Sample records for distributed structures

  1. CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins

    PubMed Central

    Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu

    2014-01-01

    Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753

  2. An analysis of source structure effects in radio interferometry measurements

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1980-01-01

    To begin a study of structure effects, this report presents a theoretical framework, proposes an effective position approach to structure corrections based on brightness distribution measurements, and analyzes examples of analytical and measured brightness distributions. Other topics include the effect of the frequency dependence of a brightness distribution on bandwidth synthesis (BWS) delay, the determination of the absolute location of a measured brightness distribution, and structure effects in dual frequency calibration of charged particle delays. For the 10 measured distributions analyzed, it was found that the structure effect in BWS delay at X-band (3.6 cm) can reach 30 cm, but typically falls in the range of 0 to 5 cm. A trial limit equation that is dependent on visibility was successfully tested against the 10 measured brightness distributions (seven sources). If the validity of this particular equation for an upper limit can be established for nearly all sources, the structure effect in BWS delay could be greatly reduced without supplementary measurements of brightness distributions.

  3. Distribution of Structural Weight of Wing Along the Span

    NASA Technical Reports Server (NTRS)

    Savelyev, V. V.

    1946-01-01

    In the present report the true weight distribution law of the wing structure along the span is investigated. It is shown that the triangular distribution and that based on the proportionality to the chords do not correspond to the actual weight distribution, On the basis of extensive data on wings of the CAHI type airplane formulas are obtained from which it is possible to determine the true diagram of the structural weight distribution along the span from a knowledge of only the geometrical dimensions of the wing. At the end of the paper data are presented showing how the structural weight is distributed between the straight center portion and the tapered portion as a function of their areas.

  4. Distributed cooperative control of AC microgrids

    NASA Astrophysics Data System (ADS)

    Bidram, Ali

    In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

  5. Distributed Structure-Searchable Toxicity (DSSTox) Database

    EPA Pesticide Factsheets

    The Distributed Structure-Searchable Toxicity network provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with chemical inventories or toxicity data sets of environmental relevance.

  6. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  7. Studies of the Intrinsic Complexities of Magnetotail Ion Distributions: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha

    1998-01-01

    This year we have studied the relationship between the structure seen in measured distribution functions and the detailed magnetospheric configuration. Results from our recent studies using time-dependent large-scale kinetic (LSK) calculations are used to infer the sources of the ions in the velocity distribution functions measured by a single spacecraft (Geotail). Our results strongly indicate that the different ion sources and acceleration mechanisms producing a measured distribution function can explain this structure. Moreover, individual structures within distribution functions were traced back to single sources. We also confirmed the fractal nature of ion distributions.

  8. All Together Now: Concurrent Learning of Multiple Structures in an Artificial Language

    ERIC Educational Resources Information Center

    Romberg, Alexa R.; Saffran, Jenny R.

    2013-01-01

    Natural languages contain many layers of sequential structure, from the distribution of phonemes within words to the distribution of phrases within utterances. However, most research modeling language acquisition using artificial languages has focused on only one type of distributional structure at a time. In two experiments, we investigated adult…

  9. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  10. Embedded high-contrast distributed grating structures

    DOEpatents

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  11. Co-evolution of payoff strategy and interaction strategy in prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Zhang, Kangjie; Cheng, Hongyan

    2016-11-01

    Co-evolutionary dynamical models, providing a realistic paradigm for investigating complex system, have been extensively studied. In this paper, the co-evolution of payoff strategy and interaction strategy is studied. Starting with an initial Gaussian distribution of payoff strategy r with the mean u and the variance q, we focus on the final distribution of the payoff strategy. We find that final distribution of the payoff strategy may display different structures depending on parameters. In the ranges u < - 1 and u > 3, the distribution displays a single-peak structure which is symmetric about r = u. The distribution manifests itself as a double-peak structure in the range - 1 < u < 3 although a fake three-peak structure shows up in range 1 < u < 2. The explanations on the formation of different types of payoff strategy distributions are presented.

  12. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  13. Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1983-01-01

    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification.

  14. Optimization of a Simple Ship Structural Model Using MAESTRO

    DTIC Science & Technology

    1999-03-01

    Substructures MAESTRO Model Modules . . . MAESTRO Model Girders . . . . MAESTRO Model Tranverse Frames 9 10 11 12 13 Structural and Non-Structural...Weight Distribution 14 Longitudinal Load Distribution on the Model . 15 Tranverse Load Distribution on the Model . . . 16 Hogging Displacement of...Compression, Flange PYCP Panel Yield - Compression, Plate PSPBT Panel Serviceability- Plate Bending Tranverse PSPBL Panel Serviceability - Plate

  15. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  16. Effects of geometrical structure on spatial distribution of thermal energy in two-dimensional triangular lattices

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Yang; Xu, Yu-Liang; Liu, Zhong-Qiang; Li, Jing; Wang, Chun-Yang; Kong, Xiang-Mu

    2018-07-01

    Employing the correlation matrix technique, the spatial distribution of thermal energy in two-dimensional triangular lattices in equilibrium, interacting with linear springs, is studied. It is found that the spatial distribution of thermal energy varies with the included angle of the springs. In addition, the average thermal energy of the longer springs is lower. Springs with different included angle and length will lead to an inhomogeneous spatial distribution of thermal energy. This suggests that the spatial distribution of thermal energy is affected by the geometrical structure of the system: the more asymmetric the geometrical structure of the system is, the more inhomogeneous is the spatial distribution of thermal energy.

  17. Proton spin structure from measurable parton distributions.

    PubMed

    Ji, Xiangdong; Xiong, Xiaonu; Yuan, Feng

    2012-10-12

    We present a systematic study of the proton spin structure in terms of measurable parton distributions. For a transversely polarized proton, we derive a polarization sum rule from the leading generalized parton distributions appearing in hard exclusive processes. For a longitudinally polarized proton, we obtain a helicity decomposition from well-known quark and gluon helicity distributions and orbital angular-momentum contributions. The latter are shown to be related to measurable subleading generalized parton distributions and quantum-phase space Wigner distributions.

  18. Distributed Structure Searchable Toxicity

    EPA Pesticide Factsheets

    The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data. It helps to build a data foundation for improved structure-activity relationships and predictive toxicology. DSSTox publishes summarized chemical activity representations for structure-activity modeling and provides a structure browser. This tool also houses the chemical inventories for the ToxCast and Tox21 projects.

  19. Improved Zirconia Oxygen-Separation Cell

    NASA Technical Reports Server (NTRS)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  20. The use of the Wigner Distribution to analyze structural impulse responses

    NASA Technical Reports Server (NTRS)

    Wahl, T. J.; Bolton, J. S.

    1990-01-01

    In this paper it is argued that the time-frequency analysis of structural impulse responses may be used to reveal the wave types carrying significant energy through a structure. Since each wave type is characterized by its own dispersion relation, each wave type may be associated with particular features appearing in the time-frequency domain representation of an impulse response. Here the Wigner Distribution is introduced as a means for obtaining appropriate time-frequency representations of impulse responses. Practical aspects of the calculation of the Wigner Distribution are discussed and examples of its application to the analysis of structural impulse responses are given. These examples will show that the Wigner Distribution may be conveniently used to distinguish between the contributions of various waves types to a total structural response.

  1. A phase transition in energy-filtered RNA secondary structures.

    PubMed

    Han, Hillary S W; Reidys, Christian M

    2012-10-01

    In this article we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model that is only dependent on the diagram representation and is not sequence-specific, we prove the following dichotomy result. Mfe structures derived via the Turner energy parameters contain only finitely many complex irreducible substructures, and just minor parameter changes produce a class of mfe structures that contain a large number of small irreducibles. We localize the exact point at which the distribution of irreducibles experiences this phase transition from a discrete limit to a central limit distribution and, subsequently, put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe structures. We show that the sparsification of realistic mfe structures leads to a constant time and space reduction, and that the sparsification of the folding of structures with modified parameters leads to a linear time and space reduction. We, furthermore, identify the limit distribution at the phase transition as a Rayleigh distribution.

  2. Structural health monitoring of IACC yachts using fiber optic distributed strain sensors: a technical challenge for America's Cup 2000

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Kageyama, Kazuro; Kimpara, Isao; Akiyoshi, Shimada; Naruse, Hiroshi

    2000-06-01

    In this study, we developed a health monitoring system using a fiber optic distributed strain sensor for International America's Cup Class (IACC) yachts. Most structural components of an IACC yacht consist of an aluminum honeycomb core sandwiched between carbon fiber reinforced plastic (CFRP) laminates. In such structures, delamination, skin/core debonding and debonding between adhered members will be result in serious fracture of the structure. We equipped two IACC yachts with fiber optic strain sensors designed to measured the distributed strain using a Brillouin optical time domain reflectometer (BOTDR) and to detect any deterioration or damage to the yacht's structures caused by such failures. And based on laboratory test results, we proposed a structural health monitoring technique for IACC yachts that involves analyzing their strain distribution. Some important information about structural conditions of the IACC yachts could be obtained from this system through the periodical strain measurements in the field.

  3. Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study.

    PubMed

    Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H

    2018-04-10

    Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.

  4. Emergence of scale-free close-knit friendship structure in online social networks.

    PubMed

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.

  5. Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks

    PubMed Central

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067

  6. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  7. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  8. Money-center structures in dynamic banking systems

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhang, Minghui

    2016-10-01

    In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.

  9. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.

  10. The impact of distributed computing on education

    NASA Technical Reports Server (NTRS)

    Utku, S.; Lestingi, J.; Salama, M.

    1982-01-01

    In this paper, developments in digital computer technology since the early Fifties are reviewed briefly, and the parallelism which exists between these developments and developments in analysis and design procedures of structural engineering is identified. The recent trends in digital computer technology are examined in order to establish the fact that distributed processing is now an accepted philosophy for further developments. The impact of this on the analysis and design practices of structural engineering is assessed by first examining these practices from a data processing standpoint to identify the key operations and data bases, and then fitting them to the characteristics of distributed processing. The merits and drawbacks of the present philosophy in educating structural engineers are discussed and projections are made for the industry-academia relations in the distributed processing environment of structural analysis and design. An ongoing experiment of distributed computing in a university environment is described.

  11. A modulation wave approach to the order hidden in disorder

    PubMed Central

    Withers, Ray

    2015-01-01

    The usefulness of a modulation wave approach to understanding and interpreting the highly structured continuous diffuse intensity distributions characteristic of the reciprocal spaces of the very large family of inherently flexible materials which exhibit ordered ‘disorder’ is pointed out. It is shown that both longer range order and truly short-range order are simultaneously encoded in highly structured diffuse intensity distributions. The long-range ordered crystal chemical rules giving rise to such diffuse distributions are highlighted, along with the existence and usefulness of systematic extinction conditions in these types of structured diffuse distributions. PMID:25610629

  12. Operation Desert Shield: Thunderstorms of Logistics: Did We Do Any Better During Post Cold War Interventions?

    DTIC Science & Technology

    2007-02-20

    above hypothesis, we must examine the seams of the operation. They are force structuring, distribution management , logistics intelligence, and customer...Iron Mountains, which is exactly what happened. Distribution Management ALOC distribution management problems included an ineffective theater tracking...deployments later the problems remained the same. Force structure and distribution management issues, the use of manual “non-standard” requisition

  13. A mathematical modeling method for determination of local vibroacoustic characteristics of structures

    NASA Technical Reports Server (NTRS)

    Tartakovskiy, B. D.; Dubner, A. B.

    1973-01-01

    A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.

  14. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  15. On the problem of modeling for parameter identification in distributed structures

    NASA Technical Reports Server (NTRS)

    Norris, Mark A.; Meirovitch, Leonard

    1988-01-01

    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.

  16. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  17. Mnemonic transmission, social contagion, and emergence of collective memory: Influence of emotional valence, group structure, and information distribution.

    PubMed

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2017-09-01

    Social transmission of memory and its consequence on collective memory have generated enduring interdisciplinary interest because of their widespread significance in interpersonal, sociocultural, and political arenas. We tested the influence of 3 key factors-emotional salience of information, group structure, and information distribution-on mnemonic transmission, social contagion, and collective memory. Participants individually studied emotionally salient (negative or positive) and nonemotional (neutral) picture-word pairs that were completely shared, partially shared, or unshared within participant triads, and then completed 3 consecutive recalls in 1 of 3 conditions: individual-individual-individual (control), collaborative-collaborative (identical group; insular structure)-individual, and collaborative-collaborative (reconfigured group; diverse structure)-individual. Collaboration enhanced negative memories especially in insular group structure and especially for shared information, and promoted collective forgetting of positive memories. Diverse group structure reduced this negativity effect. Unequally distributed information led to social contagion that creates false memories; diverse structure propagated a greater variety of false memories whereas insular structure promoted confidence in false recognition and false collective memory. A simultaneous assessment of network structure, information distribution, and emotional valence breaks new ground to specify how network structure shapes the spread of negative memories and false memories, and the emergence of collective memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    PubMed

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  20. A new taxonomy for distributed computer systems based upon operating system structure

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.

