Sample records for distributed software architecture

  1. ESPC Common Model Architecture

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Common Model Architecture Earth System Modeling...Operational Prediction Capability (NUOPC) was established between NOAA and Navy to develop common software architecture for easy and efficient...development under a common model architecture and other software-related standards in this project. OBJECTIVES NUOPC proposes to accelerate

  2. Architecture-Centric Development in Globally Distributed Projects

    NASA Astrophysics Data System (ADS)

    Sauer, Joachim

    In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.

  3. Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop

    DTIC Science & Technology

    2006-08-01

    Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop Robert L. Nord August 2006 TECHNICAL REPORT CMU...SEI-2006-TR-010 ESC-TR-2006-010 Software Architecture Technology Initiative Unlimited distribution subject to the copyright. This report was...Participants 3 3 Presentations 5 3.1 SATURN Opening Presentation: Future Directions of the Software Architecture Technology Initiative 5 3.2 Keynote

  4. Guidance and Navigation Software Architecture Design for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) Test Bed

    DTIC Science & Technology

    2006-12-01

    NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI

  5. A distributed data acquisition software scheme for the Laboratory Telerobotic Manipulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.L.; Glassell, R.L.; Rowe, J.C.

    1990-01-01

    A custom software architecture was developed for use in the Laboratory Telerobotic Manipulator (LTM) to provide support for the distributed data acquisition electronics. This architecture was designed to provide a comprehensive development environment that proved to be useful for both hardware and software debugging. This paper describes the development environment and the operational characteristics of the real-time data acquisition software. 8 refs., 5 figs.

  6. Software architecture of INO340 telescope control system

    NASA Astrophysics Data System (ADS)

    Ravanmehr, Reza; Khosroshahi, Habib

    2016-08-01

    The software architecture plays an important role in distributed control system of astronomical projects because many subsystems and components must work together in a consistent and reliable way. We have utilized a customized architecture design approach based on "4+1 view model" in order to design INOCS software architecture. In this paper, after reviewing the top level INOCS architecture, we present the software architecture model of INOCS inspired by "4+1 model", for this purpose we provide logical, process, development, physical, and scenario views of our architecture using different UML diagrams and other illustrative visual charts. Each view presents INOCS software architecture from a different perspective. We finish the paper by science data operation of INO340 and the concluding remarks.

  7. ModSAF Software Architecture Design and Overview Document

    DTIC Science & Technology

    1993-12-20

    ADVANCED DISTRIBUTED SIMULATIONTECHNOLOGY AD-A282 740 ModSAF SOFTWARE ARCHITECTURE DESIGN AND OVERVIEW DOCUMENT Ver 1.0 - 20 December 1993 D T...AND SUBTITLE 5. FUNDING NUMBERS MOdSAF SOFTWARE ARCHITECTURE DESIGN AND OVERVIEW DOCUMENT C N61339-91-D-O00, Delivery Order (0021), ModSAF (CDRL A004) 6

  8. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  9. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  10. JPL Facilities and Software for Collaborative Design: 1994 - Present

    NASA Technical Reports Server (NTRS)

    DeFlorio, Paul A.

    2004-01-01

    The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.

  11. Computer Sciences and Data Systems, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.

  12. Software Architecture of Sensor Data Distribution In Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo

    2006-01-01

    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.

  13. Assessment of the integration capability of system architectures from a complex and distributed software systems perspective

    NASA Astrophysics Data System (ADS)

    Leuchter, S.; Reinert, F.; Müller, W.

    2014-06-01

    Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.

  14. A synchronized computational architecture for generalized bilateral control of robot arms

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.

  15. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  16. OASIS: a data and software distribution service for Open Science Grid

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; De Stefano, J.; Hover, J.; Quick, R.; Teige, S.

    2014-06-01

    The Open Science Grid encourages the concept of software portability: a user's scientific application should be able to run at as many sites as possible. It is necessary to provide a mechanism for OSG Virtual Organizations to install software at sites. Since its initial release, the OSG Compute Element has provided an application software installation directory to Virtual Organizations, where they can create their own sub-directory, install software into that sub-directory, and have the directory shared on the worker nodes at that site. The current model has shortcomings with regard to permissions, policies, versioning, and the lack of a unified, collective procedure or toolset for deploying software across all sites. Therefore, a new mechanism for data and software distributing is desirable. The architecture for the OSG Application Software Installation Service (OASIS) is a server-client model: the software and data are installed only once in a single place, and are automatically distributed to all client sites simultaneously. Central file distribution offers other advantages, including server-side authentication and authorization, activity records, quota management, data validation and inspection, and well-defined versioning and deletion policies. The architecture, as well as a complete analysis of the current implementation, will be described in this paper.

  17. A resilient and secure software platform and architecture for distributed spacecraft

    NASA Astrophysics Data System (ADS)

    Otte, William R.; Dubey, Abhishek; Karsai, Gabor

    2014-06-01

    A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.

  18. Data Strategies to Support Automated Multi-Sensor Data Fusion in a Service Oriented Architecture

    DTIC Science & Technology

    2008-06-01

    and employ vast quantities of content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the...UDDI), Simple Order Access Protocol (SOAP), Java, Maritime Domain Awareness (MDA), Business Process Execution Language for Web Service (BPEL4WS) 16...content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the development of a distributed

  19. DataHub knowledge based assistance for science visualization and analysis using large distributed databases

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Collins, Donald J.; Doyle, Richard J.; Jacobson, Allan S.

    1991-01-01

    Viewgraphs on DataHub knowledge based assistance for science visualization and analysis using large distributed databases. Topics covered include: DataHub functional architecture; data representation; logical access methods; preliminary software architecture; LinkWinds; data knowledge issues; expert systems; and data management.

  20. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  1. Integrating software architectures for distributed simulations and simulation analysis communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael

    2005-10-01

    The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context ofmore » the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.« less

  2. Hypercluster Parallel Processor

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela

    1992-01-01

    Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.

  3. Evolutionary Telemetry and Command Processor (TCP) architecture

    NASA Technical Reports Server (NTRS)

    Schneider, John R.

    1992-01-01

    A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.

  4. Software/hardware distributed processing network supporting the Ada environment

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.; Pryk, Zen

    1993-09-01

    A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.

  5. Towards an Open, Distributed Software Architecture for UxS Operations

    NASA Technical Reports Server (NTRS)

    Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette

    2015-01-01

    To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.

  6. Performance Analysis of Distributed Object-Oriented Applications

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1998-01-01

    The purpose of this research was to evaluate the efficiency of a distributed simulation architecture which creates individual modules which are made self-scheduling through the use of a message-based communication system used for requesting input data from another module which is the source of that data. To make the architecture as general as possible, the message-based communication architecture was implemented using standard remote object architectures (Common Object Request Broker Architecture (CORBA) and/or Distributed Component Object Model (DCOM)). A series of experiments were run in which different systems are distributed in a variety of ways across multiple computers and the performance evaluated. The experiments were duplicated in each case so that the overhead due to message communication and data transmission can be separated from the time required to actually perform the computational update of a module each iteration. The software used to distribute the modules across multiple computers was developed in the first year of the current grant and was modified considerably to add a message-based communication scheme supported by the DCOM distributed object architecture. The resulting performance was analyzed using a model created during the first year of this grant which predicts the overhead due to CORBA and DCOM remote procedure calls and includes the effects of data passed to and from the remote objects. A report covering the distributed simulation software and the results of the performance experiments has been submitted separately. The above report also discusses possible future work to apply the methodology to dynamically distribute the simulation modules so as to minimize overall computation time.

  7. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  8. System Engineering Strategy for Distributed Multi-Purpose Simulation Architectures

    NASA Technical Reports Server (NTRS)

    Bhula, Dlilpkumar; Kurt, Cindy Marie; Luty, Roger

    2007-01-01

    This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.

  9. Implementation of a parallel unstructured Euler solver on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Das, Raja; Saltz, Joel; Vermeland, R. E.

    1992-01-01

    An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory computer. This paper relates the experiences gained and describes the software tools and hardware used in this study. Performance comparisons between two differing architectures are made.

  10. SimBOX: a scalable architecture for aggregate distributed command and control of spaceport and service constellation

    NASA Astrophysics Data System (ADS)

    Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj

    2004-08-01

    In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called SimBOX that will use some of the real-time infrastructure (RTI) functionality from the current military real-time simulation architecture. The uniqueness of the approach is to provide a "plug and play environment" for various system components that run at various data rates (Hz) and the ability to replicate or transfer C2 operations to various subsystems in a scalable manner. This is possible by providing a communication bus called "Distributed Shared Data Bus" and a distributed computing environment used to scale the control needs by providing a self-contained computing, data logging and control function module that can be rapidly reconfigured to perform different functions. This kind of software-enabled control is very much needed to meet the needs of future aerospace command and control functions.

  11. SimBox: a simulation-based scalable architecture for distributed command and control of spaceport and service constellations

    NASA Astrophysics Data System (ADS)

    Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj

    2004-09-01

    In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called SimBOX that will use some of the real-time infrastructure (RTI) functionality from the current military real-time simulation architecture. The uniqueness of the approach is to provide a "plug and play environment" for various system components that run at various data rates (Hz) and the ability to replicate or transfer C2 operations to various subsystems in a scalable manner. This is possible by providing a communication bus called "Distributed Shared Data Bus" and a distributed computing environment used to scale the control needs by providing a self-contained computing, data logging and control function module that can be rapidly reconfigured to perform different functions. This kind of software-enabled control is very much needed to meet the needs of future aerospace command and control functions.

  12. LEGOS: Object-based software components for mission-critical systems. Final report, June 1, 1995--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less

  13. Hardware/software codesign for embedded RISC core

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    2001-12-01

    This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.

  14. Three-Dimensional Nanobiocomputing Architectures With Neuronal Hypercells

    DTIC Science & Technology

    2007-06-01

    Neumann architectures, and CMOS fabrication. Novel solutions of massive parallel distributed computing and processing (pipelined due to systolic... and processing platforms utilizing molecular hardware within an enabling organization and architecture. The design technology is based on utilizing a...Microsystems and Nanotechnologies investigated a novel 3D3 (Hardware Software Nanotechnology) technology to design super-high performance computing

  15. "WWW.MDTF.ORG": a World Wide Web forum for developing open-architecture, freely distributed, digital teaching file software by participant consensus.

    PubMed

    Katzman, G L; Morris, D; Lauman, J; Cochella, C; Goede, P; Harnsberger, H R

    2001-06-01

    To foster a community supported evaluation processes for open-source digital teaching file (DTF) development and maintenance. The mechanisms used to support this process will include standard web browsers, web servers, forum software, and custom additions to the forum software to potentially enable a mediated voting protocol. The web server will also serve as a focal point for beta and release software distribution, which is the desired end-goal of this process. We foresee that www.mdtf.org will provide for widespread distribution of open source DTF software that will include function and interface design decisions from community participation on the website forums.

  16. Distributed controller clustering in software defined networks.

    PubMed

    Abdelaziz, Ahmed; Fong, Ang Tan; Gani, Abdullah; Garba, Usman; Khan, Suleman; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  17. The ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Farris, Allen; Sommer, Heiko

    2004-09-01

    The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.

  18. Achieving High Performance With TCP Over 40 GbE on NUMA Architectures for CMS Data Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bawej, Tomasz; et al.

    2014-01-01

    TCP and the socket abstraction have barely changed over the last two decades, but at the network layer there has been a giant leap from a few megabits to 100 gigabits in bandwidth. At the same time, CPU architectures have evolved into the multicore era and applications are expected to make full use of all available resources. Applications in the data acquisition domain based on the standard socket library running in a Non-Uniform Memory Access (NUMA) architecture are unable to reach full efficiency and scalability without the software being adequately aware about the IRQ (Interrupt Request), CPU and memory affinities.more » During the first long shutdown of LHC, the CMS DAQ system is going to be upgraded for operation from 2015 onwards and a new software component has been designed and developed in the CMS online framework for transferring data with sockets. This software attempts to wrap the low-level socket library to ease higher-level programming with an API based on an asynchronous event driven model similar to the DAT uDAPL API. It is an event-based application with NUMA optimizations, that allows for a high throughput of data across a large distributed system. This paper describes the architecture, the technologies involved and the performance measurements of the software in the context of the CMS distributed event building.« less

  19. A novel software architecture for the provision of context-aware semantic transport information.

    PubMed

    Moreno, Asier; Perallos, Asier; López-de-Ipiña, Diego; Onieva, Enrique; Salaberria, Itziar; Masegosa, Antonio D

    2015-05-26

    The effectiveness of Intelligent Transportation Systems depends largely on the ability to integrate information from diverse sources and the suitability of this information for the specific user. This paper describes a new approach for the management and exchange of this information, related to multimodal transportation. A novel software architecture is presented, with particular emphasis on the design of the data model and the enablement of services for information retrieval, thereby obtaining a semantic model for the representation of transport information. The publication of transport data as semantic information is established through the development of a Multimodal Transport Ontology (MTO) and the design of a distributed architecture allowing dynamic integration of transport data. The advantages afforded by the proposed system due to the use of Linked Open Data and a distributed architecture are stated, comparing it with other existing solutions. The adequacy of the information generated in regard to the specific user's context is also addressed. Finally, a working solution of a semantic trip planner using actual transport data and running on the proposed architecture is presented, as a demonstration and validation of the system.

  20. Trends and New Directions in Software Architecture

    DTIC Science & Technology

    2014-10-10

    frameworks  Open source  Cloud strategies  NoSQL  Machine Learning  MDD  Incremental approaches  Dashboards  Distributed development...complexity grows  NoSQL Models are not created equal 2014 Our Current Research  Lightweight Evaluation and Architecture Prototyping for Big Data

  1. Simulator for concurrent processing data flow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.

    1992-01-01

    A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.

  2. Diamond Eye: a distributed architecture for image data mining

    NASA Astrophysics Data System (ADS)

    Burl, Michael C.; Fowlkes, Charless; Roden, Joe; Stechert, Andre; Mukhtar, Saleem

    1999-02-01

    Diamond Eye is a distributed software architecture, which enables users (scientists) to analyze large image collections by interacting with one or more custom data mining servers via a Java applet interface. Each server is coupled with an object-oriented database and a computational engine, such as a network of high-performance workstations. The database provides persistent storage and supports querying of the 'mined' information. The computational engine provides parallel execution of expensive image processing, object recognition, and query-by-content operations. Key benefits of the Diamond Eye architecture are: (1) the design promotes trial evaluation of advanced data mining and machine learning techniques by potential new users (all that is required is to point a web browser to the appropriate URL), (2) software infrastructure that is common across a range of science mining applications is factored out and reused, and (3) the system facilitates closer collaborations between algorithm developers and domain experts.

  3. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  4. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    NASA Astrophysics Data System (ADS)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  5. Architecture of distributed picture archiving and communication systems for storing and processing high resolution medical images

    NASA Astrophysics Data System (ADS)

    Tokareva, Victoria

    2018-04-01

    New generation medicine demands a better quality of analysis increasing the amount of data collected during checkups, and simultaneously decreasing the invasiveness of a procedure. Thus it becomes urgent not only to develop advanced modern hardware, but also to implement special software infrastructure for using it in everyday clinical practice, so-called Picture Archiving and Communication Systems (PACS). Developing distributed PACS is a challenging task for nowadays medical informatics. The paper discusses the architecture of distributed PACS server for processing large high-quality medical images, with respect to technical specifications of modern medical imaging hardware, as well as international standards in medical imaging software. The MapReduce paradigm is proposed for image reconstruction by server, and the details of utilizing the Hadoop framework for this task are being discussed in order to provide the design of distributed PACS as ergonomic and adapted to the needs of end users as possible.

  6. Software architecture for a distributed real-time system in Ada, with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Olsen, Douglas R.; Messiora, Steve; Leake, Stephen

    1992-01-01

    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.

  7. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  8. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  9. Fault Management Architectures and the Challenges of Providing Software Assurance

    NASA Technical Reports Server (NTRS)

    Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek

    2015-01-01

    The satellite systems Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most is system complexity due to a need to establish a multi-dimensional structure across hardware, software and operations. This structure is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. These architecture, implementation and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (VV) is challenging. A breakout session at the 2012 NASA Independent Verification Validation (IVV) Annual Workshop titled VV of Fault Management: Challenges and Successes exposed these issues in terms of VV for a representative set of architectures. NASA's IVV is funded by NASA's Software Assurance Research Program (SARP) in partnership with NASA's Jet Propulsion Laboratory (JPL) to extend the work performed at the Workshop session. NASA IVV will extract FM architectures across the IVV portfolio and evaluate the data set for robustness, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This work focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures, visibility, and associated VVIVV techniques provides a data set that can enable higher assurance that a satellite system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the satellite community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research including identification of FM architectures, visibility observations, and methods utilized for VVIVV.

  10. Distributed controller clustering in software defined networks

    PubMed Central

    Gani, Abdullah; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability. PMID:28384312

  11. CHIME: A Metadata-Based Distributed Software Development Environment

    DTIC Science & Technology

    2005-01-01

    structures by using typography , graphics , and animation. The Software Im- mersion in our conceptual model for CHIME can be seen as a form of Software...Even small- to medium-sized development efforts may involve hundreds of artifacts -- design documents, change requests, test cases and results, code...for managing and organizing information from all phases of the software lifecycle. CHIME is designed around an XML-based metadata architecture, in

  12. Flexible distributed architecture for semiconductor process control and experimentation

    NASA Astrophysics Data System (ADS)

    Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.

    1997-01-01

    Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.

  13. A Structured Approach for Reviewing Architecture Documentation

    DTIC Science & Technology

    2009-12-01

    as those found in ISO 12207 [ ISO /IEC 12207 :2008] (for software engineering), ISO 15288 [ ISO /IEC 15288:2008] (for systems engineering), the Rational...Open Distributed Processing - Reference Model: Foundations ( ISO /IEC 10746-2). 1996. [ ISO /IEC 12207 :2008] International Organization for...Standardization & International Electrotechnical Commission. Sys- tems and software engineering – Software life cycle processes ( ISO /IEC 12207 ). 2008. [ ISO

  14. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.

    2003-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).

  15. A Novel Software Architecture for the Provision of Context-Aware Semantic Transport Information

    PubMed Central

    Moreno, Asier; Perallos, Asier; López-de-Ipiña, Diego; Onieva, Enrique; Salaberria, Itziar; Masegosa, Antonio D.

    2015-01-01

    The effectiveness of Intelligent Transportation Systems depends largely on the ability to integrate information from diverse sources and the suitability of this information for the specific user. This paper describes a new approach for the management and exchange of this information, related to multimodal transportation. A novel software architecture is presented, with particular emphasis on the design of the data model and the enablement of services for information retrieval, thereby obtaining a semantic model for the representation of transport information. The publication of transport data as semantic information is established through the development of a Multimodal Transport Ontology (MTO) and the design of a distributed architecture allowing dynamic integration of transport data. The advantages afforded by the proposed system due to the use of Linked Open Data and a distributed architecture are stated, comparing it with other existing solutions. The adequacy of the information generated in regard to the specific user’s context is also addressed. Finally, a working solution of a semantic trip planner using actual transport data and running on the proposed architecture is presented, as a demonstration and validation of the system. PMID:26016915

  16. An Inverse Modeling Plugin for HydroDesktop using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio, C.; Over, M. W.; Rubin, Y.

    2011-12-01

    The CUAHSI Hydrologic Information System (HIS) software stack is based on an open and extensible architecture that facilitates the addition of new functions and capabilities at both the server side (using HydroServer) and the client side (using HydroDesktop). The HydroDesktop client plugin architecture is used here to expose a new scripting based plugin that makes use of the R statistics software as a means for conducting inverse modeling using the Method of Anchored Distributions (MAD). MAD is a Bayesian inversion technique for conditioning computational model parameters on relevant field observations yielding probabilistic distributions of the model parameters, related to the spatial random variable of interest, by assimilating multi-type and multi-scale data. The implementation of a desktop software tool for using the MAD technique is expected to significantly lower the barrier to use of inverse modeling in education, research, and resource management. The HydroDesktop MAD plugin is being developed following a community-based, open-source approach that will help both its adoption and long term sustainability as a user tool. This presentation will briefly introduce MAD, HydroDesktop, and the MAD plugin and software development effort.

  17. Distributed Engine Control Empirical/Analytical Verification Tools

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.

  18. IPAD products and implications for the future

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.

    1980-01-01

    The betterment of productivity through the improvement of product quality and the reduction of cost is addressed. Productivity improvement is sought through (1) reduction of required resources, (2) improved ask results through the management of such saved resources, (3) reduced downstream costs through manufacturing-oriented engineering, and (4) lowered risks in the making of product design decisions. The IPAD products are both hardware architecture and software distributed over a number of heterogeneous computers in this architecture. These IPAD products are described in terms of capability and engineering usefulness. The future implications of state-of-the-art IPAD hardware and software architectures are discussed in terms of their impact on the functions and on structures of organizations concerned with creating products.

  19. GBU-X bounding requirements for highly flexible munitions

    NASA Astrophysics Data System (ADS)

    Bagby, Patrick T.; Shaver, Jonathan; White, Reed; Cafarelli, Sergio; Hébert, Anthony J.

    2017-04-01

    This paper will present the results of an investigation into requirements for existing software and hardware solutions for open digital communication architectures that support weapon subsystem integration. The underlying requirements of such a communication architecture would be to achieve the lowest latency possible at a reasonable cost point with respect to the mission objective of the weapon. The determination of the latency requirements of the open architecture software and hardware were derived through the use of control system and stability margins analyses. Studies were performed on the throughput and latency of different existing communication transport methods. The two architectures that were tested in this study include Data Distribution Service (DDS) and Modular Open Network Architecture (MONARCH). This paper defines what levels of latency can be achieved with current technology and how this capability may translate to future weapons. The requirements moving forward within communications solutions are discussed.

  20. Software structure for Vega/Chara instrument

    NASA Astrophysics Data System (ADS)

    Clausse, J.-M.

    2008-07-01

    VEGA (Visible spEctroGraph and polArimeter) is one of the focal instruments of the CHARA array at Mount Wilson near Los Angeles. Its control system is based on techniques developed on the GI2T interferometer (Grand Interferometre a 2 Telescopes) and on the SIRIUS fibered hyper telescope testbed at OCA (Observatoire de la Cote d'Azur). This article describes the software and electronics architecture of the instrument. It is based on local network architecture and uses also Virtual Private Network connections. The server part is based on Windows XP (VC++). The control software is on Linux (C, GTK). For the control of the science detector and the fringe tracking systems, distributed API use real-time techniques. The control software gathers all the necessary informations of the instrument. It allows an automatic management of the instrument by using an original task scheduler. This architecture intends to drive the instrument from remote sites, such as our institute in South of France.

  1. Architectures for Distributed and Complex M-Learning Systems: Applying Intelligent Technologies

    ERIC Educational Resources Information Center

    Caballe, Santi, Ed.; Xhafa, Fatos, Ed.; Daradoumis, Thanasis, Ed.; Juan, Angel A., Ed.

