cys residues not directly involved in signaling means redox-sensing control can be orthogonal to the signaling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signaling mechanisms. Recent findings that thiol/disulfide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression. PMID:20964735

  8. USGS Emergency Response and the Hazards Data Distribution System (HDDS)

    NASA Astrophysics Data System (ADS)

    Jones, B. K.; Lamb, R.

    2013-12-01

    Remotely sensed datasets such as satellite imagery and aerial photography can be an invaluable resource to support the response and recovery from many types of emergency events such as floods, earthquakes, landslides, wildfires, and other natural or human-induced disasters. When disaster strikes there is often an urgent need and high demand for rapid acquisition and coordinated distribution of pre- and post-event geospatial products and remotely sensed imagery. These products and images are necessary to record change, analyze impacts, and facilitate response to the rapidly changing conditions on the ground. The coordinated and timely provision of relevant imagery and other datasets is one important component of the USGS support for domestic and international emergency response activities. The USGS Hazards Data Distribution System (HDDS) serves as a single, consolidated point-of-access for relevant satellite and aerial image datasets during an emergency event response. The HDDS provides data visibility and immediate download services through a complementary pair of graphical map-based and traditional directory-based interfaces. This system allows emergency response personnel to rapidly select and obtain pre-event ('baseline') and post-event emergency response imagery from many different sources. These datasets will typically include images that are acquired directly by USGS, but may also include many other types of images that are collected and contributed by partner agencies and organizations during the course of an emergency event response. Over the past decade, USGS Emergency Response and HDDS have supported hundreds of domestic and international disaster events by providing critically needed pre- and post-event remotely sensed imagery and other related geospatial products as required by the emergency response community. Some of the larger national events supported by HDDS have included Hurricane Sandy (2012), the Deepwater Horizon Oil Spill (2010), and Hurricane Katrina (2005). Some of the major international events supported by HDDS have included the Japan earthquake and tsunami (2011), the historic flood event in Pakistan (2010), and the earthquake in Haiti (2010). This presentation will provide an overview of the USGS HDDS system, and the various types and sources of remotely sensed imagery that are distributed through this system. There will be particular focus on recent upgrades to the HDDS interface. There will also be a brief discussion of the USGS role in the International Charter 'Space and Major Disasters' and the satellite imagery that can be made available through this mechanism in the case of major disasters.

  9. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  10. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  11. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  12. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  13. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  14. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.

  15. Interoperability Barriers in NASA Earth Science Data Systems from the Perspective of a Science User (Invited)

    NASA Astrophysics Data System (ADS)

    Kuo, K.

    2010-12-01

    As a practitioner in the field of atmospheric remote sensing, the author, like many other similar science users, depends on and uses heavily NASA Earth Science remote sensing data. Thus the author is asked by the NASA Earth Science Data Information System Project (ESDIS) to assess the capabilities of the Earth Observing System Data and Information System (EOSDIS) in order to provide suggestions and recommendations for the evolution of EOSDIS in the path towards its 2015 Vision Tenets. As NASA's Earth science data system, EOSDIS provides data processing and data archiving and distribution services for EOS missions. The science operations of EOSDIS are the focus of this report, i.e. data archiving and distribution, which are performed within a distributed system of many interconnected nodes, namely the Science Investigator-led Processing Systems, or SIPS, and distributed data centers. Since its inception in the early 1990s, EOSDIS has represented a democratization of data, a break from the past when data dissemination was at the discretion of project scientists. Its “open data” policy is so highly valued and well received by its user communities that it has influenced other agencies, even those of other countries, to adopt the same open policy. In the last ~10 years EOSDIS has matured to serve very well users of any given science community in which the varieties of data being used change infrequently. The unpleasant effects of interoperability barriers are now more often felt by users who try to use new data outside their existing familiar set. This paper first defines interoperability and identifies the purposes for achieving interoperability. The sources of interoperability barriers, classified by the author into software, hardware, and human categories, are examined. For a subset of issues related to software, it presents diagnoses obtained from experience of the author and his survey of the EOSDIS data finding, ordering, retrieving, and extraction services. it also reports on an analysis of his survey regarding tools provided by EOSDIS or its user communities and intended to make routine data manipulations easier. Barriers in the hardware category are those resulting from differences in orbit configurations of the spacecrafts and differences in remote sensing modality (active or passive), spectral and spatial resolutions, scanning strategies, etc. of the instruments. Such differences are best understood by considering the nature of remotely sensed observations. Human factors are further classified into institutional and individual subcategories. The former includes factors such as NASA’s funding practices and the latter relates to individuals’ propensity in adopting new technologies. Finally, a strategy for overcoming these barriers is proposed.

  16. Joint Sensing/Sampling Optimization for Surface Drifting Mine Detection with High-Resolution Drift Model

    DTIC Science & Technology

    2012-09-01

    as potential tools for large area detection coverage while being moderately inexpensive (Wettergren, Performance of Search via Track - Before - Detect for...via Track - Before - Detect for Distribute 34 Sensor Networks, 2008). These statements highlight three specific needs to further sensor network research...Bay hydrography. Journal of Marine Systems, 12, 221–236. Wettergren, T. A. (2008). Performance of search via track - before - detect for distributed

  17. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  18. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.

  19. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview

    DTIC Science & Technology

    2017-09-01

    ARL-TN-0847 ● Sep 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...Destroy this report when it is no longer needed. Do not return it to the originator. ARL-TN-0847 ● Sep 2017 US Army Research Laboratory...US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview by Neal Tesny Sensors and Electron Devices

  20. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors.

  1. Analysis of malaria endemic areas on the Indochina Peninsula using remote sensing.

    PubMed

    Nihei, Naoko; Hashida, Yoshihiko; Kobayashi, Mutsuo; Ishii, Akira

    2002-10-01

    We applied remote sensing using satellite images capable of obtaining data over a broad range, transcending national borders, as a method of rapidly, precisely, and safely increasing our understanding of the potential distribution of malaria. Our target region was the so-called Mekong malaria region on the Indochina Peninsula. As a malaria index, we used existing distribution maps of total reported malaria cases, malaria mortality, vivax malaria and falciparum malaria incidences, and so forth for 1997 and 1998. We produced monthly distribution maps of a normalized difference vegetation index (NDVI) with values of 0.2+, 0.3+, 0.35+, and 0.4+ using the geographical information system/remote sensing software based on the East Asia monthly NDVI maps of 1997. These maps were overlaid with various malaria index distribution maps, and cross-tabulations were carried out. The resulting maps with NDVI values of 0.3+ and 0.4+ matched the falciparum malaria distribution well, and we realized, in particular, that falciparum malaria is prevalent in regions in which NDVI values of 0.4+ continue for 6 months or more, while cases are fewer in regions with NDVI values of 0.4+ that continue for 5 months or less. It will be necessary in the future to examine the relationship between NDVI values and the habitats of the various vector mosquitoes using high-resolution satellite images and to implement detailed forecasts for malaria endemic areas by means of NDVI.

  2. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  3. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit

    PubMed Central

    Ferl, Robert J; Paul, Anna-Lisa

    2016-01-01

    Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721

  4. Edge systems in the deep ocean

    NASA Astrophysics Data System (ADS)

    Coon, Andrew; Earp, Samuel L.

    2010-04-01

    DARPA has initiated a program to explore persistent presence in the deep ocean. The deep ocean is difficult to access and presents a hostile environment. Persistent operations in the deep ocean will require new technology for energy, communications and autonomous operations. Several fundamental characteristics of the deep ocean shape any potential system architecture. The deep sea presents acoustic sensing opportunities that may provide significantly enhanced sensing footprints relative to sensors deployed at traditional depths. Communication limitations drive solutions towards autonomous operation of the platforms and automation of data collection and processing. Access to the seabed presents an opportunity for fixed infrastructure with no important limitations on size and weight. Difficult access and persistence impose requirements for long-life energy sources and potentially energy harvesting. The ocean is immense, so there is a need to scale the system footprint for presence over tens of thousands and perhaps hundreds of thousands of square nautical miles. This paper focuses on the aspect of distributed sensing, and the engineering of networks of sensors to cover the required footprint.

  5. Compressed sampling and dictionary learning framework for wavelength-division-multiplexing-based distributed fiber sensing.

    PubMed

    Weiss, Christian; Zoubir, Abdelhak M

    2017-05-01

    We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.

  6. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  7. Environmental factor analysis of cholera in China using remote sensing and geographical information systems.

    PubMed

    Xu, M; Cao, C X; Wang, D C; Kan, B; Xu, Y F; Ni, X L; Zhu, Z C

    2016-04-01

    Cholera is one of a number of infectious diseases that appears to be influenced by climate, geography and other natural environments. This study analysed the environmental factors of the spatial distribution of cholera in China. It shows that temperature, precipitation, elevation, and distance to the coastline have significant impact on the distribution of cholera. It also reveals the oceanic environmental factors associated with cholera in Zhejiang, which is a coastal province of China, using both remote sensing (RS) and geographical information systems (GIS). The analysis has validated the correlation between indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local number of cholera cases based on 8-year monthly data from 2001 to 2008. The results show the number of cholera cases has been strongly affected by the variables of SST, SSH and OCC. Utilizing this information, a cholera prediction model has been established based on the oceanic and climatic environmental factors. The model indicates that RS and GIS have great potential for designing an early warning system for cholera.

  8. Geothermal reservoir characterization using distributed temperature sensing at Brady Geothermal Field, Nevada

    DOE PAGES

    Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas; ...

    2017-12-01

    Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less

  9. Spatial distribution and ecological environment analysis of great gerbil in Xinjiang Plague epidemic foci based on remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Mengxu; Li, Qun; Cao, Chunxiang; Wang, Juanle

    2014-03-01

    Yersinia pestis (Plague bacterium) from great gerbil was isolated in 2005 in Xinjiang Dzungarian Basin, which confirmed the presence of the plague epidemic foci. This study analysed the spatial distribution and suitable habitat of great gerbil based on the monitoring data of great gerbil from Chinese Center for Disease Control and Prevention, as well as the ecological environment elements obtained from remote sensing products. The results showed that: (1) 88.5% (277/313) of great gerbil distributed in the area of elevation between 200 and 600 meters. (2) All the positive points located in the area with a slope of 0-3 degree, and the sunny tendency on aspect was not obvious. (3) All 313 positive points of great gerbil distributed in the area with an average annual temperature from 5 to 11 °C, and 165 points with an average annual temperature from 7 to 9 °C. (4) 72.8% (228/313) of great gerbil survived in the area with an annual precipitation of 120-200mm. (5) The positive points of great gerbil increased correspondingly with the increasing of NDVI value, but there is no positive point when NDVI is higher than 0.521, indicating the suitability of vegetation for great gerbil. This study explored a broad and important application for the monitoring and prevention of plague using remote sensing and geographic information system.

  10. Modeling and control of a self-sensing polymer metal composite actuator

    NASA Astrophysics Data System (ADS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-02-01

    An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems.

  11. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  12. Modal sensing and control of paraboloidal shell structronic system

    NASA Astrophysics Data System (ADS)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    Paraboloidal shells of revolution are commonly used as important components in the field of advanced aerospace structures and aviation mechanical systems. This study is to investigate the modal sensing behavior and the modal vibration control effect of distributed PVDF patches laminated on the paraboloidal shell. A paraboloidal shell sensing and control testing platform is set up first. Frequencies of lower order modes of the shell are obtained with the PVDF sensor and compared with the previous testing results to prove its accuracy. Then sensor patches are laminated on different positions (or different sides) of the shell and tested to reveal the relation between the sensing behaviors and their locations. Finally, a mathematical model of the structronic system is built by parameter identifications and the transfer function is derived. Independent and coupled modal controllers are designed based on the pole placement method and modal vibration control experiments are performed. The amplitude suppression ratio of each mode controlled by the pole placement controller is calculated and compared with the results obtained by using a PPF controller. Advantages of both methods are concluded and suggestions are given on how to choose control algorithm for different purpose.