    1985-01-01

    Characteristics of the resource structure found in the operating system are considered as a mechanism for classifying distributed computer systems. Since the operating system resources, themselves, are too diversified to provide a consistent classification, the structure upon which resources are built and shared are examined. The location and control character of this indivisibility provides the taxonomy for separating uniprocessors, computer networks, network computers (fully distributed processing systems or decentralized computers) and algorithm and/or data control multiprocessors. The taxonomy is important because it divides machines into a classification that is relevant or important to the client and not the hardware architect. It also defines the character of the kernel O/S structure needed for future computer systems. What constitutes an operating system for a fully distributed processor is discussed in detail.

  1. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    NASA Astrophysics Data System (ADS)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  2. Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods

    ERIC Educational Resources Information Center

    Zhong, Xiaoling; Yuan, Ke-Hai

    2011-01-01

    In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…

  3. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    PubMed

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  4. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  5. Source structure errors in radio-interferometric clock synchronization for ten measured distributions

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1981-01-01

    The effects of source structure on radio interferometry measurements were investigated. The brightness distribution measurements for ten extragalactic sources were analyzed. Significant results are reported.

  6. The structure, distribution, and biomass of the world's forests

    Treesearch

    Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Robert B. Jackson

    2013-01-01

    Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures...

  7. Automated crystallographic system for high-throughput protein structure determination.

    PubMed

    Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F

    2003-07-01

    High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.

  8. A thermally driven differential mutation approach for the structural optimization of large atomic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2017-09-01

    A computational method is presented which is capable to obtain low lying energy structures of topological amorphous systems. The method merges a differential mutation genetic algorithm with simulated annealing. This is done by incorporating a thermal selection criterion, which makes it possible to reliably obtain low lying minima with just a small population size and is suitable for multimodal structural optimization. The method is tested on the structural optimization of amorphous graphene from unbiased atomic starting configurations. With just a population size of six systems, energetically very low structures are obtained. While each of the structures represents a distinctly different arrangement of the atoms, their properties, such as energy, distribution of rings, radial distribution function, coordination number, and distribution of bond angles, are very similar.

  9. Current Distribution Characteristics of CFRP Panels

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo

    CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.

  10. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    USGS Publications Warehouse

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions across terrestrial and aquatic ecosystems.

  11. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions

    DOE PAGES

    McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.; ...

    2017-01-25

    Here, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using Beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When assembled into crystalline superlattices with AuNPs, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB 2 packing. We probe the role of protein oligonucleotide number and conjugatemore » size on this observation, which revealed the importance of oligonucleotide distribution and number in this observed assembly behavior. These results indicate that proteins with defined DNA-modification patterns are powerful tools to control the nanoparticle superlattices architecture, and establish the importance of oligonucleotide distribution in the assembly behavior of protein-DNA conjugates.« less

  12. Geometry-driven distributed compression of the plenoptic function: performance bounds and constructive algorithms.

    PubMed

    Gehrig, Nicolas; Dragotti, Pier Luigi

    2009-03-01

    In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.

  13. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  14. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor

    PubMed Central

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-01-01

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures. PMID:27548172

  15. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  16. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  17. Historical habitat connectivity affects current genetic structure in a grassland species.

    PubMed

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    PubMed

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  19. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  20. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizesmore » the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)« less

  1. Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3-3 piezoelectric foams

    NASA Astrophysics Data System (ADS)

    Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.

    2016-12-01

    Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.

  2. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY (DSSTOX) DATABASE NETWORK: MAKING PUBLIC TOXICITY DATA RESOURCES MORE ACCESSIBLE AND USABLE FOR DATA EXPLORATION AND SAR DEVELOPMENT

    EPA Science Inventory


    Distributed Structure-Searchable Toxicity (DSSTox) Database Network: Making Public Toxicity Data Resources More Accessible and U sable for Data Exploration and SAR Development

    Many sources of public toxicity data are not currently linked to chemical structure, are not ...

  3. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    NASA Astrophysics Data System (ADS)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density of the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all—six—field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament—both radially inhomogeneous—are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.

  4. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  5. Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal systems

    NASA Astrophysics Data System (ADS)

    Gadjiev, Bahruz; Progulova, Tatiana

    2015-01-01

    We consider a multifractal structure as a mixture of fractal substructures and introduce a distribution function f (α), where α is a fractal dimension. Then we can introduce g(p)˜ ∫- ln p μe-yf(y)dy and show that the distribution functions f (α) in the form of f(α) = δ(α-1), f(α) = δ(α-θ) , f(α) = 1/α-1 , f(y)= y α-1 lead to the Boltzmann - Gibbs, Shafee, Tsallis and Anteneodo - Plastino entropies conformably. Here δ(x) is the Dirac delta function. Therefore the Shafee entropy corresponds to a fractal structure, the Tsallis entropy describes a multifractal structure with a homogeneous distribution of fractal substructures and the Anteneodo - Plastino entropy appears in case of a power law distribution f (y). We consider the Fokker - Planck equation for a fractal substructure and determine its stationary solution. To determine the distribution function of a multifractal structure we solve the two-dimensional Fokker - Planck equation and obtain its stationary solution. Then applying the Bayes theorem we obtain a distribution function for the entire system in the form of q-exponential function. We compare the results of the distribution functions obtained due to the superstatistical approach with the ones obtained according to the maximum entropy principle.

  6. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  7. The distribution of cigarette prices under different tax structures: findings from the International Tobacco Control Policy Evaluation (ITC) Project

    PubMed Central

    Shang, Ce; Chaloupka, Frank J; Zahra, Nahleen; Fong, Geoffrey T

    2013-01-01

    Background The distribution of cigarette prices has rarely been studied and compared under different tax structures. Descriptive evidence on price distributions by countries can shed light on opportunities for tax avoidance and brand switching under different tobacco tax structures, which could impact the effectiveness of increased taxation in reducing smoking. Objective This paper aims to describe the distribution of cigarette prices by countries and to compare these distributions based on the tobacco tax structure in these countries. Methods We employed data for 16 countries taken from the International Tobacco Control Policy Evaluation Project to construct survey-derived cigarette prices for each country. Self-reported prices were weighted by cigarette consumption and described using a comprehensive set of statistics. We then compared these statistics for cigarette prices under different tax structures. In particular, countries of similar income levels and countries that impose similar total excise taxes using different tax structures were paired and compared in mean and variance using a two-sample comparison test. Findings Our investigation illustrates that, compared with specific uniform taxation, other tax structures, such as ad valorem uniform taxation, mixed (a tax system using ad valorem and specific taxes) uniform taxation, and tiered tax structures of specific, ad valorem and mixed taxation tend to have price distributions with greater variability. Countries that rely heavily on ad valorem and tiered taxes also tend to have greater price variability around the median. Among mixed taxation systems, countries that rely more heavily on the ad valorem component tend to have greater price variability than countries that rely more heavily on the specific component. In countries with tiered tax systems, cigarette prices are skewed more towards lower prices than are prices under uniform tax systems. The analyses presented here demonstrate that more opportunities exist for tax avoidance and brand switching when the tax structure departs from a uniform specific tax. PMID:23792324

  8. The distribution of cigarette prices under different tax structures: findings from the International Tobacco Control Policy Evaluation (ITC) Project.

    PubMed

    Shang, Ce; Chaloupka, Frank J; Zahra, Nahleen; Fong, Geoffrey T

    2014-03-01

    The distribution of cigarette prices has rarely been studied and compared under different tax structures. Descriptive evidence on price distributions by countries can shed light on opportunities for tax avoidance and brand switching under different tobacco tax structures, which could impact the effectiveness of increased taxation in reducing smoking. This paper aims to describe the distribution of cigarette prices by countries and to compare these distributions based on the tobacco tax structure in these countries. We employed data for 16 countries taken from the International Tobacco Control Policy Evaluation Project to construct survey-derived cigarette prices for each country. Self-reported prices were weighted by cigarette consumption and described using a comprehensive set of statistics. We then compared these statistics for cigarette prices under different tax structures. In particular, countries of similar income levels and countries that impose similar total excise taxes using different tax structures were paired and compared in mean and variance using a two-sample comparison test. Our investigation illustrates that, compared with specific uniform taxation, other tax structures, such as ad valorem uniform taxation, mixed (a tax system using ad valorem and specific taxes) uniform taxation, and tiered tax structures of specific, ad valorem and mixed taxation tend to have price distributions with greater variability. Countries that rely heavily on ad valorem and tiered taxes also tend to have greater price variability around the median. Among mixed taxation systems, countries that rely more heavily on the ad valorem component tend to have greater price variability than countries that rely more heavily on the specific component. In countries with tiered tax systems, cigarette prices are skewed more towards lower prices than are prices under uniform tax systems. The analyses presented here demonstrate that more opportunities exist for tax avoidance and brand switching when the tax structure departs from a uniform specific tax.

  9. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.

    PubMed

    Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito

    2016-10-24

    To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.

  10. Extractions of polarized and unpolarized parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  11. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-04-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the workflow necessary for the first application of full waveform ambient noise inversion to a global dataset, for which a model for the distribution of noise sources is already available.

  12. A GIS approach to identifying the distribution and structure of coast redwood across its range

    Treesearch

    Peter Cowan; Emily E. Burns; Richard Campbell

    2017-01-01

    To better understand the distribution and current structure of coast redwood (Sequoia sempervirens (D.Don) Endl.) forests throughout the range and how it varies by land ownerships, the Save the Redwoods League has conducted a redwood specific analysis of a high resolution forest structure database encompassing the entire natural coast redwood range...

  13. Matter distribution and spin-orbit force in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Co', G.; Anguiano, M.; De Donno, V.; Lallena, A. M.

    2018-03-01

    We investigate the possibility that some nuclei show density distributions with a depletion in the center, a semibubble structure, by using a Hartree-Fock plus Bardeen-Cooper-Schrieffer approach. We separately study the proton, neutron, and matter distributions in 37 spherical nuclei mainly in the s -d shell region. We found a relation between the semibubble structure and the energy splitting of spin-orbit partner single particle levels. The presence of semibubble structure reduces this splitting, and we study its consequences on the excitation spectrum of the nuclei under investigation by using a quasiparticle random-phase-approximation approach. The excitation energies of the low-lying 4+ states can be related to the presence of semibubble structure in nuclei.

  14. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    PubMed Central

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  15. The magnetized sheath of a dusty plasma with grains size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less

  16. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  17. Modeling Transport of Cesium in Grimsel Granodiorite With Micrometer Scale Heterogeneities and Dynamic Update of Kd

    NASA Astrophysics Data System (ADS)

    Voutilainen, Mikko; Kekäläinen, Pekka; Siitari-Kauppi, Marja; Sardini, Paul; Muuri, Eveliina; Timonen, Jussi; Martin, Andrew

    2017-11-01

    Transport and retardation of cesium in Grimsel granodiorite taking into account heterogeneity of mineral and pore structure was studied using rock samples overcored from an in situ diffusion test at the Grimsel Test Site. The field test was part of the Long-Term Diffusion (LTD) project designed to characterize retardation properties (diffusion and distribution coefficients) under in situ conditions. Results of the LTD experiment for cesium showed that in-diffusion profiles and spatial concentration distributions were strongly influenced by the heterogeneous pore structure and mineral distribution. In order to study the effect of heterogeneity on the in-diffusion profile and spatial concentration distribution, a Time Domain Random Walk (TDRW) method was applied along with a feature for modeling chemical sorption in geological materials. A heterogeneous mineral structure of Grimsel granodiorite was constructed using X-ray microcomputed tomography (X-μCT) and the map was linked to previous results for mineral specific porosities and distribution coefficients (Kd) that were determined using C-14-PMMA autoradiography and batch sorption experiments, respectively. After this the heterogeneous structure contains information on local porosity and Kd in 3-D. It was found that the heterogeneity of the mineral structure on the micrometer scale affects significantly the diffusion and sorption of cesium in Grimsel granodiorite at the centimeter scale. Furthermore, the modeled in-diffusion profiles and spatial concentration distributions show similar shape and pattern to those from the LTD experiment. It was concluded that the use of detailed structure characterization and quantitative data on heterogeneity can significantly improve the interpretation and evaluation of transport experiments.

  18. Characterising RNA secondary structure space using information entropy

    PubMed Central

    2013-01-01

    Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905

  19. Exploring community health through the Sustainable Livelihoods framework.

    PubMed

    Barnidge, Ellen K; Baker, Elizabeth A; Motton, Freda; Fitzgerald, Teresa; Rose, Frank

    2011-02-01

    Health disparities are a major concern in the United States. Research suggests that inequitable distribution of money, power, and resources shape the circumstances for daily life and create and exacerbate health disparities. In rural communities, inequitable distribution of these structural factors seems to limit employment opportunities. The Sustainable Livelihoods framework, an economic development model, provides a conceptual framework to understand how distribution of these social, economic, and political structural factors affect employment opportunities and community health in rural America. This study uses photo-elicitation interviews, a qualitative, participatory method, to understand community members' perceptions of how distribution of structural factors through creation and maintenance of institutional practices and policies influence employment opportunities and, ultimately, community health for African Americans living in rural Missouri.