    2009-01-01

    Over the last decade, the needs of educational organizations have been changing in accordance with increasingly complex pedagogical models and with the technological evolution of e-learning environments with very dynamic teaching and learning requirements. This book explores state-of-the-art software architectures and platforms used to support…

  2. An Environment for Incremental Development of Distributed Extensible Asynchronous Real-time Systems

    NASA Technical Reports Server (NTRS)

    Ames, Charles K.; Burleigh, Scott; Briggs, Hugh C.; Auernheimer, Brent

    1996-01-01

    Incremental parallel development of distributed real-time systems is difficult. Architectural techniques and software tools developed at the Jet Propulsion Laboratory's (JPL's) Flight System Testbed make feasible the integration of complex systems in various stages of development.

  3. Control software and electronics architecture design in the framework of the E-ELT instrumentation

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.

    2010-07-01

    During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.

  4. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  5. Fault Management Architectures and the Challenges of Providing Software Assurance

    NASA Technical Reports Server (NTRS)

    Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek

    2015-01-01

    Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research.

  6. An overview of the National Earthquake Information Center acquisition software system, Edge/Continuous Waveform Buffer

    USGS Publications Warehouse

    Patton, John M.; Ketchum, David C.; Guy, Michelle R.

    2015-11-02

    This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.

  7. Incorporating client-server database architecture and graphical user interface into outpatient medical records.

    PubMed Central

    Fiacco, P. A.; Rice, W. H.

    1991-01-01

    Computerized medical record systems require structured database architectures for information processing. However, the data must be able to be transferred across heterogeneous platform and software systems. Client-Server architecture allows for distributive processing of information among networked computers and provides the flexibility needed to link diverse systems together effectively. We have incorporated this client-server model with a graphical user interface into an outpatient medical record system, known as SuperChart, for the Department of Family Medicine at SUNY Health Science Center at Syracuse. SuperChart was developed using SuperCard and Oracle SuperCard uses modern object-oriented programming to support a hypermedia environment. Oracle is a powerful relational database management system that incorporates a client-server architecture. This provides both a distributed database and distributed processing which improves performance. PMID:1807732

  8. Clinical results of HIS, RIS, PACS integration using data integration CASE tools

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Chan, Hing-Ming; Breant, Claudine M.; Huang, Lu J.; Valentino, Daniel J.

    1995-05-01

    Current infrastructure research in PACS is dominated by the development of communication networks (local area networks, teleradiology, ATM networks, etc.), multimedia display workstations, and hierarchical image storage architectures. However, limited work has been performed on developing flexible, expansible, and intelligent information processing architectures for the vast decentralized image and text data repositories prevalent in healthcare environments. Patient information is often distributed among multiple data management systems. Current large-scale efforts to integrate medical information and knowledge sources have been costly with limited retrieval functionality. Software integration strategies to unify distributed data and knowledge sources is still lacking commercially. Systems heterogeneity (i.e., differences in hardware platforms, communication protocols, database management software, nomenclature, etc.) is at the heart of the problem and is unlikely to be standardized in the near future. In this paper, we demonstrate the use of newly available CASE (computer- aided software engineering) tools to rapidly integrate HIS, RIS, and PACS information systems. The advantages of these tools include fast development time (low-level code is generated from graphical specifications), and easy system maintenance (excellent documentation, easy to perform changes, and centralized code repository in an object-oriented database). The CASE tools are used to develop and manage the `middle-ware' in our client- mediator-serve architecture for systems integration. Our architecture is scalable and can accommodate heterogeneous database and communication protocols.

  9. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  10. Evaluation of a low-end architecture for collaborative software development, remote observing, and data analysis from multiple sites

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro; Otruba, Wolfgang; Hanslmeier, Arnold

    2000-06-01

    The Kanzelhoehe Solar Observatory is an observing facility located in Carinthia (Austria) and operated by the Institute of Geophysics, Astrophysics and Meteorology of the Karl- Franzens University Graz. A set of instruments for solar surveillance at different wavelengths bands is continuously operated in automatic mode and is presently being upgraded to be used in supplying near-real-time solar activity indexes for space weather applications. In this frame, we tested a low-end software/hardware architecture running on the PC platform in a non-homogeneous, remotely distributed environment that allows efficient or moderately efficient application sharing at the Intranet and Extranet (i.e., Wide Area Network) levels respectively. Due to the geographical distributed of participating teams (Trieste, Italy; Kanzelhoehe and Graz, Austria), we have been using such features for collaborative remote software development and testing, data analysis and calibration, and observing run emulation from multiple sites as well. In this work, we describe the used architecture and its performances based on a series of application sharing tests we carried out to ascertain its effectiveness in real collaborative remote work, observations and data exchange. The system proved to be reliable at the Intranet level for most distributed tasks, limited to less demanding ones at the Extranet level, but quite effective in remote instrument control when real time response is not needed.

  11. Mission Services Evolution Center Message Bus

    NASA Technical Reports Server (NTRS)

    Mayorga, Arturo; Bristow, John O.; Butschky, Mike

    2011-01-01

    The Goddard Mission Services Evolution Center (GMSEC) Message Bus is a robust, lightweight, fault-tolerant middleware implementation that supports all messaging capabilities of the GMSEC API. This architecture is a distributed software system that routes messages based on message subject names and knowledge of the locations in the network of the interested software components.

  12. A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures

    ERIC Educational Resources Information Center

    Ziwisky, Michael; Persohn, Kyle; Brylow, Dennis

    2013-01-01

    We present "Xipx," the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives…

  13. CAD/CAE Integration Enhanced by New CAD Services Standard

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2002-01-01

    A Government-industry team led by the NASA Glenn Research Center has developed a computer interface standard for accessing data from computer-aided design (CAD) systems. The Object Management Group, an international computer standards organization, has adopted this CAD services standard. The new standard allows software (e.g., computer-aided engineering (CAE) and computer-aided manufacturing software to access multiple CAD systems through one programming interface. The interface is built on top of a distributed computing system called the Common Object Request Broker Architecture (CORBA). CORBA allows the CAD services software to operate in a distributed, heterogeneous computing environment.

  14. The deployment of routing protocols in distributed control plane of SDN.

    PubMed

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  15. Construction of integrated case environments.

    PubMed

    Losavio, Francisca; Matteo, Alfredo; Pérez, María

    2003-01-01

    The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.

  16. Information architecture for a planetary 'exploration web'

    NASA Technical Reports Server (NTRS)

    Lamarra, N.; McVittie, T.

    2002-01-01

    'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

  17. Unified web-based network management based on distributed object orientated software agents

    NASA Astrophysics Data System (ADS)

    Djalalian, Amir; Mukhtar, Rami; Zukerman, Moshe

    2002-09-01

    This paper presents an architecture that provides a unified web interface to managed network devices that support CORBA, OSI or Internet-based network management protocols. A client gains access to managed devices through a web browser, which is used to issue management operations and receive event notifications. The proposed architecture is compatible with both the OSI Management reference Model and CORBA. The steps required for designing the building blocks of such architecture are identified.

  18. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling.more » The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.« less

  19. The Use of Software Agents for Autonomous Control of a DC Space Power System

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Loparo, Kenneth A.

    2014-01-01

    In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.

  20. An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

    NASA Technical Reports Server (NTRS)

    Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.

  1. Efficient Software Systems for Cardio Surgical Departments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Diomidous, M. J.

    2009-08-01

    Herein, the design implementation and deployment of an object oriented software system, suitable for the monitoring of cardio surgical departments, is investigated. Distributed design architectures are applied and the implemented software system can be deployed on distributed infrastructures. The software is flexible and adaptable to any cardio surgical environment regardless of the department resources used. The system exploits the relations and the interdependency of the successive bed positions that the patients occupy at the different health care units during their stay in a cardio surgical department, to determine bed availabilities and to perform patient scheduling and instant rescheduling whenever necessary. It also aims to successful monitoring of the workings of the cardio surgical departments in an efficient manner.

  2. Systems Architecture for Fully Autonomous Space Missions

    NASA Technical Reports Server (NTRS)

    Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

    2002-01-01

    The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.

  3. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  4. NanoDesign: Concepts and Software for a Nanotechnology Based on Functionalized Fullerenes

    NASA Technical Reports Server (NTRS)

    Globus, Al; Jaffe, Richard; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Eric Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. While attractive, diamonoid nanotechnology is not physically accessible with straightforward extensions of current laboratory techniques. We propose a nanotechnology based on functionalized fullerenes and investigate carbon nanotube based gears with teeth added via a benzyne reaction known to occur with C60. The gears are single-walled carbon nanotubes with appended coenzyme groups for teeth. Fullerenes are in widespread laboratory use and can be functionalized in many ways. Companion papers computationally demonstrate the properties of these gears (they appear to work) and the accessibility of the benzyne/nanotube reaction. This paper describes the molecular design techniques and rationale as well as the software that implements these design techniques. The software is a set of persistent C++ objects controlled by TCL command scripts. The c++/tcl interface is automatically generated by a software system called tcl_c++ developed by the author and described here. The objects keep track of different portions of the molecular machinery to allow different simulation techniques and boundary conditions to be applied as appropriate. This capability has been required to demonstrate (computationally) our gear's feasibility. A new distributed software architecture featuring a WWW universal client, CORBA distributed objects, and agent software is under consideration. The software architecture is intended to eventually enable a widely disbursed group to develop complex simulated molecular machines.

  5. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  6. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  7. Software Architecture for Big Data Systems

    DTIC Science & Technology

    2014-03-27

    Software Architecture: Trends and New Directions #SEIswArch © 2014 Carnegie Mellon University Software Architecture for Big Data Systems...AND SUBTITLE Software Architecture for Big Data Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ih - . Software Architecture: Trends and New Directions #SEIswArch © 2014 Carnegie Mellon University WHAT IS BIG DATA ? FROM A SOFTWARE

  8. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  9. Rapid Development of Custom Software Architecture Design Environments

    DTIC Science & Technology

    1999-08-01

    the tools themselves. This dissertation describes a new approach to capturing and using architectural design expertise in software architecture design environments...A language and tools are presented for capturing and encapsulating software architecture design expertise within a conceptual framework...of architectural styles and design rules. The design expertise thus captured is supported with an incrementally configurable software architecture

  10. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  11. Decentralized Formation Flying Control in a Multiple-Team Hierarchy

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph .; Thomas, Stephanie J.

    2005-01-01

    This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  12. Distributed asynchronous microprocessor architectures in fault tolerant integrated flight systems

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.

    1983-01-01

    The paper discusses the implementation of fault tolerant digital flight control and navigation systems for rotorcraft application. It is shown that in implementing fault tolerance at the systems level using advanced LSI/VLSI technology, aircraft physical layout and flight systems requirements tend to define a system architecture of distributed, asynchronous microprocessors in which fault tolerance can be achieved locally through hardware redundancy and/or globally through application of analytical redundancy. The effects of asynchronism on the execution of dynamic flight software is discussed. It is shown that if the asynchronous microprocessors have knowledge of time, these errors can be significantly reduced through appropiate modifications of the flight software. Finally, the papear extends previous work to show that through the combined use of time referencing and stable flight algorithms, individual microprocessors can be configured to autonomously tolerate intermittent faults.

  13. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  14. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  15. Methodical Design of Software Architecture Using an Architecture Design Assistant (ArchE)

    DTIC Science & Technology

    2005-04-01

    PA 15213-3890 Methodical Design of Software Architecture Using an Architecture Design Assistant (ArchE) Felix Bachmann and Mark Klein Software...DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Methodical Design of Software Architecture Using an Architecture Design Assistant...important for architecture design – quality requirements and constraints are most important Here’s some evidence: If the only concern is

  16. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.

  17. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    PubMed Central

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395

  18. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1988-01-01

    The Clouds project is well underway to its goal of building a unified distributed operating system supporting the object model. The operating system design uses the object concept of structuring software at all levels of the system. The basic operating system was developed and work is under progress to build a usable system.

  19. PICNIC Architecture.

    PubMed

    Saranummi, Niilo

    2005-01-01

    The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.

  20. Using an architectural approach to integrate heterogeneous, distributed software components

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Purtilo, James M.

    1995-01-01

    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.

  1. Open Architecture Standard for NASA's Software-Defined Space Telecommunications Radio Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Johnson, Sandra K.; Kacpura, Thomas J.; Hall, Charles S.; Smith, Carl R.; Liebetreu, John

    2008-01-01

    NASA is developing an architecture standard for software-defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer. This paper presents the initial Space Telecommunications Radio System (STRS) Architecture for NASA missions to provide the desired software abstraction and flexibility while minimizing the resources necessary to support the architecture.

  2. A component-based, distributed object services architecture for a clinical workstation.

    PubMed

    Chueh, H C; Raila, W F; Pappas, J J; Ford, M; Zatsman, P; Tu, J; Barnett, G O

    1996-01-01

    Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces.

  3. A component-based, distributed object services architecture for a clinical workstation.

    PubMed Central

    Chueh, H. C.; Raila, W. F.; Pappas, J. J.; Ford, M.; Zatsman, P.; Tu, J.; Barnett, G. O.

    1996-01-01

    Attention to an architectural framework in the development of clinical applications can promote reusability of both legacy systems as well as newly designed software. We describe one approach to an architecture for a clinical workstation application which is based on a critical middle tier of distributed object-oriented services. This tier of network-based services provides flexibility in the creation of both the user interface and the database tiers. We developed a clinical workstation for ambulatory care using this architecture, defining a number of core services including those for vocabulary, patient index, documents, charting, security, and encounter management. These services can be implemented through proprietary or more standard distributed object interfaces such as CORBA and OLE. Services are accessed over the network by a collection of user interface components which can be mixed and matched to form a variety of interface styles. These services have also been reused with several applications based on World Wide Web browser interfaces. PMID:8947744

  4. The AI Bus architecture for distributed knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Stobie, Iain

    1991-01-01

    The AI Bus architecture is layered, distributed object oriented framework developed to support the requirements of advanced technology programs for an order of magnitude improvement in software costs. The consequent need for highly autonomous computer systems, adaptable to new technology advances over a long lifespan, led to the design of an open architecture and toolbox for building large scale, robust, production quality systems. The AI Bus accommodates a mix of knowledge based and conventional components, running on heterogeneous, distributed real world and testbed environment. The concepts and design is described of the AI Bus architecture and its current implementation status as a Unix C++ library or reusable objects. Each high level semiautonomous agent process consists of a number of knowledge sources together with interagent communication mechanisms based on shared blackboards and message passing acquaintances. Standard interfaces and protocols are followed for combining and validating subsystems. Dynamic probes or demons provide an event driven means for providing active objects with shared access to resources, and each other, while not violating their security.

  5. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  6. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  7. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    PubMed Central

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811

  8. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    PubMed

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  9. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    PubMed

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  10. Distributed Computing Framework for Synthetic Radar Application

    NASA Technical Reports Server (NTRS)

    Gurrola, Eric M.; Rosen, Paul A.; Aivazis, Michael

    2006-01-01

    We are developing an extensible software framework, in response to Air Force and NASA needs for distributed computing facilities for a variety of radar applications. The objective of this work is to develop a Python based software framework, that is the framework elements of the middleware that allows developers to control processing flow on a grid in a distributed computing environment. Framework architectures to date allow developers to connect processing functions together as interchangeable objects, thereby allowing a data flow graph to be devised for a specific problem to be solved. The Pyre framework, developed at the California Institute of Technology (Caltech), and now being used as the basis for next-generation radar processing at JPL, is a Python-based software framework. We have extended the Pyre framework to include new facilities to deploy processing components as services, including components that monitor and assess the state of the distributed network for eventual real-time control of grid resources.

  11. Software Architecture Evaluation in Global Software Development Projects

    NASA Astrophysics Data System (ADS)

    Salger, Frank

    Due to ever increasing system complexity, comprehensive methods for software architecture evaluation become more and more important. This is further stressed in global software development (GSD), where the software architecture acts as a central knowledge and coordination mechanism. However, existing methods for architecture evaluation do not take characteristics of GSD into account. In this paper we discuss what aspects are specific for architecture evaluations in GSD. Our experiences from GSD projects at Capgemini sd&m indicate, that architecture evaluations differ in how rigorously one has to assess modularization, architecturally relevant processes, knowledge transfer and process alignment. From our project experiences, we derive nine good practices, the compliance to which should be checked in architecture evaluations in GSD. As an example, we discuss how far the standard architecture evaluation method used at Capgemini sd&m already considers the GSD-specific good practices, and outline what extensions are necessary to achieve a comprehensive architecture evaluation framework for GSD.

  12. The Real-Time ObjectAgent Software Architecture for Distributed Satellite Systems

    DTIC Science & Technology

    2001-01-01

    real - time operating system selection are also discussed. The fourth section describes a simple demonstration of real-time ObjectAgent. Finally, the...experience with C++. After selecting the programming language, it was necessary to select a target real - time operating system (RTOS) and embedded...ObjectAgent software to run on the OSE Real Time Operating System . In addition, she is responsible for the integration of ObjectAgent

  13. A Survey of Techniques for Security Architecture Analysis

    DTIC Science & Technology

    2003-05-01

    to be corrected immediately. 49 DSTO-TR-1438 A software phenomenon is the "user innovation network", examples of such networks being "free" and "open...source" software projects. These networks have innovation development, production, distribution and consumption all being performed by users/self...manufacturers. "User innovation networks can function entirely independently of manufacturers because (1) at least some users have sufficient incentive to

  14. Extensive Evaluation of Using a Game Project in a Software Architecture Course

    ERIC Educational Resources Information Center

    Wang, Alf Inge

    2011-01-01

    This article describes an extensive evaluation of introducing a game project to a software architecture course. In this project, university students have to construct and design a type of software architecture, evaluate the architecture, implement an application based on the architecture, and test this implementation. In previous years, the domain…

  15. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  16. Taking advantage of ground data systems attributes to achieve quality results in testing software

    NASA Technical Reports Server (NTRS)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  17. PARTONS: PARtonic Tomography Of Nucleon Software. A computing framework for the phenomenology of Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Berthou, B.; Binosi, D.; Chouika, N.; Colaneri, L.; Guidal, M.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.; Sabatié, F.; Sznajder, P.; Wagner, J.

    2018-06-01

    We describe the architecture and functionalities of a C++ software framework, coined PARTONS, dedicated to the phenomenology of Generalized Parton Distributions. These distributions describe the three-dimensional structure of hadrons in terms of quarks and gluons, and can be accessed in deeply exclusive lepto- or photo-production of mesons or photons. PARTONS provides a necessary bridge between models of Generalized Parton Distributions and experimental data collected in various exclusive production channels. We outline the specification of the PARTONS framework in terms of practical needs, physical content and numerical capacity. This framework will be useful for physicists - theorists or experimentalists - not only to develop new models, but also to interpret existing measurements and even design new experiments.

  18. Software Architecture Evolution

    ERIC Educational Resources Information Center

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  19. A Software Architecture for Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.

  20. a Framework for Distributed Mixed Language Scientific Applications

    NASA Astrophysics Data System (ADS)

    Quarrie, D. R.

    The Object Management Group has defined an architecture (CORBA) for distributed object applications based on an Object Request Broker and Interface Definition Language. This project builds upon this architecture to establish a framework for the creation of mixed language scientific applications. A prototype compiler has been written that generates FORTRAN 90 or Eiffel stubs and skeletons and the required C++ glue code from an input IDL file that specifies object interfaces. This generated code can be used directly for non-distributed mixed language applications or in conjunction with the C++ code generated from a commercial IDL compiler for distributed applications. A feasibility study is presently underway to see whether a fully integrated software development environment for distributed, mixed-language applications can be created by modifying the back-end code generator of a commercial CASE tool to emit IDL.

  1. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices

    DTIC Science & Technology

    2015-05-01

    Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas...2015 to 00-00-2015 4. TITLE AND SUBTITLE Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and...architecture (OA) software systems  Emerging challenges in achieving Better Buying Power (BBP) via OA software systems for Web- based and Mobile devices

  2. Designing and Implementing a Distributed System Architecture for the Mars Rover Mission Planning Software (Maestro)

    NASA Technical Reports Server (NTRS)

    Goldgof, Gregory M.

    2005-01-01

    Distributed systems allow scientists from around the world to plan missions concurrently, while being updated on the revisions of their colleagues in real time. However, permitting multiple clients to simultaneously modify a single data repository can quickly lead to data corruption or inconsistent states between users. Since our message broker, the Java Message Service, does not ensure that messages will be received in the order they were published, we must implement our own numbering scheme to guarantee that changes to mission plans are performed in the correct sequence. Furthermore, distributed architectures must ensure that as new users connect to the system, they synchronize with the database without missing any messages or falling into an inconsistent state. Robust systems must also guarantee that all clients will remain synchronized with the database even in the case of multiple client failure, which can occur at any time due to lost network connections or a user's own system instability. The final design for the distributed system behind the Mars rover mission planning software fulfills all of these requirements and upon completion will be deployed to MER at the end of 2005 as well as Phoenix (2007) and MSL (2009).

  3. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  4. An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua

    2011-07-09

    Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Gridmore » Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.« less

  5. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  6. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines

    PubMed Central

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779

  7. TEAM (Technologies Enabling Agile Manufacturing) shop floor control requirements guide: Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-28

    TEAM will create a shop floor control system (SFC) to link the pre-production planning to shop floor execution. SFC must meet the requirements of a multi-facility corporation, where control must be maintained between co-located facilities down to individual workstations within each facility. SFC must also meet the requirements of a small corporation, where there may only be one small facility. A hierarchical architecture is required to meet these diverse needs. The hierarchy contains the following levels: Enterprise, Factory, Cell, Station, and Equipment. SFC is focused on the top three levels. Each level of the hierarchy is divided into three basicmore » functions: Scheduler, Dispatcher, and Monitor. The requirements of each function depend on the hierarchical level in which it is to be used. For example, the scheduler at the Enterprise level must allocate production to individual factories and assign due-dates; the scheduler at the Cell level must provide detailed start and stop times of individual operations. Finally the system shall have the following features: distributed and open-architecture. Open architecture software is required in order that the appropriate technology be used at each level of the SFC hierarchy, and even at different instances within the same hierarchical level (for example, Factory A uses discrete-event simulation scheduling software, and Factory B uses an optimization-based scheduler). A distributed implementation is required to reduce the computational burden of the overall system, and allow for localized control. A distributed, open-architecture implementation will also require standards for communication between hierarchical levels.« less

  8. Systems biology driven software design for the research enterprise.

    PubMed

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-06-25

    In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data.