  13. Standardized Fault-Tolerant Sensing Nodes for an Intelligent Turbine Engine Control System (Preprint)

    DTIC Science & Technology

    2013-05-01

    representation of a centralized control system on a turbine engine. All actuators and sensors are point-to-point cabled to the controller ( FADEC ) which...electronics themselves. Figure 1: Centralized Control System Each function resides within the FADEC and uses Unique Point-to-Point Analog...distributed control system on the same turbine engine. The actuators and sensors interface to Smart Nodes which, in turn communicate to the FADEC via

  14. A Network Coverage Information-Based Sensor Registry System for IoT Environments

    PubMed Central

    Jung, Hyunjun; Jeong, Dongwon; Lee, Sukhoon; On, Byung-Won; Baik, Doo-Kwon

    2016-01-01

    The Internet of Things (IoT) is expected to provide better services through the interaction of physical objects via the Internet. However, its limitations cause an interoperability problem when the sensed data are exchanged between the sensor nodes in wireless sensor networks (WSNs), which constitute the core infrastructure of the IoT. To address this problem, a Sensor Registry System (SRS) is used. By using a SRS, the information of the heterogeneous sensed data remains pure. If users move along a road, their mobile devices predict their next positions and obtain the sensed data for that position from the SRS. If the WSNs in the location in which the users move are unstable, the sensed data will be lost. Consider a situation where the user passes through dangerous areas. If the user’s mobile device cannot receive information, they cannot be warned about the dangerous situation. To avoid this, two novel SRSs that use network coverage information have been proposed: one uses OpenSignal and the other uses the probabilistic distribution of the users accessing SRS. The empirical study showed that the proposed method can seamlessly provide services related to sensing data under any abnormal circumstance. PMID:27463717

  15. A Network Coverage Information-Based Sensor Registry System for IoT Environments.

    PubMed

    Jung, Hyunjun; Jeong, Dongwon; Lee, Sukhoon; On, Byung-Won; Baik, Doo-Kwon

    2016-07-25

    The Internet of Things (IoT) is expected to provide better services through the interaction of physical objects via the Internet. However, its limitations cause an interoperability problem when the sensed data are exchanged between the sensor nodes in wireless sensor networks (WSNs), which constitute the core infrastructure of the IoT. To address this problem, a Sensor Registry System (SRS) is used. By using a SRS, the information of the heterogeneous sensed data remains pure. If users move along a road, their mobile devices predict their next positions and obtain the sensed data for that position from the SRS. If the WSNs in the location in which the users move are unstable, the sensed data will be lost. Consider a situation where the user passes through dangerous areas. If the user's mobile device cannot receive information, they cannot be warned about the dangerous situation. To avoid this, two novel SRSs that use network coverage information have been proposed: one uses OpenSignal and the other uses the probabilistic distribution of the users accessing SRS. The empirical study showed that the proposed method can seamlessly provide services related to sensing data under any abnormal circumstance.

  16. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  17. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  18. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.

  19. Mass segregation phenomena using the Hamiltonian Mean Field model

    NASA Astrophysics Data System (ADS)

    Steiner, J. R.; Zolacir, T. O.

    2018-02-01

    Mass segregation problem is thought to be entangled with the dynamical evolution of young stellar clusters (Olczak, 2011 [1]). This is a common sense in the astrophysical community. In this work, the Hamiltonian Mean Field (HMF) model with different masses is studied. A mass segregation phenomenon (MSP) arises from this study as a dynamical feature. The MSP in the HMF model is a consequence of the Landau damping (LD) and it appears in systems that the interactions belongs to a long range regime. Actually HMF is a toy model known to show up the main characteristics of astrophysical systems due to the mean field character of the potential and for different masses, as stellar and galaxies clusters, also exhibits MSP. It is in this sense that computational simulations focusing in what happens over the mass distribution in the phase space are performed for this system. What happens through the violent relaxation period and what stands for the quasi-stationary states (QSS) of this dynamics is analyzed. The results obtained support the fact that MSP is observed already in the violent relaxation time and is maintained during the QSS. Some structures in the mass distribution function are observed. As a result of this study the mass distribution is determined by the system dynamics and is independent of the dimensionality of the system. MSP occurs in a one dimensional system as a result of the long range forces that acts in the system. In this approach MSP emerges as a dynamical feature. We also show that for HMF with different masses, the dynamical time scale is N.

  20. Coordinated Science Campaign Scheduling for Sensor Webs

    NASA Technical Reports Server (NTRS)

    Edgington, Will; Morris, Robert; Dungan, Jennifer; Williams, Jenny; Carlson, Jean; Fleming, Damian; Wood, Terri; Yorke-Smith, Neil

    2005-01-01

    Future Earth observing missions will study different aspects and interacting pieces of the Earth's eco-system. Scientists are designing increasingly complex, interdisciplinary campaigns to exploit the diverse capabilities of multiple Earth sensing assets. In addition, spacecraft platforms are being configured into clusters, trains, or other distributed organizations in order to improve either the quality or the coverage of observations. These simultaneous advances in the design of science campaigns and in the missions that will provide the sensing resources to support them offer new challenges in the coordination of data and operations that are not addressed by current practice. For example, the scheduling of scientific observations for satellites in low Earth orbit is currently conducted independently by each mission operations center. An absence of an information infrastructure to enable the scheduling of coordinated observations involving multiple sensors makes it difficult to execute campaigns involving multiple assets. This paper proposes a software architecture and describes a prototype system called DESOPS (Distributed Earth Science Observation Planning and Scheduling) that will address this deficiency.

  1. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  2. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  3. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  4. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-08

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

  5. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  6. Quantum coherence: Reciprocity and distribution

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-03-01

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation-which we refer to as additivity relation-between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same.

  7. Polarimetric Hyperspectral Imaging Systems and Applications

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.

    1996-01-01

    This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.

  8. Maritime In Situ Sensing Inter-Operable Networks (MISSION)

    DTIC Science & Technology

    2013-09-30

    creating acoustic communications (acomms) technologies enabling underwater sensor networks and distributed systems. Figure 1. Project MISSION...Marn, S. Ramp, F. Bahr, “Implementation of an Underwater Wireless Sensor Network in San Francisco Bay,” Proc. 10th International Mine Warfare...NILUS – An Underwater Acoustic Sensor Network Demonstrator System,” Proc. 10th International Mine Warfare Technology Symposium, Monterey, CA, May 7

  9. Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Ying; Ma, Yufei; Tong, Yao; Yu, Xin; Peng, Zhenfang; Gao, Jing; Tittel, Frank K.

    2017-12-01

    A long distance, distributed gas sensing using the micro-nano fiber evanescent wave (FEW) quartz enhanced photoacoustic spectroscopy technique was demonstrated. Such a sensor scheme has the advantages of higher detection sensitivity, distributed gas sensing ability, lower cost, and a simpler fabrication procedure compared to conventional FEW gas sensors using a photonic crystal fiber or a tapered fiber with chemical sputtering. A 3 km single mode fiber with multiple tapers and an erbium doped fiber amplifier with an output optical power of 700 mW were employed to perform long distance, distributed gas measurements.

  10. Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias.

    PubMed

    Hentschel, Hartmut; Nearing, Jacqueline; Harris, H William; Betka, Marlies; Baum, Michelle; Hebert, Steven C; Elger, Marlies

    2003-09-01

    We recently cloned a homologue of the bovine parathyroid calcium receptor from the kidney of a spiny dogfish (Squalus acanthias) and termed this new protein SKCaR. SKCaR senses alterations in extracellular Mg2+ after its expression in human embryonic kidney cells (Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown E, Hebert S, and Harris HW. Proc Natl Acad. Sci USA 99: 9231-9236, 2002). In this report, we used light and electron microscopic immunocytochemical techniques to study the distribution of SKCaR in dogfish kidney. SKCaR antiserum bound to the apical membranes of shark kidney epithelial cells in the following tubular segments: proximal tubules (PIa and PIIb), late distal tubule, and collecting tubule/collecting duct as well as diffusely labeled cells of early distal tubule. The highly specific distribution of SKCaR in mesial tissue as well as lateral countercurrent bundles of dogfish kidney is compatible with a role for SKCaR to sense local tubular Mg2+ concentrations. This highly specific distribution of SKCaR protein in dogfish kidney could possibly work in concert with the powerful Mg2+ secretory system present in the PIIa segment of elasmobranch fish kidney to affect recycling of Mg2+ from putative Mg2+-sensing/Mg2+-reabsorbing segments. These data provide support for the possible existence of Mg2+ cycling in elasmobranch kidney in a manner analogous to that described for mammals.

  11. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    PubMed Central

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  12. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    PubMed

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  13. Vehicle safety telemetry for automated highways

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1977-01-01

    The emphasis in current, automatic vehicle testing and diagnosis is primarily centered on the proper operation of the engine. Lateral and longitudinal guidance technologies, including speed control and headway sensing for collision avoidance, are reviewed. The principal guidance technique remains the buried wire. Speed control and headway sensing, even though they show the same basic elements in braking and fuel systems, are proceeding independently. The applications of on-board electronic and microprocessor techniques were investigated; each application (emission control, spark advance, or anti-slip braking) is being treated as an independent problem is proposed. A unified bus system of distributed processors for accomplishing the various functions and testing required for vehicles equipped to use automated highways.

  14. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    PubMed

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A remote sensing research agenda for mapping and monitoring biodiversity

    NASA Technical Reports Server (NTRS)

    Stoms, D. M.; Estes, J. E.

    1993-01-01

    A remote sensing research agenda designed to expand the knowledge of the spatial distribution of species richness and its ecological determinants and to predict its response to global change is proposed. Emphasis is placed on current methods of mapping species richness of both plants and animals, hypotheses concerning the biophysical factors believed to determine patterns of species richness, and anthropogenic processes causing the accelerating rate of extinctions. It is concluded that biodiversity should be incorporated more prominently into the global change and earth system science paradigms.

  16. Remote sensing-based predictors improve distribution models of rare, early successional and boradleaf tree species in Utah

    Treesearch

    N. E. Zimmermann; T. C. Edwards; G. G. Moisen; T. S. Frescino; J. A. Blackard

    2007-01-01

    Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species...

  17. RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems

    PubMed Central

    Yu, Ruiyun; Yang, Yu; Yang, Leyou; Han, Guangjie; Move, Oguti Ann

    2016-01-01

    Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing. PMID:26761008

  18. Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands

    USDA-ARS?s Scientific Manuscript database

    Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...

  19. Developing a flood monitoring system from remotely sensed data for the Limpopo basin

    USGS Publications Warehouse

    Asante, K.O.; Macuacua, R.D.; Artan, G.A.; Lietzow, R.W.; Verdin, J.P.

    2007-01-01

    This paper describes the application of remotely sensed precipitation to the monitoring of floods in a region that regularly experiences extreme precipitation and flood events, often associated with cyclonic systems. Precipitation data, which are derived from spaceborne radar aboard the National Aeronautics and Space Administration's Tropical Rainfall Measuring Mission and from National Oceanic and Atmospheric Administration's infrared-based products, are used to monitor areas experiencing extreme precipitation events that are defined as exceedance of a daily mean areal average value of 50 mm over a catchment. The remotely sensed precipitation data are also ingested into a hydrologic model that is parameterized using spatially distributed elevation, soil, and land cover data sets that are available globally from remote sensing and in situ sources. The resulting stream-flow is classified as an extreme flood event when flow anomalies exceed 1.5 standard deviations above the short-term mean. In an application in the Limpopo basin, it is demonstrated that the use of satellite-derived precipitation allows for the identification of extreme precipitation and flood events, both in terms of relative intensity and spatial extent. The system is used by water authorities in Mozambique to proactively initiate independent flood hazard verification before generating flood warnings. The system also serves as a supplementary information source when in situ gauging systems are disrupted. This paper concludes that remotely sensed precipitation and derived products greatly enhance the ability of water managers in the Limpopo basin to monitor extreme flood events and provide at-risk communities with early warning information. ?? 2007 IEEE.