  20. An evolving model of online bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  1. Electron acoustic nonlinear structures in planetary magnetospheres

    NASA Astrophysics Data System (ADS)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  2. Spatial Structures of the Environment and of Dispersal Impact Species Distribution in Competitive Metacommunities

    PubMed Central

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species’ ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics. PMID:23874815

  3. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities.

    PubMed

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.

  4. From cluster structures to nuclear molecules: The role of nodal structure of the single-particle wave functions

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.

    2018-02-01

    The nodal structure of the density distributions of the single-particle states occupied in rod-shaped, hyper- and megadeformed structures of nonrotating and rotating N ˜Z nuclei has been investigated in detail. The single-particle states with the Nilsson quantum numbers of the [N N 0 ]1 /2 (with N from 0 to 5) and [N ,N -1 ,1 ]Ω (with N from 1 to 3 and Ω =1 /2 , 3/2) types are considered. These states are building blocks of extremely deformed shapes in the nuclei with mass numbers A ≤50 . Because of (near) axial symmetry and large elongation of such structures, the wave functions of the single-particle states occupied are dominated by a single basis state in cylindrical basis. This basis state defines the nodal structure of the single-particle density distribution. The nodal structure of the single-particle density distributions allows us to understand in a relatively simple way the necessary conditions for α clusterization and the suppression of the α clusterization with the increase of mass number. It also explains in a natural way the coexistence of ellipsoidal mean-field-type structures and nuclear molecules at similar excitation energies and the features of particle-hole excitations connecting these two types of the structures. Our analysis of the nodal structure of the single-particle density distributions does not support the existence of quantum liquid phase for the deformations and nuclei under study.

  5. Phylogeographical structure inferred from cpDNA sequence variation of Zygophyllum xanthoxylon across north-west China.

    PubMed

    Shi, Xiao-Jun; Zhang, Ming-Li

    2015-03-01

    Zygophyllum xanthoxylon, a desert species, displaying a broad east-west continuous distribution pattern in arid Northwestern China, can be considered as a model species to investigate the biogeographical history of this region. We sequenced two chloroplast DNA spacers (psbK-psbI and rpl32-trnL) in 226 individuals from 31 populations to explore the phylogeographical structure. Median-joining network was constructed and analysis of AMOVA, SMOVA, neutrality tests and distribution analysis were used to examine genetic structure and potential range expansion. Using species distribution modeling, the geographical distribution of Z. xanthoxylon was modeled during the present and at the Last Glacial Maximum (LGM). Among 26 haplotypes, one was widely distributed, but most was restricted to either the eastern or western region. The populations with the highest levels of haplotype diversity were found in the Tianshan Mountains and its surroundings in the west, and the Helan Mountains and Alxa Plateau in the east. AMOVA and SAMOVA showed that over all populations, the species lacks phylogeographical structure, which is speculated to be the result of its specific biology. Neutrality tests and mismatch distribution analysis support past range expansions of the species. Comparing the current distribution to those cold and dry conditions in LGM, Z. xanthoxylon had a shrunken and more fragmented range during LGM. Based on the evidences from phylogeographical patterns, distribution of genetic variability, and paleodistribution modeling, Z. xanthoxylon is speculated most likely to have originated from the east and migrated westward via the Hexi Corridor.

  6. Mobility power flow analysis of an L-shaped plate structure subjected to distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Cimmerman, B.

    1990-01-01

    An analytical investigation based in the Mobility Power Flow (MPF) method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to distributed excitation. The principle of the MPF method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the MPF. In the considered coupled plate structure, MPF expressions are derived for distributed mechanical excitation which is independent of the structure response. However using a similar approach with some modifications excitation by an acoustic plane wave can be considered. Some modifications are required to deal with the latter case are necessary because the forces (acoustic pressure) acting on the structure are dependent on the response of the structure due to the presence of the scattered pressure.

  7. Universal scaling of the distribution of land in urban areas

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.

    2017-09-01

    In this work, we explore the spatial structure of built zones and green areas in diverse western cities by analyzing the probability distribution of areas and a coefficient that characterize their respective shapes. From the analysis of diverse datasets describing land lots in urban areas, we found that the distribution of built-up areas and natural zones in cities obey inverse power laws with a similar scaling for the cities explored. On the other hand, by studying the distribution of shapes of lots in urban regions, we are able to detect global differences in the spatial structure of the distribution of land. Our findings introduce information about spatial patterns that emerge in the structure of urban settlements; this knowledge is useful for the understanding of urban growth, to improve existing models of cities, in the context of sustainability, in studies about human mobility in urban areas, among other applications.

  8. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  9. Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution

    Treesearch

    Jeffrey H. Gove; Mark J. Ducey; William B. Leak; Lianjun Zhang

    2008-01-01

    Stand structures from a combined density manipulation and even- to uneven-aged conversion experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these stands between two probability density functions for fitting these residual structures:...

  10. The spatial distributions of large gap-like structure on Fe(Se,Te) single crystals observed by STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Sakai, Yuta; Nagasaka, Kouhei; Ekino, Toshikazu

    2015-11-01

    The nanoscale spatial distributions of large gap-like structure on superconducting FeSe1-xTex were investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The STM topography shows regular atomic lattice arrangements with the lattice spacing ∼0.38 nm, together with the randomly distributed large spots due to the excess Fe atoms. From the STS measurements, the small gap structures of Δ ∼ 7 meV were partly observed. On the other hand, the high-bias dI/dV curves exhibit the broad peak structures at the negative biases of VPG = -200 to -400 mV in the measured whole surface area. The average of these large gaps is |VPGave| ∼ 305 mV with the standard deviation of σ ∼ 48 mV. The spatial distributions of the VPG exhibit the domain structures consisting of the relatively smaller gaps (<250 meV), which correspond to the excess Fe positions. The small gap Δ ∼ 7 meV is also observed at those positions, suggesting that the excess Fe affects the electronic structures of FeSe1-xTex.

  11. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    NASA Astrophysics Data System (ADS)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  12. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  13. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, H. B.

    2016-08-01

    We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.

  14. Method of imaging the electrical conductivity distribution of a subsurface

    DOEpatents

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  15. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  16. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  17. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that similar general statistical principles and mechanisms may be operative in biological and technological systems. Despite the common belief that most biological and technological characteristics of interest have a symmetric bell-shaped (normal or Gaussian) distribution, we have shown that more often than not, distributions tend to be asymmetric and often resemble a so-called log-normal distribution. We saw that at least three general mechanisms may be operative, i.e., nonadditivity of influencing factors, competition among individuals for a common resource, and existence of an "optimum" value for a studied characteristic; more such mechanisms could exist.

  18. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.

    PubMed

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2016-05-23

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  19. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  20. Common Lognormal Behavior in Legal Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ken

    2017-07-01

    This study characterizes a statistical property of legal systems: the distribution of the number of articles in a law follows a lognormal distribution. This property is common to the Japanese, German, and Singaporean laws. To explain this lognormal behavior, tree structure of the law is analyzed. If the depth of a tree follows a normal distribution, the lognormal distribution of the number of articles can be theoretically derived. We analyze the structure of the Japanese laws using chapters, sections, and other levels of organization, and this analysis demonstrates that the proposed model is quantitatively reasonable.

  1. Spatial distribution of the wave field of the surface modes sustaining filamentary discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lishev, St.; Shivarova, A.; Tarnev, Kh.

    2008-01-01

    The study presents the electrodynamical description of surface-wave-sustained discharges contracted in filamentary structures. The results are for the spatial distribution of the wave field and for the wave propagation characteristics obtained from a two-dimensional model developed for describing surface-wave behavior in plasmas with an arbitrary distribution of the plasma density. In accordance with the experimental observations of filamentary discharges, the plasma density distribution considered is completed by cylindrically shaped gas-discharge channels extended along the discharge length and positioned in the out-of-center region of the discharge, equidistantly in an azimuthal direction. Due to the two-dimensional inhomogeneity of the plasma density ofmore » the filamentary structure, the eigen surface mode of the structure is a hybrid wave, with all--six--field components. For identification of its behavior, the surface wave properties in the limiting cases of a plasma ring and a single filament--both radially inhomogeneous--are involved in the discussions. The presentation of the results is for filamentary structures with a decreasing number of filaments (from 10 to 2) starting with the plasma ring, the latter supporting propagation of an azimuthally symmetric wave. Due to the resonance absorption of the surface waves, always present because of the smooth variation of the plasma density, the contours of the critical density are those guiding the surface wave propagation. Decreasing number of filaments in the structure leads to localization of the amplitudes of the wave-field components around the filaments. By analogy with the spatial distribution of the wave field in the plasma ring, the strong resonance enhancement of the wave-field components is along that part of the contour of the critical density which is far off the center of the filamentary structure. The analysis of the spatial distribution of the field components of the filamentary structure shows that the hybrid wave is an eigenmode of the whole structure, i.e., the wave field does not appear as a superposition of fields of eigenmodes of the separated filaments completing it. It is stressed that the spatial distribution of the field components of the eigen hybrid mode of the filamentary structure has an azimuthally symmetric background field.« less

  2. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  3. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  4. An implementation of the distributed programming structural synthesis system (PROSSS)

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1981-01-01

    A method is described for implementing a flexible software system that combines large, complex programs with small, user-supplied, problem-dependent programs and that distributes their execution between a mainframe and a minicomputer. The Programming Structural Synthesis System (PROSSS) was the specific software system considered. The results of such distributed implementation are flexibility of the optimization procedure organization and versatility of the formulation of constraints and design variables.

  5. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  6. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Ochi, Yutaka; Matsui, Takahiro; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

    2018-07-01

    Slope-assisted Brillouin optical correlation-domain reflectometry (SA-BOCDR) is a recently developed structural health monitoring technique for measurements of strain, temperature, and loss distributions along optical fibers. Although the basic operational principle of this method has been clarified, no measurements using optical fibers embedded in actual structures have been reported. As a first step towards such practical applications, in this study, we present an example of an SA-BOCDR-based diagnosis using a composite structure with carbon fiber-reinforced plastics. The system’s output agrees well with the actual strain distributions. We were also able to detect the breakage of the embedded fiber, thus demonstrating the promise of SA-BOCDR for practical applications.

  7. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    PubMed

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  8. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  9. Advantages and Challenges of Distributing Leadership in Middle-Level Schools

    ERIC Educational Resources Information Center

    Grenda, J. Patrick; Hackmann, Donald G.

    2014-01-01

    This multiple-site case study examined distributed leadership practices of three middle school principals, using observations, interviews, and document analysis. Findings disclosed that the principals built on the interdisciplinary teaming structure to develop empowering organizational structures that promoted democratic governance. Employing…

  10. Single-Mode, Distributed Feedback Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  11. Advanced probabilistic methods for quantifying the effects of various uncertainties in structural response

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.

    1988-01-01

    The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.

  12. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

    PubMed

    Tegze, Miklós; Bortel, Gábor

    2016-07-01

    The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.

  13. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  14. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.

    2016-05-31

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  15. A comparison of decentralized, distributed, and centralized vibro-acoustic control.

    PubMed

    Frampton, Kenneth D; Baumann, Oliver N; Gardonio, Paolo

    2010-11-01

    Direct velocity feedback control of structures is well known to increase structural damping and thus reduce vibration. In multi-channel systems the way in which the velocity signals are used to inform the actuators ranges from decentralized control, through distributed or clustered control to fully centralized control. The objective of distributed controllers is to exploit the anticipated performance advantage of the centralized control while maintaining the scalability, ease of implementation, and robustness of decentralized control. However, and in seeming contradiction, some investigations have concluded that decentralized control performs as well as distributed and centralized control, while other results have indicated that distributed control has significant performance advantages over decentralized control. The purpose of this work is to explain this seeming contradiction in results, to explore the effectiveness of decentralized, distributed, and centralized vibro-acoustic control, and to expand the concept of distributed control to include the distribution of the optimization process and the cost function employed.

  16. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  17. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    PubMed Central

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  18. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  19. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  20. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives.

    PubMed

    Toropova, Alla P; Schultz, Terry W; Toropov, Andrey A

    2016-03-01

    Data on toxicity toward Tetrahymena pyriformis is indicator of applicability of a substance in ecologic and pharmaceutical aspects. Quantitative structure-activity relationships (QSARs) between the molecular structure of benzene derivatives and toxicity toward T. pyriformis (expressed as the negative logarithms of the population growth inhibition dose, mmol/L) are established. The available data were randomly distributed three times into the visible training and calibration sets, and invisible validation sets. The statistical characteristics for the validation set are the following: r(2)=0.8179 and s=0.338 (first distribution); r(2)=0.8682 and s=0.341 (second distribution); r(2)=0.8435 and s=0.323 (third distribution). These models are built up using only information on the molecular structure: no data on physicochemical parameters, 3D features of the molecular structure and quantum mechanics descriptors are involved in the modeling process. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  2. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  3. Expected distributions of root-mean-square positional deviations in proteins.