  9. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  10. Aerospace Software Engineering for Advanced Systems Architectures (L’Ingenierie des Logiciels Pour les Architectures des Systemes Aerospatiaux)

    DTIC Science & Technology

    1993-11-01

    Eliezer N. Solomon Steve Sedrel Westinghouse Electronic Systems Group P.O. Box 746, MS 432, Baltimore, Maryland 21203-0746, USA SUMMARY The United States...subset of the Joint Intergrated Avionics NewAgentCollection which has four Working Group (JIAWG), Performance parameters: Acceptor, of type Task._D...Published Noember 1993 Distribution and Availability on Back Cover SAGARD-CP54 ADVISORY GROUP FOR AERSACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE 92200

  11. Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.

    2012-01-01

    This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.

  12. Business logic for geoprocessing of distributed geodata

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian

    2006-12-01

    This paper describes the development of a business-logic component for the geoprocessing of distributed geodata. The business logic acts as a mediator between the data and the user, therefore playing a central role in any spatial information system. The component is used in service-oriented architectures to foster the reuse of existing geodata inventories. Based on a geoscientific case study of groundwater vulnerability assessment and mapping, the demands for such architectures are identified with special regard to software engineering tasks. Methods are derived from the field of applied Geosciences (Hydrogeology), Geoinformatics, and Software Engineering. In addition to the development of a business logic component, a forthcoming Open Geospatial Consortium (OGC) specification is introduced: the OGC Web Processing Service (WPS) specification. A sample application is introduced to demonstrate the potential of WPS for future information systems. The sample application Geoservice Groundwater Vulnerability is described in detail to provide insight into the business logic component, and demonstrate how information can be generated out of distributed geodata. This has the potential to significantly accelerate the assessment and mapping of groundwater vulnerability. The presented concept is easily transferable to other geoscientific use cases dealing with distributed data inventories. Potential application fields include web-based geoinformation systems operating on distributed data (e.g. environmental planning systems, cadastral information systems, and others).

  13. Judicious use of custom development in an open source component architecture

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.

    2014-12-01

    Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.

  14. Dynamic Weather Routes Architecture Overview

    NASA Technical Reports Server (NTRS)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  15. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems. Volume 2 Understanding Open Architecture Software Systems: Licensing and Security Research and Recommendations

    DTIC Science & Technology

    2016-01-06

    of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department

  16. First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1987-01-01

    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.

  17. So Wide a Web, So Little Time.

    ERIC Educational Resources Information Center

    McConville, David; And Others

    1996-01-01

    Discusses new trends in the World Wide Web. Highlights include multimedia; digitized audio-visual files; compression technology; telephony; virtual reality modeling language (VRML); open architecture; and advantages of Java, an object-oriented programming language, including platform independence, distributed development, and pay-per-use software.…

  18. SOA: A Quality Attribute Perspective

    DTIC Science & Technology

    2011-06-23

    in software engineering from CMU. 6June 2011 Twitter #seiwebinar © 2011 Carnegie Mellon University Agenda Service -Oriented Architecture and... Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges 7June 2011 Twitter #seiwebinar © 2011...Architecture and Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges Review 10June 2011 Twitter

  19. A Content Markup Language for Data Services

    NASA Astrophysics Data System (ADS)

    Noviello, C.; Acampa, P.; Mango Furnari, M.

    Network content delivery and documents sharing is possible using a variety of technologies, such as distributed databases, service-oriented applications, and so forth. The development of such systems is a complex job, because document life cycle involves a strong cooperation between domain experts and software developers. Furthermore, the emerging software methodologies, such as the service-oriented architecture and knowledge organization (e.g., semantic web) did not really solve the problems faced in a real distributed and cooperating settlement. In this chapter the authors' efforts to design and deploy a distribute and cooperating content management system are described. The main features of the system are a user configurable document type definition and a management middleware layer. It allows CMS developers to orchestrate the composition of specialized software components around the structure of a document. In this chapter are also reported some of the experiences gained on deploying the developed framework in a cultural heritage dissemination settlement.

  20. The software architecture to control the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and trace requirements to deliverables (source code, documentation, etc.), and permits the implementation of a flexible use-case driven software development approach thanks to the traceability from use cases to the logical software elements. The Alma Common Software (ACS) container/component framework, used for the control of the Atacama Large Millimeter/submillimeter Array (ALMA) is the basis for the ACTL software and as such it is considered as an integral part of the software architecture.

  1. Quality Attributes for Mission Flight Software: A Reference for Architects

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan

    2016-01-01

    In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.

  2. Software Defined Radio Standard Architecture and its Application to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  3. Space Telecommunications Radio Architecture (STRS)

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  4. Space Telecommunications Radio Architecture (STRS): Technical Overview

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  5. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  6. ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Raffi, Gianni

    2002-12-01

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe and North America. ALMA will consist of at least 64 12-meter antennas operating in the millimeter and sub-millimeter range. It will be located at an altitude of about 5000m in the Chilean Atacama desert. The primary challenge to the development of the software architecture is the fact that both its development and runtime environments will be distributed. Groups at different institutes will develop the key elements such as Proposal Preparation tools, Instrument operation, On-line calibration and reduction, and Archiving. The Proposal Preparation software will be used primarily at scientists' home institutions (or on their laptops), while Instrument Operations will execute on a set of networked computers at the ALMA Operations Support Facility. The ALMA Science Archive, itself to be replicated at several sites, will serve astronomers worldwide. Building upon the existing ALMA Common Software (ACS), the system architects will prepare a robust framework that will use XML-encoded entity objects to provide an effective solution to the persistence needs of this system, while remaining largely independent of any underlying DBMS technology. Independence of distributed subsystems will be facilitated by an XML- and CORBA-based pass-by-value mechanism for exchange of objects. Proof of concept (as well as a guide to subsystem developers) will come from a prototype whose details will be presented.

  7. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.

    PubMed

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-07-22

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).

  8. Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †

    PubMed Central

    Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo

    2016-01-01

    This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277

  9. Q&A: Defining Internet Architecture for Learning.

    ERIC Educational Resources Information Center

    Hernandez-Ramos, Pedro

    1999-01-01

    Presents Pedro Hernandez-Ramos's thoughts on Educom's Instructional Management Systems (IMS), a global coalition of organizations working together to create standards for software development in distributed learning. Focuses on the organization's relevance to community colleges, the benefits of participation, why IMS is a global effort, and how…

  10. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  11. Compositional Specification of Software Architecture

    NASA Technical Reports Server (NTRS)

    Penix, John; Lau, Sonie (Technical Monitor)

    1998-01-01

    This paper describes our experience using parameterized algebraic specifications to model properties of software architectures. The goal is to model the decomposition of requirements independent of the style used to implement the architecture. We begin by providing an overview of the role of architecture specification in software development. We then describe how architecture specifications are build up from component and connector specifications and give an overview of insights gained from a case study used to validate the method.

  12. A Facility and Architecture for Autonomy Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

  13. Study of a unified hardware and software fault-tolerant architecture

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart

    1989-01-01

    A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.

  14. EOS MLS Science Data Processing System: A Description of Architecture and Capabilities

    NASA Technical Reports Server (NTRS)

    Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.

    2006-01-01

    This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.

  15. SPOT4 Operational Control Center (CMP)

    NASA Technical Reports Server (NTRS)

    Zaouche, G.

    1993-01-01

    CNES(F) is responsible for the development of a new generation of Operational Control Center (CMP) which will operate the new heliosynchronous remote sensing satellite (SPOT4). This Operational Control Center takes large benefit from the experience of the first generation of control center and from the recent advances in computer technology and standards. The CMP is designed for operating two satellites all the same time with a reduced pool of controllers. The architecture of this CMP is simple, robust, and flexible, since it is based on powerful distributed workstations interconnected through an Ethernet LAN. The application software uses modern and formal software engineering methods, in order to improve quality and reliability, and facilitate maintenance. This software is table driven so it can be easily adapted to other operational needs. Operation tasks are automated to the maximum extent, so that it could be possible to operate the CMP automatically with very limited human interference for supervision and decision making. This paper provides an overview of the SPOTS mission and associated ground segment. It also details the CMP, its functions, and its software and hardware architecture.

  16. micROS: a morphable, intelligent and collective robot operating system.

    PubMed

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  17. An object-oriented software approach for a distributed human tracking motion system

    NASA Astrophysics Data System (ADS)

    Micucci, Daniela L.

    2003-06-01

    Tracking is a composite job involving the co-operation of autonomous activities which exploit a complex information model and rely on a distributed architecture. Both information and activities must be classified and related in several dimensions: abstraction levels (what is modelled and how information is processed); topology (where the modelled entities are); time (when entities exist); strategy (why something happens); responsibilities (who is in charge of processing the information). A proper Object-Oriented analysis and design approach leads to a modular architecture where information about conceptual entities is modelled at each abstraction level via classes and intra-level associations, whereas inter-level associations between classes model the abstraction process. Both information and computation are partitioned according to level-specific topological models. They are also placed in a temporal framework modelled by suitable abstractions. Domain-specific strategies control the execution of the computations. Computational components perform both intra-level processing and intra-level information conversion. The paper overviews the phases of the analysis and design process, presents major concepts at each abstraction level, and shows how the resulting design turns into a modular, flexible and adaptive architecture. Finally, the paper sketches how the conceptual architecture can be deployed into a concrete distribute architecture by relying on an experimental framework.

  18. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  19. The Importance of Architecture in DoD Software

    DTIC Science & Technology

    1991-07-01

    01282 92 1 14 060 M91-35 The Importance of Architecture in DOD Software S ACCesion For- * DTIC "r,’L- .S Dr. Barry M. Horowitz July 1991 D;.t ibto...resource utilization: architecture determines how the system sustains , 06 operations when parts of the system fail. The architecture also determines...software maintainers to ensure that we deliver to them whatever is necessary for them Medium to sustain and use the architecture . Fault Rate 37% Getting

  20. Commanding Constellations (Pipeline Architecture)

    NASA Technical Reports Server (NTRS)

    Ray, Tim; Condron, Jeff

    2003-01-01

    Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.

  1. A Reference Architecture for Space Information Management

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.

    2006-01-01

    We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.

  2. Influencing Factors in OER Usage of Adult Learners in Korea

    ERIC Educational Resources Information Center

    Kim, Byoung Wook; Lee, Won Gyu; Lee, Byeong Rae; Shon, Jin Gon

    2015-01-01

    Open Educational Resources (OER) is terminology that refers to educational resources (content and software) distributed through the Internet, free of charge and freely accessible, expanding learning opportunities for adult learners. This terminology first appeared around 2002, although its roots can be traced to the open architecture of the…

  3. Systems biology driven software design for the research enterprise

    PubMed Central

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-01-01

    Background In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. Results We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. Conclusion By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data. PMID:18578887

  4. NASA's SDR Standard: Space Telecommunications Radio System

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Johnson, Sandra K.

    2007-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  5. Study on the E-commerce platform based on the agent

    NASA Astrophysics Data System (ADS)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  6. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  7. DCL System Using Deep Learning Approaches for Land-based or Ship-based Real-Time Recognition and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    platform (HPC) was developed, called the HPC-Acoustic Data Accelerator, or HPC-ADA for short. The HPC-ADA was designed based on fielded systems [1-4...software (Detection cLassificaiton for MAchine learning - High Peformance Computing). The software package was designed to utilize parallel and...Sedna [7] and is designed using a parallel architecture2, allowing existing algorithms to distribute to the various processing nodes with minimal changes

  8. Parallel computing for probabilistic fatigue analysis

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.

    1993-01-01

    This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.

  9. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    NASA Astrophysics Data System (ADS)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  10. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  11. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  12. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment.

  13. Global Software Development with Cloud Platforms

    NASA Astrophysics Data System (ADS)

    Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya

    Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.

  14. Development of a space-systems network testbed

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  15. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  16. Reliability Engineering for Service Oriented Architectures

    DTIC Science & Technology

    2013-02-01

    Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit

  17. A Research Agenda for Service-Oriented Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems

    DTIC Science & Technology

    2010-03-01

    service consumers, and infrastructure. Techniques from any iterative and incremental software development methodology followed by the organiza- tion... Service -Oriented Architecture Environment (CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008. http://www.sei.cmu.edu...Integrating Legacy Software into a Service Oriented Architecture.” Proceedings of the 10th European Conference on Software Maintenance (CSMR 2006). Bari

  18. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  19. Plug-In Tutor Agents: Still Pluggin'

    ERIC Educational Resources Information Center

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  20. Software architecture standard for simulation virtual machine, version 2.0

    NASA Technical Reports Server (NTRS)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  1. Enhancing Architecture-Implementation Conformance with Change Management and Support for Behavioral Mapping

    ERIC Educational Resources Information Center

    Zheng, Yongjie

    2012-01-01

    Software architecture plays an increasingly important role in complex software development. Its further application, however, is challenged by the fact that software architecture, over time, is often found not conformant to its implementation. This is usually caused by frequent development changes made to both artifacts. Against this background,…

  2. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.

  3. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL,more » GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).« less

  4. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL,more » GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).« less

  5. Infrastructure and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, P.; Gaudet, S.; Schade, D.

    2011-07-01

    The modern data center is faced with architectural and software engineering challenges that grow along with the challenges facing observatories: massive data flow, distributed computing environments, and distributed teams collaborating on large and small projects. By using VO standards as key components of the infrastructure, projects can take advantage of a decade of intellectual investment by the IVOA community. By their nature, these standards are proven and tested designs that already exist. Adopting VO standards saves considerable design effort, allows projects to take advantage of open-source software and test suites to speed development, and enables the use of third party tools that understand the VO protocols. The evolving CADC architecture now makes heavy use of VO standards. We show examples of how these standards may be used directly, coupled with non-VO standards, or extended with custom capabilities to solve real problems and provide value to our users. In the end, we use VO services as major parts of the core infrastructure to reduce cost rather than as an extra layer with additional cost and we can deliver more general purpose and robust services to our user community.

  6. The Earth System Grid Federation : an Open Infrastructure for Access to Distributed Geospatial Data

    NASA Technical Reports Server (NTRS)

    Cinquini, Luca; Crichton, Daniel; Mattmann, Chris; Harney, John; Shipman, Galen; Wang, Feiyi; Ananthakrishnan, Rachana; Miller, Neill; Denvil, Sebastian; Morgan, Mark; hide

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF's architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  7. BioContainers: an open-source and community-driven framework for software standardization.

    PubMed

    da Veiga Leprevost, Felipe; Grüning, Björn A; Alves Aflitos, Saulo; Röst, Hannes L; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I; Perez-Riverol, Yasset

    2017-08-15

    BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). The software is freely available at github.com/BioContainers/. yperez@ebi.ac.uk. © The Author(s) 2017. Published by Oxford University Press.

  8. BioContainers: an open-source and community-driven framework for software standardization

    PubMed Central

    da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset

    2017-01-01

    Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341

  9. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the software community. This paper discusses the findings and TR suite informing the FM domain in best practices for FM architectural design, visibility observations, and methods employed for IV&V and mission assurance.

  10. RCTS: A flexible environment for sensor integration and control of robot systems; the distributed processing approach

    NASA Technical Reports Server (NTRS)

    Allard, R.; Mack, B.; Bayoumi, M. M.

    1989-01-01

    Most robot systems lack a suitable hardware and software environment for the efficient research of new control and sensing schemes. Typically, engineers and researchers need to be experts in control, sensing, programming, communication and robotics in order to implement, integrate and test new ideas in a robot system. In order to reduce this time, the Robot Controller Test Station (RCTS) has been developed. It uses a modular hardware and software architecture allowing easy physical and functional reconfiguration of a robot. This is accomplished by emphasizing four major design goals: flexibility, portability, ease of use, and ease of modification. An enhanced distributed processing version of RCTS is described. It features an expanded and more flexible communication system design. Distributed processing results in the availability of more local computing power and retains the low cost of microprocessors. A large number of possible communication, control and sensing schemes can therefore be easily introduced and tested, using the same basic software structure.

  11. Performance Evaluation of Communication Software Systems for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod

    1996-01-01

    In recent years there has been an increasing interest in object-oriented distributed computing since it is better quipped to deal with complex systems while providing extensibility, maintainability, and reusability. At the same time, several new high-speed network technologies have emerged for local and wide area networks. However, the performance of networking software is not improving as fast as the networking hardware and the workstation microprocessors. This paper gives an overview and evaluates the performance of the Common Object Request Broker Architecture (CORBA) standard in a distributed computing environment at NASA Ames Research Center. The environment consists of two testbeds of SGI workstations connected by four networks: Ethernet, FDDI, HiPPI, and ATM. The performance results for three communication software systems are presented, analyzed and compared. These systems are: BSD socket programming interface, IONA's Orbix, an implementation of the CORBA specification, and the PVM message passing library. The results show that high-level communication interfaces, such as CORBA and PVM, can achieve reasonable performance under certain conditions.

  12. Service-oriented architecture for the ARGOS instrument control software

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  13. A computer architecture for intelligent machines

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, G. N.

    1991-01-01

    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  14. InterProScan 5: genome-scale protein function classification

    PubMed Central

    Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah

    2014-01-01

    Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626

  15. Towards integration of clinical decision support in commercial hospital information systems using distributed, reusable software and knowledge components.

    PubMed

    Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U

    2001-12-01

    Clinicians' acceptance of clinical decision support depends on its workflow-oriented, context-sensitive accessibility and availability at the point of care, integrated into the Electronic Patient Record (EPR). Commercially available Hospital Information Systems (HIS) often focus on administrative tasks and mostly do not provide additional knowledge based functionality. Their traditionally monolithic and closed software architecture encumbers integration of and interaction with external software modules. Our aim was to develop methods and interfaces to integrate knowledge sources into two different commercial hospital information systems to provide the best decision support possible within the context of available patient data. An existing, proven standalone scoring system for acute abdominal pain was supplemented by a communication interface. In both HIS we defined data entry forms and developed individual and reusable mechanisms for data exchange with external software modules. We designed an additional knowledge support frontend which controls data exchange between HIS and the knowledge modules. Finally, we added guidelines and algorithms to the knowledge library. Despite some major drawbacks which resulted mainly from the HIS' closed software architectures we showed exemplary, how external knowledge support can be integrated almost seamlessly into different commercial HIS. This paper describes the prototypical design and current implementation and discusses our experiences.

  16. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    NASA Technical Reports Server (NTRS)

    Lawler, Dennis G.

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  17. A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.

    PubMed

    Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon

    2018-02-28

    Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  18. A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility

    PubMed Central

    2018-01-01

    Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599

  19. TMT approach to observatory software development process

    NASA Astrophysics Data System (ADS)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate effective communications; adopting an agile-based software development process across the observatory to enable frequent software releases to help mitigate subsystem interdependencies; defining concise scope and work packages for each of the OSW subsystems to facilitate effective outsourcing of software deliverables to the ITCC partner, and to enable performance monitoring and risk management. At this stage, the architecture and high-level design of the software system has been established and reviewed. During construction each subsystem will have a final design phase with reviews, followed by implementation and testing. The results of the TMT approach to the Observatory Software development process will only be preliminary at the time of the submittal of this paper, but it is anticipated that the early results will be a favorable indication of progress.

  20. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  1. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  2. Application of SLURM, BOINC, and GlusterFS as Software System for Sustainable Modeling and Data Analytics

    NASA Astrophysics Data System (ADS)

    Kashansky, Vladislav V.; Kaftannikov, Igor L.

    2018-02-01

    Modern numerical modeling experiments and data analytics problems in various fields of science and technology reveal a wide variety of serious requirements for distributed computing systems. Many scientific computing projects sometimes exceed the available resource pool limits, requiring extra scalability and sustainability. In this paper we share the experience and findings of our own on combining the power of SLURM, BOINC and GlusterFS as software system for scientific computing. Especially, we suggest a complete architecture and highlight important aspects of systems integration.

  3. Brahms Mobile Agents: Architecture and Field Tests

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron

    2002-01-01

    We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, rover/All-Terrain Vehicle (ATV), robotic assistant, other personnel in a local habitat, and a remote mission support team (with time delay). Software processes, called agents, implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system (e.g., return here later and bring this back to the habitat ). This combination of agents, rover, and model-based spoken dialogue interface constitutes a personal assistant. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a run-time system.

  4. Methods and tools for profiling and control of distributed systems

    NASA Astrophysics Data System (ADS)

    Sukharev, R.; Lukyanchikov, O.; Nikulchev, E.; Biryukov, D.; Ryadchikov, I.

    2018-02-01

    This article is devoted to the topic of profiling and control of distributed systems. Distributed systems have a complex architecture, applications are distributed among various computing nodes, and many network operations are performed. Therefore, today it is important to develop methods and tools for profiling distributed systems. The article analyzes and standardizes methods for profiling distributed systems that focus on simulation to conduct experiments and build a graph model of the system. The theory of queueing networks is used for simulation modeling of distributed systems, receiving and processing user requests. To automate the above method of profiling distributed systems the software application was developed with a modular structure and similar to a SCADA-system.

  5. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.

  6. Minimizing communication cost among distributed controllers in software defined networks

    NASA Astrophysics Data System (ADS)

    Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed

    2016-08-01

    Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.

  7. A Parallel Rendering Algorithm for MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.; Orloff, Tobias

    1991-01-01

    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.

  8. Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2013-09-23

    A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.

  9. Instrument control software development process for the multi-star AO system ARGOS

    NASA Astrophysics Data System (ADS)

    Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.

    2012-09-01

    The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.

  10. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  11. A Disciplined Architectural Approach to Scaling Data Analysis for Massive, Scientific Data

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Braverman, A. J.; Cinquini, L.; Turmon, M.; Lee, H.; Law, E.

    2014-12-01

    Data collections across remote sensing and ground-based instruments in astronomy, Earth science, and planetary science are outpacing scientists' ability to analyze them. Furthermore, the distribution, structure, and heterogeneity of the measurements themselves pose challenges that limit the scalability of data analysis using traditional approaches. Methods for developing science data processing pipelines, distribution of scientific datasets, and performing analysis will require innovative approaches that integrate cyber-infrastructure, algorithms, and data into more systematic approaches that can more efficiently compute and reduce data, particularly distributed data. This requires the integration of computer science, machine learning, statistics and domain expertise to identify scalable architectures for data analysis. The size of data returned from Earth Science observing satellites and the magnitude of data from climate model output, is predicted to grow into the tens of petabytes challenging current data analysis paradigms. This same kind of growth is present in astronomy and planetary science data. One of the major challenges in data science and related disciplines defining new approaches to scaling systems and analysis in order to increase scientific productivity and yield. Specific needs include: 1) identification of optimized system architectures for analyzing massive, distributed data sets; 2) algorithms for systematic analysis of massive data sets in distributed environments; and 3) the development of software infrastructures that are capable of performing massive, distributed data analysis across a comprehensive data science framework. NASA/JPL has begun an initiative in data science to address these challenges. Our goal is to evaluate how scientific productivity can be improved through optimized architectural topologies that identify how to deploy and manage the access, distribution, computation, and reduction of massive, distributed data, while managing the uncertainties of scientific conclusions derived from such capabilities. This talk will provide an overview of JPL's efforts in developing a comprehensive architectural approach to data science.