  20. Cosmic Ray Neutron Sensing in Complex Systems

    NASA Astrophysics Data System (ADS)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of different calibration procedures and their effect on the measurement outcome. We found that the response of the CRNP follows quite well the punctual measurement performed by a TDR installed on the site, but discrepancies could be explained by using the Wireless Sensors Network to perform a spatially weighted calibration and to introduce temporal dynamics.

  1. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. An Efficient Distributed Compressed Sensing Algorithm for Decentralized Sensor Network.

    PubMed

    Liu, Jing; Huang, Kaiyu; Zhang, Guoxian

    2017-04-20

    We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.

  3. System and method for identifying, reporting, and evaluating presence of substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Van Hook, Arthur

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  4. System and method for identifying, reporting, and evaluating presence of substance

    DOEpatents

    Smith, Maurice [Kansas City, MO; Lusby, Michael [Kansas City, MO; Van Hook, Arthur [Lotawana, MO; Cook, Charles J [Raytown, MO; Wenski, Edward G [Lenexa, KS; Solyom, David [Overland Park, KS

    2012-02-14

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  5. System And Method For Identifying, Reporting, And Evaluating Presence Of Substance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Maurice; Lusby, Michael; Hook, Arthur Van

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive andmore » evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.« less

  6. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  7. Development of a Brillouin scattering based distributed fibre optic strain sensor

    NASA Astrophysics Data System (ADS)

    Brown, Anthony Wayne

    2001-07-01

    The parameters of the Brillouin spectrum of an optical fibre depend upon the strain and temperature conditions of the fibre. As a result, fibre optic distributed sensors based on Brillouin scattering can measure strain and temperature in arbitrary regions of a sensing fibre. In the past, such sensors have often been demonstrated under laboratory conditions, demonstrating the principle of operation. Although some field tests of temperature sensing have been reported, the actual deployment of such sensors in the field for strain measurements has been limited by poor spatial resolution (typically 1 m or more) and poor strain accuracy (+/-100 muepsilon). Also, cross-sensitivity of the Brillouin spectrum to temperature further reduces the accuracy of strain measurement while long acquisition times hinders field use. The high level of user knowledge and lack of automation required to operate the equipment is another limiting factor of the only commercially available unit. The potential benefits of distributed measurements are great for instrumentation of civil structures provided that the above limitations are overcome. However, before this system is used with confidence by practitioners, it is essential that it can be effectively operated in field conditions. In light of this, the fibre optics group at the University of New Brunswick has been developing an automated system for field measurement of strain in civil structures, particularly in reinforced concrete. The development of the sensing system hardware and software was the main focus of this thesis. This has been made possible, in part, by observation of the Brillouin spectrum for the case of using very short light pulses (<10 ns). The end product of the development is a sensor with a spatial resolution that has been improved to 100 mm. Measurement techniques that improve system performance to measure strain to an accuracy of 10 muepsilon; and allow the simultaneous measurement of strain and temperature to an accuracy of 204 muepsilon and 3°C are presented. Finally, the results of field measurement of strain on a concrete structure are presented.

  8. The Estrada Real project and endemic diseases: the case of schistosomiasis, geoprocessing and tourism.

    PubMed

    Carvalho, Omar S; Scholte, Ronaldo G C; Guimarães, Ricardo J P S; Freitas, Corina C; Drummond, Sandra C; Amaral, Ronaldo S; Dutra, Luciano V; Oliveira, Guilherme; Massara, Cristiano L; Enk, Martin J

    2010-07-01

    Geographical Information System (GIS) is a tool that has recently been applied to better understand spatial disease distributions. Using meteorological, social, sanitation, mollusc distribution data and remote sensing variables, this study aimed to further develop the GIS technology by creating a model for the spatial distribution of schistosomiasis and to apply this model to an area with rural tourism in the Brazilian state of Minas Gerais (MG). The Estrada Real, covering about 1,400 km, is the largest and most important Brazilian tourism project, involving 163 cities in MG with different schistosomiasis prevalence rates. The model with three variables showed a R(2) = 0.34, with a standard deviation of risk estimated adequate for public health needs. The main variables selected for modelling were summer vegetation, summer minimal temperature and winter minimal temperature. The results confirmed the importance of Remote Sensing data and the valuable contribution of GIS in identifying priority areas for intervention in tourism regions which are endemic to schistosomiasis.

  9. Land remote sensing commercialization: A status report

    NASA Technical Reports Server (NTRS)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  10. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  11. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei

    2017-04-01

    The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.

  12. Application and Optimization of Stiffness Abruption Structures for Pressure Sensors with High Sensitivity and Anti-Overload Ability

    PubMed Central

    Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong

    2017-01-01

    The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599

  13. 3D beam shape estimation based on distributed coaxial cable interferometric sensor

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Zhu, Wenge; Liu, Jie; Yuan, Lei; Xiao, Hai

    2017-03-01

    We present a coaxial cable interferometer based distributed sensing system for 3D beam shape estimation. By making a series of reflectors on a coaxial cable, multiple Fabry-Perot cavities are created on it. Two cables are mounted on the beam at proper locations, and a vector network analyzer (VNA) is connected to them to obtain the complex reflection signal, which is used to calculate the strain distribution of the beam in horizontal and vertical planes. With 6 GHz swept bandwidth on the VNA, the spatial resolution for distributed strain measurement is 0.1 m, and the sensitivity is 3.768 MHz mɛ -1 at the interferogram dip near 3.3 GHz. Using displacement-strain transformation, the shape of the beam is reconstructed. With only two modified cables and a VNA, this system is easy to implement and manage. Comparing to optical fiber based sensor systems, the coaxial cable sensors have the advantage of large strain and robustness, making this system suitable for structure health monitoring applications.

  14. The integrated design and archive of space-borne signal processing and compression coding

    NASA Astrophysics Data System (ADS)

    He, Qiang-min; Su, Hao-hang; Wu, Wen-bo

    2017-10-01

    With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.

  15. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

    PubMed

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

  16. Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    PubMed Central

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. PMID:22319492

  17. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  18. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems

    DTIC Science & Technology

    2007-02-28

    Shah, D. Waagen, H. Schmitt, S. Bellofiore, A. Spanias, and D. Cochran, 32nd International Conference on Acoustics, Speech , and Signal Processing...Information Exploitation Office kNN k-Nearest Neighbor LEAN Laplacian Eigenmap Adaptive Neighbor LIP Linear Integer Programming ISP

  19. A Study of Data Compression and Efficient Memory Utilization in Multiprocessor and Distributed Systems.

    DTIC Science & Technology

    1980-08-31

    DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. -I , ! unclassified SECURITY CLASSIICATION Of THIS PAGE ’Whm bate...ADORE.SE4I dFfemtar CIatblftaE Office) IS. SECURITY CLASS. (of ftio #sNt) unclassified IS. DOCL ASSI FICATION/DOWNGRADING SCHEDULENA INA IS. DISTRIBUTION...In this section, we describe the characteristics of the access sequence of a pipelined processor. A pipelined organization in the most general sense

  20. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  1. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  2. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  3. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    NASA Astrophysics Data System (ADS)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  4. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaofei; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036; Deng, Ping

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings themore » split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.« less

  5. Multi-resource data-based research on remote sensing monitoring over the green tide in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi

    2017-09-01

    This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.

  6. Cooperative remote sensing and actuation using networked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Chao, Haiyang

    This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.

  7. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    USGS Publications Warehouse

    Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.

    2007-01-01

    1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.

  8. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    PubMed Central

    ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A

    2007-01-01

    Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470

  9. Distributed environmental control

    NASA Technical Reports Server (NTRS)

    Cleveland, Gary A.

    1992-01-01

    We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).

  10. High-resolution distributed temperature sensing with the multiphoton-timing technique

    NASA Astrophysics Data System (ADS)

    Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, Th.

    1995-06-01

    We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy Delta T less than 2 deg C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.

  11. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  12. Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology

    NASA Technical Reports Server (NTRS)

    Bodan-Sanders, Patricia; Bouvier, Carl

    1998-01-01

    The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.

  13. Study on Elastic Helical TDR Sensing Cable for Distributed Deformation Detection

    PubMed Central

    Tong, Renyuan; Li, Ming; Li, Qing

    2012-01-01

    In order to detect distributed ground surface deformation, an elastic helical structure Time Domain Reflectometry (TDR) sensing cable is shown in this paper. This special sensing cable consists of three parts: a silicone rubber rope in the center; a couple of parallel wires coiling around the rope; a silicone rubber pipe covering the sensing cable. By analyzing the relationship between the impedance and the structure of the sensing cable, the impedance model shows that the sensing cable impedance will increase when the cable is stretched. This specific characteristic is verified in the cable stretching experiment which is the base of TDR sensing technology. The TDR experiment shows that a positive reflected signal is created at the stretching deformation point on the sensing cable. The results show that the deformation section length and the stretching elongation will both affect the amplitude of the reflected signal. Finally, the deformation locating experiments show that the sensing cable can accurately detect the deformation point position on the sensing cable. PMID:23012560

  14. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    PubMed

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  15. High sensitivity cascaded preamplifier with an optical bridge structure in Brillouin distributed fiber sensing system

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Lin, Hang; Fu, Xinghu; Fu, Guangwei

    2013-12-01

    Fiber amplifiers such as Erbium-doped fiber amplifier (EDFA) played a key role in developing long-haul transmission system and have been an important element for enabling the development of optical communication system. EDFA amplifies the optical signal directly, without the optical-electric-optical switch and has the advantages such as high gain, broad band, low noise figure. It is widely used in repeaterless submarine system, smart grid and community antenna television system. This article describe the application of optical-fiber amplifiers in distributed optical fiber sensing system, focusing on erbium-doped fiber preamplifiers in modern transmission optical systems. To enhance the measurement range of a spontaneous Brillouin intensity based distributed fiber optical sensor and improve the receiver sensitivity, a two cascaded EDFAs C-band preamplifier with an optical bridge structure is proposed in this paper. The first cascaded EDFA is consisted of a length of 4.3m erbium-doped fiber and pumped in a forward pump light using a laser operating at 975nm. The second one made by using a length of 16m erbium-doped fiber is pumped in a forward pump light which is the remnant pump light of the first cascaded EDFA. At the preamplifier output, DWDM, centered at the signal wavelength, is used to suppress unwanted amplified spontaneous emission. The experimental results show that the two cascade preamplifier with a bridge structure can be used to amplify for input Brillouin backscattering light greater than about -43dBm. The optical gain is characterized and more than 26dB is obtained at 1549.50nm with 300mW pump power.

  16. The Global Emergency Observation and Warning System

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  17. Chemical and Physical Sensing in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  18. Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Lu, Yang; Meng, Zhou

    2017-10-01

    A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.

  19. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  20. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  1. OhioView: Distribution of Remote Sensing Data Across Geographically Distributed Environments

    NASA Technical Reports Server (NTRS)

    Ramos, Calvin T.

    1998-01-01

    Various issues associated with the distribution of remote sensing data across geographically distributed environments are presented in viewgraph form. Specific topics include: 1) NASA education program background; 2) High level architectures, technologies and applications; 3) LeRC internal architecture and role; 4) Potential GIBN interconnect; 5) Potential areas of network investigation and research; 6) Draft of OhioView data model; and 7) the LeRC strategy and roadmap.

  2. Self-Reconfigurable Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.

    2002-10-01

    A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less

  3. An Autonomous Distributed Fault-Tolerant Local Positioning System

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  4. Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements

    NASA Technical Reports Server (NTRS)

    Bakalyar, John A.; Jutte, Christine

    2012-01-01

    Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.