    PubMed

    Pitera, Jed W

    2014-06-19

    The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.

  4. Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex

    2004-01-01

    Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.

  5. The Rainbow Spectrum of RNA Secondary Structures.

    PubMed

    Li, Thomas J X; Reidys, Christian M

    2018-06-01

    In this paper, we analyze the length spectrum of rainbows in RNA secondary structures. A rainbow in a secondary structure is a maximal arc with respect to the partial order induced by nesting. We show that there is a significant gap in this length spectrum. We shall prove that there asymptotically almost surely exists a unique longest rainbow of length at least [Formula: see text] and that with high probability any other rainbow has finite length. We show that the distribution of the length of the longest rainbow converges to a discrete limit law and that, for finite k, the distribution of rainbows of length k becomes for large n a negative binomial distribution. We then put the results of this paper into context, comparing the analytical results with those observed in RNA minimum free energy structures, biological RNA structures and relate our findings to the sparsification of folding algorithms.

  6. Method for removing atomic-model bias in macromolecular crystallography

    DOEpatents

    Terwilliger, Thomas C [Santa Fe, NM

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  7. Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis

    NASA Astrophysics Data System (ADS)

    Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki

    2018-01-01

    The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.

  8. The Structure and Properties of 0.1 - 100 keV Electron Distributions Over Jupiter's Polar Aurora Region and their Contribution to Polar Aurora Emissions

    NASA Astrophysics Data System (ADS)

    Ebert, R. W.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Clark, G. B.; Gladstone, R.; Hue, V.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Paranicas, C.; Saur, J.; Reno, C.; Szalay, J. R.; Thomsen, M. F.; Valek, P. W.; Weidner, S.; Wilson, R. J.

    2017-12-01

    In addition to the main emissions in the north and south, Jupiter's auroral emissions also include polar, satellite-related, and other features. Here we present observations from Juno's Jovian Auroral Distributions Experiment (JADE) of 0.1 - 100 keV electrons in Jupiter's polar aurora region during the spacecraft's northern and southern polar passes bounding PJ1 (27 August 2016), PJ3 (11 December 11 2016), PJ4 (2 February 2017), PJ5 (27 March 2017), PJ6 (19 May 2017), and PJ7 (11 July 2017). Specifically, we focus on the spatial structure, energy and pitch angle distributions, and energy flux and spectra of these electrons. The observations reveal regions containing magnetic field aligned beams of bi-directional electrons having broad energy distributions interspersed between beams of upward electrons with narrow, peaked energy distributions, regions void of these electrons, and regions dominated by penetrating radiation, with penetrating radiation being most common. The electrons show evidence of acceleration via parallel electric fields (inverted-V structures) and via stochastic processes (bi-directional distributions). The inverted-V structures identified to date were observed from 1.4 - 2.9 RJ and had spatial scales of 100s to 1000s of kilometers along Juno's trajectory. The upward energy flux of the electron distributions was typically greater than the downward energy flux and their contribution to producing Jupiter's polar aurora emissions will be discussed.

  9. Is the nestedness of metazoan parasite assemblages of marine fishes from the southeastern Pacific coast a pattern associated with the geographical distributional range of the host?

    PubMed

    González, M T; Oliva, M E

    2009-04-01

    Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.

  10. Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis

    NASA Astrophysics Data System (ADS)

    Cuvelier, Daphne; Sarrazin, Jozée; Colaço, Ana; Copley, Jon; Desbruyères, Daniel; Glover, Adrian G.; Tyler, Paul; Serrão Santos, Ricardo

    2009-11-01

    Whilst the fauna inhabiting hydrothermal vent structures in the Atlantic Ocean is reasonably well known, less is understood about the spatial distributions of the fauna in relation to abiotic and biotic factors. In this study, a major active hydrothermal edifice (Eiffel Tower, at 1690 m depth) on the Lucky Strike vent field (Mid-Atlantic Ridge (MAR)) was investigated. Video transects were carried out by ROV Victor 6000 and complete image coverage was acquired. Four distinct assemblages, ranging from dense larger-sized Bathymodiolus mussel beds to smaller-sized mussel clumps and alvinocaridid shrimps, and two types of substrata were defined based on high definition photographs and video imagery. To evaluate spatial variation, faunal distribution was mapped in three dimensions. A high degree of patchiness characterizes this 11 m high sulfide structure. The differences observed in assemblage and substratum distribution were related to habitat characteristics (fluid exits, depth and structure orientation). Gradients in community structure were observed, which coincided with an increasing distance from the fluid exits. A biological zonation model for the Eiffel Tower edifice was created in which faunal composition and distribution can be visually explained by the presence/absence of fluid exits.

  11. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  12. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

    PubMed

    Chen, Xianfeng; Weber, Irene; Harrison, Robert W

    2008-09-25

    Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (

  13. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  14. Stress Distribution in a Rigidly Clamped Composite Plate with Locally Curved Structures under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2001-09-01

    A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading

  15. Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms.

    PubMed

    Azaña, J; Muriel, M A

    2000-12-01

    The grating-period profile and length of an arbitrary fiber Bragg grating structure can be reconstructed from the structure's reflection response by use of a time-frequency signal representation based on the well-known Wigner-Ville distribution and spectrogram. We present a detailed description of this synthesis technique. By means of numerical simulations, the technique is tested with several fiber grating structures. In general, our results show good agreement between exact and reconstructed functions. The technique's advantages and limitations are discussed. We propose and demonstrate the application of the proposed synthesis technique to distributed mechanical strain or temperature sensing.

  16. Performance assessment of geotechnical structural elements using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin

    2017-04-01

    Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.

  17. Analysis of the proton longitudinal structure function from the gluon distribution function

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Rezaei, B.

    2012-11-01

    We make a critical, next-to-leading order, study of the relationship between the longitudinal structure function F L and the gluon distribution proposed in Cooper-Sarkar et al. (Z. Phys. C 39:281, 1988; Acta Phys. Pol. B 34:2911 2003), which is frequently used to extract the gluon distribution from the proton longitudinal structure function at small x. The gluon density is obtained by expanding at particular choices of the point of expansion and compared with the hard Pomeron behavior for the gluon density. Comparisons with H1 data are made and predictions for the proposed best approach are also provided.

  18. Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population

    PubMed Central

    Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.

    2013-01-01

    Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217

  19. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara

    2016-09-15

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less

  20. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali

    2016-09-01

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  1. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  2. Distributed Compression in Camera Sensor Networks

    DTIC Science & Technology

    2006-02-13

    complicated in this context. This effort will make use of the correlation structure of the data given by the plenoptic function n the case of multi-camera...systems. In many cases the structure of the plenoptic function can be estimated without requiring inter-sensor communications, but by using some a...priori global geometrical information. Once the structure of the plenoptic function has been predicted, it is possible to develop specific distributed

  3. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  4. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  5. Application of attachment modes in the control of large space structures

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1989-01-01

    Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.

  6. Spatial distribution of GRBs and large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Tóth, L. Viktor; Horváth, István

    We studied the space distribution of the starburst galaxies from Millennium XXL database at z = 0.82. We examined the starburst distribution in the classical Millennium I (De Lucia et al. (2006)) using a semi-analytical model for the genesis of the galaxies. We simulated a starburst galaxies sample with Markov Chain Monte Carlo method. The connection between the large scale structures homogenous and starburst groups distribution (Kofman and Shandarin 1998), Suhhonenko et al. (2011), Liivamägi et al. (2012), Park et al. (2012), Horvath et al. (2014), Horvath et al. (2015)) on a defined scale were checked too.

  7. A two-level cache for distributed information retrieval in search engines.

    PubMed

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.

  8. A Two-Level Cache for Distributed Information Retrieval in Search Engines

    PubMed Central

    Zhang, Weizhe; He, Hui; Ye, Jianwei

    2013-01-01

    To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache. PMID:24363621

  9. Effect of temperature and thermal history on borosilicate glass structure

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; Villain, Olivier; Schuller, Sophie; Charpentier, Thibault; de Ligny, Dominique; Bressel, Lena; Wondraczek, Lothar

    2012-02-01

    The influence of the temperature and quenching rate on the structure of a borosilicate glass was studied by high-resolution solid-state 11B, 23Na, 29Si nuclear magnetic resonance (NMR) and high-temperature Raman spectroscopy. Data were obtained for glass in the solid state after annealing and quenching at cooling rates covering four orders of magnitude as well as in the liquid state from Raman experiments and from calorimetry and rheological data. Nuclear magnetic resonance measurements were used to calibrate the Raman spectra in order to quantify the change in boron coordination with temperature. This result can then be used to determine the fictive temperature of the glass directly from the boron coordination. The fictive temperature, heat capacity, and configurational entropy are extracted from calorimetry and viscosity measurements. Changes in the boron coordination account for only 25% of the configurational heat capacity of the liquid. The structural parameters capable of accounting for the remaining quantity are discussed on the basis of structural data, both local (inhomogeneity of the sodium distribution) and medium-range (from NMR parameter distribution). It has thus been shown that, although the B-O-B angular distributions of the boroxol rings (and probably the Si-O-Si distributions) are not affected by temperature, a structural disorder is identified through the angular distributions of the bonds linking borate and silicate groups.

  10. Evaluating the quality of NMR structures by local density of protons.

    PubMed

    Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert

    2006-03-01

    Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.

  11. Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira; Ando, Yasuhisa

    2010-08-01

    The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.

  12. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  13. Monitoring Data-Structure Evolution in Distributed Message-Passing Programs

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekhar R.; Beers, Andrew; Woodrow, Thomas S. (Technical Monitor)

    1996-01-01

    Monitoring the evolution of data structures in parallel and distributed programs, is critical for debugging its semantics and performance. However, the current state-of-art in tracking and presenting data-structure information on parallel and distributed environments is cumbersome and does not scale. In this paper we present a methodology that automatically tracks memory bindings (not the actual contents) of static and dynamic data-structures of message-passing C programs, using PVM. With the help of a number of examples we show that in addition to determining the impact of memory allocation overheads on program performance, graphical views can help in debugging the semantics of program execution. Scalable animations of virtual address bindings of source-level data-structures are used for debugging the semantics of parallel programs across all processors. In conjunction with light-weight core-files, this technique can be used to complement traditional debuggers on single processors. Detailed information (such as data-structure contents), on specific nodes, can be determined using traditional debuggers after the data structure evolution leading to the semantic error is observed graphically.

  14. Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen

    2014-01-01

    Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.

  15. The effect of geographical indices on left ventricular structure in healthy Han Chinese population

    NASA Astrophysics Data System (ADS)

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  16. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  17. The effect of geographical indices on left ventricular structure in healthy Han Chinese population.

    PubMed

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  18. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  19. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  20. Towards a Full Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2015-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green's function between the two receivers. This assumption, however, is only met under specific conditions, for instance, wavefield diffusivity and equipartitioning, zero attenuation, etc., that are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations regarding Earth structure and noise generation. To overcome this limitation we attempt to develop a method that consistently accounts for noise distribution, 3D heterogeneous Earth structure and the full seismic wave propagation physics in order to improve the current resolution of tomographic images of the Earth. As an initial step towards a full waveform ambient noise inversion we develop a preliminary inversion scheme based on a 2D finite-difference code simulating correlation functions and on adjoint techniques. With respect to our final goal, a simultaneous inversion for noise distribution and Earth structure, we address the following two aspects: (1) the capabilities of different misfit functionals to image wave speed anomalies and source distribution and (2) possible source-structure trade-offs, especially to what extent unresolvable structure could be mapped into the inverted noise source distribution and vice versa.

  1. Application and Optimization of Stiffness Abruption Structures for Pressure Sensors with High Sensitivity and Anti-Overload Ability

    PubMed Central

    Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong

    2017-01-01

    The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599

  2. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    PubMed

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  3. Optimum structural design based on reliability and proof-load testing

    NASA Technical Reports Server (NTRS)

    Shinozuka, M.; Yang, J. N.

    1969-01-01

    Proof-load test eliminates structures with strength less than the proof load and improves the reliability value in analysis. It truncates the distribution function of strength at the proof load, thereby alleviating verification of a fitted distribution function at the lower tail portion where data are usually nonexistent.

  4. Methods for the identification of material parameters in distributed models for flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.; Rosen, I. G.

    1986-01-01

    Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented.

  5. The Effect of Instructional Supervision on Principal Trust

    ERIC Educational Resources Information Center

    Wahnee, Robbie L.