  12. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  13. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  14. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  15. Aho-Corasick String Matching on Shared and Distributed Memory Parallel Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    String matching is at the core of many critical applications, including network intrusion detection systems, search engines, virus scanners, spam filters, DNA and protein sequencing, and data mining. For all of these applications string matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. Many software based implementations targeting conventional cache-based microprocessors fail to achieve high and predictable performance requirements, while Field-Programmable Gate Array (FPGA) implementations and dedicated hardware solutions fail to support large data sets (dictionary sizes) and are difficult to integrate and customize.more » The advent of multicore, multithreaded, and GPU-based systems is opening the possibility for software based solutions to reach very high performance at a sustained rate. This paper compares several software-based implementations of the Aho-Corasick string searching algorithm for high performance systems. We discuss the implementation of the algorithm on several types of shared-memory high-performance architectures (Niagara 2, large x86 SMPs and Cray XMT), distributed memory with homogeneous processing elements (InfiniBand cluster of x86 multicores) and heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C10 GPUs). We describe in detail how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.« less

  16. Towards multi-platform software architecture for Collaborative Teleoperation

    NASA Astrophysics Data System (ADS)

    Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik

    2009-03-01

    Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.

  17. Towards multi-platform software architecture for Collaborative Teleoperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingues, Christophe; Otmane, Samir; Davesne, Frederic

    2009-03-05

    Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robotmore » simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.« less

  18. The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Easterbrook, S. M.

    2015-01-01

    We analyse the source code of eight coupled climate models, selected from those that participated in the CMIP5 (Taylor et al., 2012) or EMICAR5 (Eby et al., 2013; Zickfeld et al., 2013) intercomparison projects. For each model, we sort the preprocessed code into components and subcomponents based on dependency structure. We then create software architecture diagrams which show the relative sizes of these components/subcomponents and the flow of data between them. The diagrams also illustrate several major classes of climate model design; the distribution of complexity between components, which depends on historical development paths as well as the conscious goals of each institution; and the sharing of components between different modelling groups. These diagrams offer insights into the similarities and differences between models, and have the potential to be useful tools for communication between scientists, scientific institutions, and the public.

  19. The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Easterbrook, S. M.

    2015-04-01

    We analyze the source code of eight coupled climate models, selected from those that participated in the CMIP5 (Taylor et al., 2012) or EMICAR5 (Eby et al., 2013; Zickfeld et al., 2013) intercomparison projects. For each model, we sort the preprocessed code into components and subcomponents based on dependency structure. We then create software architecture diagrams that show the relative sizes of these components/subcomponents and the flow of data between them. The diagrams also illustrate several major classes of climate model design; the distribution of complexity between components, which depends on historical development paths as well as the conscious goals of each institution; and the sharing of components between different modeling groups. These diagrams offer insights into the similarities and differences in structure between climate models, and have the potential to be useful tools for communication between scientists, scientific institutions, and the public.

  20. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  1. Software synthesis using generic architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay

    1993-01-01

    A framework for synthesizing software systems based on abstracting software system designs and the design process is described. The result of such an abstraction process is a generic architecture and the process knowledge for customizing the architecture. The customization process knowledge is used to assist a designer in customizing the architecture as opposed to completely automating the design of systems. Our approach using an implemented example of a generic tracking architecture which was customized in two different domains is illustrated. How the designs produced using KASE compare to the original designs of the two systems, and current work and plans for extending KASE to other application areas are described.

  2. An adaptable product for material processing and life science missions

    NASA Technical Reports Server (NTRS)

    Wassick, Gregory; Dobbs, Michael

    1995-01-01

    The Experiment Control System II (ECS-II) is designed to make available to the microgravity research community the same tools and mode of automated experimentation that their ground-based counterparts have enjoyed for the last two decades. The design goal was accomplished by combining commercial automation tools familiar to the experimenter community with system control components that interface with the on-orbit platform in a distributed architecture. The architecture insulates the tools necessary for managing a payload. By using commercial software and hardware components whenever possible, development costs were greatly reduced when compared to traditional space development projects. Using commercial-off-the-shelf (COTS) components also improved the usability documentation, and reducing the need for training of the system by providing familiar user interfaces, providing a wealth of readily available documentation, and reducing the need for training on system-specific details. The modularity of the distributed architecture makes it very amenable for modification to different on-orbit experiments requiring robotics-based automation.

  3. SCOS 2: A distributed architecture for ground system control

    NASA Astrophysics Data System (ADS)

    Keyte, Karl P.

    The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.

  4. Activity-Centric Approach to Distributed Programming

    NASA Technical Reports Server (NTRS)

    Levy, Renato; Satapathy, Goutam; Lang, Jun

    2004-01-01

    The first phase of an effort to develop a NASA version of the Cybele software system has been completed. To give meaning to even a highly abbreviated summary of the modifications to be embodied in the NASA version, it is necessary to present the following background information on Cybele: Cybele is a proprietary software infrastructure for use by programmers in developing agent-based application programs [complex application programs that contain autonomous, interacting components (agents)]. Cybele provides support for event handling from multiple sources, multithreading, concurrency control, migration, and load balancing. A Cybele agent follows a programming paradigm, called activity-centric programming, that enables an abstraction over system-level thread mechanisms. Activity centric programming relieves application programmers of the complex tasks of thread management, concurrency control, and event management. In order to provide such functionality, activity-centric programming demands support of other layers of software. This concludes the background information. In the first phase of the present development, a new architecture for Cybele was defined. In this architecture, Cybele follows a modular service-based approach to coupling of the programming and service layers of software architecture. In a service-based approach, the functionalities supported by activity-centric programming are apportioned, according to their characteristics, among several groups called services. A well-defined interface among all such services serves as a path that facilitates the maintenance and enhancement of such services without adverse effect on the whole software framework. The activity-centric application-program interface (API) is part of a kernel. The kernel API calls the services by use of their published interface. This approach makes it possible for any application code written exclusively under the API to be portable for any configuration of Cybele.

  5. A multi-agent approach to intelligent monitoring in smart grids

    NASA Astrophysics Data System (ADS)

    Vallejo, D.; Albusac, J.; Glez-Morcillo, C.; Castro-Schez, J. J.; Jiménez, L.

    2014-04-01

    In this paper, we propose a scalable multi-agent architecture to give support to smart grids, paying special attention to the intelligent monitoring of distribution substations. The data gathered by multiple sensors are used by software agents that are responsible for monitoring different aspects or events of interest, such as normal voltage values or unbalanced intensity values that can end up blowing fuses and decreasing the quality of service of end consumers. The knowledge bases of these agents have been built by means of a formal model for normality analysis that has been successfully used in other surveillance domains. The architecture facilitates the integration of new agents and can be easily configured and deployed to monitor different environments. The experiments have been conducted over a power distribution network.

  6. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  7. Developing Enterprise Architectures to Address the Enterprise Dilemma of Deciding What Should Be Sustained versus What Should Be Changed

    ERIC Educational Resources Information Center

    Harrell, J. Michael

    2011-01-01

    Enterprise architecture is a relatively new concept that arose in the latter half of the twentieth century as a means of managing the information technology resources within the enterprise. Borrowing from the disciplines of brick and mortar architecture, software engineering, software architecture, and systems engineering, the enterprise…

  8. Integrating Software-Architecture-Centric Methods into the Rational Unified Process

    DTIC Science & Technology

    2004-07-01

    Architecture Design ...................................................................................... 19...QAW in a life- cycle context. One issue that needs to be addressed is how scenarios produced in a QAW can be used by a software architecture design method...implementation testing. 18 CMU/SEI-2004-TR-011 CMU/SEI-2004-TR-011 19 4 Architecture Design The Attribute-Driven Design (ADD) method

  9. SCA Waveform Development for Space Telemetry

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  10. Executable Behavioral Modeling of System and Software Architecture Specifications to Inform Resourcing Decisions

    DTIC Science & Technology

    2016-09-01

    BEHAVIORAL MODELING OF SYSTEM- AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS by Monica F. Farah-Stapleton...AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS 5. FUNDING NUMBERS 6. AUTHOR(S) Monica F. Farah-Stapleton 7. PERFORMING...this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB number

  11. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices

    DTIC Science & Technology

    2016-02-22

    SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their

  12. Integrating MPI and deduplication engines: a software architecture roadmap.

    PubMed

    Baksi, Dibyendu

    2009-03-01

    The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.

  13. The Need for Software Architecture Evaluation in the Acquisition of Software-Intensive Sysetms

    DTIC Science & Technology

    2014-01-01

    Function and Performance Specification GIG Global Information Grid ISO International Standard Organisation MDA Model Driven Architecture...architecture and design, which is a key part of knowledge-based economy UNCLASSIFIED DSTO-TR-2936 UNCLASSIFIED 24  Allow Australian SMEs to

  14. A Cost-Effective Distributed Architecture for Content Delivery and Exchange over Emerging Wireless Technologies

    ERIC Educational Resources Information Center

    Islam, Khondkar R.

    2013-01-01

    Opportunities in education are lacking in many parts of the developed nations and are missing in most parts of the developing nations. This is, in significant part, due to shortages of classroom instructional resources such as quality teaching staff, hardware and software. Distance education (DE) has proved to be a successful teaching approach and…

  15. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  16. Transforming Aggregate Object-Oriented Formal Specifications to Code

    DTIC Science & Technology

    1999-03-01

    integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development

  17. Decentralized formation flying control in a multiple-team hierarchy.

    PubMed

    Mueller, Joseph B; Thomas, Stephanie J

    2005-12-01

    In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in Matlab, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  18. An Open Avionics and Software Architecture to Support Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2017-01-01

    The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.

  19. Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Mitra, Sandeep

    2014-01-01

    This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…

  20. Issues in Defining Software Architectures in a GIS Environment

    NASA Technical Reports Server (NTRS)

    Acosta, Jesus; Alvorado, Lori

    1997-01-01

    The primary mission of the Pan-American Center for Earth and Environmental Studies (PACES) is to advance the research areas that are relevant to NASA's Mission to Planet Earth program. One of the activities at PACES is the establishment of a repository for geographical, geological and environmental information that covers various regions of Mexico and the southwest region of the U.S. and that is acquired from NASA and other sources through remote sensing, ground studies or paper-based maps. The center will be providing access of this information to other government entities in the U.S. and Mexico, and research groups from universities, national laboratories and industry. Geographical Information Systems(GIS) provide the means to manage, manipulate, analyze and display geographically referenced information that will be managed by PACES. Excellent off-the-shelf software exists for a complete GIS as well as software for storing and managing spatial databases, processing images, networking and viewing maps with layered information. This allows the user flexibility in combining systems to create a GIS or to mix these software packages with custom-built application programs. Software architectural languages provide the ability to specify the computational components and interactions among these components, an important topic in the domain of GIS because of the need to integrate numerous software packages. This paper discusses the characteristics that architectural languages address with respect to the issues relating to the data that must be communicated between software systems and components when systems interact. The paper presents a background on GIS in section 2. Section 3 gives an overview of software architecture and architectural languages. Section 4 suggests issues that may be of concern when defining the software architecture of a GIS. The last section discusses the future research effort and finishes with a summary.

  1. NASA's Advanced Multimission Operations System: A Case Study in Formalizing Software Architecture Evolution

    NASA Technical Reports Server (NTRS)

    Barnes, Jeffrey M.

    2011-01-01

    All software systems of significant size and longevity eventually undergo changes to their basic architectural structure. Such changes may be prompted by evolving requirements, changing technology, or other reasons. Whatever the cause, software architecture evolution is commonplace in real world software projects. Recently, software architecture researchers have begun to study this phenomenon in depth. However, this work has suffered from problems of validation; research in this area has tended to make heavy use of toy examples and hypothetical scenarios and has not been well supported by real world examples. To help address this problem, I describe an ongoing effort at the Jet Propulsion Laboratory to re-architect the Advanced Multimission Operations System (AMMOS), which is used to operate NASA's deep-space and astrophysics missions. Based on examination of project documents and interviews with project personnel, I describe the goals and approach of this evolution effort and then present models that capture some of the key architectural changes. Finally, I demonstrate how approaches and formal methods from my previous research in architecture evolution may be applied to this evolution, while using languages and tools already in place at the Jet Propulsion Laboratory.

  2. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.

    2005-01-01

    This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.

  3. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  4. A knowledge based software engineering environment testbed

    NASA Technical Reports Server (NTRS)

    Gill, C.; Reedy, A.; Baker, L.

    1985-01-01

    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing

  5. LVFS: A Big Data File Storage Bridge for the HPC Community

    NASA Astrophysics Data System (ADS)

    Golpayegani, N.; Halem, M.; Mauoka, E.; Fonseca, L. F.

    2015-12-01

    Merging Big Data capabilities into High Performance Computing architecture starts at the file storage level. Heterogeneous storage systems are emerging which offer enhanced features for dealing with Big Data such as the IBM GPFS storage system's integration into Hadoop Map-Reduce. Taking advantage of these capabilities requires file storage systems to be adaptive and accommodate these new storage technologies. We present the extension of the Lightweight Virtual File System (LVFS) currently running as the production system for the MODIS Level 1 and Atmosphere Archive and Distribution System (LAADS) to incorporate a flexible plugin architecture which allows easy integration of new HPC hardware and/or software storage technologies without disrupting workflows, system architectures and only minimal impact on existing tools. We consider two essential aspects provided by the LVFS plugin architecture needed for the future HPC community. First, it allows for the seamless integration of new and emerging hardware technologies which are significantly different than existing technologies such as Segate's Kinetic disks and Intel's 3DXPoint non-volatile storage. Second is the transparent and instantaneous conversion between new software technologies and various file formats. With most current storage system a switch in file format would require costly reprocessing and nearly doubling of storage requirements. We will install LVFS on UMBC's IBM iDataPlex cluster with a heterogeneous storage architecture utilizing local, remote, and Seagate Kinetic storage as a case study. LVFS merges different kinds of storage architectures to show users a uniform layout and, therefore, prevent any disruption in workflows, architecture design, or tool usage. We will show how LVFS will convert HDF data produced by applying machine learning algorithms to Xco2 Level 2 data from the OCO-2 satellite to produce CO2 surface fluxes into GeoTIFF for visualization.

  6. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  7. S-Cube: Enabling the Next Generation of Software Services

    NASA Astrophysics Data System (ADS)

    Metzger, Andreas; Pohl, Klaus

    The Service Oriented Architecture (SOA) paradigm is increasingly adopted by industry for building distributed software systems. However, when designing, developing and operating innovative software services and servicebased systems, several challenges exist. Those challenges include how to manage the complexity of those systems, how to establish, monitor and enforce Quality of Service (QoS) and Service Level Agreements (SLAs), as well as how to build those systems such that they can proactively adapt to dynamically changing requirements and context conditions. Developing foundational solutions for those challenges requires joint efforts of different research communities such as Business Process Management, Grid Computing, Service Oriented Computing and Software Engineering. This paper provides an overview of S-Cube, the European Network of Excellence on Software Services and Systems. S-Cube brings together researchers from leading research institutions across Europe, who join their competences to develop foundations, theories as well as methods and tools for future service-based systems.

  8. A development framework for semantically interoperable health information systems.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2009-02-01

    Semantic interoperability is a basic challenge to be met for new generations of distributed, communicating and co-operating health information systems (HIS) enabling shared care and e-Health. Analysis, design, implementation and maintenance of such systems and intrinsic architectures have to follow a unified development methodology. The Generic Component Model (GCM) is used as a framework for modeling any system to evaluate and harmonize state of the art architecture development approaches and standards for health information systems as well as to derive a coherent architecture development framework for sustainable, semantically interoperable HIS and their components. The proposed methodology is based on the Rational Unified Process (RUP), taking advantage of its flexibility to be configured for integrating other architectural approaches such as Service-Oriented Architecture (SOA), Model-Driven Architecture (MDA), ISO 10746, and HL7 Development Framework (HDF). Existing architectural approaches have been analyzed, compared and finally harmonized towards an architecture development framework for advanced health information systems. Starting with the requirements for semantic interoperability derived from paradigm changes for health information systems, and supported in formal software process engineering methods, an appropriate development framework for semantically interoperable HIS has been provided. The usability of the framework has been exemplified in a public health scenario.

  9. Using CORBA to integrate manufacturing cells to a virtual enterprise

    NASA Astrophysics Data System (ADS)

    Pancerella, Carmen M.; Whiteside, Robert A.

    1997-01-01

    It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.

  10. A Multi Agent Based Approach for Prehospital Emergency Management.

    PubMed

    Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh

    2017-07-01

    To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities.  The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.

  11. A Multi Agent Based Approach for Prehospital Emergency Management

    PubMed Central

    Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh

    2017-01-01

    Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities.  The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061

  12. Open Architecture SDR for Space

    NASA Technical Reports Server (NTRS)

    Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.

    2005-01-01

    This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.

  13. A distributed version of the NASA Engine Performance Program

    NASA Technical Reports Server (NTRS)

    Cours, Jeffrey T.; Curlett, Brian P.

    1993-01-01

    Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in a distributed computer environment. Multiple workstations connected by a network increase the program's speed and, more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing many different architectures. It includes the capability to link with other computers, allowing them to process NEPP jobs in parallel. This paper discusses the design issues and granularity considerations that entered into programming Distributed NEPP and presents the results of timing runs.

  14. Federated software defined network operations for LHC experiments

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Byeon, Okhwan; Cho, Kihyeon

    2013-09-01

    The most well-known high-energy physics collaboration, the Large Hadron Collider (LHC), which is based on e-Science, has been facing several challenges presented by its extraordinary instruments in terms of the generation, distribution, and analysis of large amounts of scientific data. Currently, data distribution issues are being resolved by adopting an advanced Internet technology called software defined networking (SDN). Stability of the SDN operations and management is demanded to keep the federated LHC data distribution networks reliable. Therefore, in this paper, an SDN operation architecture based on the distributed virtual network operations center (DvNOC) is proposed to enable LHC researchers to assume full control of their own global end-to-end data dissemination. This may achieve an enhanced data delivery performance based on data traffic offloading with delay variation. The evaluation results indicate that the overall end-to-end data delivery performance can be improved over multi-domain SDN environments based on the proposed federated SDN/DvNOC operation framework.

  15. Evaluating a Service-Oriented Architecture

    DTIC Science & Technology

    2007-09-01

    See the description on page 13. SaaS Software as a service ( SaaS ) is a software delivery model where customers don’t own a copy of the application... serviceability REST Representational State Transfer RIA rich internet application RPC remote procedure call SaaS software as a service SAML Security...Evaluating a Service -Oriented Architecture Phil Bianco, Software Engineering Institute Rick Kotermanski, Summa Technologies Paulo Merson

  16. Improved CLARAty Functional-Layer/Decision-Layer Interface

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang

    2008-01-01

    Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.

  17. The HydroServer Platform for Sharing Hydrologic Data

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Schreuders, K.; Maidment, D. R.; Zaslavsky, I.; Valentine, D. W.

    2010-12-01

    The CUAHSI Hydrologic Information System (HIS) is an internet based system that supports sharing of hydrologic data. HIS consists of databases connected using the Internet through Web services, as well as software for data discovery, access, and publication. The HIS system architecture is comprised of servers for publishing and sharing data, a centralized catalog to support cross server data discovery and a desktop client to access and analyze data. This paper focuses on HydroServer, the component developed for sharing and publishing space-time hydrologic datasets. A HydroServer is a computer server that contains a collection of databases, web services, tools, and software applications that allow data producers to store, publish, and manage the data from an experimental watershed or project site. HydroServer is designed to permit publication of data as part of a distributed national/international system, while still locally managing access to the data. We describe the HydroServer architecture and software stack, including tools for managing and publishing time series data for fixed point monitoring sites as well as spatially distributed, GIS datasets that describe a particular study area, watershed, or region. HydroServer adopts a standards based approach to data publication, relying on accepted and emerging standards for data storage and transfer. CUAHSI developed HydroServer code is free with community code development managed through the codeplex open source code repository and development system. There is some reliance on widely used commercial software for general purpose and standard data publication capability. The sharing of data in a common format is one way to stimulate interdisciplinary research and collaboration. It is anticipated that the growing, distributed network of HydroServers will facilitate cross-site comparisons and large scale studies that synthesize information from diverse settings, making the network as a whole greater than the sum of its parts in advancing hydrologic research. Details of the CUAHSI HIS can be found at http://his.cuahsi.org, and HydroServer codeplex site http://hydroserver.codeplex.com.

  18. Software Management Environment (SME) concepts and architecture, revision 1

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1992-01-01

    This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.

  19. Current state of the mass storage system reference model

    NASA Technical Reports Server (NTRS)

    Coyne, Robert

    1993-01-01

    IEEE SSSWG was chartered in May 1990 to abstract the hardware and software components of existing and emerging storage systems and to define the software interfaces between these components. The immediate goal is the decomposition of a storage system into interoperable functional modules which vendors can offer as separate commercial products. The ultimate goal is to develop interoperable standards which define the software interfaces, and in the distributed case, the associated protocols to each of the architectural modules in the model. The topics are presented in viewgraph form and include the following: IEEE SSSWG organization; IEEE SSSWG subcommittees & chairs; IEEE standards activity board; layered view of the reference model; layered access to storage services; IEEE SSSWG emphasis; and features for MSSRM version 5.

  20. Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility.

  1. SharP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata, Manjunath Gorentla; Aderholdt, William F

    The pre-exascale systems are expected to have a significant amount of hierarchical and heterogeneous on-node memory, and this trend of system architecture in extreme-scale systems is expected to continue into the exascale era. along with hierarchical-heterogeneous memory, the system typically has a high-performing network ad a compute accelerator. This system architecture is not only effective for running traditional High Performance Computing (HPC) applications (Big-Compute), but also for running data-intensive HPC applications and Big-Data applications. As a consequence, there is a growing desire to have a single system serve the needs of both Big-Compute and Big-Data applications. Though the system architecturemore » supports the convergence of the Big-Compute and Big-Data, the programming models and software layer have yet to evolve to support either hierarchical-heterogeneous memory systems or the convergence. A programming abstraction to address this problem. The programming abstraction is implemented as a software library and runs on pre-exascale and exascale systems supporting current and emerging system architecture. Using distributed data-structures as a central concept, it provides (1) a simple, usable, and portable abstraction for hierarchical-heterogeneous memory and (2) a unified programming abstraction for Big-Compute and Big-Data applications.« less

  2. The use of hypermedia to increase the productivity of software development teams

    NASA Technical Reports Server (NTRS)

    Coles, L. Stephen

    1991-01-01

    Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.

  3. A new software-based architecture for quantum computer

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, FangMin; Li, Xiangdong

    2010-04-01

    In this paper, we study a reliable architecture of a quantum computer and a new instruction set and machine language for the architecture, which can improve the performance and reduce the cost of the quantum computing. We also try to address some key issues in detail in the software-driven universal quantum computers.