  5. Federated Giovanni: A Distributed Web Service for Analysis and Visualization of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    The Geospatial Interactive Online Visualization and Analysis Interface (Giovanni) is a popular tool for users of the Goddard Earth Sciences Data and Information Services Center (GES DISC) and has been in use for over a decade. It provides a wide variety of algorithms and visualizations to explore large remote sensing datasets without having to download the data and without having to write readers and visualizers for it. Giovanni is now being extended to enable its capabilities at other data centers within the Earth Observing System Data and Information System (EOSDIS). This Federated Giovanni will allow four other data centers to add and maintain their data within Giovanni on behalf of their user community. Those data centers are the Physical Oceanography Distributed Active Archive Center (PO.DAAC), MODIS Adaptive Processing System (MODAPS), Ocean Biology Processing Group (OBPG), and Land Processes Distributed Active Archive Center (LP DAAC). Three tiers are supported: Tier 1 (GES DISC-hosted) gives the remote data center a data management interface to add and maintain data, which are provided through the Giovanni instance at the GES DISC. Tier 2 packages Giovanni up as a virtual machine for distribution to and deployment by the other data centers. Data variables are shared among data centers by sharing documents from the Solr database that underpins Giovanni's data management capabilities. However, each data center maintains their own instance of Giovanni, exposing the variables of most interest to their user community. Tier 3 is a Shared Source model, in which the data centers cooperate to extend the infrastructure by contributing source code.

  6. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  7. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  8. Advanced Image Processing for NASA Applications

    NASA Technical Reports Server (NTRS)

    LeMoign, Jacqueline

    2007-01-01

    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.

  9. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  10. High Definition Seismic and Microseismic Data Acquisition Using Distributed and Engineered Fiber Optic Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Parker, T.; Farhadiroushan, M.; Clarke, A.; Miller, D.; Gillies, A.; Shatalin, S.; Naldrett, G.; Milne, C.

    2016-12-01

    The benefits of Distributed Acoustic Sensors (DAS) have been demonstrated in number of seismic applications. Over the past few years Silixa have successfully used DAS to record microseismic events during hydraulic fracturing and re-fracking operations. Detection has been successful in a number of configurations, where the fibre has been in a horizontal treatment well, horizontal well adjacent to the treatment, or vertical observation well. We will discuss the sensitivity of the measurement, range of measurement, ability to localise the events and characteristics of the microseismic event. In addition to discussing the theory we will present case studies showing the detection and localisation and how these compare to conventional microseismic detection techniques.We also discuss the benefit of the low frequency response of DAS for measuring the strain field induced along the sensing fibre cable during the treatment and while monitoring the adjacent wells. In addition a step change in performance can be offered by the new engineered Carina fibre optic sensing system developed by Silixa. The Carina sensing system is being tested and it has been demonstrated that an improvement in signal-to-noise performance by a factor of hundred (100x) can be achieved. The initial results demonstrate the potential for acquiring high definition seismic data in the most challenging environments beyond the capabilities of current geophones.

  11. High Definition Seismic and Microseismic Data Acquisition Using Distributed and Engineered Fiber Optic Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Parker, T.; Farhadiroushan, M.; Clarke, A.; Miller, D.; Gillies, A.; Shatalin, S.; Naldrett, G.; Milne, C.

    2017-12-01

    The benefits of Distributed Acoustic Sensors (DAS) have been demonstrated in number of seismic applications. Over the past few years Silixa have successfully used DAS to record microseismic events during hydraulic fracturing and re-fracking operations. Detection has been successful in a number of configurations, where the fibre has been in a horizontal treatment well, horizontal well adjacent to the treatment, or vertical observation well. We will discuss the sensitivity of the measurement, range of measurement, ability to localise the events and characteristics of the microseismic event. In addition to discussing the theory we will present case studies showing the detection and localisation and how these compare to conventional microseismic detection techniques.We also discuss the benefit of the low frequency response of DAS for measuring the strain field induced along the sensing fibre cable during the treatment and while monitoring the adjacent wells. In addition a step change in performance can be offered by the new engineered Carina fibre optic sensing system developed by Silixa. The Carina sensing system is being tested and it has been demonstrated that an improvement in signal-to-noise performance by a factor of hundred (100x) can be achieved. The initial results demonstrate the potential for acquiring high definition seismic data in the most challenging environments beyond the capabilities of current geophones.

  12. High-accuracy fiber-optic shape sensing

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.

    2007-04-01

    We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.

  13. Schistosomes, snails and satellites.

    PubMed

    Brooker, S

    2002-05-01

    This paper gives an overview of the recent progress made in the use and application of geographical information systems (GIS) and remotely sensed (RS) satellite sensor data for the epidemiology and control of schistosomiasis in sub-Saharan Africa. Details are given of the use of GIS to collate, map and analyse available parasitological data. The use of RS data to understand better the broad scale environmental factors influencing schistosome distribution is defined and examples detailed for the prediction of schistosomiasis in unsampled areas. Finally, the current practical application of GIS and remote sensing are reviewed in the context of national control programmes.

  14. A Low-Cost Femtosatellite to Enable Distributed Space Missions

    DTIC Science & Technology

    2006-09-20

    pdfs/CyroBroSS.pdf Concept in Distributed Space-based Sensing," in Proc. AIAA [36] H . Helvajian and S. W. Janson, "The Fabrication of a 100 gm Defense...press/pressOl.php [21] F. A. Herrero, M. DiJoseph, T. E. Moore, J. A. Slavin, and R. [38] S. W. Janson, H . Helvajian , S. Amimoto, G. Smit, D. Mayer...Congress," [39] H . Helvajian , Microengineering Aerospace Systems, Reston, Subcommittee on Space and Aeronautics, Committee on VA, AIAA Press, 1999

  15. Volttron version 5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, W.; Dybel, M.; West, R.

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less

  17. Spaceborne Microwave Imagers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1991-01-01

    Monograph presents comprehensive overview of science and technology of spaceborne microwave-imaging systems. Microwave images used as versatile orbiting, remote-sensing systems to investigate atmospheres and surfaces of planets. Detect surface objects through canopies of clouds, measure distributions of raindrops in clouds that their views penetrate, find meandering rivers in rain forests and underground water in arid regions, and provide information on ocean currents, wakes, ice/water boundaries, aircraft, ships, buoys, and bridges.

  18. Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.

    DTIC Science & Technology

    1982-12-01

    systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that

  19. Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  20. Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification

    DTIC Science & Technology

    2009-01-01

    method for bacterium detection published earlier; sensing and evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Fluctuation-Enhanced Sensing for Biological Agent Detection and...evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise in light scattering to identify spores based on their

  1. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    PubMed

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  2. BOREAS Landsat MSS Imagery: Digital Counts

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Satellite Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. The Earth Resources Technology Satellite (ERTS) Program launched the first of a series of satellites (ERTS-1) in 1972. Part of the NASA Earth Resources Survey Program, the ERTS Program and the ERTS satellites were later renamed Landsat to better represent the civil satellite program's prime emphasis on remote sensing of land resources. Landsat satellites 1 through 5 carry the Multispectral Scanner (MSS) sensor. Canada for Remote Sensing (CCRS) and BOREAS personnel gathered a set of MSS images of the BOREAS region from Landsat satellites 1, 2, 4, and 5 covering the dates of 21 Aug 1972 to 05 Sep 1988. The data are provided in binary image format files of various formats. The Landsat MSS imagery is available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. The application of unmanned aerial vehicle remote sensing for monitoring secondary geological disasters after earthquakes

    NASA Astrophysics Data System (ADS)

    Lei, Tianjie; Zhang, Yazhen; Wang, Xingyong; Fu, Jun'e.; Li, Lin; Pang, Zhiguo; Zhang, Xiaolei; Kan, Guangyuan

    2017-07-01

    Remote sensing system fitted on Unmanned Aerial Vehicle (UAV) can obtain clear images and high-resolution aerial photographs. It has advantages of strong real-time, flexibility and convenience, free from influence of external environment, low cost, low-flying under clouds and ability to work full-time. When an earthquake happened, it could go deep into the places safely and reliably which human staff can hardly approach, such as secondary geological disasters hit areas. The system can be timely precise in response to secondary geological disasters monitoring by a way of obtaining first-hand information as quickly as possible, producing a unique emergency response capacity to provide a scientific basis for overall decision-making processes. It can greatly enhance the capability of on-site disaster emergency working team in data collection and transmission. The great advantages of UAV remote sensing system played an irreplaceable role in monitoring secondary geological disaster dynamics and influences. Taking the landslides and barrier lakes for example, the paper explored the basic application and process of UAV remote sensing in the disaster emergency relief. UAV high-resolution remote sensing images had been exploited to estimate the situation of disaster-hit areas and monitor secondary geological disasters rapidly, systematically and continuously. Furthermore, a rapid quantitative assessment on the distribution and size of landslides and barrier lakes was carried out. Monitoring results could support relevant government departments and rescue teams, providing detailed and reliable scientific evidence for disaster relief and decision-making.

  4. Relations between distributional and Devaney chaos.

    PubMed

    Oprocha, Piotr

    2006-09-01

    Recently, it was proven that chaos in the sense of Devaney and weak mixing both imply chaos in the sense of Li and Yorke. In this article we give explicit examples that any of these two implications do not hold for distributional chaos.

  5. Building a Case for Conducting Technology Surveys On-Line.

    ERIC Educational Resources Information Center

    Denton, Jon J.; Strader, Arlen

    A Technology in Texas Public Schools 1998 Survey instrument was integrated into a Web-based response system enabling the instrument to be accessed, completed, submitted, and instantaneously analyzed over the Internet. A mark-sense or optical scan paper version of the instrument was also developed for mail-out distribution to each school district…

  6. Determination of the number of navigation satellites within satellite acquisition range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurenkov, Vladimir I., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Kucherov, Alexander S., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Gordeev, Alexey I., E-mail: exactoone@yahoo.com

    2014-12-10

    The problem of determination of the number of navigation satellites within acquisition range with regard to antenna systems configuration and stochastic land remote sensing satellite maneuvers is the subject considered in the paper. Distribution function and density function of the number of navigation satellites within acquisition range are obtained.

  7. Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems.

    PubMed

    Kelly, Caroline A; Cruz-Romero, Malco; Kerry, Joseph P; Papkovsky, Dmitri P

    2018-05-02

    The commercially-available optical oxygen-sensing system Optech-O₂ Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O₂ in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.

  8. Coupled topographic and vegetation patterns in coastal dunes: Remote sensing observations and ecomorphodynamic implications

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Silvestri, S.; Moore, L. J.; Marani, M.

    2017-01-01

    Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar-derived leaf area index and hyperspectral-derived normalized difference vegetation index patterns yield vegetation distributions at the whole-system scale which are in agreement with each other and with field observations. Lidar-derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two-way interaction between vegetation and topography.

  9. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  10. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  11. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    NASA Astrophysics Data System (ADS)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  12. An analytical model for regular respiratory signals derived from the probability density function of Rayleigh distribution.

    PubMed

    Li, Xin; Li, Ye

    2015-01-01

    Regular respiratory signals (RRSs) acquired with physiological sensing systems (e.g., the life-detection radar system) can be used to locate survivors trapped in debris in disaster rescue, or predict the breathing motion to allow beam delivery under free breathing conditions in external beam radiotherapy. Among the existing analytical models for RRSs, the harmonic-based random model (HRM) is shown to be the most accurate, which, however, is found to be subject to considerable error if the RRS has a slowly descending end-of-exhale (EOE) phase. The defect of the HRM motivates us to construct a more accurate analytical model for the RRS. In this paper, we derive a new analytical RRS model from the probability density function of Rayleigh distribution. We evaluate the derived RRS model by using it to fit a real-life RRS in the sense of least squares, and the evaluation result shows that, our presented model exhibits lower error and fits the slowly descending EOE phases of the real-life RRS better than the HRM.