    2010-01-01

    Within-school climates and culture are predicated on organizational structures, distributions of power, and roles that are highly interactive. Hierarchical structures and uneven power distributions, primarily those of teacher-principal, have been found to challenge levels of trust. School interaction patterns form the basis of much of the school…

  6. Distributed active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Baz, A.

    1986-01-01

    This progress report summarizes the research work performed at the Catholic University of America on the research grant entitled Distributed Active Control of Large Flexible Space Structures, funded by NASA/Goddard Space Flight Center, under grant number NAG5-749, during the period of March 15, 1986 to September 15, 1986.

  7. On Nonequivalence of Several Procedures of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2005-01-01

    The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure…

  8. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    DTIC Science & Technology

    1976-03-01

    section is closed off by a sandwich skin panel. At Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August... Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August 1970. 6. Laasko, J. II., and

  9. Transmural variation in elastin fiber orientation distribution in the arterial wall.

    PubMed

    Yu, Xunjie; Wang, Yunjie; Zhang, Yanhang

    2018-01-01

    The complex three-dimensional elastin network is a major load-bearing extracellular matrix (ECM) component of an artery. Despite the reported anisotropic behavior of arterial elastin network, it is usually treated as an isotropic material in constitutive models. Our recent multiphoton microscopy study reported a relatively uniform elastin fiber orientation distribution in porcine thoracic aorta when imaging from the intima side (Chow et al., 2014). However it is questionable whether the fiber orientation distribution obtained from a small depth is representative of the elastin network structure in the arterial wall, especially when developing structure-based constitutive models. To date, the structural basis for the anisotropic mechanical behavior of elastin is still not fully understood. In this study, we examined the transmural variation in elastin fiber orientation distribution in porcine thoracic aorta and its association with elastin anisotropy. Using multi-photon microscopy, we observed that the elastin fibers orientation changes from a relatively uniform distribution in regions close to the luminal surface to a more circumferential distribution in regions that dominate the media, then to a longitudinal distribution in regions close to the outer media. Planar biaxial tensile test was performed to characterize the anisotropic behavior of elastin network. A new structure-based constitutive model of elastin network was developed to incorporate the transmural variation in fiber orientation distribution. The new model well captures the anisotropic mechanical behavior of elastin network under both equi- and nonequi-biaxial loading and showed improvements in both fitting and predicting capabilities when compared to a model that only considers the fiber orientation distribution from the intima side. We submit that the transmural variation in fiber orientation distribution is important in characterizing the anisotropic mechanical behavior of elastin network and should be considered in constitutive modeling of an artery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    NASA Technical Reports Server (NTRS)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  11. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  12. Coherent structures: Comments on mechanisms

    NASA Technical Reports Server (NTRS)

    Hunt, J. C. R.

    1987-01-01

    There is now overwhelming evidence that in most turbulent flows there exist regions moving with the flow where the velocity and vorticity have a characteristic structure. These regions are called coherent structures because within them the large-scale distributions of velocity and/or vorticity remain coherent even as these structures move through the flow and interact with other structures. Since the flow enters and leaves the bounding surfaces of these structures, a useful definition for coherent structures is that they are open volumes with distinctive large-scale vorticity distributions. Possible fruitful directions for the study of the dynamics of coherent structures are suggested. Most coherent structures research to data was concentrated on measurement and kinematical analysis; there is now a welcome move to examine the dynamics of coherent structures, by a variety of different methods. A few of them will be described.

  13. Distributed structure-searchable toxicity (DSSTox) public database network: a proposal.

    PubMed

    Richard, Ann M; Williams, ClarLynda R

    2002-01-29

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, Structure-Activity Relationship (SAR) model development, or building of chemical relational databases (CRD). The distributed structure-searchable toxicity (DSSTox) public database network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: (1) to adopt and encourage the use of a common standard file format (structure data file (SDF)) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; (2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data sources with potential users of these data from other disciplines (such as chemistry, modeling, and computer science); and (3) to engage public/commercial/academic/industry groups in contributing to and expanding this community-wide, public data sharing and distribution effort. The DSSTox project's overall aims are to effect the closer association of chemical structure information with existing toxicity data, and to promote and facilitate structure-based exploration of these data within a common chemistry-based framework that spans toxicological disciplines.

  14. Selective structural source identification

    NASA Astrophysics Data System (ADS)

    Totaro, Nicolas

    2018-04-01

    In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.

  15. Population Structure of Two Rabies Hosts Relative to the Known Distribution of Rabies Virus Variants in Alaska

    PubMed Central

    Goldsmith, Elizabeth W.; Renshaw, Benjamin; Clement, Christopher J.; Himschoot, Elizabeth A.; Hundertmark, Kris J.; Hueffer, Karsten

    2015-01-01

    For pathogens that infect multiple species the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We test the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (V. vulpes) in order to possibly distinguish reservoir and spill over hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found 2 groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising 2 regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the artic fox Therefore we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. PMID:26661691

  16. Population structure of two rabies hosts relative to the known distribution of rabies virus variants in Alaska.

    PubMed

    Goldsmith, Elizabeth W; Renshaw, Benjamin; Clement, Christopher J; Himschoot, Elizabeth A; Hundertmark, Kris J; Hueffer, Karsten

    2016-02-01

    For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. © 2015 John Wiley & Sons Ltd.

  17. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  18. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  19. Hierarchical Process Composition: Dynamic Maintenance of Structure in a Distributed Environment

    DTIC Science & Technology

    1988-01-01

    One prominent hne of research stresses the independence of address space and thread of control, and the resulting efficiencies due to shared memory...cooperating processes. StarOS focuses on case of use and a general capability mechanism, while Medusa stresses the effect of distributed hardware on system...process structure and the asynchrony among agents and between agents and sources of failure. By stressing dynamic structure, we are led to adopt an

  20. Distributed ice accretion sensor for smart aircraft structures

    NASA Technical Reports Server (NTRS)

    Gerardi, J. J.; Hickman, G. A.

    1989-01-01

    A distributed ice accretion sensor is presented, based on the concept of smart structures. Ice accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to ice thickness. It is suggested that this method may be used to detect ice over large areas with minimal hardware. Results are presented from preliminary tests to measure simulated ice growth.

  1. Information Structures in Nash and Leader-Follower Strategies.

    DTIC Science & Technology

    1981-01-01

    OICkASSIPICATION/ OOWNGRAOING IS. OISTNIIIUTION STATEMINT (ao tD. esPort ) * Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT...problems and two market models of duopoly ith this type of information structure are extensively analyzed and examined. DO jAN7, 1473 EDIION OF NV SS IS...information 3 structure is employed in both Nash games and optimal coordination problems and two market models of duopoly with this type of information

  2. The Effect of Structural Curvings on the Stress Distribution in a Rigidly Fixed Composite Plate under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2002-01-01

    Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.

  3. Supporting shared data structures on distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John

    1990-01-01

    Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.

  4. Quantifiable Assessment of SWNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Kim, Jae-Woo; Wise, Kristopher E.; Working, Dennis; Siochi, Mia; Harrison, Joycelyn; Gibbons, Luke; Siochi, Emilie J.; Lillehei, Peter T.; Cantrell, Sean; hide

    2007-01-01

    NASA LaRC has established a new protocol for visualizing the nanomaterials in structural polymer matrix resins. Using this new technique and reconstructing the 3D distribution of the nanomaterials allows us to compare this distribution against a theoretically perfect distribution. Additional tertiary structural information can now be obtained and quantified with the electron tomography studies. These tools will be necessary to establish the structural-functional relationships between the nano and the bulk. This will also help define the critical length scales needed for functional properties. Field ready tool development and calibration can begin by using these same samples and comparing the response. i.e. gold standards of good and bad dispersion.

  5. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    PubMed Central

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatiblemore » with the momentum and other sum rules for the nuclear parton distribution functions.« less

  7. Research on the novel FBG detection system for temperature and strain field distribution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  8. A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions

    NASA Technical Reports Server (NTRS)

    Heldenfels, Richard R

    1951-01-01

    A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

  9. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)

    2000-01-01

    Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.

  10. TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.

  11. Electron and ion distribution functions in magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.

    2015-12-01

    We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.

  12. The gluon structure of hadrons and nuclei from lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2018-03-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  13. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  14. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-01

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  15. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.

    PubMed

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-26

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  16. Structure and Liquid Fragility in Sodium Carbonate.

    PubMed

    Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B

    2018-02-01

    The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.

  17. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  18. Review of current status of smart structures and integrated systems

    NASA Astrophysics Data System (ADS)

    Chopra, Inderjit

    1996-05-01

    A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.

  19. An innovative methodology for measurement of stress distribution of inflatable membrane structures

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Chen, Jianwen; Qiu, Zhenyu; Zhou, Jinyu; Gao, Chengjun

    2016-02-01

    The inflatable membrane structure has been widely used in the fields of civil building, industrial building, airship, super pressure balloon and spacecraft. It is important to measure the stress distribution of the inflatable membrane structure because it influences the safety of the structural design. This paper presents an innovative methodology for the measurement and determination of the stress distribution of the inflatable membrane structure under different internal pressures, combining photogrammetry and the force-finding method. The shape of the inflatable membrane structure is maintained by the use of pressurized air, and the internal pressure is controlled and measured by means of an automatic pressure control system. The 3D coordinates of the marking points pasted on the membrane surface are acquired by three photographs captured from three cameras based on photogrammetry. After digitizing the markings on the photographs, the 3D curved surfaces are rebuilt. The continuous membrane surfaces are discretized into quadrilateral mesh and simulated by membrane links to calculate the stress distributions using the force-finding method. The internal pressure is simplified to the external node forces in the normal direction according to the contributory area of the node. Once the geometry x, the external force r and the topology C are obtained, the unknown force densities q in each link can be determined. Therefore, the stress distributions of the inflatable membrane structure can be calculated, combining the linear adjustment theory and the force density method based on the force equilibrium of inflated internal pressure and membrane internal force without considering the mechanical properties of the constitutive material. As the use of the inflatable membrane structure is attractive in the field of civil building, an ethylene-tetrafluoroethylene (ETFE) cushion is used with the measurement model to validate the proposed methodology. The comparisons between the obtained results and numerical simulation for the inflation process of the ETFE cushion are performed, and the strong agreements demonstrate that the proposed methodology is feasible and accurate.

  20. Distribution of resistive and conductive structures in Nankai accretionary wedge reveals contrasting stress paths

    NASA Astrophysics Data System (ADS)

    Conin, Marianne; Bourlange, Sylvain; Henry, Pierre; Boiselet, Aurelien; Gaillot, Philippe

    2014-01-01

    In this article, we study the characteristics and spatial distribution of the deformation structures along the Kumano transect of the Nankai accretionary wedge, and use this information to interpret the stress path followed by the sediments. Deformation structures are identified from logging while drilling (LWD) resistivity images of the materials surrounding the drill hole and from 3-dimensional X-ray CT-images of cores acquired during the IODP NanTroSEIZE project. The relative resistivity of the structures identified on logs and the strike, dip, and density of structures identified on CT scan images are measured. The analysis of dip and strike of structures indicates that most of the resistive structures identified on logging data correspond to compactive shear bands. Results also indicate that conductive structures predominate at the toe of the prism and above the main out of sequence thrust, in locations where past and recent erosion occurred. We propose several mechanisms that could explain the relation between erosion and the absence of compactive shear bands. We conclude that sediments followed different stress paths depending on their location within the wedge, and that those differences explain the distribution of deformation structures within the wedge. We also show the coexistence of dilatant and compactant structures in fault zones including the frontal thrust and mega splay fault, and we interpret the coexistence of these structures as a possible consequence of a transient fluid pressure.

  1. Structural frequency functions for an impulsive, distributed forcing function

    NASA Technical Reports Server (NTRS)

    Bateman, Vesta I.

    1987-01-01

    The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.

  2. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores...

  3. Students' Development of Structure Sense for the Distributive Law

    ERIC Educational Resources Information Center

    Schüler-Meyer, Alexander

    2017-01-01

    After being introduced to the distributive law in meaningful contexts, students need to extend its scope of application to unfamiliar expressions. In this article, a process model for the development of structure sense is developed. Building on this model, this article reports on a design research project in which exercise tasks support students…

  4. Effect of population growth on changes in the agrarian structure of rural Bangladesh.

    PubMed

    Chaudhury, R H

    1981-01-01

    The author examines available information on the effect of population growth on the agrarian structure of Bangladesh. Trends and patterns of land distribution over time are reviewed. The effects of changes in land distribution on productivity are investigated, and the relationship between family size and land ownership is analyzed.

  5. Development of a thermal and structural model for a NASTRAN finite-element analysis of a hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Lameris, J.

    1984-01-01

    The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.

  6. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  7. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less

  8. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    PubMed Central

    Barrias, António; Casas, Joan R.; Villalba, Sergi

    2016-01-01

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. PMID:27223289

  9. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    PubMed Central

    Huang, Yi; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

  10. Relationship study on land use spatial distribution structure and energy-related carbon emission intensity in different land use types of Guangdong, China, 1996-2008.