  4. Software Technology for Adaptable, Reliable Systems (STARS). Software Architecture Seminar Report: Central Archive for Reusable Defense Software (CARDS)

    DTIC Science & Technology

    1994-01-29

    other processes, but that he arrived at his results in a different manner. Batory didn’t start with idioms; he performed a domain analysis and...abstracted idioms. Through domain analysis and domain modeling, new idioms can be found and the form of architecture can be the same. It was also questioned...Programming 5. Consensus Definition of Architecture 6. Inductive Analysis of Current Exemplars 7. VHDL (Bailor) 8. Ontological Structuring 3.3.3

  5. Key Technologies of Phone Storage Forensics Based on ARM Architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Che, Shengbing

    2018-03-01

    Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.

  6. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  7. Parallel Logic Programming and Parallel Systems Software and Hardware

    DTIC Science & Technology

    1989-07-29

    Conference, Dallas TX. January 1985. (55) [Rous75] Roussel, P., "PROLOG: Manuel de Reference et d’Uilisation", Group d’ Intelligence Artificielle , Universite d...completed. Tools were provided for software development using artificial intelligence techniques. Al software for massively parallel architectures was...using artificial intelligence tech- niques. Al software for massively parallel architectures was started. 1. Introduction We describe research conducted

  8. The SOFIA Mission Control System Software

    NASA Astrophysics Data System (ADS)

    Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.

    1999-05-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.

  9. Computer-generated forces in distributed interactive simulation

    NASA Astrophysics Data System (ADS)

    Petty, Mikel D.

    1995-04-01

    Distributed Interactive Simulation (DIS) is an architecture for building large-scale simulation models from a set of independent simulator nodes communicating via a common network protocol. DIS is most often used to create a simulated battlefield for military training. Computer Generated Forces (CGF) systems control large numbers of autonomous battlefield entities in a DIS simulation using computer equipment and software rather than humans in simulators. CGF entities serve as both enemy forces and supplemental friendly forces in a DIS exercise. Research into various aspects of CGF systems is ongoing. Several CGF systems have been implemented.

  10. Novel elastic protection against DDF failures in an enhanced software-defined SIEPON

    NASA Astrophysics Data System (ADS)

    Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar

    2017-07-01

    Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.

  11. Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things

    NASA Astrophysics Data System (ADS)

    Pang, Zhibo; Zheng, Lirong; Tian, Junzhe; Kao-Walter, Sharon; Dubrova, Elena; Chen, Qiang

    2015-01-01

    In-home health care services based on the Internet-of-Things are promising to resolve the challenges caused by the ageing of population. But the existing research is rather scattered and shows lack of interoperability. In this article, a business-technology co-design methodology is proposed for cross-boundary integration of in-home health care devices and services. In this framework, three key elements of a solution (business model, device and service integration architecture and information system integration architecture) are organically integrated and aligned. In particular, a cooperative Health-IoT ecosystem is formulated, and information systems of all stakeholders are integrated in a cooperative health cloud as well as extended to patients' home through the in-home health care station (IHHS). Design principles of the IHHS includes the reuse of 3C platform, certification of the Health Extension, interoperability and extendibility, convenient and trusted software distribution, standardised and secured electrical health care record handling, effective service composition and efficient data fusion. These principles are applied to the design of an IHHS solution called iMedBox. Detailed device and service integration architecture and hardware and software architecture are presented and verified by an implemented prototype. The quantitative performance analysis and field trials have confirmed the feasibility of the proposed design methodology and solution.

  12. Architectural Implementation of NASA Space Telecommunications Radio System Specification

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.

    2012-01-01

    This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.

  13. Quantum Computing Architectural Design

    NASA Astrophysics Data System (ADS)

    West, Jacob; Simms, Geoffrey; Gyure, Mark

    2006-03-01

    Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.

  14. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  15. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  16. Using Ada to implement the operations management system in a community of experts

    NASA Technical Reports Server (NTRS)

    Frank, M. S.

    1986-01-01

    An architecture is described for the Space Station Operations Management System (OMS), consisting of a distributed expert system framework implemented in Ada. The motivation for such a scheme is based on the desire to integrate the very diverse elements of the OMS while taking maximum advantage of knowledge based systems technology. Part of the foundation of an Ada based distributed expert system was accomplished in the form of a proof of concept prototype for the KNOMES project (Knowledge-based Maintenance Expert System). This prototype successfully used concurrently active experts to accomplish monitoring and diagnosis for the Remote Manipulator System. The basic concept of this software architecture is named ACTORS for Ada Cognitive Task ORganization Scheme. It is when one considers the overall problem of integrating all of the OMS elements into a cooperative system that the AI solution stands out. By utilizing a distributed knowledge based system as the framework for OMS, it is possible to integrate those components which need to share information in an intelligent manner.

  17. SIENA Customer Problem Statement and Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Sauer; R. Clay; C. Adams

    2000-08-01

    This document describes the problem domain and functional requirements of the SIENA framework. The software requirements and system architecture of SIENA are specified in separate documents (called SIENA Software Requirement Specification and SIENA Software Architecture, respectively). While currently this version of the document describes the problems and captures the requirements within the Analysis domain (concentrating on finite element models), it is our intention to subsequent y expand this document to describe problems and capture requirements from the Design and Manufacturing domains. In addition, SIENA is designed to be extendible to support and integrate elements from the other domains (see SIENAmore » Software Architecture document).« less

  18. STGT program: Ada coding and architecture lessons learned

    NASA Technical Reports Server (NTRS)

    Usavage, Paul; Nagurney, Don

    1992-01-01

    STGT (Second TDRSS Ground Terminal) is currently halfway through the System Integration Test phase (Level 4 Testing). To date, many software architecture and Ada language issues have been encountered and solved. This paper, which is the transcript of a presentation at the 3 Dec. meeting, attempts to define these lessons plus others learned regarding software project management and risk management issues, training, performance, reuse, and reliability. Observations are included regarding the use of particular Ada coding constructs, software architecture trade-offs during the prototyping, development and testing stages of the project, and dangers inherent in parallel or concurrent systems, software, hardware, and operations engineering.

  19. Updates to the NASA Space Telecommunications Radio System (STRS) Architecture

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.

    2008-01-01

    This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.

  20. Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture

    DOEpatents

    Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.

    2006-10-03

    This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.

  1. A research on the application of software defined networking in satellite network architecture

    NASA Astrophysics Data System (ADS)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  2. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  3. OXC management and control system architecture with scalability, maintenance, and distributed managing environment

    NASA Astrophysics Data System (ADS)

    Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun

    2002-07-01

    In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.

  4. The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments

    NASA Astrophysics Data System (ADS)

    van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish

    2016-07-01

    Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.

  5. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    PubMed

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  6. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  7. Medusa: A Scalable MR Console Using USB

    PubMed Central

    Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.

    2012-01-01

    MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200

  8. Image Understanding Architecture

    DTIC Science & Technology

    1991-09-01

    architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers

  9. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  10. WaveJava: Wavelet-based network computing

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  11. A heterogeneous hierarchical architecture for real-time computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skroch, D.A.; Fornaro, R.J.

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  12. Control System Architectures, Technologies and Concepts for Near Term and Future Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard; Overland, David

    2004-01-01

    Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.

  13. Implications of Responsive Space on the Flight Software Architecture

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.

  14. Advantages of Brahms for Specifying and Implementing a Multiagent Human-Robotic Exploration System

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron

    2003-01-01

    We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, all-terrain vehicles, robotic assistant, crew in a local habitat, and mission support team. Software processes ('agents') implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a runtime system Thus, Brahms provides a language, engine, and system builder's toolkit for specifying and implementing multiagent systems.

  15. Advanced data management system architectures testbed

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1990-01-01

    The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.

  16. ImTK: an open source multi-center information management toolkit

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.

    2008-03-01

    The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.

  17. Observing System Simulation Experiment (OSSE) for the HyspIRI Spectrometer Mission

    NASA Technical Reports Server (NTRS)

    Turmon, Michael J.; Block, Gary L.; Green, Robert O.; Hua, Hook; Jacob, Joseph C.; Sobel, Harold R.; Springer, Paul L.; Zhang, Qingyuan

    2010-01-01

    The OSSE software provides an integrated end-to-end environment to simulate an Earth observing system by iteratively running a distributed modeling workflow based on the HyspIRI Mission, including atmospheric radiative transfer, surface albedo effects, detection, and retrieval for agile exploration of the mission design space. The software enables an Observing System Simulation Experiment (OSSE) and can be used for design trade space exploration of science return for proposed instruments by modeling the whole ground truth, sensing, and retrieval chain and to assess retrieval accuracy for a particular instrument and algorithm design. The OSSE in fra struc ture is extensible to future National Research Council (NRC) Decadal Survey concept missions where integrated modeling can improve the fidelity of coupled science and engineering analyses for systematic analysis and science return studies. This software has a distributed architecture that gives it a distinct advantage over other similar efforts. The workflow modeling components are typically legacy computer programs implemented in a variety of programming languages, including MATLAB, Excel, and FORTRAN. Integration of these diverse components is difficult and time-consuming. In order to hide this complexity, each modeling component is wrapped as a Web Service, and each component is able to pass analysis parameterizations, such as reflectance or radiance spectra, on to the next component downstream in the service workflow chain. In this way, the interface to each modeling component becomes uniform and the entire end-to-end workflow can be run using any existing or custom workflow processing engine. The architecture lets users extend workflows as new modeling components become available, chain together the components using any existing or custom workflow processing engine, and distribute them across any Internet-accessible Web Service endpoints. The workflow components can be hosted on any Internet-accessible machine. This has the advantages that the computations can be distributed to make best use of the available computing resources, and each workflow component can be hosted and maintained by their respective domain experts.

  18. Remote hardware-reconfigurable robotic camera

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  19. A Distributed Data Architecture for 2001 Mars Odyssey Data Distribution

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel J.; Hughes, J. Steven; Kelly, Sean

    2003-01-01

    Newer instruments and communications techniques have given scientists unprecedented amounts of data, more than can be feasibly distributed through traditional methods such as mailed CD-ROM's. Leveraging the web makes sense since it enables scientists to request specific data and retrieve products as soon as they're available. Yet defining the middleware system to support such an application has remained just out of reach, until Odyssey. For the first time ever, data from all Odyssey mission instruments were made available through a single system immediately upon delivery to the Planetary Data System (PDS). The Object Oriented Data Technology (OODT) software made such an application possible.

  20. Software To Secure Distributed Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  1. Malware distributed collection and pre-classification system using honeypot technology

    NASA Astrophysics Data System (ADS)

    Grégio, André R. A.; Oliveira, Isabela L.; Santos, Rafael D. C.; Cansian, Adriano M.; de Geus, Paulo L.

    2009-04-01

    Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes.

  2. Networking and AI systems: Requirements and benefits

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.

  3. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  4. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Rugina, Ana; Trcka, Adam

    2016-08-01

    The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.

  5. Design and Multicentric Implementation of a Generic Software Architecture for Patient Recruitment Systems Re-Using Existing HIS Tools and Routine Patient Data

    PubMed Central

    Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.

    2014-01-01

    Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138

  6. Design and multicentric implementation of a generic software architecture for patient recruitment systems re-using existing HIS tools and routine patient data.

    PubMed

    Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M

    2014-01-01

    (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.

  7. Distributed Object Technology with CORBA and Java: Key Concepts and Implications.

    DTIC Science & Technology

    1997-06-01

    commercial use should be addressed to the SEI Licensing Agent. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL...retrieval. This power is not derived from the language per se, but from the architecture-neutral approach used by Java. The Java Virtual Machine...pattern that is focused on performance considerations, the PCo archi- tecture also uses CORBA interface definition language (IDL) to model the

  8. Large Scale Hierarchical K-Means Based Image Retrieval With MapReduce

    DTIC Science & Technology

    2014-03-27

    hadoop distributed file system: Architecture and design, 2007. [10] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000. [11] Terry Costlow. Big data ...million images running on 20 virtual machines are shown. 15. SUBJECT TERMS Image Retrieval, MapReduce, Hierarchical K-Means, Big Data , Hadoop U U U UU 87...13 2.1.1.2 HDFS Data Representation . . . . . . . . . . . . . . . . 14 2.1.1.3 Hadoop Engine

  9. A Comparison and Evaluation of Real-Time Software Systems Modeling Languages

    NASA Technical Reports Server (NTRS)

    Evensen, Kenneth D.; Weiss, Kathryn Anne

    2010-01-01

    A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.

  10. Hierarchical storage of large volume of multidector CT data using distributed servers

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Rosset, Antoine; Heuberger, Joris; Bandon, David

    2006-03-01

    Multidector scanners and hybrid multimodality scanners have the ability to generate large number of high-resolution images resulting in very large data sets. In most cases, these datasets are generated for the sole purpose of generating secondary processed images and 3D rendered images as well as oblique and curved multiplanar reformatted images. It is therefore not essential to archive the original images after they have been processed. We have developed an architecture of distributed archive servers for temporary storage of large image datasets for 3D rendering and image processing without the need for long term storage in PACS archive. With the relatively low cost of storage devices it is possible to configure these servers to hold several months or even years of data, long enough for allowing subsequent re-processing if required by specific clinical situations. We tested the latest generation of RAID servers provided by Apple computers with a capacity of 5 TBytes. We implemented a peer-to-peer data access software based on our Open-Source image management software called OsiriX, allowing remote workstations to directly access DICOM image files located on the server through a new technology called "bonjour". This architecture offers a seamless integration of multiple servers and workstations without the need for central database or complex workflow management tools. It allows efficient access to image data from multiple workstation for image analysis and visualization without the need for image data transfer. It provides a convenient alternative to centralized PACS architecture while avoiding complex and time-consuming data transfer and storage.

  11. Framework for Development and Distribution of Hardware Acceleration

    NASA Astrophysics Data System (ADS)

    Thomas, David B.; Luk, Wayne W.

    2002-07-01

    This paper describes IGOL, a framework for developing reconfigurable data processing applications. While IGOL was originally designed to target imaging and graphics systems, its structure is sufficiently general to support a broad range of applications. IGOL adopts a four-layer architecture: application layer, operation layer, appliance layer and configuration layer. This architecture is intended to separate and co-ordinate both the development and execution of hardware and software components. Hardware developers can use IGOL as an instance testbed for verification and benchmarking, as well as for distribution. Software application developers can use IGOL to discover hardware accelerated data processors, and to access them in a transparent, non-hardware specific manner. IGOL provides extensive support for the RC1000-PP board via the Handel-C language, and a wide selection of image processing filters have been developed. IGOL also supplies plug-ins to enable such filters to be incorporated in popular applications such as Premiere, Winamp, VirtualDub and DirectShow. Moreover, IGOL allows the automatic use of multiple cards to accelerate an application, demonstrated using DirectShow. To enable transparent acceleration without sacrificing performance, a three-tiered COM (Component Object Model) API has been designed and implemented. This API provides a well-defined and extensible interface which facilitates the development of hardware data processors that can accelerate multiple applications.

  12. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD).

    PubMed

    Cao, Yuan; Zhao, Yongli; Colman-Meixner, Carlos; Yu, Xiaosong; Zhang, Jie

    2017-10-30

    Software-defined optical networking (SDON) will become the next generation optical network architecture. However, the optical layer and control layer of SDON are vulnerable to cyberattacks. While, data encryption is an effective method to minimize the negative effects of cyberattacks, secure key interchange is its major challenge which can be addressed by the quantum key distribution (QKD) technique. Hence, in this paper we discuss the integration of QKD with WDM optical networks to secure the SDON architecture by introducing a novel key on demand (KoD) scheme which is enabled by a novel routing, wavelength and key assignment (RWKA) algorithm. The QKD over SDON with KoD model follows two steps to provide security: i) quantum key pools (QKPs) construction for securing the control channels (CChs) and data channels (DChs); ii) the KoD scheme uses RWKA algorithm to allocate and update secret keys for different security requirements. To test our model, we define a security probability index which measures the security gain in CChs and DChs. Simulation results indicate that the security performance of CChs and DChs can be enhanced by provisioning sufficient secret keys in QKPs and performing key-updating considering potential cyberattacks. Also, KoD is beneficial to achieve a positive balance between security requirements and key resource usage.

  13. Four Pillars of Service-Oriented Architecture

    DTIC Science & Technology

    2007-09-01

    ic A lig n m e n t Figure 1: Pillars of SOA-Based Systems Development Service -Oriented Architectures 12 CROSSTALK The Journal of Defense Software ...et al. “On the Business Value and Technical Challenges of Adopting Web Services .” Journal of Software Maintenance and Evolution 16 (2004): 16, 31-50...10 CROSSTALK The Journal of Defense Software Engineering September 2007 Acornerstone of DoD policy forfuture software and systems policy is the

  14. Modeling of a 3DTV service in the software-defined networking architecture

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2014-11-01

    In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.

  15. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  16. The environmental control and life support system advanced automation project. Phase 1: Application evaluation

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.

  17. A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.

    PubMed Central

    Law, V.; Goldberg, H. S.; Jones, P.; Safran, C.

    1998-01-01

    One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system. PMID:9929252

  18. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    NASA Technical Reports Server (NTRS)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  19. A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.

    PubMed

    Law, V; Goldberg, H S; Jones, P; Safran, C

    1998-01-01

    One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system.

  20. Separating essentials from incidentals: an execution architecture for real-time control systems

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel; Reinholtz, Kirk

    2004-01-01

    This paper describes an execution architecture that makes such systems far more analyzable and verifiable by aggressive separation of concerns. The architecture separates two key software concerns: transformations of global state, as defined in pure functions; and sequencing/timing of transformations, as performed by an engine that enforces four prime invariants. The important advantage of this architecture, besides facilitating verification, is that it encourages formal specification of systems in a vocabulary that brings systems engineering closer to software engineering.

  1. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: An Earth Modeling System Software Framework Strawman Design that Integrates Cactus and UCLA/UCB Distributed Data Broker

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.

  2. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  3. Distributed Operations Planning

    NASA Technical Reports Server (NTRS)

    Fox, Jason; Norris, Jeffrey; Powell, Mark; Rabe, Kenneth; Shams, Khawaja

    2007-01-01

    Maestro software provides a secure and distributed mission planning system for long-term missions in general, and the Mars Exploration Rover Mission (MER) specifically. Maestro, the successor to the Science Activity Planner, has a heavy emphasis on portability and distributed operations, and requires no data replication or expensive hardware, instead relying on a set of services functioning on JPL institutional servers. Maestro works on most current computers with network connections, including laptops. When browsing down-link data from a spacecraft, Maestro functions similarly to being on a Web browser. After authenticating the user, it connects to a database server to query an index of data products. It then contacts a Web server to download and display the actual data products. The software also includes collaboration support based upon a highly reliable messaging system. Modifications made to targets in one instance are quickly and securely transmitted to other instances of Maestro. The back end that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  4. Preliminary Design of an Autonomous Amphibious System

    DTIC Science & Technology

    2016-09-01

    changing vehicle dynamics will require innovative new autonomy algorithms. The developed software architecture, drive-by- wire kit, and supporting...COMMUNICATIONS ARCHITECTURE .................................................12 3.3 DRIVE-BY- WIRE DESIGN...SOFTWARE MATURATION PLANS ......................................................17 4.2 DRIVE-BY- WIRE PLANNED REFINEMENT

  5. Investigating the Acquisition of Software Systems that Rely on Open Architecture and Open Source Software

    DTIC Science & Technology

    2010-03-01

    associated with certain software systems [Breaux and Anton 2008]. With this basis to build on, it is now possible to analyze the alignment of...Kazman, R., (2003). Software Architecture in Practice, 2nd Edition, Addison-Wesley Pro- fessional, New York.. Breaux, T.D. and Anton , A.I. (2008... calculus for license rights and obligations in license and context models. Using them, we calculate rights and obligations for specific sys- tems, identify

  6. Software Design for Real-Time Systems on Parallel Computers: Formal Specifications.

    DTIC Science & Technology

    1996-04-01

    This research investigated the important issues related to the analysis and design of real - time systems targeted to parallel architectures. In...particular, the software specification models for real - time systems on parallel architectures were evaluated. A survey of current formal methods for...uniprocessor real - time systems specifications was conducted to determine their extensibility in specifying real - time systems on parallel architectures. In

  7. GUEST EDITORS' INTRODUCTION: Guest Editors' introduction

    NASA Astrophysics Data System (ADS)

    Guerraoui, Rachid; Vinoski, Steve

    1997-09-01

    The organization of a distributed system can have a tremendous impact on its capabilities, its performance, and its ability to evolve to meet changing requirements. For example, the client - server organization model has proven to be adequate for organizing a distributed system as a number of distributed servers that offer various functions to client processes across the network. However, it lacks peer-to-peer capabilities, and experience with the model has been predominantly in the context of local networks. To achieve peer-to-peer cooperation in a more global context, systems issues of scale, heterogeneity, configuration management, accounting and sharing are crucial, and the complexity of migrating from locally distributed to more global systems demands new tools and techniques. An emphasis on interfaces and modules leads to the modelling of a complex distributed system as a collection of interacting objects that communicate with each other only using requests sent to well defined interfaces. Although object granularity typically varies at different levels of a system architecture, the same object abstraction can be applied to various levels of a computing architecture. Since 1989, the Object Management Group (OMG), an international software consortium, has been defining an architecture for distributed object systems called the Object Management Architecture (OMA). At the core of the OMA is a `software bus' called an Object Request Broker (ORB), which is specified by the OMG Common Object Request Broker Architecture (CORBA) specification. The OMA distributed object model fits the structure of heterogeneous distributed applications, and is applied in all layers of the OMA. For example, each of the OMG Object Services, such as the OMG Naming Service, is structured as a set of distributed objects that communicate using the ORB. Similarly, higher-level OMA components such as Common Facilities and Domain Interfaces are also organized as distributed objects that can be layered over both Object Services and the ORB. The OMG creates specifications, not code, but the interfaces it standardizes are always derived from demonstrated technology submitted by member companies. The specified interfaces are written in a neutral Interface Definition Language (IDL) that defines contractual interfaces with potential clients. Interfaces written in IDL can be translated to a number of programming languages via OMG standard language mappings so that they can be used to develop components. The resulting components can transparently communicate with other components written in different languages and running on different operating systems and machine types. The ORB is responsible for providing the illusion of `virtual homogeneity' regardless of the programming languages, tools, operating systems and networks used to realize and support these components. With the adoption of the CORBA 2.0 specification in 1995, these components are able to interoperate across multi-vendor CORBA-based products. More than 700 member companies have joined the OMG, including Hewlett-Packard, Digital, Siemens, IONA Technologies, Netscape, Sun Microsystems, Microsoft and IBM, which makes it the largest standards body in existence. These companies continue to work together within the OMG to refine and enhance the OMA and its components. This special issue of Distributed Systems Engineering publishes five papers that were originally presented at the `Distributed Object-Based Platforms' track of the 30th Hawaii International Conference on System Sciences (HICSS), which was held in Wailea on Maui on 6 - 10 January 1997. The papers, which were selected based on their quality and the range of topics they cover, address different aspects of CORBA, including advanced aspects such as fault tolerance and transactions. These papers discuss the use of CORBA and evaluate CORBA-based development for different types of distributed object systems and architectures. The first paper, by S Rahkila and S Stenberg, discusses the application of CORBA to telecommunication management networks. In the second paper, P Narasimhan, L E Moser and P M Melliar-Smith present a fault-tolerant extension of an ORB. The third paper, by J Liang, S Sédillot and B Traverson, provides an overview of the CORBA Transaction Service and its integration with the ISO Distributed Transaction Processing protocol. In the fourth paper, D Sherer, T Murer and A Würtz discuss the evolution of a cooperative software engineering infrastructure to a CORBA-based framework. The fifth paper, by R Fatoohi, evaluates the communication performance of a commercially-available Object Request Broker (Orbix from IONA Technologies) on several networks, and compares the performance with that of more traditional communication primitives (e.g., BSD UNIX sockets and PVM). We wish to thank both the referees and the authors of these papers, as their cooperation was fundamental in ensuring timely publication.