  13. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  14. Modeling Common-Sense Decisions in Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation of the dynamical models in a parameterized form reduces the task of common-sense-based decision making to a solution of the following hetero-associated-memory problem: store a set of m predetermined stochastic processes given by their probability distributions in such a way that when presented with an unexpected change in the form of an input out of the set of M inputs, the coupled motormental dynamics converges to the corresponding one of the m pre-assigned stochastic process, and a sample of this process represents the decision.

  15. Remote sensing strategies for global resource exploration and environmental management

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.

  16. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  17. Battery management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  18. Development of instrumentation for measurements of two components of velocity with a single sensing element

    NASA Astrophysics Data System (ADS)

    Byers, C. P.; Fu, M. K.; Fan, Y.; Hultmark, M.

    2018-02-01

    A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.

  19. Basic technologies of web services framework for research, discovery, and processing the disparate massive Earth observation data from heterogeneous sources

    NASA Astrophysics Data System (ADS)

    Savorskiy, V.; Lupyan, E.; Balashov, I.; Burtsev, M.; Proshin, A.; Tolpin, V.; Ermakov, D.; Chernushich, A.; Panova, O.; Kuznetsov, O.; Vasilyev, V.

    2014-04-01

    Both development and application of remote sensing involves a considerable expenditure of material and intellectual resources. Therefore, it is important to use high-tech means of distribution of remote sensing data and processing results in order to facilitate access for as much as possible number of researchers. It should be accompanied with creation of capabilities for potentially more thorough and comprehensive, i.e. ultimately deeper, acquisition and complex analysis of information about the state of Earth's natural resources. As well objective need in a higher degree of Earth observation (EO) data assimilation is set by conditions of satellite observations, in which the observed objects are uncontrolled state. Progress in addressing this problem is determined to a large extent by order of the distributed EO information system (IS) functioning. Namely, it is largely dependent on reducing the cost of communication processes (data transfer) between spatially distributed IS nodes and data users. One of the most effective ways to improve the efficiency of data exchange processes is the creation of integrated EO IS optimized for running procedures of distributed data processing. The effective EO IS implementation should be based on specific software architecture.

  20. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  1. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  2. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  3. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    PubMed

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  4. Fiber optic distributed temperature sensing for fire source localization

    NASA Astrophysics Data System (ADS)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  5. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  6. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  7. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  8. Suboptimal distributed control and estimation: application to a four coupled tanks system

    NASA Astrophysics Data System (ADS)

    Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.

    2016-06-01

    The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.

  9. Design and development of a cost effective plantar pressure distribution analysis system for the dynamically moving feet.

    PubMed

    Karkokli, R; McConville, K M Valter

    2006-01-01

    This paper portrays the design and instrumentation of a low cost plantar pressure analysis system, suitable for clinical podiatry. The system measures plantar pressure between the foot and shoe during dynamic movement in real-time, which can be used in clinical gait analysis. It contains a pressure sensing insole which the patient can insert in his/her shoe, and user-friendly software to graph and analyze the data. Applications include occupational health and safety, research and private practice.

  10. The Distribution of Carbon Monoxide in the GOCART Model

    NASA Technical Reports Server (NTRS)

    Fan, Xiaobiao; Chin, Mian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Carbon monoxide (CO) is an important trace gas because it is a significant source of tropospheric Ozone (O3) as well as a major sink for atmospheric hydroxyl radical (OH). The distribution of CO is set by a balance between the emissions, transport, and chemical processes in the atmosphere. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric distribution of CO. The GOCART model is driven by the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS) in an off-line mode. We study the distribution of CO on three time scales: (1) day to day fluctuation produced by the synoptic waves; (2) seasonal changes due to the annual cycle of CO sources and sinks; and (3) interannual variability induced by dynamics. Comparison of model results with ground based and remote sensing measurements will also be presented.

  11. The Land Processes Distributed Active Archive Center (LP DAAC)

    USGS Publications Warehouse

    Golon, Danielle K.

    2016-10-03

    The Land Processes Distributed Active Archive Center (LP DAAC) operates as a partnership with the U.S. Geological Survey and is 1 of 12 DAACs within the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS). The LP DAAC ingests, archives, processes, and distributes NASA Earth science remote sensing data. These data are provided to the public at no charge. Data distributed by the LP DAAC provide information about Earth’s surface from daily to yearly intervals and at 15 to 5,600 meter spatial resolution. Data provided by the LP DAAC can be used to study changes in agriculture, vegetation, ecosystems, elevation, and much more. The LP DAAC provides several ways to access, process, and interact with these data. In addition, the LP DAAC is actively archiving new datasets to provide users with a variety of data to study the Earth.

  12. Distributed Aerodynamic Sensing and Processing Toolbox

    NASA Technical Reports Server (NTRS)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  13. Fiber optic shape sensing for monitoring of flexible structures

    NASA Astrophysics Data System (ADS)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  14. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  15. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  16. Spatial analysis of vector-borne infectious diseases and ecological indicators using GIS and remote sensing

    NASA Astrophysics Data System (ADS)

    Anh, N. K.; Liou, Y. A.

    2017-12-01

    Ecological and climate indicators play a vital role in defining patterns of human activities and behaviors, such as seasonal features, migration, winter-summer lifestyles, which in turn might be associated with vector-borne disease habitats and transmission risks. Remote sensing has been instrumental in deriving environmental variables and indicators. GIS is shown to be a powerful tool in spatiotemporal visualization and distribution of vector-borne diseases and for analysis of associations between environmental conditions and characteristics of vector-borne habitats. Vietnam is in the sub-tropical climate zone with high humidity and abundant precipitation, while the distribution of precipitation is uneven leading to frequently annual occurrence of drought and flood disasters. Moreover, urban heat island effect is significantly enhanced in urbanized areas in recent years. The increase in the frequency and magnitude of severity of weather extremes that are potentially linked to climate change and anthropogenic processes have highlighted the demand of research into health risk assessment and adaptive capacity. This research focuses on the analysis of physical features of environmental indicators and its association with vector-borne diseases as well as adaptive capacity. The study illustrates how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, promising possibilities of allowing disease early-warning systems with citizen participation platform will be proposed. Keywords: Vector-borne diseases; environmental indicators; remote sensing; GIS; Vietnam.

  17. Evolution of the cerebellum as a neuronal machine for Bayesian state estimation

    NASA Astrophysics Data System (ADS)

    Paulin, M. G.

    2005-09-01

    The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.

  18. Information Extraction of Tourist Geological Resources Based on 3d Visualization Remote Sensing Image

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2018-04-01

    Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.

  19. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  20. Satellite Remote Sensing of Atmospheric Pollution: the Far-Reaching Impact of Burning in Southern Africa

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Al-Saadi, Jassim A.; Neil, Doreen O.; Creilson, John K.; Severance, Kurt; Thomason, Larry W.; Edwards, David R.

    2008-01-01

    When the first observations of a tropospheric trace gas were obtained in the 1980s, carbon monoxide enhancements from tropical biomass burning dominated the observed features. In 2005, an active remote-sensing system to provide detailed information on the vertical distribution of aerosols and clouds was launched, and again, one of the most imposing features observed was the presence of emissions from tropical biomass burning. This paper presents a brief overview of space-borne observations of the distribution of trace gases and aerosols and how tropical biomass burning, primarily in the Southern Hemisphere, has provided an initially surprising picture of the distribution of these species and how they have evolved from prevailing transport patterns in that hemisphere. We also show how interpretation of these observations has improved significantly as a result of the improved capability of trajectory modeling in recent years and how information from this capability has provided additional insight into previous measurements form satellites. Key words: pollution; biomass burning; aerosols; tropical trace gas emissions; Southern Hemisphere; carbon monoxide.

  1. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.

    PubMed

    Xu, Junkai; Bao, Tian; Lee, Ung Hee; Kinnaird, Catherine; Carender, Wendy; Huang, Yangjian; Sienko, Kathleen H; Shull, Peter B

    2017-10-11

    Postural balance and gait training is important for treating persons with functional impairments, however current systems are generally not portable and are unable to train different types of movements. This paper describes a proof-of-concept design of a configurable, wearable sensing and feedback system for real-time postural balance and gait training targeted for home-based treatments and other portable usage. Sensing and vibrotactile feedback are performed via eight distributed, wireless nodes or "Dots" (size: 22.5 × 20.5 × 15.0 mm, weight: 12.0 g) that can each be configured for sensing and/or feedback according to movement training requirements. In the first experiment, four healthy older adults were trained to reduce medial-lateral (M/L) trunk tilt while performing balance exercises. When trunk tilt deviated too far from vertical (estimated via a sensing Dot on the lower spine), vibrotactile feedback (via feedback Dots placed on the left and right sides of the lower torso) cued participants to move away from the vibration and back toward the vertical no feedback zone to correct their posture. A second experiment was conducted with the same wearable system to train six healthy older adults to alter their foot progression angle in real-time by internally or externally rotating their feet while walking. Foot progression angle was estimated via a sensing Dot adhered to the dorsal side of the foot, and vibrotactile feedback was provided via feedback Dots placed on the medial and lateral sides of the mid-shank cued participants to internally or externally rotate their foot away from vibration. In the first experiment, the wearable system enabled participants to significantly reduce trunk tilt and increase the amount of time inside the no feedback zone. In the second experiment, all participants were able to adopt new gait patterns of internal and external foot rotation within two minutes of real-time training with the wearable system. These results suggest that the configurable, wearable sensing and feedback system is portable and effective for different types of real-time human movement training and thus may be suitable for home-based or clinic-based rehabilitation applications.

  2. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Meng, J. C. S.

    1974-01-01

    A hydrodynamic model of aircraft vortex wakes in an irregular wind shear field near the ground is developed and used as a basis for modeling the characteristics of a laser Doppler detection and vortex location system. The trailing vortex sheet and the wind shear are represented by discrete free vortices distributed over a two-dimensional grid. The time dependent hydrodynamic equations are solved by direct numerical integration in the Boussinesq approximation. The ground boundary is simulated by images, and fast Fourier Transform techniques are used to evaluate the vorticity stream function. The atmospheric turbulence was simulated by constructing specific realizations at time equal to zero, assuming that Kolmogoroff's law applies, and that the dissipation rate is constant throughout the flow field. The response of a simulated laser Doppler velocimeter is analyzed by simulating the signal return from the flow field as sensed by a simulation of the optical/electronic system.

  3. A study on gaseous extinguishing agent sensing with a simple measurement method

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Lu, Song; Yuan, Wei; Qian, Hanjie

    2018-03-01

    As research on the concentration distribution for evaluating the effectiveness of a gas fire extinguisher system is quite important, the proper sensing technology is necessary. Here, a simple method used for measuring the concentration of agent is introduced, and the manufacture of the sensing part is described clearly. The sensing unit is composed of a pressure reducing structure and pressure sensor element. The detection was achieved by sensing the change of pressure difference caused by gas flow. In order to verify the theory and characterize the sensing performance, two types of fire extinguishing agents, bromotrifluoromethane (CBrF3) and heptafluoropropane (C3HF7), were used in the experiments. The results showed a high sensitivity from 0 to 100%, good repeatability and fast response/recovery time. Furthermore, the effect of operating temperature, humidity and geometric structure on the response were investigated. Measurements showed, for CBrF3, that the temperature had a linear impact on the response and the influence of humidity in the sensor was negligible. Through the analysis of the geometry parameter, it was found that the sensing performance could be greatly improved through adjusting the geometry structure. This technique provides a low-cost and highly reliable sensor for the detection of gaseous extinguishing agent that can be easily fabricated.

  4. Intelligent services for discovery of complex geospatial features from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yue, Peng; Di, Liping; Wei, Yaxing; Han, Weiguo

    2013-09-01

    Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment.