    PubMed

    Huang, Yi; Xia, Bin; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996-2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  11. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE PAGES

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.; ...

    2017-12-11

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  12. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knott, Brandon C.; Nimlos, Claire T.; Robichaud, David J.

    Research efforts in zeolite catalysis have become increasingly cognizant of the diversity in structure and function resulting from the distribution of framework aluminum atoms, through emerging reports of catalytic phenomena that fall outside those recognizable as the shape-selective ones emblematic of its earlier history. Molecular-level descriptions of how active-site distributions affect catalysis are an aspirational goal articulated frequently in experimental and theoretical research, yet they are limited by imprecise knowledge of the structure and behavior of the zeolite materials under interrogation. In experimental research, higher precision can result from more reliable control of structure during synthesis and from more robustmore » and quantitative structural and kinetic characterization probes. In theoretical research, construction of models with specific aluminum locations and distributions seldom capture the heterogeneity inherent to the materials studied by experiment. In this Perspective, we discuss research findings that appropriately frame the challenges in developing more predictive synthesis-structure-function relations for zeolites, highlighting studies on ZSM-5 zeolites that are among the most structurally complex molecular sieve frameworks and the most widely studied because of their versatility in commercial applications. We discuss research directions to address these challenges and forge stronger connections between zeolite structure, composition, and active sites to catalytic function. Such connections promise to aid in bridging the findings of theoretical and experimental catalysis research, and transforming zeolite active site design from an empirical endeavor into a more predictable science founded on validated models.« less

  13. Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    PubMed Central

    Amaral, Ana R.; Beheregaray, Luciano B.; Bilgmann, Kerstin; Boutov, Dmitri; Freitas, Luís; Robertson, Kelly M.; Sequeira, Marina; Stockin, Karen A.; Coelho, M. Manuela; Möller, Luciana M.

    2012-01-01

    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna. PMID:22319634

  14. On the emergence of molecular structure from atomic shape in the 1/r2 harmonium model.

    PubMed

    Müller-Herold, Ulrich

    2006-01-07

    The formal similarity of the three-body Hamiltonians for helium and the hydrogen molecule ion is used to demonstrate the unfolding of a rotating dumbbell-like proton distribution from a (1s)2-type electron distribution by smooth variation of the particles' masses in the 1/r2 harmonium model. The 1/r2 harmonium is an exactly solvable modification of the harmonium model (also known as Hooke's law atom) where the attraction between different particles is harmonic and the repulsion between the two equal particles is given by a 1/r2 potential. The dumbbell-like molecular structure appears as an expression of increasing spatial correlation due to increasing mass. It gradually appears in the one-density distribution of the two equal particles if their mass exceeds a critical value depending on the mass of the third particle. For large mass of the equal particles, their one-density distribution approaches an asymptotic form derived from the Born-Oppenheimer treatment of H2+ in the 1/r2 harmonium model. Below the critical value, the one density is a spherical, Gaussian-type atomic density distribution with a maximum at the center of mass. The topological transition at the critical value separates molecular structure and atomic shape as two qualitatively different manifestations of spatial structure.

  15. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  16. Local structure in BaTi O 3 - BiSc O 3 dipole glasses

    DOE PAGES

    Levin, I.; Krayzman, V.; Woicik, J. C.; ...

    2016-03-14

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  17. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  18. Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs

    DOE PAGES

    Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.

    2015-08-21

    Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less

  19. Fatigue analysis of the bow structure of FPSO

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning

    2003-06-01

    The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.

  20. Probabilistic and structural reliability analysis of laminated composite structures based on the IPACS code

    NASA Technical Reports Server (NTRS)

    Sobel, Larry; Buttitta, Claudio; Suarez, James

    1993-01-01

    Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.

  1. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  2. Aftershock distribution and heterogeneous structure in and around the source area of the 2014 northern Nagano Prefecture earthquake (Mw 6.2) , central Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Sakai, S.; Obara, K.; Ishiyama, T.; Sato, H.

    2015-12-01

    A shallow earthquake (Mw 6.2) occurred on November 22 in the northern Nagano Prefecture, central Japan. Aftershock area is located near the Kamishiro fault, which is a part of the Itoigawa-Shizuoka Tectonic Line (ISTL). ISTL is one of the major tectonic boundaries in Japan. Precise aftershock distribution and heterogeneous structure in and around the source region of this earthquake is important to constrain the process of earthquake occurrence. We conducted a high-density seismic array observation in and around source area to investigate aftershock distribution and crustal structure. One hundred sixty-three seismic stations, approximately 1 km apart, were deployed during the period from December 3, 2014 to December 21, 2014. Each seismograph consisted of a 4.5 Hz 3-component seismometer and a digital data recorder (GSX-3). Furthermore, the seismic data at 40 permanent stations were incorporated in our analysis. During the seismic array observation, the Japan Meteorological Agency located 977 earthquakes in a latitude range of 35.5°-37.1°N and a longitude range of 136.7°-139.0°E, from which we selected 500 local events distributed uniformly in the study area. To investigate the aftershock distribution and the crustal structure, the double-difference tomography method [Zhang and Thurber, 2003] was applied to the P- and S-wave arrival time data obtained from 500 local earthquakes. The relocated aftershock distribution shows a concentration on a plane dipping eastward in the vicinity of the mainshock hypocenter. The large slip region (asperity) estimated from InSAR analysis [GSI, 2014] corresponds to the low-activity region of the aftershocks. The depth section of Vp structure shows that the high Vp zone corresponds to the large slip region. These results suggest that structural heterogeneities in and around the fault plane may have controlled the rupture process of the 2014 northern Nagano Prefecture earthquake.

  3. Approximations to the distribution of a test statistic in covariance structure analysis: A comprehensive study.

    PubMed

    Wu, Hao

    2018-05-01

    In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.

  4. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.

  5. Statistical characteristics of dynamics for population migration driven by the economic interests

    NASA Astrophysics Data System (ADS)

    Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui

    2016-06-01

    Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.

  6. LYDIAN: An Extensible Educational Animation Environment for Distributed Algorithms

    ERIC Educational Resources Information Center

    Koldehofe, Boris; Papatriantafilou, Marina; Tsigas, Philippas

    2006-01-01

    LYDIAN is an environment to support the teaching and learning of distributed algorithms. It provides a collection of distributed algorithms as well as continuous animations. Users can combine algorithms and animations with arbitrary network structures defining the interconnection and behavior of the distributed algorithm. Further, it facilitates…

  7. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.

    2011-07-01

    This paper extends the theoretical framework presented in the preceding Part I to the lifetime distribution of quasibrittle structures failing at the fracture of one representative volume element under constant amplitude fatigue. The probability distribution of the critical stress amplitude is derived for a given number of cycles and a given minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law for fatigue crack growth is explained under certain plausible assumptions about the damage accumulation in the cyclic fracture process zone at the tip of subcritical crack. This law is then used to relate the probability distribution of critical stress amplitude to the probability distribution of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), which agrees with Basquin's law. Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must be size dependent. Finally, physical explanation is provided to the experimentally observed systematic deviations of lifetime histograms of various ceramics and bones from the Weibull distribution, and their close fits by the present theory are demonstrated.

  8. Experimental Study of Structure/Behavior Relationship for a Metallized Explosive

    NASA Astrophysics Data System (ADS)

    Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick

    2017-06-01

    Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  10. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    PubMed

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  11. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2016-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source location, and thereby to contribute to a better understanding of noise generation. We introduce an operator-based formulation for the computation of correlation functions and apply the continuous adjoint method that allows us to compute first and second derivatives of misfit functionals with respect to source distribution and Earth structure efficiently. Based on these developments we design an inversion scheme using a 2D finite-difference code. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: The capability of different misfit functionals to image wave speed anomalies and source distribution. Possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus, which allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface.

  12. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  13. Phase-space perspective on the wavelength-dependent electron correlation of strong-field double ionization of Xe

    NASA Astrophysics Data System (ADS)

    Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan

    2017-12-01

    We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.

  14. CLAYFORM: a FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula

    USGS Publications Warehouse

    Bodine, M.W.

    1987-01-01

    The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.

  15. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  16. Improving Distributed Diagnosis Through Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew John; Roychoudhury, Indranil; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2011-01-01

    Complex engineering systems require efficient fault diagnosis methodologies, but centralized approaches do not scale well, and this motivates the development of distributed solutions. This work presents an event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, by using the structural model decomposition capabilities provided by Possible Conflicts. We develop a distributed diagnosis algorithm that uses residuals computed by extending Possible Conflicts to build local event-based diagnosers based on global diagnosability analysis. The proposed approach is applied to a multitank system, and results demonstrate an improvement in the design of local diagnosers. Since local diagnosers use only a subset of the residuals, and use subsystem models to compute residuals (instead of the global system model), the local diagnosers are more efficient than previously developed distributed approaches.

  17. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  18. Application of the mobility power flow approach to structural response from distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.

  19. Associations between breeding bird abundance and stand structure in the White Mountains, New Hampshire and Maine, USA

    Treesearch

    Richard M. DeGraaf; Jay B. Hestbeck; Mariko Yamasaki

    1998-01-01

    Assessment of faunal distribution in relation to landscape features is becoming increasingly popular. Technological advances in remote sensing have encouraged regional analyses of the distributions of terrestrial vertebrates. Comparisons of the strength of association of habitat characteristics at various scales of measurement of habitat structure are rare. We compared...

  20. A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu

    2007-01-01

    Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…

  1. A Comparison of Maximum-Likelihood and Asymptotically Distribution-Free Methods of Treating Incomplete Nonnormal Data

    ERIC Educational Resources Information Center

    Gold, Michael S.; Bentler, Peter M.; Kim, Kevin H.

    2003-01-01

    This article describes a Monte Carlo study of 2 methods for treating incomplete nonnormal data. Skewed, kurtotic data sets conforming to a single structured model, but varying in sample size, percentage of data missing, and missing-data mechanism, were produced. An asymptotically distribution-free available-case (ADFAC) method and structured-model…

  2. Thinning and burning in dry coniferous forests of the Western United States: effectiveness in altering diameter distributions

    Treesearch

    Andrew Youngblood

    2010-01-01

    Western United States land managers are conducting fuel reduction and forest restoration treatments in forests with altered structural conditions. As part of the National Fire and Fire Surrogate (FFS) study, thinning and burning treatments were evaluated for changing forest structure. Shifts between pretreatment and posttreatment diameter distributions at seven western...

  3. Regional impacts of technical change: the case of structural particleboard in the United States.

    Treesearch

    Zhi Xu; David N. Bengston; Hans M. Gregersen; Allen L. Lundgren

    1992-01-01

    Analyzes the regional impacts of research benefits in the United States due to the introduction of structural particleboard. The distribution of consumer benefits, producer benefits, direct employment impacts, and changes in wood requirements are analyzed for the four census regions. The distribution of benefits is found to differ widely between regions, indicating...

  4. Applications in bridge structure health monitoring using distributed fiber sensing

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Zheng, Huan; Ge, Huiliang

    2017-10-01

    In this paper, Brillouin Optical Time Domain Analysis (BOTDA) is proposed to solve the problem that the traditional point sensor is difficult to realize the comprehensive safety monitoring of bridges and so on. This technology not only breaks through the bottleneck of traditional monitoring point sensor, realize the distributed measurement of temperature and strain on a transmission path; can also be used for bridge and other structures of the damage identification, fracture positioning, settlement monitoring. The effectiveness and frontier of the technology are proved by comparing the test of the indoor model beam and the external field bridge, and the significance of the distributed optical fiber sensing technology to the monitoring of the important structure of the bridge is fully explained.

  5. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  6. Correlation of Calculated Halonium Ion Structures with Experimental Product Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of Halonium Ions (PREPRINT)

    DTIC Science & Technology

    2006-04-03

    2) Substituting a vinyl hydrogen with a fluorine presents an interesting situation for electrophilic reactions. The π-bond is less...reactive toward electrophiles due to the electron-withdrawing effect of the vinyl fluorine . Therefore, carbocations or radical cations are destabilized...NUMBER Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of

  7. Spatially distributed modal signals of free shallow membrane shell structronic system

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    2008-11-01

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  8. Landscape patterns in rainforest phylogenetic signal: isolated islands of refugia or structured continental distributions?

    PubMed

    Kooyman, Robert M; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W

    2013-01-01

    Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.

  9. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].

    PubMed

    Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun

    2007-11-01

    Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.

  10. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s costmore » and organizational structure.« less

  11. A critical survey of vestigial structures in the postcranial skeletons of extant mammals

    PubMed Central

    Moch, John G.

    2015-01-01

    In the Mammalia, vestigial skeletal structures abound but have not previously been the focus of study, with a few exceptions (e.g., whale pelves). Here we use a phylogenetic bracketing approach to identify vestigial structures in mammalian postcranial skeletons and present a descriptive survey of such structures in the Mammalia. We also correct previous misidentifications, including the previous misidentification of vestigial caviid metatarsals as sesamoids. We also examine the phylogenetic distribution of vestigiality and loss. This distribution indicates multiple vestigialization and loss events in mammalian skeletal structures, especially in the hand and foot, and reveals no correlation in such events between mammalian fore and hind limbs. PMID:26623192

  12. Using Time Evolution of the Bunch Structure to Extract the Muon Momentum Distribution in the Fermilab Muon g-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Quinn, B.; Crnkovic, J. D.