  8. Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie

    2003-01-01

    A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.

  9. Conference on Real-Time Computer Applications in Nuclear, Particle and Plasma Physics, 6th, Williamsburg, VA, May 15-19, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Pordes, Ruth (Editor)

    1989-01-01

    Papers on real-time computer applications in nuclear, particle, and plasma physics are presented, covering topics such as expert systems tactics in testing FASTBUS segment interconnect modules, trigger control in a high energy physcis experiment, the FASTBUS read-out system for the Aleph time projection chamber, a multiprocessor data acquisition systems, DAQ software architecture for Aleph, a VME multiprocessor system for plasma control at the JT-60 upgrade, and a multiasking, multisinked, multiprocessor data acquisition front end. Other topics include real-time data reduction using a microVAX processor, a transputer based coprocessor for VEDAS, simulation of a macropipelined multi-CPU event processor for use in FASTBUS, a distributed VME control system for the LISA superconducting Linac, a distributed system for laboratory process automation, and a distributed system for laboratory process automation. Additional topics include a structure macro assembler for the event handler, a data acquisition and control system for Thomson scattering on ATF, remote procedure execution software for distributed systems, and a PC-based graphic display real-time particle beam uniformity.

  10. Programmable bandwidth management in software-defined EPON architecture

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming

    2016-07-01

    This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.

  11. Software design by reusing architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay; Nii, H. Penny

    1992-01-01

    Abstraction fosters reuse by providing a class of artifacts that can be instantiated or customized to produce a set of artifacts meeting different specific requirements. It is proposed that significant leverage can be obtained by abstracting software system designs and the design process. The result of such an abstraction is a generic architecture and a set of knowledge-based, customization tools that can be used to instantiate the generic architecture. An approach for designing software systems based on the above idea are described. The approach is illustrated through an implemented example, and the advantages and limitations of the approach are discussed.

  12. Building the Core Architecture of a Multiagent System Product Line: With an example from a future NASA Mission

    NASA Technical Reports Server (NTRS)

    Pena, Joaquin; Hinchey, Michael G.; Ruiz-Cortes, Antonio

    2006-01-01

    The field of Software Product Lines (SPL) emphasizes building a core architecture for a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current AOSE methodologies are concerned with developing a single Multiagent System. We propose an initial approach to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology.

  13. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    PubMed Central

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  14. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  15. Verifying Architectural Design Rules of the Flight Software Product Line

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen

    2009-01-01

    This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.

  16. Scalable software architecture for on-line multi-camera video processing

    NASA Astrophysics Data System (ADS)

    Camplani, Massimo; Salgado, Luis

    2011-03-01

    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.

  17. Distributed digital signal processors for multi-body structures

    NASA Technical Reports Server (NTRS)

    Lee, Gordon K.

    1990-01-01

    Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.

  18. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  19. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.

  20. AIAA/NASA International Symposium on Space Information Systems, 2nd, Pasadena, CA, Sept. 17-19, 1990, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Tavenner, Leslie A. (Editor)

    1991-01-01

    These proceedings overview major space information system projects and lessons learned from current missions. Other topics include the science information system requirements for the 1990s, an information systems design approach for major programs, the technology needs and projections, the standards for space data information systems, the artificial intelligence technology and applications, international interoperability, and spacecraft data systems and architectures advanced communications. Other topics include the software engineering technology and applications, the multimission multidiscipline information system architectures, the distributed planning and scheduling systems and operations, and the computer and information systems architectures. Paper presented include prospects for scientific data analysis systems for solar-terrestrial physics in the 1990s, the Columbus data management system, data storage technologies for the future, the German aerospace research establishment, and launching artificial intelligence in NASA ground systems.

  1. UAV Cooperation Architectures for Persistent Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S; Kent, C A; Jones, E D

    2003-03-20

    With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time thatmore » any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.« less

  2. Web-based training: a new paradigm in computer-assisted instruction in medicine.

    PubMed

    Haag, M; Maylein, L; Leven, F J; Tönshoff, B; Haux, R

    1999-01-01

    Computer-assisted instruction (CAI) programs based on internet technologies, especially on the world wide web (WWW), provide new opportunities in medical education. The aim of this paper is to examine different aspects of such programs, which we call 'web-based training (WBT) programs', and to differentiate them from conventional CAI programs. First, we will distinguish five different interaction types: presentation; browsing; tutorial dialogue; drill and practice; and simulation. In contrast to conventional CAI, there are four architectural types of WBT programs: client-based; remote data and knowledge; distributed teaching; and server-based. We will discuss the implications of the different architectures for developing WBT software. WBT programs have to meet other requirements than conventional CAI programs. The most important tools and programming languages for developing WBT programs will be listed and assigned to the architecture types. For the future, we expect a trend from conventional CAI towards WBT programs.

  3. Integrating Distributed Interactive Simulations With the Project Darkstar Open-Source Massively Multiplayer Online Game (MMOG) Middleware

    DTIC Science & Technology

    2009-09-01

    be complete MMOG solutions such as Multiverse are not within the scope of this thesis, though it is recommended that readers compare this type of...software to the middleware described here ( Multiverse , 2009). 1. University of Munster: Real-Time Framework The Real-Time Framework (RTF) project is...10, 2009, from http://wiki.secondlife.com/wiki/MMOX Multiverse . (2009). Multiverse platform architecture. Retrieved September 9, 2009, from http

  4. Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations

    NASA Technical Reports Server (NTRS)

    Best, Susan; Nichols, Kelvin; Bradford, Robert

    2003-01-01

    This viewgraph presentation provides an overview of a proposed voice communication system for use in remote payload operations performed on the International Space Station. The system, Internet Voice Distribution System (IVoDS), would make use of existing Internet protocols, and offer a number of advantages over the system currently in use. Topics covered include: system description and operation, system software and hardware, system architecture, project status, and technology transfer applications.

  5. Focused Logistics and Support for Force Projection in Force XXI and Beyond

    DTIC Science & Technology

    1999-12-09

    business system linking trading partners with point of sale demand and real time manufacturing for clothing items.17 Quick Response achieved $1.7...be able to determine the real - time status and supply requirements of units. With "distributed logistics system software model hosts൨ and active...location, quantity, condition, and movement of assets. The system is designed to be fully automated, operate in near- real time with an open-architecture

  6. The AppScale Cloud Platform

    PubMed Central

    Krintz, Chandra

    2013-01-01

    AppScale is an open source distributed software system that implements a cloud platform as a service (PaaS). AppScale makes cloud applications easy to deploy and scale over disparate cloud fabrics, implementing a set of APIs and architecture that also makes apps portable across the services they employ. AppScale is API-compatible with Google App Engine (GAE) and thus executes GAE applications on-premise or over other cloud infrastructures, without modification. PMID:23828721

  7. MindModeling@Home . . . and Anywhere Else You Have Idle Processors

    DTIC Science & Technology

    2009-12-01

    was SETI @Home. It was established in 1999 for the purpose of demonstrating the utility of “distributed grid computing” by providing a mechanism for...the public imagination, and SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This...pursuits. Most of them, including SETI @Home, run on a software architecture called the Berkeley Open Infrastructure for Network Computing (BOINC). Some of

  8. Synergistic control center development utilizing commercial technology and industry standards. [NASA space programs

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    1993-01-01

    The development of the Control Center Complex (CCC), a synergistic control center supporting both the Space Station Freedom and the Space Shuttle Program, is described. To provide maximum growth and flexibility, the CCC uses commercial off-the-shelf technology and industry standards. The discussion covers the development philosophy, CCC architecture, data distribution, the software platform concept, workstation platform, commercial tools for the CCC, and benefits of synergy.

  9. Systems, methods and apparatus for developing and maintaining evolving systems with software product lines

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Pena, Joaquin (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which an evolutionary system is managed and viewed as a software product line. In some embodiments, the core architecture is a relatively unchanging part of the system, and each version of the system is viewed as a product from the product line. Each software product is generated from the core architecture with some agent-based additions. The result may be a multi-agent system software product line.

  10. The widest practicable dissemination: The NASA technical report server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Binkley, Robert L.; Kellogg, Yvonne D.; Paulson, Sharon S.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael; Accomazzi, Alberto

    1995-01-01

    The search for innovative methods to distribute NASA's information lead a gross-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the services over the initial 6-month period. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained will allow NASA to ensure that its institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  11. Digital Library Storage using iRODS Data Grids

    NASA Astrophysics Data System (ADS)

    Hedges, Mark; Blanke, Tobias; Hasan, Adil

    Digital repository software provides a powerful and flexible infrastructure for managing and delivering complex digital resources and metadata. However, issues can arise in managing the very large, distributed data files that may constitute these resources. This paper describes an implementation approach that combines the Fedora digital repository software with a storage layer implemented as a data grid, using the iRODS middleware developed by DICE (Data Intensive Cyber Environments) as the successor to SRB. This approach allows us to use Fedoras flexible architecture to manage the structure of resources and to provide application- layer services to users. The grid-based storage layer provides efficient support for managing and processing the underlying distributed data objects, which may be very large (e.g. audio-visual material). The Rule Engine built into iRODS is used to integrate complex workflows at the data level that need not be visible to users, e.g. digital preservation functionality.

  12. Collaboration and decision making tools for mobile groups

    NASA Astrophysics Data System (ADS)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  13. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  14. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  15. Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian

    2018-03-01

    In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.

  16. ESPC Common Model Architecture Earth System Modeling Framework (ESMF) Software and Application Development

    DTIC Science & Technology

    2015-09-30

    originate from NASA , NOAA , and community modeling efforts, and support for creation of the suite was shared by sponsors from other agencies. ESPS...Framework (ESMF) Software and Application Development Cecelia Deluca NESII/CIRES/ NOAA Earth System Research Laboratory 325 Broadway Boulder, CO...Capability (NUOPC) was established between NOAA and Navy to develop a common software architecture for easy and efficient interoperability. The

  17. Architectural Implications of Cloud Computing

    DTIC Science & Technology

    2011-10-24

    Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context

  18. BH-ShaDe: A Software Tool That Assists Architecture Students in the III-Structured Task of Housing Design

    ERIC Educational Resources Information Center

    Millan, Eva; Belmonte, Maria-Victoria; Ruiz-Montiel, Manuela; Gavilanes, Juan; Perez-de-la-Cruz, Jose-Luis

    2016-01-01

    In this paper, we present BH-ShaDe, a new software tool to assist architecture students learning the ill-structured domain/task of housing design. The software tool provides students with automatic or interactively generated floor plan schemas for basic houses. The students can then use the generated schemas as initial seeds to develop complete…

  19. A Practical Software Architecture for Virtual Universities

    ERIC Educational Resources Information Center

    Xiang, Peifeng; Shi, Yuanchun; Qin, Weijun

    2006-01-01

    This article introduces a practical software architecture called CUBES, which focuses on system integration and evolvement for online virtual universities. The key of CUBES is a supporting platform that helps to integrate and evolve heterogeneous educational applications developed by different organizations. Both standardized educational…

  20. Freight Advanced Traveler Information System (FRATIS) Dallas-Fort Worth : software architecture design and implementation options.

    DOT National Transportation Integrated Search

    2013-05-01

    This document describes the Software Architecture Design and Implementation Options for FRATIS system. The demonstration component of this task will serve to test the technical feasibility of the FRATIS prototype while also facilitating the collectio...

  1. Combining Architecture-Centric Engineering with the Team Software Process

    DTIC Science & Technology

    2010-12-01

    colleagues from Quarksoft and CIMAT have re- cently reported on their experiences in “Introducing Software Architecture Development Methods into a TSP...Postmortem Lessons, new goals, new requirements, new risk , etc. Business and technical goals Estimates, plans, process, commitment Work products...architecture to mitigate the risks unco- vered by the ATAM. At the end of the iteration, version 1.0 of the architec- ture is available. Implement a second

  2. Hardware Architecture Study for NASA's Space Software Defined Radios

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John

    2008-01-01

    This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  3. Architecture of the software for LAMOST fiber positioning subsystem

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobo; Xing, Xiaozheng; Hu, Hongzhuan; Zhai, Chao; Li, Weimin

    2004-09-01

    The architecture of the software which controls the LAMOST fiber positioning sub-system is described. The software is composed of two parts as follows: a main control program in a computer and a unit controller program in a MCS51 single chip microcomputer ROM. And the function of the software includes: Client/Server model establishment, observation planning, collision handling, data transmission, pulse generation, CCD control, image capture and processing, and data analysis etc. Particular attention is paid to the ways in which different parts of the software can communicate. Also software techniques for multi threads, SOCKET programming, Microsoft Windows message response, and serial communications are discussed.

  4. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  5. Cooperative fault-tolerant distributed computing U.S. Department of Energy Grant DE-FG02-02ER25537 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2007-01-09

    The Harness project has developed novel software frameworks for the execution of high-end simulations in a fault-tolerant manner on distributed resources. The H2O subsystem comprises the kernel of the Harness framework, and controls the key functions of resource management across multiple administrative domains, especially issues of access and allocation. It is based on a “pluggable” architecture that enables the aggregated use of distributed heterogeneous resources for high performance computing. The major contributions of the Harness II project result in significantly enhancing the overall computational productivity of high-end scientific applications by enabling robust, failure-resilient computations on cooperatively pooled resource collections.

  6. A Comparison Between Publish-and-Subscribe and Client-Server Models in Distributed Control System Networks

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard P., Jr.; Kwauk, Xian-Min; Stagnaro, Mike; Kliss, Mark (Technical Monitor)

    1998-01-01

    The BIO-Plex control system requires real-time, flexible, and reliable data delivery. There is no simple "off-the-shelf 'solution. However, several commercial packages will be evaluated using a testbed at ARC for publish- and-subscribe and client-server communication architectures. Point-to-point communication architecture is not suitable for real-time BIO-Plex control system. Client-server architecture provides more flexible data delivery. However, it does not provide direct communication among nodes on the network. Publish-and-subscribe implementation allows direct information exchange among nodes on the net, providing the best time-critical communication. In this work Network Data Delivery Service (NDDS) from Real-Time Innovations, Inc. ARTIE will be used to implement publish-and subscribe architecture. It offers update guarantees and deadlines for real-time data delivery. Bridgestone, a data acquisition and control software package from National Instruments, will be tested for client-server arrangement. A microwave incinerator located at ARC will be instrumented with a fieldbus network of control devices. BridgeVIEW will be used to implement an enterprise server. An enterprise network consisting of several nodes at ARC and a WAN connecting ARC and RISC will then be setup to evaluate proposed control system architectures. Several network configurations will be evaluated for fault tolerance, quality of service, reliability and efficiency. Data acquired from these network evaluation tests will then be used to determine preliminary design criteria for the BIO-Plex distributed control system.

  7. Using CLIPS in the domain of knowledge-based massively parallel programming

    NASA Technical Reports Server (NTRS)

    Dvorak, Jiri J.

    1994-01-01

    The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.

  8. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  9. Flexible Software Architecture for Visualization and Seismic Data Analysis

    NASA Astrophysics Data System (ADS)

    Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.

    2007-12-01

    Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.

  10. DAQ: Software Architecture for Data Acquisition in Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Ahmad, Mohammad; Tran, Thanh; Nichols, Heidi; Bowles-Martinez, Jessica N.

    2011-01-01

    A multithreaded software application was developed by Jet Propulsion Lab (JPL) to collect a set of correlated imagery, Inertial Measurement Unit (IMU) and GPS data for a Wallops Flight Facility (WFF) sounding rocket flight. The data set will be used to advance Terrain Relative Navigation (TRN) technology algorithms being researched at JPL. This paper describes the software architecture and the tests used to meet the timing and data rate requirements for the software used to collect the dataset. Also discussed are the challenges of using commercial off the shelf (COTS) flight hardware and open source software. This includes multiple Camera Link (C-link) based cameras, a Pentium-M based computer, and Linux Fedora 11 operating system. Additionally, the paper talks about the history of the software architecture's usage in other JPL projects and its applicability for future missions, such as cubesats, UAVs, and research planes/balloons. Also talked about will be the human aspect of project especially JPL's Phaeton program and the results of the launch.

  11. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  12. Generic Software Architecture for Prognostics (GSAP) User Guide

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher Allen; Daigle, Matthew John; Watkins, Jason; Sankararaman, Shankar; Goebel, Kai

    2016-01-01

    The Generic Software Architecture for Prognostics (GSAP) is a framework for applying prognostics. It makes applying prognostics easier by implementing many of the common elements across prognostic applications. The standard interface enables reuse of prognostic algorithms and models across systems using the GSAP framework.

  13. Scaling Watershed Models: Modern Approaches to Science Computation with MapReduce, Parallelization, and Cloud Optimization

    EPA Science Inventory

    Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...

  14. Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Weeks, Cindy Lou

    1986-01-01

    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.

  15. A multiarchitecture parallel-processing development environment

    NASA Technical Reports Server (NTRS)

    Townsend, Scott; Blech, Richard; Cole, Gary

    1993-01-01

    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.

  16. Measurements of the LHCb software stack on the ARM architecture

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-06-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86_64 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance - this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed - these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and generic improvements.

  17. Architecture for autonomy

    NASA Astrophysics Data System (ADS)

    Broten, Gregory S.; Monckton, Simon P.; Collier, Jack; Giesbrecht, Jared

    2006-05-01

    In 2002 Defence R&D Canada changed research direction from pure tele-operated land vehicles to general autonomy for land, air, and sea craft. The unique constraints of the military environment coupled with the complexity of autonomous systems drove DRDC to carefully plan a research and development infrastructure that would provide state of the art tools without restricting research scope. DRDC's long term objectives for its autonomy program address disparate unmanned ground vehicle (UGV), unattended ground sensor (UGS), air (UAV), and subsea and surface (UUV and USV) vehicles operating together with minimal human oversight. Individually, these systems will range in complexity from simple reconnaissance mini-UAVs streaming video to sophisticated autonomous combat UGVs exploiting embedded and remote sensing. Together, these systems can provide low risk, long endurance, battlefield services assuming they can communicate and cooperate with manned and unmanned systems. A key enabling technology for this new research is a software architecture capable of meeting both DRDC's current and future requirements. DRDC built upon recent advances in the computing science field while developing its software architecture know as the Architecture for Autonomy (AFA). Although a well established practice in computing science, frameworks have only recently entered common use by unmanned vehicles. For industry and government, the complexity, cost, and time to re-implement stable systems often exceeds the perceived benefits of adopting a modern software infrastructure. Thus, most persevere with legacy software, adapting and modifying software when and wherever possible or necessary -- adopting strategic software frameworks only when no justifiable legacy exists. Conversely, academic programs with short one or two year projects frequently exploit strategic software frameworks but with little enduring impact. The open-source movement radically changes this picture. Academic frameworks, open to public scrutiny and modification, now rival commercial frameworks in both quality and economic impact. Further, industry now realizes that open source frameworks can reduce cost and risk of systems engineering. This paper describes the Architecture for Autonomy implemented by DRDC and how this architecture meets DRDC's current needs. It also presents an argument for why this architecture should also satisfy DRDC's future requirements as well.

  18. Ensemble: an Architecture for Mission-Operations Software

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Powell, Mark; Fox, Jason; Rabe, Kenneth; Shu, IHsiang; McCurdy, Michael; Vera, Alonso

    2008-01-01

    Ensemble is the name of an open architecture for, and a methodology for the development of, spacecraft mission operations software. Ensemble is also potentially applicable to the development of non-spacecraft mission-operations- type software. Ensemble capitalizes on the strengths of the open-source Eclipse software and its architecture to address several issues that have arisen repeatedly in the development of mission-operations software: Heretofore, mission-operations application programs have been developed in disparate programming environments and integrated during the final stages of development of missions. The programs have been poorly integrated, and it has been costly to develop, test, and deploy them. Users of each program have been forced to interact with several different graphical user interfaces (GUIs). Also, the strategy typically used in integrating the programs has yielded serial chains of operational software tools of such a nature that during use of a given tool, it has not been possible to gain access to the capabilities afforded by other tools. In contrast, the Ensemble approach offers a low-risk path towards tighter integration of mission-operations software tools.

  19. Achieving AFRL Universal FADEC Vision With Open Architecture Addressing Capability and Obsolescence for Military and Commercial Applications (Preprint)

    DTIC Science & Technology

    2006-11-01

    engines will involve a family of common components. It will consist of a real - time operating system and partitioned application software (AS...system will employ a standard hardware and software architecture. It will consist of a real time operating system and partitioned application...Inputs - Enables Large Cost Reduction 3. Software - FAA Certified Auto Code - Real Time Operating System - Commercial

  20. Proceedings of the International Workshop on the Foundations of Service-Oriented Architecture (FSOA 2007)

    DTIC Science & Technology

    2008-06-01

    agenda are summarized. x | CMU/SEI-2008-SR-011 SOFTWARE ENGINEERING INSTITUTE | 1 1 Introduction Service -oriented architecture (SOA... service -provision software systems. In this po- sition paper, we investigate an initial classification of challenge areas related to service orientation...decade we have witnessed a significant growth of software applications that are de- livered in the form of services utilizing a network infrastructure

  1. Antiterrorist Software

    NASA Technical Reports Server (NTRS)

    Clark, David A.

    1998-01-01

    In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.

  2. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

  3. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.

  4. Managing the Evolution of an Enterprise Architecture using a MAS-Product-Line Approach

    NASA Technical Reports Server (NTRS)

    Pena, Joaquin; Hinchey, Michael G.; Resinas, manuel; Sterritt, Roy; Rash, James L.

    2006-01-01

    We view an evolutionary system ns being n software product line. The core architecture is the unchanging part of the system, and each version of the system may be viewed as a product from the product line. Each "product" may be described as the core architecture with sonre agent-based additions. The result is a multiagent system software product line. We describe an approach to such n Software Product Line-based approach using the MaCMAS Agent-Oriented nzethoclology. The approach scales to enterprise nrchitectures as a multiagent system is an approprinre means of representing a changing enterprise nrchitectclre nnd the inferaction between components in it.