  5. Internetting tactical security sensor systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control stations.

  6. Fiber-optic temperature sensors based on differential spectral transmittance/reflectivity and multiplexed sensing systems.

    PubMed

    Wang, A; Wang, G Z; Murphy, K A; Claus, R O

    1995-05-01

    A concept for optical temperature sensing based on the differential spectral reflectivity/transmittance from a multilayer dielectric edge filter is described and demonstrated. Two wavelengths, λ(1) and λ(2), from the spectrum of a broadband light source are selected so that they are located on the sloped and flat regions of the reflection or transmission spectrum of the filter, respectively. As temperature variations shift the reflection or transmission spectrum of the filter, they change the output power of the light at λ(1), but the output power of the light at λ(2) is insensitive to the shift and therefore to the temperature variation. The temperature information can be extracted from the ratio of the light powers at λ(1) to the light at λ(2). This ratio is immune to changes in the output power of the light source, fiber losses induced by microbending, and hence modal-power distribution fluctuations. The best resolution of 0.2 °C has been obtained over a range of 30-120 °C. Based on such a basic temperature-sensing concept, a wavelength-division-multiplexed, temperature-sensing system is constructed by cascading three sensing-edge filters that have different cutoff wavelengths along a multimode fiber. The signals from the three sensors are resolved by detecting the correspondent outputs at different wavelengths.

  7. Flock Foraging Efficiency in Relation to Food Sensing Ability and Distribution: a Simulation Study

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2013-08-01

    Flocking may be an advantageous strategy for acquiring food resources. The degree of advantage is related to two factors: the ability of flock members to detect food resources and patterns of food distribution in the environment. To understand foraging efficiency as a function of these factors, I constructed a two-dimensional (2D) flocking model incorporating the two factors. At the start of the simulation, food particles were heterogeneously distributed. The heterogeneity, H, was characterized as a value ranging from 0.0 to 1.0. For each flock member, food sensing ability was defined by two variables: sensing distance, R and sensing angle, θ. Foraging efficiency of a flock was defined as the time, τ, required for a flock to consume all the available food resources. Simulation results showed that flock foraging is most efficient when individuals had an intermediate sensing ability (R = 60), but decreased for low (R < 60) and high (R > 60) sensing ability. When R > 60, patterns in foraging efficiency with increasing sensing distance and food resource aggregation were less consistent. This inconsistency was due to instability of the flock and a higher rate of individuals failing to capture target food resources. In addition, I briefly discuss the benefits obtained by foraging in flocks from an evolutionary perspective.

  8. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  9. Distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry-Pérot interferometers

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen

    2017-04-01

    We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.

  10. Hybrid Human-Computing Distributed Sense-Making: Extending the SOA Paradigm for Dynamic Adjudication and Optimization of Human and Computer Roles

    ERIC Educational Resources Information Center

    Rimland, Jeffrey C.

    2013-01-01

    In many evolving systems, inputs can be derived from both human observations and physical sensors. Additionally, many computation and analysis tasks can be performed by either human beings or artificial intelligence (AI) applications. For example, weather prediction, emergency event response, assistive technology for various human sensory and…

  11. Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems

    DTIC Science & Technology

    2012-01-01

    capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM

  12. Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region

    Treesearch

    Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse

    2011-01-01

    As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...

  13. Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring.

    PubMed

    Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming

    2015-02-09

    An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

  14. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    NASA Astrophysics Data System (ADS)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems and limitations on battery charging/discharging, (2) Reviewed standards for interconnection of distributed resources and electric vehicle charging [1], [2], (3) Explored strategies for distributed control of PHEV charging, (4) Developed controllers to accommodate PHEV regulation, and (5) Developed a simulator combining a power system model and PHEV/V2G components.

  15. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  16. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  17. Sensible Success

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Commercial remote sensing uses satellite imagery to provide valuable information about the planet's features. By capturing light reflected from the Earth's surface with cameras or sensor systems, usually mounted on an orbiting satellite, data is obtained for business enterprises with an interest in land feature distribution. Remote sensing is practical when applied to large-area coverage, such as agricultural monitoring, regional mapping, environmental assessment, and infrastructure planning. For example, cellular service providers use satellite imagery to select the most ideal location for a communication tower. Crowsey Incorporated has the ability to use remote sensing capabilities to conduct spatial geographic visualizations and other remote-sensing services. Presently, the company has found a demand for these services in the area of litigation support. By using spatial information and analyses, Crowsey helps litigators understand and visualize complex issues and then to communicate a clear argument, with complete indisputable evidence. Crowsey Incorporated is a proud partner in NASA's Mississippi Space Commerce Initiative, with research offices at the John C. Stennis Space Center.

  18. Minimal-Approximation-Based Distributed Consensus Tracking of a Class of Uncertain Nonlinear Multiagent Systems With Unknown Control Directions.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2017-03-28

    A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.

  19. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  20. Remote Sensing Proxies for Vector-borne Disease Risk Assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Anyamba, A.

    2010-12-01

    The spread of re-emerging vector-borne diseases such Rift Valley fever (RVF) and Chikungunya (CHIK) is a major issue of global public health concern. This combined with a variable climate regime has opened an avenue for satellite remote sensing to contribute towards a comprehensive understanding of some of the drivers influencing such vector-borne disease outbreaks. Satellite derived measurements such as vegetation indices, rainfall estimates, and land-surface temperature; can be used to infer the complex mosaic of factors that influence ecology and habitat suitability, emergence and population dynamics of disease vectors. However, there are still some gaps in application including appropriate temporal resolution of remote sensing measurements, the complexity of the virus-vector-disease-ecology system and human components that contribute to disease risk that need to be addressed. Geographic Distribution of Recent Rift Valley fever oubreaks

  1. Materials science. Materials that couple sensing, actuation, computation, and communication.

    PubMed

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  2. Modeling Common-Sense Decisions

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.

  3. Fiber optic system for deflection and damage detection in morphing wing structures

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Djinovic, Z.; Schüller, M.

    2013-04-01

    Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.

  4. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  5. Hypothesis on human eye perceiving optical spectrum rather than an image

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Szu, Harold

    2015-05-01

    It is a common knowledge that we see the world because our eyes can perceive an optical image. A digital camera seems a good example of simulating the eye imaging system. However, the signal sensing and imaging on human retina is very complicated. There are at least five layers (of neurons) along the signal pathway: photoreceptors (cones and rods), bipolar, horizontal, amacrine and ganglion cells. To sense an optical image, it seems that photoreceptors (as sensors) plus ganglion cells (converting to electrical signals for transmission) are good enough. Image sensing does not require ununiformed distribution of photoreceptors like fovea. There are some challenging questions, for example, why don't we feel the "blind spots" (never fibers exiting the eyes)? Similar situation happens to glaucoma patients who do not feel their vision loss until 50% or more nerves died. Now our hypothesis is that human retina initially senses optical (i.e., Fourier) spectrum rather than optical image. Due to the symmetric property of Fourier spectrum the signal loss from a blind spot or the dead nerves (for glaucoma patients) can be recovered. Eye logarithmic response to input light intensity much likes displaying Fourier magnitude. The optics and structures of human eyes satisfy the needs of optical Fourier spectrum sampling. It is unsure that where and how inverse Fourier transform is performed in human vision system to obtain an optical image. Phase retrieval technique in compressive sensing domain enables image reconstruction even without phase inputs. The spectrum-based imaging system can potentially tolerate up to 50% of bad sensors (pixels), adapt to large dynamic range (with logarithmic response), etc.

  6. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  7. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  8. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  9. Feasibility Study of Space-based CO2 Remote Sensing Using Pulsed 2-micron Integrated Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.

    2016-12-01

    Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.

  10. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  11. Distributed sensor networks: a cellular nonlinear network perspective.

    PubMed

    Haenggi, Martin

    2003-12-01

    Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.

  12. A high speed, portable, multi-function, weigh-in-motion (WIM) sensing system and a high performance optical fiber Bragg grating (FBG) demodulator

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wei, Zhanxiong; Fan, Lingling; Yang, Shangming; Wang, Pengfei; Cui, Hong-Liang

    2010-04-01

    A high speed, portable, multi-function WIM sensing system based on Fiber Bragg Grating (FBG) technology is reported in this paper. This system is developed to measure the total weight, the distribution of weight of vehicle in motion, the distance of wheel axles and the distance between left and right wheels. In this system, a temperature control system and a real-time compensation system are employed to eliminate the drifts of optical fiber Fabry-Pérot tunable filter. Carbon Fiber Laminated Composites are used in the sensor heads to obtain high reliability and sensitivity. The speed of tested vehicles is up to 20 mph, the full scope of measurement is 4000 lbs, and the static resolution of sensor head is 20 lbs. The demodulator has high speed (500 Hz) data collection, and high stability. The demodulator and the light source are packed into a 17'' rack style enclosure. The prototype has been tested respectively at Stevens' campus and Army base. Some experiences of avoiding the pitfalls in developing this system are also presented in this paper.

  13. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.

    PubMed

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.

  14. Nonlinear Internal Waves on the Inner Shelf: Observations Using a Distributed Temperature Sensing (DTS) System.

    NASA Astrophysics Data System (ADS)

    Davis, K. A.; Reid, E. C.; Cohen, A. L.

    2016-02-01

    Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.

  15. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.

  16. Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Tan, Jindong; Xi, Ning

    2004-09-01

    This paper presents a novel model and distributed algorithms for the cooperation and redeployment of mobile sensor networks. A mobile sensor network composes of a collection of wireless connected mobile robots equipped with a variety of sensors. In such a sensor network, each mobile node has sensing, computation, communication, and locomotion capabilities. The locomotion ability enhances the autonomous deployment of the system. The system can be rapidly deployed to hostile environment, inaccessible terrains or disaster relief operations. The mobile sensor network is essentially a cooperative multiple robot system. This paper first presents a peer-to-peer model to define the relationship between neighboring communicating robots. Delaunay Triangulation and Voronoi diagrams are used to define the geometrical relationship between sensor nodes. This distributed model allows formal analysis for the fusion of spatio-temporal sensory information of the network. Based on the distributed model, this paper discusses a fault tolerant algorithm for autonomous self-deployment of the mobile robots. The algorithm considers the environment constraints, the presence of obstacles and the nonholonomic constraints of the robots. The distributed algorithm enables the system to reconfigure itself such that the area covered by the system can be enlarged. Simulation results have shown the effectiveness of the distributed model and deployment algorithms.

  17. A computerized Langmuir probe system

    NASA Astrophysics Data System (ADS)

    Pilling, L. S.; Bydder, E. L.; Carnegie, D. A.

    2003-07-01

    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA-100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier.

  18. Llamas: Large-area microphone arrays and sensing systems

    NASA Astrophysics Data System (ADS)

    Sanz-Robinson, Josue

    Large-area electronics (LAE) provides a platform to build sensing systems, based on distributing large numbers of densely spaced sensors over a physically-expansive space. Due to their flexible, "wallpaper-like" form factor, these systems can be seamlessly deployed in everyday spaces. They go beyond just supplying sensor readings, but rather they aim to transform the wealth of data from these sensors into actionable inferences about our physical environment. This requires vertically integrated systems that span the entirety of the signal processing chain, including transducers and devices, circuits, and signal processing algorithms. To this end we develop hybrid LAE / CMOS systems, which exploit the complementary strengths of LAE, enabling spatially distributed sensors, and CMOS ICs, providing computational capacity for signal processing. To explore the development of hybrid sensing systems, based on vertical integration across the signal processing chain, we focus on two main drivers: (1) thin-film diodes, and (2) microphone arrays for blind source separation: 1) Thin-film diodes are a key building block for many applications, such as RFID tags or power transfer over non-contact inductive links, which require rectifiers for AC-to-DC conversion. We developed hybrid amorphous / nanocrystalline silicon diodes, which are fabricated at low temperatures (<200 °C) to be compatible with processing on plastic, and have high current densities (5 A/cm2 at 1 V) and high frequency operation (cutoff frequency of 110 MHz). 2) We designed a system for separating the voices of multiple simultaneous speakers, which can ultimately be fed to a voice-command recognition engine for controlling electronic systems. On a device level, we developed flexible PVDF microphones, which were used to create a large-area microphone array. On a circuit level we developed localized a-Si TFT amplifiers, and a custom CMOS IC, for system control, sensor readout and digitization. On a signal processing level we developed an algorithm for blind source separation in a real, reverberant room, based on beamforming and binary masking. It requires no knowledge about the location of the speakers or microphones. Instead, it uses cluster analysis techniques to determine the time delays for beamforming; thus, adapting to the unique acoustic environment of the room.