    Beam dynamics plays an important role in achieving the unprecedented precision on measurement of the muon anomalous magnetic moment in the Fermilab Muon g-2 Experiment. It needs to find the muon momentum distribution in the storage ring in order to evaluate the electric field correction to muon anomalous precession frequency. We will show how to use time evolution of the beam bunch structure to extract the muon momentum distribution by applying a fast rotation analysis on the decay electron signals.

  13. Distributed computer taxonomy based on O/S structure

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.

    1985-01-01

    The taxonomy considers the resource structure at the operating system level. It compares a communication based taxonomy with the new taxonomy to illustrate how the latter does a better job when related to the client's view of the distributed computer. The results illustrate the fundamental features and what is required to construct fully distributed processing systems. The problem of using network computers on the space station is addressed. A detailed discussion of the taxonomy is not given here. Information is given in the form of charts and diagrams that were used to illustrate a talk.

  14. Composition and Structure Measurements in an Ionospheric Barium Cloud.

    DTIC Science & Technology

    1981-12-23

    AD -AI13 138 AIR FORCE GEOPHYSI;S LAO HANSCOM AFR MA F/6 4/1 COMPOSITION AND STRUCTURE MEASUREMENTS IN AN IONOSPHERIC BARIUM-.ETC’ DEC 81 R NARCISI. E...Approved for public re..: distribution unlimited. This work was supported in part by do n e Nucler Age cy under Subtmk I2SAAXHX,. , Wok Unl 00014...distribution unlimited. 17. DISTRIBUTION STATEMENT rof Ihe bs,-r entered In Block 20, If diff-r-o from, R.FO1r lB SUPPLEMENTARY NOTES This work was

  15. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  16. Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatyan, A.; Mirzaie, S.

    2011-04-10

    A class of photon sieve is introduced whose structure is based on the overlapping pinholes in the innermost zones. This kind of distribution is produced by, for example, a particular form of Gaussian function. The focusing property of the proposed model was examined theoretically and experimentally. It is shown that under He-Ne laser and white light illumination, the focal spot size of this novel structure has considerably smaller FWHM than a photon sieve with randomly distributed pinholes and a Fresnel zone plate. In addition, secondary maxima have been suppressed effectively.

  17. Gas and Dust Structures of the Protoplanetary Disk around HD 142527

    NASA Astrophysics Data System (ADS)

    Momose, M.; Muto, T.; Hanawa, T.; Fukagawa, M.; Tsukagoshi, T.; Saigo, K.; Kataoka, A.; Nomura, H.; Takeuchi, T.; Akiyama, E.; Ohashi, N.; Fujiwara, H.; Shibai, H.; Kitamura, Y.; Inutsuka, S.; Kobayashi, H.; Honda, M.; Aso, Y.; Takahashi, S. Z.

    2015-12-01

    HD142527 is a Herbig Fe star accompanied by a disk with ring-like structure. We derive the distributions of dust and gas separately by model fitting and discuss the spatial variation of gas-to-dust mass ratio in the disk. The radial distribution of dust is well approximated by a Gaussian function, while the gas is roughly followed by a power-law distribution between 110 and 400 AU in radius, which is significantly more extended than dust. G/d may reach the order of unity at the northern peak.

  18. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  19. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics

    PubMed Central

    Krylova, Olga; Earn, David J. D.

    2013-01-01

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions. PMID:23676892

  20. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.

    PubMed

    Krylova, Olga; Earn, David J D

    2013-07-06

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.

  1. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).

  2. [Can the local energy minimization refine the PDB structures of different resolution universally?].

    PubMed

    Godzi, M G; Gromova, A P; Oferkin, I V; Mironov, P V

    2009-01-01

    The local energy minimization was statistically validated as the refinement strategy for PDB structure pairs of different resolution. Thirteen pairs of structures with the only difference in resolution were extracted from PDB, and the structures of 11 identical proteins obtained by different X-ray diffraction techniques were represented. The distribution of RMSD value was calculated for these pairs before and after the local energy minimization of each structure. The MMFF94 field was used for energy calculations, and the quasi-Newton method was used for local energy minimization. By comparison of these two RMSD distributions, the local energy minimization was proved to statistically increase the structural differences in pairs so that it cannot be used for refinement purposes. To explore the prospects of complex refinement strategies based on energy minimization, randomized structures were obtained by moving the initial PDB structures as far as the minimized structures had been moved in a multidimensional space of atomic coordinates. For these randomized structures, the RMSD distribution was calculated and compared with that for minimized structures. The significant differences in their mean values proved the energy surface of the protein to have only few minima near the conformations of different resolution obtained by X-ray diffraction for PDB. Some other results obtained by exploring the energy surface near these conformations are also presented. These results are expected to be very useful for the development of new protein refinement strategies based on energy minimization.

  3. Vulnerabilities to Rock-Slope Failure Impacts from Christchurch, NZ Case History Analysis

    NASA Astrophysics Data System (ADS)

    Grant, A.; Wartman, J.; Massey, C. I.; Olsen, M. J.; Motley, M. R.; Hanson, D.; Henderson, J.

    2015-12-01

    Rock-slope failures during the 2010/11 Canterbury (Christchurch), New Zealand Earthquake Sequence resulted in 5 fatalities and caused an estimated US$400 million of damage to buildings and infrastructure. Reducing losses from rock-slope failures requires consideration of both hazard (i.e. likelihood of occurrence) and risk (i.e. likelihood of losses given an occurrence). Risk assessment thus requires information on the vulnerability of structures to rock or boulder impacts. Here we present 32 case histories of structures impacted by boulders triggered during the 2010/11 Canterbury earthquake sequence, in the Port Hills region of Christchurch, New Zealand. The consequences of rock fall impacts on structures, taken as penetration distance into structures, are shown to follow a power-law distribution with impact energy. Detailed mapping of rock fall sources and paths from field mapping, aerial lidar digital elevation model (DEM) data, and high-resolution aerial imagery produced 32 well-constrained runout paths of boulders that impacted structures. Impact velocities used for structural analysis were developed using lumped mass 2-D rock fall runout models using 1-m resolution lidar elevation data. Model inputs were based on calibrated surface parameters from mapped runout paths of 198 additional boulder runouts. Terrestrial lidar scans and structure from motion (SfM) imagery generated 3-D point cloud data used to measure structural damage and impacting boulders. Combining velocity distributions from 2-D analysis and high-precision boulder dimensions, kinetic energy distributions were calculated for all impacts. Calculated impact energy versus penetration distance for all cases suggests a power-law relationship between damage and impact energy. These case histories and resulting fragility curve should serve as a foundation for future risk analysis of rock fall hazards by linking vulnerability data to the predicted energy distributions from the hazard analysis.

  4. Distributed adaptive diagnosis of sensor faults using structural response data

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  5. Ecogeography, genetics, and the evolution of human body form.

    PubMed

    Roseman, Charles C; Auerbach, Benjamin M

    2015-01-01

    Genetic resemblances among groups are non-randomly distributed in humans. This population structure may influence the correlations between traits and environmental drivers of natural selection thus complicating the interpretation of the fossil record when modern human variation is used as a referential model. In this paper, we examine the effects of population structure and natural selection on postcranial traits that reflect body size and shape with application to the more general issue of how climate - using latitude as a proxy - has influenced hominin morphological variation. We compare models that include terms reflecting population structure, ascertained from globally distributed microsatellite data, and latitude on postcranial phenotypes derived from skeletal dimensions taken from a large global sample of modern humans. We find that models with a population structure term fit better than a model of natural selection along a latitudinal cline in all cases. A model including both latitude and population structure terms is a good fit to distal limb element lengths and bi-iliac breadth, indicating that multiple evolutionary forces shaped these morphologies. In contrast, a model that included only a population structure term best explained femoral head diameter and the crural index. The results demonstrate that population structure is an important part of human postcranial variation, and that clinally distributed natural selection is not sufficient to explain among-group differentiation. The distribution of human body form is strongly influenced by the contingencies of modern human origins, which calls for new ways to approach problems in the evolution of human variation, past and present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Structural changes and fluctuations of proteins. I. A statistical thermodynamic model.

    PubMed

    Ikegami, A

    1977-01-01

    A general theory of the structural changes and fluctuations of proteins has been proposed based on statistical thermodynamic considerations at the chain level. The "structure" of protein was assumed to be characterized by the state of secondary bonds between unique pairs of specific sites on peptide chains. Every secondary bond changes between the bonded and unbonded states by thermal agitation and the "structure" is continuously fluctuating. The free energy of the "structural state" that is defined by the fraction of secondary bonds in the bonded state has been expressed by the bond energy, the cooperative interaction between bonds, the mixing entropy of bonds, and the entropy of polypeptide chains. The most probable "structural state" can be simply determined by graphical analysis and the effect of temperature or solvent composition on it is discussed. The temperature dependence of the free energy, the probability distribution of structural states and the specific heat have been calculted for two examples of structural change. The theory predicts two different types of structural changes from the ordered to disorderd state, a "structured transition" and a "gradual structural change" with rising temperature. In the "structural transition", the probability distribution has two maxima in the temperature range of transition. In the "gradual structural change", the probabilty distribution has only one maximum during the change. A considerable fraction of secondary bonds is in the unbounded state and is always fluctuating even in the ordered state at room temperature. Such structural flucutations in a single protein molecule have been discussed quantitatively. The theory is extended to include small molecules which bind to the protein molecule and affect the structural state. The changes of structural state caused by specific and non-specific binding and allosteric effects are explained in a unified manner.

  7. Appendix B: Fisher, lynx, wolverine summary of distribution information

    Treesearch

    Mary Maj

    1994-01-01

    We present maps depicting distributions of fisher, lynx, and wolverine in the western United States since 1961. Comparison of past and current distributions of species can shed light on population persistence, periods of population isolation, meta-population structure, and important connecting landscapes. Information on the distribution of the American marten is not...

  8. Inverse analysis of aerodynamic loads from strain information using structural models and neural networks

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugimoto, Yohei

    2017-04-01

    Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.

  9. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems. Copyright 2008 Wiley-Liss, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Woicik, J. C.

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  11. Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunathan, M.; Ganesh, R.

    2013-03-15

    In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t=1600{omega}{sub p}{sup -1}. The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as 'BGK structures'). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times,more » up to t=3000{omega}{sub p}{sup -1}. We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q<1 where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for q>1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.« less

  12. Maximum Likelihood Methods in Treating Outliers and Symmetrically Heavy-Tailed Distributions for Nonlinear Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2006-01-01

    By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…

  13. Reliable and More Powerful Methods for Power Analysis in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun

    2017-01-01

    The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…

  14. Spatially resolved elemental distributions in articular cartilage

    NASA Astrophysics Data System (ADS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  15. Unraveling hadron structure with generalized parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less

  16. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains.

    PubMed

    Kraatz, Franziska; Wernike, Kerstin; Reiche, Sven; Aebischer, Andrea; Reimann, Ilona; Beer, Martin

    2018-03-01

    Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  18. Distribution function of random strains in an elastically anisotropic continuum and defect strengths of T m3 + impurity ions in crystals with zircon structure

    NASA Astrophysics Data System (ADS)

    Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.

    2017-07-01

    We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.

  19. Principal Effects of Axial Load on Moment-Distribution Analysis of Rigid Structures

    NASA Technical Reports Server (NTRS)

    James, Benjamin Wylie

    1935-01-01

    This thesis presents the method of moment distribution modified to include the effect of axial load upon the bending moments. This modification makes it possible to analyze accurately complex structures, such as rigid fuselage trusses, that heretofore had to be analyzed by approximate formulas and empirical rules. The method is simple enough to be practicable even for complex structures, and it gives a means of analysis for continuous beams that is simpler than the extended three-moment equation now in common use. When the effect of axial load is included, it is found that the basic principles of moment distribution remain unchanged, the only difference being that the factors used, instead of being constants for a given member, become functions of the axial load. Formulas have been developed for these factors, and curves plotted so that their applications requires no more work than moment distribution without axial load. Simple problems have been included to illustrate the use of the curves.

  20. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  1. Integral finite element analysis of turntable bearing with flexible rings

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  2. Distributed dynamic strain measurement using long-gauge FBG and DTR3 interrogator based on delayed transmission/reflection ratiometric reflectometry

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2013-09-01

    In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.

  3. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil.