  5. Image-Processing Software For A Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.

    1992-01-01

    Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.

  6. Signal processing for distributed sensor concept: DISCO

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2007-04-01

    Distributed Sensor concept - DISCO proposed for multiplication of individual sensor capabilities through cooperative target engagement. DISCO relies on ability of signal processing software to format, to process and to transmit and receive sensor data and to exploit those data in signal synthesis process. Each sensor data is synchronized formatted, Signal-to-Noise Ration (SNR) enhanced and distributed inside of the sensor network. Signal processing technique for DISCO is Recursive Adaptive Frame Integration of Limited data - RAFIL technique that was initially proposed [1] as a way to improve the SNR, reduce data rate and mitigate FPA correlated noise of an individual sensor digital video-signal processing. In Distributed Sensor Concept RAFIL technique is used in segmented way, when constituencies of the technique are spatially and/or temporally separated between transmitters and receivers. Those constituencies include though not limited to two thresholds - one is tuned for optimum probability of detection, the other - to manage required false alarm rate, and limited frame integration placed somewhere between the thresholds as well as formatters, conventional integrators and more. RAFIL allows a non-linear integration that, along with SNR gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability [2]. DISCO architecture allows flexible optimization of SNR gain, data rates and noise suppression on sensor's side and limited integration, re-formatting and final threshold on node's side. DISCO with Recursive Adaptive Frame Integration of Limited data may have flexible architecture that allows segmenting the hardware and software to be best suitable for specific DISCO applications and sensing needs - whatever it is air-or-space platforms, ground terminals or integration of sensors network.

  7. Using the CoRE Requirements Method with ADARTS. Version 01.00.05

    DTIC Science & Technology

    1994-03-01

    requirements; combining ADARTS processes and objects derived from CoRE requirements into an ADARTS software architecture design ; and taking advantage of...CoRE’s precision in the ADARTS process structuring, class structuring, and software architecture design activities. Object-oriented requirements and

  8. Architecture for Survivable System Processing (ASSP)

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.

    1991-11-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  9. Architecture for Survivable System Processing (ASSP)

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1991-01-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  10. The development of a post-test diagnostic system for rocket engines

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1991-01-01

    An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.

  11. ELISA, a demonstrator environment for information systems architecture design

    NASA Technical Reports Server (NTRS)

    Panem, Chantal

    1994-01-01

    This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.

  12. A Framework for the Development of Scalable Heterogeneous Robot Teams with Dynamically Distributed Processing

    NASA Astrophysics Data System (ADS)

    Martin, Adrian

    As the applications of mobile robotics evolve it has become increasingly less practical for researchers to design custom hardware and control systems for each problem. This research presents a new approach to control system design that looks beyond end-of-lifecycle performance and considers control system structure, flexibility, and extensibility. Toward these ends the Control ad libitum philosophy is proposed, stating that to make significant progress in the real-world application of mobile robot teams the control system must be structured such that teams can be formed in real-time from diverse components. The Control ad libitum philosophy was applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical framework built with provably correct distributed algorithms. A control system for exploration and mapping, search and deploy, and foraging was developed to evaluate the architecture in three sets of hardware-in-the-loop experiments. First, the basic functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form the control system, b) dynamically form the robot team, c) dynamically form the processing network, and d) handle heterogeneous teams. Secondly, the real-time performance of the distributed algorithms was tested, and proved effective for the moderate sized systems tested. Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in resource starved scenarios, while reducing exploration time significantly. The JC-SLAM strategies are also suitable for integration into many existing particle filter SLAM approaches, complementing their unique optimizations. Thirdly, the control system was subjected to concurrent software and hardware failures in a series of increasingly complex experiments. Even with unrealistically high rates of failure the control system was able to successfully complete its tasks. The HAA implementation designed following the Control ad libitum philosophy proved to be capable of dynamic team formation and extremely robust against both hardware and software failure; and, due to the modularity of the system there is significant potential for reuse of assets and future extensibility. One future goal is to make the source code publically available and establish a forum for the development and exchange of new agents.

  13. Business Process Reengineering With Knowledge Value Added in Support of the Department of the Navy Chief Information Officer

    DTIC Science & Technology

    2003-09-01

    BLANK xv LIST OF ACRONYMS ABC Activity Based Costing ADO ActiveX Data Object ASP Application Server Page BPR Business Process Re...processes uses people and systems (hardware, software, machinery, etc.) and that these people and systems contain the “corporate” knowledge of the...server architecture was also a high maintenance item. Data was no longer contained on one mainframe but was distributed throughout the enterprise

  14. Performance Evaluation of NoSQL Databases: A Case Study

    DTIC Science & Technology

    2015-02-01

    a centralized relational database. The customer decided to consider NoSQL technologies for two specific uses, namely:  the primary data store for...17 custom specific 6. FU NoSQL availab data mo arking of data g a specific wo sin benchmark f hmark for tran le workload de o publish meas their...The choice of a particular NoSQL database imposes a specific distributed software architecture and data model, and is a major determinant of the

  15. Multi-Level Data-Security and Data-Protection in a Distributed Search Infrastructure for Digital Medical Samples.

    PubMed

    Witt, Michael; Krefting, Dagmar

    2016-01-01

    Human sample data is stored in biobanks with software managing digital derived sample data. When these stand-alone components are connected and a search infrastructure is employed users become able to collect required research data from different data sources. Data protection, patient rights, data heterogeneity and access control are major challenges for such an infrastructure. This dissertation will investigate concepts for a multi-level security architecture to comply with these requirements.

  16. Large-Scale Exploratory Analysis, Cleaning, and Modeling for Event Detection in Real-World Power Systems Data

    DTIC Science & Technology

    2013-11-01

    big data with R is relatively new. RHadoop is a mature product from Revolution Analytics that uses R with Hadoop Streaming [15] and provides...agnostic all- data summaries or computations, in which case we use MapReduce directly. 2.3 D&R Software Environment In this work, we use the Hadoop ...job scheduling and tracking, data distribu- tion, system architecture, heterogeneity, and fault-tolerance. Hadoop also provides a distributed key-value

  17. Domain specific software architectures: Command and control

    NASA Technical Reports Server (NTRS)

    Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave

    1992-01-01

    GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.

  18. Software defined radio (SDR) architecture for concurrent multi-satellite communications

    NASA Astrophysics Data System (ADS)

    Maheshwarappa, Mamatha R.

    SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a generic software methodology for both ground and space applications that will remain unaltered despite new evolutions in hardware, and supports concurrent multi-standard, multi-channel and multi-rate telemetry signals.

  19. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  20. Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll

    2000-01-01

    An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.

  1. Software Productivity of Field Experiments Using the Mobile Agents Open Architecture with Workflow Interoperability

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten

    2011-01-01

    We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.

  2. CrossTalk. The Journal of Defense Software Engineering. Volume 23, Number 6, Nov/Dec 2010

    DTIC Science & Technology

    2010-11-01

    Model of archi- tectural design. It guides developers to apply effort to their software architecture commensurate with the risks faced by...Driven Model is the promotion of risk to prominence. It is possible to apply the Risk-Driven Model to essentially any software development process...succeed without any planned architecture work, while many high-risk projects would fail without it . The Risk-Driven Model walks a middle path

  3. Agent-oriented privacy-based information brokering architecture for healthcare environments.

    PubMed

    Masaud-Wahaishi, Abdulmutalib; Ghenniwa, Hamada

    2009-01-01

    Healthcare industry is facing a major reform at all levels-locally, regionally, nationally, and internationally. Healthcare services and systems become very complex and comprise of a vast number of components (software systems, doctors, patients, etc.) that are characterized by shared, distributed and heterogeneous information sources with varieties of clinical and other settings. The challenge now faced with decision making, and management of care is to operate effectively in order to meet the information needs of healthcare personnel. Currently, researchers, developers, and systems engineers are working toward achieving better efficiency and quality of service in various sectors of healthcare, such as hospital management, patient care, and treatment. This paper presents a novel information brokering architecture that supports privacy-based information gathering in healthcare. Architecturally, the brokering is viewed as a layer of services where a brokering service is modeled as an agent with a specific architecture and interaction protocol that are appropriate to serve various requests. Within the context of brokering, we model privacy in terms of the entities ability to hide or reveal information related to its identities, requests, and/or capabilities. A prototype of the proposed architecture has been implemented to support information-gathering capabilities in healthcare environments using FIPA-complaint platform JADE.

  4. The EPOS ICT Architecture

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Harrison, Matt; Bailo, Daniele

    2016-04-01

    The EPOS-PP Project 2010-2014 proposed an architecture and demonstrated feasibility with a prototype. Requirements based on use cases were collected and an inventory of assets (e.g. datasets, software, users, computing resources, equipment/detectors, laboratory services) (RIDE) was developed. The architecture evolved through three stages of refinement with much consultation both with the EPOS community representing EPOS users and participants in geoscience and with the overall ICT community especially those working on research such as the RDA (Research Data Alliance) community. The architecture consists of a central ICS (Integrated Core Services) consisting of a portal and catalog, the latter providing to end-users a 'map' of all EPOS resources (datasets, software, users, computing, equipment/detectors etc.). ICS is extended to ICS-d (distributed ICS) for certain services (such as visualisation software services or Cloud computing resources) and CES (Computational Earth Science) for specific simulation or analytical processing. ICS also communicates with TCS (Thematic Core Services) which represent European-wide portals to national and local assets, resources and services in the various specific domains (e.g. seismology, volcanology, geodesy) of EPOS. The EPOS-IP project 2015-2019 started October 2015. Two work-packages cover the ICT aspects; WP6 involves interaction with the TCS while WP7 concentrates on ICS including interoperation with ICS-d and CES offerings: in short the ICT architecture. Based on the experience and results of EPOS-PP the ICT team held a pre-meeting in July 2015 and set out a project plan. The first major activity involved requirements (re-)collection with use cases and also updating the inventory of assets held by the various TCS in EPOS. The RIDE database of assets is currently being converted to CERIF (Common European Research Information Format - an EU Recommendation to Member States) to provide the basis for the EPOS-IP ICS Catalog. In parallel the ICT team is tracking developments in ICT for relevance to EPOS-IP. In particular, the potential utilisation of e-Is (e-Infrastructures) such as GEANT(network), AARC (security), EGI (GRID computing), EUDAT (data curation), PRACE (High Performance Computing), HELIX-Nebula / Open Science Cloud (Cloud computing) are being assessed. Similarly relationships to other e-RIs (e-Research Infrastructures) such as ENVRI+, EXCELERATE and other ESFRI (European Strategic Forum for Research Infrastructures) projects are developed to share experience and technology and to promote interoperability. EPOS ICT team members are also involved in VRE4EIC, a project developing a reference architecture and component software services for a Virtual Research Environment to be superimposed on EPOS-ICS. The challenge which is being tackled now is therefore to keep consistency and interoperability among the different modules, initiatives and actors which participate to the process of running the EPOS platform. It implies both a continuous update about IT aspects of mentioned initiatives and a refinement of the e-architecture designed so far. One major aspect of EPOS-IP is the ICT support for legalistic, financial and governance aspects of the EPOS ERIC to be initiated during EPOS-IP. This implies a sophisticated AAAI (Authentication, authorization, accounting infrastructure) with consistency throughout the software, communications and data stack.

  5. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  6. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  7. Autonomous docking system for space structures and satellites

    NASA Astrophysics Data System (ADS)

    Prasad, Guru; Tajudeen, Eddie; Spenser, James

    2005-05-01

    Aximetric proposes Distributed Command and Control (C2) architecture for autonomous on-orbit assembly in space with our unique vision and sensor driven docking mechanism. Aximetric is currently working on ip based distributed control strategies, docking/mating plate, alignment and latching mechanism, umbilical structure/cord designs, and hardware/software in a closed loop architecture for smart autonomous demonstration utilizing proven developments in sensor and docking technology. These technologies can be effectively applied to many transferring/conveying and on-orbit servicing applications to include the capturing and coupling of space bound vehicles and components. The autonomous system will be a "smart" system that will incorporate a vision system used for identifying, tracking, locating and mating the transferring device to the receiving device. A robustly designed coupler for the transfer of the fuel will be integrated. Advanced sealing technology will be utilized for isolation and purging of resulting cavities from the mating process and/or from the incorporation of other electrical and data acquisition devices used as part of the overall smart system.

  8. Parallel Fortran-MPI software for numerical inversion of the Laplace transform and its application to oscillatory water levels in groundwater environments

    USGS Publications Warehouse

    Zhan, X.

    2005-01-01

    A parallel Fortran-MPI (Message Passing Interface) software for numerical inversion of the Laplace transform based on a Fourier series method is developed to meet the need of solving intensive computational problems involving oscillatory water level's response to hydraulic tests in a groundwater environment. The software is a parallel version of ACM (The Association for Computing Machinery) Transactions on Mathematical Software (TOMS) Algorithm 796. Running 38 test examples indicated that implementation of MPI techniques with distributed memory architecture speedups the processing and improves the efficiency. Applications to oscillatory water levels in a well during aquifer tests are presented to illustrate how this package can be applied to solve complicated environmental problems involved in differential and integral equations. The package is free and is easy to use for people with little or no previous experience in using MPI but who wish to get off to a quick start in parallel computing. ?? 2004 Elsevier Ltd. All rights reserved.

  9. Generalized Support Software: Domain Analysis and Implementation

    NASA Technical Reports Server (NTRS)

    Stark, Mike; Seidewitz, Ed

    1995-01-01

    For the past five years, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center has been carrying out a detailed domain analysis effort and is now beginning to implement Generalized Support Software (GSS) based on this analysis. GSS is part of the larger Flight Dynamics Distributed System (FDDS), and is designed to run under the FDDS User Interface / Executive (UIX). The FDD is transitioning from a mainframe based environment to systems running on engineering workstations. The GSS will be a library of highly reusable components that may be configured within the standard FDDS architecture to quickly produce low-cost satellite ground support systems. The estimates for the first release is that this library will contain approximately 200,000 lines of code. The main driver for developing generalized software is development cost and schedule improvement. The goal is to ultimately have at least 80 percent of all software required for a spacecraft mission (within the domain supported by the GSS) to be configured from the generalized components.

  10. influx_s: increasing numerical stability and precision for metabolic flux analysis in isotope labelling experiments.

    PubMed

    Sokol, Serguei; Millard, Pierre; Portais, Jean-Charles

    2012-03-01

    The problem of stationary metabolic flux analysis based on isotope labelling experiments first appeared in the early 1950s and was basically solved in early 2000s. Several algorithms and software packages are available for this problem. However, the generic stochastic algorithms (simulated annealing or evolution algorithms) currently used in these software require a lot of time to achieve acceptable precision. For deterministic algorithms, a common drawback is the lack of convergence stability for ill-conditioned systems or when started from a random point. In this article, we present a new deterministic algorithm with significantly increased numerical stability and accuracy of flux estimation compared with commonly used algorithms. It requires relatively short CPU time (from several seconds to several minutes with a standard PC architecture) to estimate fluxes in the central carbon metabolism network of Escherichia coli. The software package influx_s implementing this algorithm is distributed under an OpenSource licence at http://metasys.insa-toulouse.fr/software/influx/. Supplementary data are available at Bioinformatics online.

  11. Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.

    2010-01-01

    The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.

  12. Distributed subterranean exploration and mapping with teams of UAVs

    NASA Astrophysics Data System (ADS)

    Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.

    2017-05-01

    Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.

  13. A representational basis for the development of a distributed expert system for Space Shuttle flight control

    NASA Technical Reports Server (NTRS)

    Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.

    1984-01-01

    A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.

  14. Aspects, Wrappers and Events

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2003-01-01

    This viewgraph presentation provides information on Object Infrastructure Framework (OIF), an Aspect-Oriented Programming (AOP) system. The presentation begins with an introduction to the difficulties and requirements of distributed computing, including functional and non-functional requirements (ilities). The architecture of Distributed Object Technology includes stubs, proxies for implementation objects, and skeletons, proxies for client applications. The key OIF ideas (injecting behavior, annotated communications, thread contexts, and pragma) are discussed. OIF is an AOP mechanism; AOP is centered on: 1) Separate expression of crosscutting concerns; 2) Mechanisms to weave the separate expressions into a unified system. AOP is software engineering technology for separately expressing systematic properties while nevertheless producing running systems that embody these properties.

  15. Solar-terrestrial data access distribution and archiving

    NASA Technical Reports Server (NTRS)

    1984-01-01

    It is recommended that a central data catalog and data access network (CDC/DAN) for solar-terrestrial research be established, initially as a NASA pilot program. The system is envisioned to be flexible and to evolve as funds permit, starting from a catalog to an access network for high-resolution data. The report describes the various functional requirements for the CDC/DAN, but does not specify the hardware and software architectures as these are constantly evolving. The importance of a steering committee, working with the CDC/DAN organization, to provide scientific guidelines for the data catalog and for data storage, access, and distribution is also stressed.

  16. Testing the US Integrated Ocean Observing System Data Discovery and Distribution Infrastructure with Real-World Problems

    NASA Astrophysics Data System (ADS)

    Snowden, D. P.; Signell, R.; Knee, K.; Kupiec, J.; Bird, A.; Fratantonio, B.; Koeppen, W.; Wilcox, K.

    2014-12-01

    The distributed, service-oriented architecture of the US Integrated Ocean Observing System (US IOOS) has been implemented mostly independently by US IOOS partners, using different software approaches and different levels of compliance to standards. Some uniformity has been imparted by documenting the intended output data formats and content and service interface behavior. But to date, a rigorous testing of the distributed system of systems has not been done. To assess the functionality of this system, US IOOS is conducting a system integration test (http://github.com/ioos/system-test) that evaluates whether the services (i.e. SOS, OPeNDAP, WMS, CS/W) deployed to the 17 Federal partners and 11 Regional Associations can solve real-world problems. Scenarios were selected that both address IOOS societal goals and test different functionality of the data architecture. For example, one scenario performs an assessment of water level forecast skill by prompting the user for a bounding box and a temporal extent, searching metadata catalogs via a Catalog Services for the Web (CS/W) interface to discover available sea level observations and model results, extracting data from the identified service endpoints (either OPeNDAP or SOS), interpolating both modeled and observed data onto a common time base, and then comparing the skill of the various models. Other scenarios explore issues such as hypoxia and wading bird habitats. For each scenario, the entire workflow (user input, search, access, analysis and visualization) is captured in an IPython Notebook on GitHub. This allows the scenarios to be self-documenting as well as reproducible by anyone, using free software. The Python packages required to run the scenarios are all available on GitHub and Conda packages are available on binstar.org so that users can easily run the scenarios using the free Anaconda Python distribution. With the advent of hosted services such as Wakari, it is possible for anyone to reproduce these workflows for free, without installing any software locally, using just their web browser. Thus in addition to performing as a system integration test, this project serves to provide examples that anyone in the geoscience community can adapt to solve other real-world problems.

  17. A taxonomy and discussion of software attack technologies

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.

    2005-03-01

    Software is a complex thing. It is not an engineering artifact that springs forth from a design by simply following software coding rules; creativity and the human element are at the heart of the process. Software development is part science, part art, and part craft. Design, architecture, and coding are equally important activities and in each of these activities, errors may be introduced that lead to security vulnerabilities. Therefore, inevitably, errors enter into the code. Some of these errors are discovered during testing; however, some are not. The best way to find security errors, whether they are introduced as part of the architecture development effort or coding effort, is to automate the security testing process to the maximum extent possible and add this class of tools to the tools available, which aids in the compilation process, testing, test analysis, and software distribution. Recent technological advances, improvements in computer-generated forces (CGFs), and results in research in information assurance and software protection indicate that we can build a semi-intelligent software security testing tool. However, before we can undertake the security testing automation effort, we must understand the scope of the required testing, the security failures that need to be uncovered during testing, and the characteristics of the failures. Therefore, we undertook the research reported in the paper, which is the development of a taxonomy and a discussion of software attacks generated from the point of view of the security tester with the goal of using the taxonomy to guide the development of the knowledge base for the automated security testing tool. The representation for attacks and threat cases yielded by this research captures the strategies, tactics, and other considerations that come into play during the planning and execution of attacks upon application software. The paper is organized as follows. Section one contains an introduction to our research and a discussion of the motivation for our work. Section two contains a presents our taxonomy of software attacks and a discussion of the strategies employed and general weaknesses exploited for each attack. Section three contains a summary and suggestions for further research.

  18. PDS4: Current Status and Future Vision

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hughes, J. S.; Hardman, S. H.; Law, E. S.; Beebe, R. F.

    2017-12-01

    In 2010, the Planetary Data System began the largest standards and software upgrade in its history called "PDS4". PDS4 was architected with core principles, applying years of experience and lessons learned working with scientific data returned from robotic solar system missions. In addition to applying those lessons learned, the PDS team was able to take advantage of modern software and data architecture approaches and emerging information technologies which has enabled the capture, management, discovery, and distribution of data from planetary science archives world-wide. What has emerged is a foundational set of standards, services, and common tools to construct and enable interoperability of planetary science archives from distributed repositories. Early in the PDS4 development, PDS selected two missions as drivers to be used to validate the PDS4 approach: LADEE and MAVEN. Additionally, PDS partnered with international agencies to begin discussing the architecture, design, and implementation to ensure that PDS4 would be architected as a world-wide standard and platform for archive development and interoperability. Given the evolving requirements, an agile software development methodology known as the "Evolutionary Software Development Lifecycle" was chosen. This led to incremental releases of increasing capability over time which were matched against emerging mission and user needs. To date, PDS has now performed 16 releases of PDS4 with adoption of over 12 missions world-wide. PDS has also increased from approximately 200 TBs in 2010 to approximately 1.3 PBs of data today, bringing it into the era of big data. The development of PDS4 has not only focused on the construction of compatible archives, but also on increasing access and use of the data in the big data era. As PDS looks forward, it is focused on achieving the recommendations of the Planetary Science Decadal Survey (2013-2022): "support the ongoing effort to evolve the Planetary Data System to an effective online resource for the NASA and international communities". The foundation laid by the standards, software services, and tools positions PDS to develop and adopt new approaches and technologies to enable users to effectively search, extract, integrate, and analyze with the wealth of observational data across international boundaries.

  19. The RISC (Reduced Instruction Set Computer) Architecture and Computer Performance Evaluation.

    DTIC Science & Technology

    1986-03-01

    time where the main emphasis of the evaluation process is put on the software . The model is intended to provide a tool for computer architects to use...program, or 3) Was to be implemented in random logic more effec- tively than the equivalent sequence of software instructions. Both data and address...definition is the IEEE standard 729-1983 stating Computer Architecture as: " The process of defining a collection of hardware and software components and

  20. Traveler Trustworthy Autonomy

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A.