  19. Earth Resources: A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  20. Earth resources: A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 579 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis.

  1. Earth resources, a continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 541 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  2. The Influence of Atmosphere Parameters on the Signal for Remote Sensing Polarimetric Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    Budak, Vladimir P.; Korkin, Sergey V.

    2009-03-01

    The singularity subtraction on the vectorial modification of spherical harmonics method (VMSH) of the solution of the vectorial radiative transfer equation boundary problem is applied to the problem of influence of atmosphere parameters on the polarimetric system signal. We assume in this model different phase matrices (Mie, Rayleigh, and Henyey-Greenstein), reflecting bottom and particle size distribution. The authors describe the main features of the model and some results of its implementation.

  3. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  4. Earth Resources: A continuing bibliography (issue 32)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography list 580 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  5. NASA Scientific Data Purchase Project: From Collection to User

    NASA Technical Reports Server (NTRS)

    Nicholson, Lamar; Policelli, Fritz; Fletcher, Rose

    2002-01-01

    NASA's Scientific Data Purchase (SDP) project is currently a $70 million operation managed by the Earth Science Applications Directorate at Stennis Space Center. The SDP project was developed in 1997 to purchase scientific data from commercial sources for distribution to NASA Earth science researchers. Our current data holdings include 8TB of remote sensing imagery consisting of 18 products from 4 companies. Our anticipated data volume is 60 TB by 2004, and we will be receiving new data products from several additional companies. Our current system capacity is 24 TB, expandable to 89 TB. Operations include tasking of new data collections, archive ordering, shipment verification, data validation, distribution, metrics, finances, customer feedback, and technical support. The program has been included in the Stennis Space Center Commercial Remote Sensing ISO 9001 registration since its inception. Our operational system includes automatic quality control checks on data received (with MatLab analysis); internally developed, custom Web-based interfaces that tie into commercial-off-the-shelf software; and an integrated relational database that links and tracks all data through operations. We've distributed nearly 1500 datasets, and almost 18,000 data files have been downloaded from our public web site; on a 10-point scale, our customer satisfaction index is 8.32 at a 23% response level. More information about the SDP is available on our Web site.

  6. NASA Remote Sensing Data in Earth Sciences: Processing, Archiving, Distribution, Applications at the GES DISC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.

    2005-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the major Distributed Active Archive Centers (DAACs) archiving and distributing remote sensing data from the NASA's Earth Observing System. In addition to providing just data, the GES DISC/DAAC has developed various value-adding processing services. A particularly useful service is data processing a t the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools (to avoid downloading unnecessary all the data). The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from data subsetting data spatially and/or by parameter to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. Shifting processing and data management burden from users to the GES DISC, allows scientists to concentrate on science, while the GES DISC handles the data management and data processing at a lower cost. Several examples of successful partnerships with scientists in the area of data processing and mining are presented.

  7. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  8. Fiber optic sensing technology for detecting gas hydrate formation and decomposition.

    PubMed

    Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  9. Fiber optic sensing technology for detecting gas hydrate formation and decomposition

    NASA Astrophysics Data System (ADS)

    Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  10. Experimental robot gripper control for handling of soft objects

    NASA Astrophysics Data System (ADS)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  11. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  12. Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)

  13. Applications of space observations to the management and utilization of coastal fishery resources

    NASA Technical Reports Server (NTRS)

    Kemmerer, A. J.; Savastano, K. J.; Faller, K. H.

    1977-01-01

    Information needs of those concerned with the harvest and management of coastal fishery resources can be satisfied in part through applications of satellite remote sensing. Recently completed and ongoing investigations have demonstrated potentials for defining fish distribution patterns from multispectral data, monitoring fishing distribution and effort with synthetic aperture radar systems, forecasting recruitment of certain estuarine-dependent species, and tracking marine mammals. These investigations, which are reviewed in this paper, have relied on Landsat 1 and 2, Skylab-3, and Nimbus-6 supported sensors and sensors carried by aircraft and mounted on surface platforms to simulate applications from Seasat-A and other future spacecraft systems. None of the systems are operational as all were designed to identify and demonstrate applications and to aid in the specification of requirements for future spaceborne systems.

  14. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  15. Students' Development of Structure Sense for the Distributive Law

    ERIC Educational Resources Information Center

    Schüler-Meyer, Alexander

    2017-01-01

    After being introduced to the distributive law in meaningful contexts, students need to extend its scope of application to unfamiliar expressions. In this article, a process model for the development of structure sense is developed. Building on this model, this article reports on a design research project in which exercise tasks support students…

  16. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother

    USDA-ARS?s Scientific Manuscript database

    This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...

  17. PoroTomo Subtask 3.2 Data files from the Distributed Acoustic Sensing experiment at Garner Valley, California

    DOE Data Explorer

    Chelsea Lancelle

    2013-09-11

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes all DAS data recorded during the experiment. The sampling rate for all files is 1000 samples per second. Any files with the same filename but ending in _01, _02, etc. represent sequential files from the same test. Locations of the sources are plotted on the basemap in GDR submission 481, titled: "PoroTomo Subtask 3.2 Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)." Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. 
https://agu.confex.com/agu/fm1/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  18. Superthermal photon bunching in terms of simple probability distributions

    NASA Astrophysics Data System (ADS)

    Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.

    2018-05-01

    We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.

  19. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Zhu, Meiling

    2016-05-01

    Human-based energy harvesters are attractive as sustainable replacements for batteries to power wearable or implantable devices and body sensor networks. In the work presented here, a knee-joint energy harvester (KEH) was introduced to power a customer-built wireless communication sensing node (WCSN). The KEH used a mechanical plucking technique to provide sufficient frequency up-conversion—from a few Hz to the resonant frequency of the KEH—so as to generate the high power required. It was actuated by a knee-joint simulator, which reproduced the knee-joint motion of human gaits at a walking frequency of 0.9 Hz. The energy generated was first stored in a reservoir capacitor and then released to the WCSN in a burst mode with the help of an energy aware interface. The WCSN was deployed with a three-axis accelerometer, a temperature sensor, and a light detector for data sensing. A Jennic microcontroller was utilised to collect and transmit the measured data to a base station placed at a distance of 4 m. The energy generation by the KEH and the energy distribution in the system was characterised in real time by an in-house-built set-up. The results showed that the KEH generated an average power output of 1.76 mW when powering the WCSN. After charging the reservoir capacitor for 28.4 s, the KEH can power the WCSN for a 46 ms period every 1.25 s. The results also clearly illustrated how the energy generated by the KEH was distributed in the system and highlighted the importance of using a high performance power management approach to improve the performance of the whole system.

  20. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber.

    PubMed

    Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-08-21

    Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.

  1. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  2. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  3. Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid

    NASA Astrophysics Data System (ADS)

    Horvath, Tomas; Munster, Petr; Vojtech, Josef; Velc, Radek; Oujezsky, Vaclav

    2018-01-01

    Optical fiber is the most used medium for current telecommunication networks. Besides data transmissions, special advanced applications like accurate time or stable frequency transmissions are more common, especially in research and education networks. On the other hand, new applications like distributed sensing are in ISP's interest because e.g. such sensing allows new service: protection of fiber infrastructure. Transmission of all applications in a single fiber can be very cost efficient but it is necessary to evaluate possible interaction before real application and deploying the service, especially if standard 100 GHz grid is considered. We performed laboratory measurement of simultaneous transmission of 100 G data based on DP-QPSK modulation format, accurate time, stable frequency and sensing system based on phase sensitive OTDR through two types of optical fibers, G.655 and G.653. These fibers are less common than G.652 fiber but thanks to their slightly higher nonlinear character, there are suitable for simulation of the worst case which can arise in a real network.

  4. THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James; Hubschman, Jean-Pierre; Deng, Sophie; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging. PMID:26322247

  5. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  6. Satellite land remote sensing advancements for the eighties; Proceedings of the Eighth Pecora Symposium, Sioux Falls, SD, October 4-7, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.

  7. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  8. Linear- and Repetitive-Feature Detection Within Remotely Sensed Imagery

    DTIC Science & Technology

    2017-04-01

    public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest...Imagery Brendan West U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL) 72 Lyme Road...and Intelligence System (ARTEMIS) U.S. Army Engineer Research and Development Center (ERDC) Cold Regions Research and Engineering Laboratory (CRREL

  9. Brady's Geothermal Field Distributed Temperature Sensing Data

    DOE Data Explorer

    Patterson, Jeremy

    2016-03-26

    This submission is an 8 day time history of vertical temperature measurements in Brady observation well 56-1 collected during the PoroTomo field experiment. The data was collected with a fiber-optic DTS system installed to a depth of 372 m below wellhead. DTS installation uses a double-loop set up. Data includes forward length and backward length temperature measurements.

  10. Surface Wind Field Analyses of Tropical Cyclones During TCS-08: Relative Impacts of Aircraft and Remotely-Sensed Observations

    DTIC Science & Technology

    2009-09-01

    Campaign (T- PARC ). Rare aircraft measurements in the western North Pacific are utilized to define surface wind distributions of TY Nuri, TY Sinlaku...The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T- PARC ). Rare aircraft measurements in the...3 C. TCS08/T- PARC ................................................................................................... 4 D

  11. Knowledge-based image data management - An expert front-end for the BROWSE facility

    NASA Technical Reports Server (NTRS)

    Stoms, David M.; Star, Jeffrey L.; Estes, John E.

    1988-01-01

    An intelligent user interface being added to the NASA-sponsored BROWSE testbed facility is described. BROWSE is a prototype system designed to explore issues involved in locating image data in distributed archives and displaying low-resolution versions of that imagery at a local terminal. For prototyping, the initial application is the remote sensing of forest and range land.

  12. Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy

    NASA Astrophysics Data System (ADS)

    Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio

    2018-05-01

    Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.

  13. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  14. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    PubMed

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  15. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  16. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm

    PubMed Central

    Song, Wei; Mei, Haibin

    2017-01-01

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699

  17. A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources.

    PubMed

    Moon, Sungrim; Pakhomov, Serguei; Liu, Nathan; Ryan, James O; Melton, Genevieve B

    2014-01-01

    To create a sense inventory of abbreviations and acronyms from clinical texts. The most frequently occurring abbreviations and acronyms from 352,267 dictated clinical notes were used to create a clinical sense inventory. Senses of each abbreviation and acronym were manually annotated from 500 random instances and lexically matched with long forms within the Unified Medical Language System (UMLS V.2011AB), Another Database of Abbreviations in Medline (ADAM), and Stedman's Dictionary, Medical Abbreviations, Acronyms & Symbols, 4th edition (Stedman's). Redundant long forms were merged after they were lexically normalized using Lexical Variant Generation (LVG). The clinical sense inventory was found to have skewed sense distributions, practice-specific senses, and incorrect uses. Of 440 abbreviations and acronyms analyzed in this study, 949 long forms were identified in clinical notes. This set was mapped to 17,359, 5233, and 4879 long forms in UMLS, ADAM, and Stedman's, respectively. After merging long forms, only 2.3% matched across all medical resources. The UMLS, ADAM, and Stedman's covered 5.7%, 8.4%, and 11% of the merged clinical long forms, respectively. The sense inventory of clinical abbreviations and acronyms and anonymized datasets generated from this study are available for public use at http://www.bmhi.umn.edu/ihi/research/nlpie/resources/index.htm ('Sense Inventories', website). Clinical sense inventories of abbreviations and acronyms created using clinical notes and medical dictionary resources demonstrate challenges with term coverage and resource integration. Further work is needed to help with standardizing abbreviations and acronyms in clinical care and biomedicine to facilitate automated processes such as text-mining and information extraction.