    2016-01-01

    NASAs Armstrong Flight Research Center has been engaged in the development of highly automatic safety systems for aviation since the mid 80s. For the past three years under Seedling and Center Innovation funding this work has moved toward the development of a software architecture applicable to autonomous safety. This work is now broadening and accelerating to address the airworthiness issues surrounding making a case for trustworthy autonomy. This software architecture is called the expandable variable-autonomy architecture (EVAA) and utilizes a run-time assurance approach to safety assurance.

  1. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  2. Customizing graphical user interface technology for spacecraft control centers

    NASA Technical Reports Server (NTRS)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  3. Software system architecture for corporate user support

    NASA Astrophysics Data System (ADS)

    Sukhopluyeva, V. S.; Kuznetsov, D. Y.

    2017-01-01

    In this article, several existing ready-to-use solutions for the HelpDesk are reviewed. Advantages and disadvantages of these systems are identified. Architecture of software solution for a corporate user support system is presented in a form of the use case, state, and component diagrams described by using a unified modeling language (UML).

  4. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  5. RT-Syn: A real-time software system generator

    NASA Technical Reports Server (NTRS)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  6. Modular multiple sensors information management for computer-integrated surgery.

    PubMed

    Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De

    2012-09-01

    In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A Unified Approach to Model-Based Planning and Execution

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)

    2000-01-01

    Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.

  8. Observatory software for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick

    2016-07-01

    The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.

  9. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  10. Partitioning Strategy Using Static Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Seo, Yongjin; Soo Kim, Hyeon

    2016-08-01

    Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.

  11. Astronomical Software Directory Service

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as influencing the software development. The Web interface to the search engine is provided by a gateway program written in C++ by a consultant to the project (A. Warnock).

  12. Implementation of an Object-Oriented Flight Simulator D.C. Electrical System on a Hypercube Architecture

    DTIC Science & Technology

    1991-12-01

    abstract data type is, what an object-oriented design is and how to apply "software engineering" principles to the design of both of them. I owe a great... Program (ASVP), a research and development effort by two aerospace contractors to redesign and implement subsets of two existing flight simulators in...effort addresses how to implement a simulator designed using the SEI OOD Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD

  13. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  14. Realizing Autonomy via Intelligent Hybrid Control: Adaptable Autonomy for Achieving UxV RSTA Team Decision Superiority (also known as Intelligent Multi-UxV Planner with Adaptive Collaborative/Control Technologies (IMPACT))

    DTIC Science & Technology

    2018-01-30

    algorithms. Due to this, Fusion was built with the goal of extensibility throughout the architecture. The Fusion infrastructure enables software...DISTRIBUTION STATEMENT A: Approved for public release. Cleared, 88PA, Case# 2018-0820. b. Trigger a Highly Mobile ...modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned

  15. Combining real-time monitoring and knowledge-based analysis in MARVEL

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  16. Architecture, Design, Implementatio

    DTIC Science & Technology

    2003-05-01

    The terms architecture , design , and implementation are typically used informally in partitioning software specifications into three coarse strata of...we formalize the Intension and the Locality criteria, which imply that the distinction between architecture , design , and implementation is

  17. Packaging Software Assets for Reuse

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Marshall, J. J.; Downs, R. R.

    2010-12-01

    The reuse of existing software assets such as code, architecture, libraries, and modules in current software and systems development projects can provide many benefits, including reduced costs, in time and effort, and increased reliability. Many reusable assets are currently available in various online catalogs and repositories, usually broken down by disciplines such as programming language (Ibiblio for Maven/Java developers, PyPI for Python developers, CPAN for Perl developers, etc.). The way these assets are packaged for distribution can play a role in their reuse - an asset that is packaged simply and logically is typically easier to understand, install, and use, thereby increasing its reusability. A well-packaged asset has advantages in being more reusable and thus more likely to provide benefits through its reuse. This presentation will discuss various aspects of software asset packaging and how they can affect the reusability of the assets. The characteristics of well-packaged software will be described. A software packaging domain model will be introduced, and some existing packaging approaches examined. An example case study of a Reuse Enablement System (RES), currently being created by near-term Earth science decadal survey missions, will provide information about the use of the domain model. Awareness of these factors will help software developers package their reusable assets so that they can provide the most benefits for software reuse.

  18. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  19. The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo

    2016-07-01

    The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.

  20. Enhancing User Customization through Novel Software Architecture for Utility Scale Solar Siting Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brant Peery; Sam Alessi; Randy Lee

    2014-06-01

    There is a need for a spatial decision support application that allows users to create customized metrics for comparing proposed locations of a new solar installation. This document discusses how PVMapper was designed to overcome the customization problem through the development of loosely coupled spatial and decision components in a JavaScript plugin architecture. This allows the user to easily add functionality and data to the system. The paper also explains how PVMapper provides the user with a dynamic and customizable decision tool that enables them to visually modify the formulas that are used in the decision algorithms that convert datamore » to comparable metrics. The technologies that make up the presentation and calculation software stack are outlined. This document also explains the architecture that allows the tool to grow through custom plugins created by the software users. Some discussion is given on the difficulties encountered while designing the system.« less

  1. Orthographic Software Modelling: A Novel Approach to View-Based Software Engineering

    NASA Astrophysics Data System (ADS)

    Atkinson, Colin

    The need to support multiple views of complex software architectures, each capturing a different aspect of the system under development, has been recognized for a long time. Even the very first object-oriented analysis/design methods such as the Booch method and OMT supported a number of different diagram types (e.g. structural, behavioral, operational) and subsequent methods such as Fusion, Kruchten's 4+1 views and the Rational Unified Process (RUP) have added many more views over time. Today's leading modeling languages such as the UML and SysML, are also oriented towards supporting different views (i.e. diagram types) each able to portray a different facets of a system's architecture. More recently, so called enterprise architecture frameworks such as the Zachman Framework, TOGAF and RM-ODP have become popular. These add a whole set of new non-functional views to the views typically emphasized in traditional software engineering environments.

  2. The computational structural mechanics testbed architecture. Volume 5: The Input-Output Manager DMGASP

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.

  3. Study of fault-tolerant software technology

    NASA Technical Reports Server (NTRS)

    Slivinski, T.; Broglio, C.; Wild, C.; Goldberg, J.; Levitt, K.; Hitt, E.; Webb, J.

    1984-01-01

    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance.

  4. Parallel processing architecture for H.264 deblocking filter on multi-core platforms

    NASA Astrophysics Data System (ADS)

    Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao

    2012-03-01

    Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.

  5. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  6. Development of life prediction capabilities for liquid propellant rocket engines. Post-fire diagnostic system for the SSME system architecture study

    NASA Technical Reports Server (NTRS)

    Gage, Mark; Dehoff, Ronald

    1991-01-01

    This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.

  7. The National Capital Region closed circuit television video interoperability project.

    PubMed

    Contestabile, John; Patrone, David; Babin, Steven

    2016-01-01

    The National Capital Region (NCR) includes many government jurisdictions and agencies using different closed circuit TV (CCTV) cameras and video management software. Because these agencies often must work together to respond to emergencies and events, a means of providing interoperability for CCTV video is critically needed. Video data from different CCTV systems that are not inherently interoperable is represented in the "data layer." An "integration layer" ingests the data layer source video and normalizes the different video formats. It then aggregates and distributes this video to a "presentation layer" where it can be viewed by almost any application used by other agencies and without any proprietary software. A native mobile video viewing application is also developed that uses the presentation layer to provide video to different kinds of smartphones. The NCR includes Washington, DC, and surrounding counties in Maryland and Virginia. The video sharing architecture allows one agency to see another agency's video in their native viewing application without the need to purchase new CCTV software or systems. A native smartphone application was also developed to enable them to share video via mobile devices even when they use different video management systems. A video sharing architecture has been developed for the NCR that creates an interoperable environment for sharing CCTV video in an efficient and cost effective manner. In addition, it provides the desired capability of sharing video via a native mobile application.

  8. Design and Acquisition of Software for Defense Systems

    DTIC Science & Technology

    2018-02-14

    enterprise business systems and related information technology (IT) services, the role software plays in enabling and enhancing weapons systems often...3 The information in this chart was compiled from Christian Hagen, Jeff Sorenson, Steven Hurt...understanding to make an informed choice of final architecture. The Task Force found commercial practice starts with several competing architectures and

  9. A Simple Example of an SADMT (SDI-Strategic Defense Initiative) Architecture Dataflow Modeling Technique) Architecture Specification. Version 1.5.

    DTIC Science & Technology

    1988-04-21

    Layton Senior Software Engineer Martin Marietta Denver Aerospace MS L0425 P.O. Box 179 Denver, CO 80201 Larry L. Lehman Integrated Systems Inc. 2500...Mission College Road Santa Clara, CA 95054 Eric Leighninger Dynamics Research 60 Frontage Road Andover, MA 01810 . Peter Lempp Software Products and

  10. Software control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong

    1999-07-01

    The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.

  11. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  12. Re-Engineering JPL's Mission Planning Ground System Architecture for Cost Efficient Operations in the 21st Century

    NASA Technical Reports Server (NTRS)

    Fordyce, Jess

    1996-01-01

    Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.

  13. On developing the local research environment of the 1990s - The Space Station era

    NASA Technical Reports Server (NTRS)

    Chase, Robert; Ziel, Fred

    1989-01-01

    A requirements analysis for the Space Station's polar platform data system has been performed. Based upon this analysis, a cluster, layered cluster, and layered-modular implementation of one specific module within the Eos Data and Information System (EosDIS), an active data base for satellite remote sensing research has been developed. It is found that a distributed system based on a layered-modular architecture and employing current generation work station technologies has the requisite attributes ascribed by the remote sensing research community. Although, based on benchmark testing, probabilistic analysis, failure analysis and user-survey technique analysis, it is found that this architecture presents some operational shortcomings that will not be alleviated with new hardware or software developments. Consequently, the potential of a fully-modular layered architectural design for meeting the needs of Eos researchers has also been evaluated, concluding that it would be well suited to the evolving requirements of this multidisciplinary research community.

  14. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  15. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  16. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  17. Architectural Design of a LMS with LTSA-Conformance

    ERIC Educational Resources Information Center

    Sengupta, Souvik; Dasgupta, Ranjan

    2017-01-01

    This paper illustrates an approach for architectural design of a Learning Management System (LMS), which is verifiable against the Learning Technology System Architecture (LTSA) conformance rules. We introduce a new method for software architectural design that extends the Unified Modeling Language (UML) component diagram with the formal…

  18. Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Burkett; Hagen Schempf

    2006-01-31

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design,more » yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.« less

  19. Overview of the LINCS architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J.G.; Watson, R.W.

    1982-01-13

    Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less

  20. Mercury: Reusable software application for Metadata Management, Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.

    2009-12-01

    Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury is itself a reusable toolset for metadata, with current use in 12 different projects. Mercury also supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects To balance these common and project-specific needs, Mercury’s architecture includes three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of configuration files. The harvested files are then passed to the Indexing system, where each of the fields in these structured metadata records are indexed properly, so that the query engine can perform simple, keyword, spatial and temporal searches across these metadata sources. The search user interface software has two API categories; a common core API which is used by all the Mercury user interfaces for querying the index and a customized API for project specific user interfaces. For our work in producing a reusable, portable, robust, feature-rich application, Mercury received a 2008 NASA Earth Science Data Systems Software Reuse Working Group Peer-Recognition Software Reuse Award. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.

  1. Automated Synthesis of Architecture of Avionic Systems

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Xu, Joseph; Dang, Van; Lu, James F.

    2006-01-01

    The Architecture Synthesis Tool (AST) is software that automatically synthesizes software and hardware architectures of avionic systems. The AST is expected to be most helpful during initial formulation of an avionic-system design, when system requirements change frequently and manual modification of architecture is time-consuming and susceptible to error. The AST comprises two parts: (1) an architecture generator, which utilizes a genetic algorithm to create a multitude of architectures; and (2) a functionality evaluator, which analyzes the architectures for viability, rejecting most of the non-viable ones. The functionality evaluator generates and uses a viability tree a hierarchy representing functions and components that perform the functions such that the system as a whole performs system-level functions representing the requirements for the system as specified by a user. Architectures that survive the functionality evaluator are further evaluated by the selection process of the genetic algorithm. Architectures found to be most promising to satisfy the user s requirements and to perform optimally are selected as parents to the next generation of architectures. The foregoing process is iterated as many times as the user desires. The final output is one or a few viable architectures that satisfy the user s requirements.

  2. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  3. Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization Case Study

    NASA Astrophysics Data System (ADS)

    Hassan, A. H.; Fluke, C. J.; Barnes, D. G.

    2012-09-01

    Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a “software as a service” manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.

  4. Preliminary Design of ArchE: A Software Architecture Design Assistant

    DTIC Science & Technology

    2003-09-01

    This report presents a procedure for moving from a set of quality attribute scenarios to an architecture design that satisfies those scenarios. This...procedure is embodied in a preliminary design for an architecture design assistant named ArchE (Architecture Expert), which will be implemented on a

  5. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.

  6. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  7. Specializing architectures for the type 2 diabetes mellitus care use cases with a focus on process management.

    PubMed

    Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Ruiz, Alonso A

    2015-01-01

    The development of software supporting inter-disciplinary systems like the type 2 diabetes mellitus care requires the deployment of methodologies designed for this type of interoperability. The GCM framework allows the architectural description of such systems and the development of software solutions based on it. A first step of the GCM methodology is the definition of a generic architecture, followed by its specialization for specific use cases. This paper describes the specialization of the generic architecture of a system, supporting Type 2 diabetes mellitus glycemic control, for a pharmacotherapy use case. It focuses on the behavioral aspect of the system, i.e. the policy domain and the definition of the rules governing the system. The design of this architecture reflects the inter-disciplinary feature of the methodology. Finally, the resulting architecture allows building adaptive, intelligent and complete systems.

  8. The GOES-R Product Generation Architecture

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a flexible, high performance architecture that can meet the needs of product processing now and as they grow in the future.

  9. A Scalable Software Architecture Booting and Configuring Nodes in the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    The Whitney project is integrating commodity off-the-shelf PC hardware and software technology to build a parallel supercomputer with hundreds to thousands of nodes. To build such a system, one must have a scalable software model, and the installation and maintenance of the system software must be completely automated. We describe the design of an architecture for booting, installing, and configuring nodes in such a system with particular consideration given to scalability and ease of maintenance. This system has been implemented on a 40-node prototype of Whitney and is to be used on the 500 processor Whitney system to be built in 1998.

  10. Requirements for a multifunctional code architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiihonen, O.; Juslin, K.

    1997-07-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results aremore » managed.« less

  11. Terra Harvest software architecture

    NASA Astrophysics Data System (ADS)

    Humeniuk, Dave; Klawon, Kevin

    2012-06-01

    Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.

  12. External Dependencies-Driven Architecture Discovery and Analysis of Implemented Systems

    NASA Technical Reports Server (NTRS)

    Ganesan, Dharmalingam; Lindvall, Mikael; Ron, Monica

    2014-01-01

    A method for architecture discovery and analysis of implemented systems (AIS) is disclosed. The premise of the method is that architecture decisions are inspired and influenced by the external entities that the software system makes use of. Examples of such external entities are COTS components, frameworks, and ultimately even the programming language itself and its libraries. Traces of these architecture decisions can thus be found in the implemented software and is manifested in the way software systems use such external entities. While this fact is often ignored in contemporary reverse engineering methods, the AIS method actively leverages and makes use of the dependencies to external entities as a starting point for the architecture discovery. The AIS method is demonstrated using the NASA's Space Network Access System (SNAS). The results show that, with abundant evidence, the method offers reusable and repeatable guidelines for discovering the architecture and locating potential risks (e.g. low testability, decreased performance) that are hidden deep in the implementation. The analysis is conducted by using external dependencies to identify, classify and review a minimal set of key source code files. Given the benefits of analyzing external dependencies as a way to discover architectures, it is argued that external dependencies deserve to be treated as first-class citizens during reverse engineering. The current structure of a knowledge base of external entities and analysis questions with strategies for getting answers is also discussed.

  13. Next-generation digital camera integration and software development issues

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Peters, Ken; Hecht, Richard

    1998-04-01

    This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.

  14. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  15. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since suchmore » cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.« less

  16. Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.

    2008-12-01

    Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.

  17. Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, Ranjeet

    2008-01-01

    Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfacesmore » then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.« less

  18. About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture

    NASA Astrophysics Data System (ADS)

    Grauer, Manfred; Barth, Thomas

    2004-06-01

    Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.

  19. Reconfigurable Autonomy for Future Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  20. An Object-Oriented Network-Centric Software Architecture for Physical Computing

    NASA Astrophysics Data System (ADS)

    Palmer, Richard

    1997-08-01

    Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.

  1. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  2. The Software Architecture of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  3. System on chip module configured for event-driven architecture

    DOEpatents

    Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.

    2017-10-17

    A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.

  4. Design and reliability analysis of DP-3 dynamic positioning control architecture

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  5. Software reconfigurable processor technologies: the key to long-life infrastructure for future space missions

    NASA Technical Reports Server (NTRS)

    Srinivasan, J.; Farrington, A.; Gray, A.

    2001-01-01

    They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.

  6. LTSA Conformance Testing to Architectural Design of LMS Using Ontology

    ERIC Educational Resources Information Center

    Sengupta, Souvik; Dasgupta, Ranjan

    2017-01-01

    This paper proposes a new methodology for checking conformance of the software architectural design of Learning Management System (LMS) to Learning Technology System Architecture (LTSA). In our approach, the architectural designing of LMS follows the formal modeling style of Acme. An ontology is built to represent the LTSA rules and the software…

  7. A curriculum for real-time computer and control systems engineering

    NASA Technical Reports Server (NTRS)

    Halang, Wolfgang A.

    1990-01-01

    An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.

  8. ControlShell: A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo

    1994-01-01

    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.

  9. UML Profiles for Design Decisions and Non-Functional Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements asmore » first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as« less

  10. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  11. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    PubMed

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  12. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)

    PubMed Central

    Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610

  13. Interactive Nonlinear Structural Analysis: Enhancement.

    DTIC Science & Technology

    1981-07-31

    3251 Hanover Street Palo Alto, California 94304 i "඙ 8 17 040 . G IS T GRAPHICS- INTERACTIVE STRUCTURAL ANALYSIS VIA THE GIFTS /STAGS SOFTWARE ASSEMBLY...GIST Software Components Page Section 3.0 Introduction * 2 3.1 GIFTS Architecture . . . . . . . . . . . . . 4 3.2 STAGS Architecture . . . 5 3.3 The... GIFTS ->STAGS Adaptor . . . . . . . . . . 6 3.4 The STAGS-> GIFTS Adaptor . . . . . . . . . . 37 3.5 The GIST Control Module . . . . . . . . . . 55 GIST

  14. Architecting for Sustainable Software Delivery

    DTIC Science & Technology

    2012-06-01

    14 CrossTalk—May/June 2012 RAPID AND AGILE STABILITY Architecting for Sustainable Software Delivery Ronald J. Koontz , Boeing Robert L. Nord...Figure 2, and additional architecture documentation can be found in the work of Koontz [9, 10, 11]. Designing for extensibility promotes continued...Mapping of Practices to Agile and Architecture Criteria CrossTalk—May/June 2012 19 RAPID AND AGILE STABILITY ABOUT THE AUTHORS Ronald J. Koontz

  15. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  16. Generic Software for Emulating Multiprocessor Architectures.

    DTIC Science & Technology

    1985-05-01

    RD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR 1/2 AlRCHITECTURES(J) MASSACHUSETTS INST OF TECH CAMBRIDGE U LRS LAB FOR COMPUTER SCIENCE R...AREA & WORK UNIT NUMBERS MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 ____________ I I. CONTROLLING OFFICE NAME AND...aide If neceeasy end Identify by block number) Computer architecture, emulation, simulation, dataf low 20. ABSTRACT (Continue an reverse slde It

  17. SSBRP User Operations Facility (UOF) Overview and Development Strategy

    NASA Technical Reports Server (NTRS)

    Picinich, Lou; Stone, Thom; Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1995-01-01

    This paper will present the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF) architecture and development strategy. A major element of the UOF at NASA Ames Research Center, the Communication and Data System (CDS) will be the primary focus of the discussions. CDS operational, telescience, security, and development objectives will be discussed along with CDS implementation strategy. The implementation strategy discussions will include: Object Oriented Analysis & Design, System & Software Prototyping, and Technology Utilization. A CDS design overview that includes: CDS Context Diagram, CDS Architecture, Object Models, Use Cases, and User Interfaces will also be presented. CDS development brings together "cutting edge" technologies and techniques such as: object oriented development, network security, multimedia networking, web-based data distribution, JAVA, and graphical user interfaces. Use of these "cutting edge" technologies and techniques translates directly to lower development and operations costs.

  18. Applications of intelligent computer-aided training

    NASA Technical Reports Server (NTRS)

    Loftin, R. B.; Savely, Robert T.

    1991-01-01

    Intelligent computer-aided training (ICAT) systems simulate the behavior of an experienced instructor observing a trainee, responding to help requests, diagnosing and remedying trainee errors, and proposing challenging new training scenarios. This paper presents a generic ICAT architecture that supports the efficient development of ICAT systems for varied tasks. In addition, details of ICAT projects, built with this architecture, that deliver specific training for Space Shuttle crew members, ground support personnel, and flight controllers are presented. Concurrently with the creation of specific ICAT applications, a general-purpose software development environment for ICAT systems is being built. The widespread use of such systems for both ground-based and on-orbit training will serve to preserve task and training expertise, support the training of large numbers of personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences.

  19. BioSPICE: access to the most current computational tools for biologists.

    PubMed

    Garvey, Thomas D; Lincoln, Patrick; Pedersen, Charles John; Martin, David; Johnson, Mark

    2003-01-01

    The goal of the BioSPICE program is to create a framework that provides biologists access to the most current computational tools. At the program midpoint, the BioSPICE member community has produced a software system that comprises contributions from approximately 20 participating laboratories integrated under the BioSPICE Dashboard and a methodology for continued software integration. These contributed software modules are the BioSPICE Dashboard, a graphical environment that combines Open Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user interface. The current Dashboard permits data sources, models, simulation engines, and output displays provided by different investigators and running on different machines to work together across a distributed, heterogeneous network. Among several other features, the Dashboard enables users to create graphical workflows by configuring and connecting available BioSPICE components. Anticipated future enhancements to BioSPICE include a notebook capability that will permit researchers to browse and compile data to support model building, a biological model repository, and tools to support the development, control, and data reduction of wet-lab experiments. In addition to the BioSPICE software products, a project website supports information exchange and community building.

  20. Relating Business Goals to Architecturally Significant Requirements for Software Systems

    DTIC Science & Technology

    2010-05-01

    must respond within five seconds” [ EPF 2010]. A major source of architecturally significant requirements is the set of business goals that led to the...Projects for Competitive Advantage, Center for Business Practices, 1999. [ EPF 2010] Eclipse Process Framework Project. Concept: Architecturally

Top