  18. An overview of the NSCAT/N-ROSS program

    NASA Technical Reports Server (NTRS)

    Martin, B. D.; Freilich, Michael H.; Li, F. K.; Callahan, Phillip S.

    1986-01-01

    The NASA Scatterometer (NSCAT) to fly on the U.S. Navy Remote Ocean Sensing System (N-ROSS) mission is presented. The overall N-ROSS mission, the NSCAT flight instrument and groundbased data processing/distribution system, and NASA-supported science and verification activities are described. The N-ROSS system is designed to provide measurements of near-surface wind, ocean topography, wave height, sea-surface temperature, and atmospheric water content over the global oceans. The NSCAT is an improved version of the Seasat scatterometer. It will measure near surface vector winds.

  19. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  20. Entropy Masking

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Stone, Leland (Technical Monitor)

    1997-01-01

    This paper details two projects that use the World Wide Web (WWW) for dissemination of curricula that focus on remote sensing. 1) Presenting grade-school students with the concepts used in remote sensing involves educating the teacher and then providing the teacher with lesson plans. In a NASA-sponsored project designed to introduce students in grades 4 through 12 to some of the ideas and terminology used in remote sensing, teachers from local grade schools and middle schools were recruited to write lessons about remote sensing concepts they could use in their classrooms. Twenty-two lessons were produced and placed in seven modules that include: the electromagnetic spectrum, two- and three-dimensional perception, maps and topography, scale, remote sensing, biotic and abiotic concepts, and landscape chi rise. Each lesson includes a section that evaluates what students have learned by doing the exercise. The lessons, instead of being published in a workbook and distributed to a limited number of teachers, have been placed on a WWW server, enabling much broader access to the package. This arrangement also allows for the lessons to be modified after feedback from teachers accessing the package. 2) Two-year colleges serve to teach trade skills, prepare students for enrollment in senior institutions of learning, and more and more, retrain students who have college degrees in new technologies and skills. A NASA-sponsored curriculum development project is producing a curriculum using remote sensing analysis an Earth science applications. The project has three major goals. First, it will implement the use of remote sensing data in a broad range of community college courses. Second, it will create curriculum modules and classes that are transportable to other community colleges. Third, the project will be an ongoing source of data and curricular materials to other community colleges. The curriculum will have these course pathways to a certificate; a) a Science emphasis, b) an Arts and Letters emphasis, and c) a Computer Science emphasis Each pathway includes course work in remote sensing, geographical information systems (GIS), computer science, Earth science, software and technology utilization, and communication. Distribution of products from this project to other two-year colleges will be accomplished using the WWW.

  1. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  2. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  3. A remote-sensing, GIS-based approach to identify, characterize, and model spawning habitat for fall-run chum salmon in a sub-arctic, glacially fed river

    USGS Publications Warehouse

    Wirth, Lisa; Rosenberger, Amanda; Prakash, Anupma; Gens, Rudiger; Margraf, F. Joseph; Hamazaki, Toshihide

    2012-01-01

    At northern limits of a species’ distribution, fish habitat requirements are often linked to thermal preferences, and the presence of overwintering habitat. However, logistical challenges and hydrologic processes typical of glacial systems could compromize the identification of these habitats, particularly in large river environments. Our goal was to identify and characterize spawning habitat for fall-run chum salmon Oncorhynchus keta and model habitat selection from spatial distributions of tagged individuals in the Tanana River, Alaska using an approach that combined ground surveys with remote sensing. Models included braiding, sinuosity, ice-free water surface area (indicating groundwater influence), and persistent ice-free water (i.e., consistent presence of ice-free water for a 12-year period according to satellite imagery). Candidate models containing persistent ice-free water were selected as most likely, highlighting the utility of remote sensing for monitoring and identifying salmon habitat in remote areas. A combination of ground and remote surveys revealed spatial and temporal thermal characteristics of these habitats that could have strong biological implications. Persistent ice-free sites identified using synthetic aperture radar appear to serve as core areas for spawning fall chum salmon, and the importance of stability through time suggests a legacy of successful reproductive effort for this homing species. These features would not be captured with a one-visit traditional survey but rather required remote-sensing monitoring of the sites through time.

  4. Throughput assurance of wireless body area networks coexistence based on stochastic geometry

    PubMed Central

    Wang, Yinglong; Shu, Minglei; Wu, Shangbin

    2017-01-01

    Wireless body area networks (WBANs) are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp), transmit power of their nodes (Pt), and their carrier-sensing threshold (γ). Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP) type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks. PMID:28141841

  5. Citizen observatory of water as a data engine supporting the people-hydrology nexus: experience of the WeSenseIt project

    NASA Astrophysics Data System (ADS)

    Ferri, Michele; Baruffi, Francesco; Norbiato, Daniele; Monego, Martina; Tomei, Giovanni; Solomatine, Dimitri; Alfonso, Leonardo; Mazzoleni, Maurizio; Chacon, Juan Carlos; Wehn, Uta; Ciravegna, Fabio

    2016-04-01

    Citizen observatories (COs) present an interesting case of strong multi-facet feedback between the physical (water) system and humans. CO is a form of crowdsourcing ensuring a data flow from citizens observing environment (e.g. water level in a river) to a central data processing unit which is typically part of a more complex social arrangement (e.g. water authorities responsible for flood forecasting). The EU-funded project WeSenseIt (www.wesenseit.eu) aims at developing technologies and tools supporting creation of such COs [1,2,3,4]. Citizens which form a CO play the role of "social sensors" which however are very specific. The data streams from such sensors have varying temporal and spatial coverage and information value (uncertainty). The crowdsourced data can be of course simply visualized and presented to public, but it is much more interesting to consider cases when such data are assimilated into the existing forecasting systems, e.g. flood early warning systems based on hydrological and hydraulic models. COs may also affect water management and governance [4], and in fact can be seen as data engines supporting the people-hydrology nexus. In the framework of WeSenseIt project several approaches were developed allowing for optimal assimilation of intermittent data streams with varying spatial coverage into distributed hydrological models [1, 2]. The mentioned specific features of CO data required updates of the existing data assimilation algorithms (Ensemble Kalman Filter was used as the basic algorithm). The developed algorithms have been implemented in the operational flood forecasting systems of the Alto Adriatico Water Authority (AAWA), Venice. In this paper we analyse various scenarios of employing citizens data (COs) for flood forecasting. This study is partly supported by the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/). References [1] Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Res., 83, 323-339 (Online on September 1, 2015). [2] Mazzoleni M., Verlaan M., Alfonso L., Monego M., Norbiato D., Ferri M., and Solomatine D.P. (2015) Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?, Hydrology and Earth System Sciences, under review. [3] Mazzoleni M., Alfonso L. and Solomatine D.P. (2015) Effect of spatial distribution and quality of sensors on the assimilation of distributed streamflow observations in hydrological modeling, Hydrological Sciences Journal, under review. [4] Wehn, U., McCarty, S., Lanfranchi, V. and Tapsell, S. (2015) Citizen observatories as facilitators of change in water governance? Experiences from three European cases, Special Issue on ICTs and Water, Journal of Environmental Engineering and Management, 2073-2086.

  6. Study on Big Database Construction and its Application of Sample Data Collected in CHINA'S First National Geographic Conditions Census Based on Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Zhou, X.; Jia, Y.; Yang, G.; Bai, J.

    2018-04-01

    In the project of China's First National Geographic Conditions Census, millions of sample data have been collected all over the country for interpreting land cover based on remote sensing images, the quantity of data files reaches more than 12,000,000 and has grown in the following project of National Geographic Conditions Monitoring. By now, using database such as Oracle for storing the big data is the most effective method. However, applicable method is more significant for sample data's management and application. This paper studies a database construction method which is based on relational database with distributed file system. The vector data and file data are saved in different physical location. The key issues and solution method are discussed. Based on this, it studies the application method of sample data and analyzes some kinds of using cases, which could lay the foundation for sample data's application. Particularly, sample data locating in Shaanxi province are selected for verifying the method. At the same time, it takes 10 first-level classes which defined in the land cover classification system for example, and analyzes the spatial distribution and density characteristics of all kinds of sample data. The results verify that the method of database construction which is based on relational database with distributed file system is very useful and applicative for sample data's searching, analyzing and promoted application. Furthermore, sample data collected in the project of China's First National Geographic Conditions Census could be useful in the earth observation and land cover's quality assessment.

  7. Single-chip source-free terahertz spectroscope across 0.04-0.99 THz: combining sub-wavelength near-field sensing and regression analysis.

    PubMed

    Wu, Xue; Sengupta, Kaushik

    2018-03-19

    This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.

  8. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  9. Sensor Needs for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2000-01-01

    Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that could measure the populations of these types of bacteria would help the control and operation of bioreactors. J

  10. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yijian; Hong, Mingyi; Dall'Anese, Emiliano

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  12. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  13. Earth Resources: a continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists 337 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 31, 1980 and September 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  14. Earth resources: A continuing bibliography with indexes (issue 55)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography lists 368 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1987. Emphasis is placed on the use of remote sensing and geographical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  15. Earth resources: A continuing bibliography with indexes (issue 58)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  16. Earth resources: A continuing bibliography with indexes (issue 51)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  17. Earth Resources: A continuing bibliography, issue 28

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists 436 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1, 1980 and December 31, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems instrumentation and sensors, and economic analysis.

  18. Earth Resources: A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  19. Earth Resources: A continuing bibliography with indexes, Issue 35

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography list 587 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, and September 30, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  20. Earth resources: A continuing bibliography with indexes (issue 57)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 451 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  1. Earth resources: A continuing bibliography with indexes, issue 18

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography lists 434 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  2. Earth resources: A continuing bibliography with indexes (issue 62)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 544 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  3. Earth resources: A continuing bibliography with indexes (issue 47)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 524 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis.

  4. Earth Resources: A continuing bibliography with indexes, issue 20

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  5. Earth Resources: A continuing bibliography with indexes, issue 9

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography lists 418 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1976 and March 1976. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  6. Earth Resources: A continuing bibliography with indexes, issue 13

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This bibliography lists 524 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1977 and March 1977. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  7. Earth Resources: A continuing bibliography with indexes, issue 7

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography lists 492 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1975 and September 1975. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  8. Earth Resources: A continuing bibliography with indexes, issue 17

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography lists 775 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  9. Earth Resources: A continuing bibliography with indexes, issue 45

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This bibliography lists 494 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis.

  10. Earth Resources: A continuing bibliography, with indexes, issue 31

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists 505 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  11. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  12. Earth resources: A continuing bibliography with indexes (issue 52)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  13. Earth Resources: A continuing bibliography with indexes, issue 19

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography lists 337 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1 and September 30, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  14. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  15. Earth resources: A continuing bibliography (issue 26)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1, 1980 and June 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  16. Earth Resources, A Continuing Bibliography with Indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis.

  17. Earth resources: a continuing bibliography, issue 46

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-07-01

    This bibliography lists 467 reports, articles and other documents introdcued into the NASA scientific and technical information system between April 1 and June 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental cultural resources geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis.

  18. Earth Resources: A continuing bibliography with indexes (Issue 37)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  19. Earth resources: A continuing bibliography with indexes, issue 50

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

  20. Earth resources: A continuing bibliography with indexes (issue 54)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This bibliography lists 562 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1987. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis.

Top