    PubMed

    Menq, W; Anjos, L

    2015-11-01

    This paper tested the hypothesis that the structural components of vegetation have impact over the distribution of owl species in a fragment of a semi-deciduous seasonal forest. This paper also determined which vegetation variables contributed to the spatial distribution of owl species. It was developed in the Perobas Biological Reserve (PBR) between September and December 2011. To conduct the owl census, a playback technique was applied at hearing points distributed to cover different vegetation types in the study area. A total of 56 individual owls of six species were recorded: Tropical Screech-Owl (Megascops choliba), Black-capped Screech-Owl (Megascops atricapilla), Tawny-browed Owl (Pulsatrix koeniswaldiana), Ferruginous Pygmy-Owl (Glaucidium brasilianum), Mottled Owl (Strix virgata) and Stygian Owl (Asio stygius). The results suggest that the variables of vegetation structure have impact on the occurrence of owls. The canopy height, the presence of hollow trees, fallen trees and glades are the most important structural components influencing owl distribution in the sampled area.

  4. Modified Distribution-Free Goodness-of-Fit Test Statistic.

    PubMed

    Chun, So Yeon; Browne, Michael W; Shapiro, Alexander

    2018-03-01

    Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.

  5. U.S. stock market interaction network as learned by the Boltzmann machine

    DOE PAGES

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less

  6. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  7. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  8. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    NASA Astrophysics Data System (ADS)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  9. Structures and mechanical behaviors of Zr55Cu35Al10 bulk amorphous alloys at ambient and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Fan, Cang; Liaw, P. K.; Haas, V.; Wall, J. J.; Choo, H.; Inoue, A.; Liu, C. T.

    2006-07-01

    Based on a systematic study of pair distribution functions, carried out at cryogenic and ambient temperatures, on as-cast and crystallized ternary Zr-based bulk amorphous alloys (BAAs), we found that the atoms in BAAs are inhomogenously distributed at a local atomic level. They exist as different clusters with significantly shorter bond lengths than their crystallized counterpart structures—intermetallic compounds, and these structures exist stably in the amorphous state. This results in additional free volume, which is about ˜7% larger than that measured by the Archimedes method. The compressive strength measured at ˜77K was found to be ˜16% larger than that measured at 298K . In this study, an amorphous structural model is proposed, in which strongly bonded clusters acting as units are randomly distributed and strongly correlated to one another, as the free volume forms between clusters. Simulations with reverse Monte Carlo were performed by combining icosehadral and cubic structures as the initial structures for the BAA. The simulations show results consistent with our model. An attempt has been made to connect the relationship between amorphous structures and their mechanical properties.

  10. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  11. Brillouin Optical Correlation Domain Analysis in Composite Material Beams

    PubMed Central

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Shalev, Doron; Zadok, Avi

    2017-01-01

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. PMID:28974041

  12. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY ...

    EPA Pesticide Factsheets

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, SAR model development, or building of chemical relational databases (CRD). The Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: 1) to adopt and encourage the use of a common standard file format (SDF) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; 2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data s

  13. Brillouin Optical Correlation Domain Analysis in Composite Material Beams.

    PubMed

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi

    2017-10-02

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  14. Deformation structure analysis of material at fatigue on the basis of the vector field

    NASA Astrophysics Data System (ADS)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  15. A quark model analysis of the transversity distribution

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente

    1998-04-01

    The feasibility of measuring chiral-odd parton distribution functions in polarized Drell-Yan and semi-inclusive experiments has renewed theoretical interest in their study. Models of hadron structure have proven successful in describing the gross features of the chiral-even structure functions. Similar expectations motivated our study of the transversity parton distributions in the Isgur-Karl and MIT bag models. We confirm, by performing a NLO calculation, the diverse low x behaviors of the transversity and spin structure functions at the experimental scale and show that it is fundamentally a consequence of the different behaviors under evolution of these functions. The inequalities of Soffer establish constraints between data and model calculations of the chiral-odd transversity function. The approximate compatibility of our model calculations with these constraints confers credibility to our estimates.

  16. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography

    NASA Astrophysics Data System (ADS)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer

    2014-11-01

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  17. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO₃/Nb:SrTiO₃ thin-film structures by electron holography.

    PubMed

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer

    2014-11-10

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  18. Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics

    PubMed Central

    Bažant, Zdeněk P.; Le, Jia-Liang; Bazant, Martin Z.

    2009-01-01

    The failure probability of engineering structures such as aircraft, bridges, dams, nuclear structures, and ships, as well as microelectronic components and medical implants, must be kept extremely low, typically <10−6. The safety factors needed to ensure it have so far been assessed empirically. For perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because the cumulative distribution function (cdf) of random material strength is known and fixed. However, such an approach is insufficient for structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared with the structure size. The reason is that the strength cdf of quasibrittle structure varies from Gaussian to Weibullian as the structure size increases. In this article, a recently proposed theory for the strength cdf of quasibrittle structure is refined by deriving it from fracture mechanics of nanocracks propagating by small, activation-energy-controlled, random jumps through the atomic lattice. This refinement also provides a plausible physical justification of the power law for subcritical creep crack growth, hitherto considered empirical. The theory is further extended to predict the cdf of structural lifetime at constant load, which is shown to be size- and geometry-dependent. The size effects on structure strength and lifetime are shown to be related and the latter to be much stronger. The theory fits previously unexplained deviations of experimental strength and lifetime histograms from the Weibull distribution. Finally, a boundary layer method for numerical calculation of the cdf of structural strength and lifetime is outlined. PMID:19561294

  19. Nondestructive optical testing of the materials surface structure based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Tomilin, M. G.; Stafeev, S. K.

    2011-08-01

    Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.

  20. First lattice QCD study of the gluonic structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Nplqcd Collaboration

    2017-11-01

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A =3 at quark masses corresponding to pion masses of mπ˜450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than ˜10 % in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b1 structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at mπ˜806 MeV . This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.

  1. Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris

    2018-04-01

    An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.

  2. First lattice QCD study of the gluonic structure of light nuclei

    DOE PAGES

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; ...

    2017-11-28

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less

  3. IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution

    NASA Astrophysics Data System (ADS)

    Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław

    2018-07-01

    Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.

  4. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  5. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang

    2017-08-01

    GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).

  6. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  7. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE PAGES

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...

    2016-06-30

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  8. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.

  9. Dissecting maize diversity in lowland South America: genetic structure and geographic distribution models.

    PubMed

    Bracco, Mariana; Cascales, Jimena; Hernández, Julián Cámara; Poggio, Lidia; Gottlieb, Alexandra M; Lia, Verónica V

    2016-08-26

    Maize landraces from South America have traditionally been assigned to two main categories: Andean and Tropical Lowland germplasm. However, the genetic structure and affiliations of the lowland gene pools have been difficult to assess due to limited sampling and the lack of comparative analysis. Here, we examined SSR and Adh2 sequence variation in a diverse sample of maize landraces from lowland middle South America, and performed a comprehensive integrative analysis of population structure and diversity including already published data of archaeological and extant specimens from the Americas. Geographic distribution models were used to explore the relationship between environmental factors and the observed genetic structure. Bayesian and multivariate analyses of population structure showed the existence of two previously overlooked lowland gene pools associated with Guaraní indigenous communities of middle South America. The singularity of this germplasm was also evidenced by the frequency distribution of microsatellite repeat motifs of the Adh2 locus and the distinct spatial pattern inferred from geographic distribution models. Our results challenge the prevailing view that lowland middle South America is just a contact zone between Andean and Tropical Lowland germplasm and highlight the occurrence of a unique, locally adapted gene pool. This information is relevant for the conservation and utilization of maize genetic resources, as well as for a better understanding of environment-genotype associations.

  10. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  11. Coronal magnetic structure and the latitude and longitude distribution of energetic particles, 1-5 AU

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Mitchell, D. G.

    1979-01-01

    The relation of the coronal magnetic field structure to the distribution of approximately 1 MeV protons in interplanetary space between 1 and 5 AU is discussed. After ordering the interplanetary data by its estimated coronal emission source location in heliographic coordinates, the multispacecraft measured proton fluxes are compared with coronal magnetic field structure infrared as observed in soft X-ray photographs and potential field calculations. Evidence for the propagation and possible acceleration of solar flare protons on high magnetic loop structure in the corona is presented. Further, it is shown that corotating proton flux enhancements are associated with regions of low coronal X-ray emission (including coronal holes), usually in association with solar wind stream structure.

  12. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    PubMed

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  13. Structure factor and radial distribution function of some liquid lanthanides using charged hard sphere

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2017-05-01

    The structure factor S(q) and radial distribution function g(r) play vital role to study the various structural properties like electronic, dynamic, magnetic etc. The present paper deals with the structural studies of foresaid properties using our newly constructed parameter free model potential with the Charged Hard Sphere (CHS) approximation. The local field correction due to Sarkar et al. is used to incorporate exchange and correlation among the conduction electrons in dielectric screening. Here we report the S(q) and g(r) for some liquid lanthanides viz: La, Ce, Pr, Nd and Eu. Present computed results are compared with the available experimental data. Lastly we found that our parameter free model potential successfully explains the structural propertiesof4fliquidlanthanides.

  14. From average to local structure: a Rietveld and an atomic pair distribution function (PDF) study of selenium clusters in zeolite-NdY.

    PubMed

    Abeykoon, A M Milinda; Donner, Wolfgang; Brunelli, Michela; Castro-Colin, Miguel; Jacobson, Allan J; Moss, Simon C

    2009-09-23

    The structure of Se particles in the approximately 13 A diameter alpha-cages of zeolite NdY has been determined by Rietveld refinement and pair distribution function (PDF) analysis of X-ray data. With the diffuse scattering subtracted an average structure comprised of an undistorted framework containing nanoclusters of 20 Se atoms is observed. The intracluster correlations and the cluster-framework correlations which give rise to diffuse scattering were modeled by using PDF analysis.

  15. Flow processes on the catchment scale - modeling of initial structural states and hydrological behavior in an artificial exemplary catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Caviedes-Voullième, Daniel; Hinz, Christoph; Gerke, Horst H.

    2017-04-01

    Landscapes that are heavily disturbed or newly formed by either natural processes or human activity are in a state of disequilibrium. Their initial development is thus characterized by highly dynamic processes under all climatic conditions. The primary distribution and structure of the solid phase (i.e. mineral particles forming the pore space) is one of the decisive factors for the development of hydrological behavior of the eco-hydrological system and therefore (co-) determining for its - more or less - stable final state. The artificially constructed ‚Hühnerwasser' catchment (a 6 ha area located in the open-cast lignite mine Welzow-Süd, southern Brandenburg, Germany) is a landscape laboratory where the initial eco-hydrological development is observed since 2005. The specific formation (or construction) processes generated characteristic sediment structures and distributions, resulting in a spatially heterogeneous initial state of the catchment. We developed a structure generator that simulates the characteristic distribution of the solid phase for such constructed landscapes. The program is able to generate quasi-realistic structures and sediment compositions on multiple spatial levels (1 cm up to 100 m scale). The generated structures can be i) conditioned to actual measurement values (e.g., soil texture and bulk distribution); ii) stochastically generated, and iii) calculated deterministically according to the geology and technical processes at the excavation site. Results are visualized using the GOCAD software package and the free software Paraview. Based on the 3D-spatial sediment distributions, effective hydraulic van-Genuchten parameters are calculated using pedotransfer functions. The hydraulic behavior of different sediment distribution (i.e. versions or variations of the catchment's porous body) is calculated using a numerical model developed by one of us (Caviedes-Voullième). Observation data are available from catchment monitoring are available for i) determining the boundary conditions (e.g., precipitation), and ii) the calibration / validation of the model (catchment discharge, ground water). The analysis of multiple sediment distribution scenarios should allow to approximately determine the influx of starting conditions on initial development of hydrological behavior. We present first flow modeling results for a reference (conditioned) catchment model and variations thereof. We will also give an outlook on further methodical development of our approach.

  16. Statistical characteristics of surrogate data based on geophysical measurements

    NASA Astrophysics Data System (ADS)

    Venema, V.; Bachner, S.; Rust, H. W.; Simmer, C.

    2006-09-01

    In this study, the statistical properties of a range of measurements are compared with those of their surrogate time series. Seven different records are studied, amongst others, historical time series of mean daily temperature, daily rain sums and runoff from two rivers, and cloud measurements. Seven different algorithms are used to generate the surrogate time series. The best-known method is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm, which is able to reproduce the measured distribution as well as the power spectrum. Using this setup, the measurements and their surrogates are compared with respect to their power spectrum, increment distribution, structure functions, annual percentiles and return values. It is found that the surrogates that reproduce the power spectrum and the distribution of the measurements are able to closely match the increment distributions and the structure functions of the measurements, but this often does not hold for surrogates that only mimic the power spectrum of the measurement. However, even the best performing surrogates do not have asymmetric increment distributions, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found deviations of the structure functions on small scales.

  17. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus).

    PubMed

    Limborg, M T; Hanel, R; Debes, P V; Ring, A K; André, C; Tsigenopoulos, C S; Bekkevold, D

    2012-08-01

    Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left complex genetic imprints on populations of marine species. This study investigated population structure and demographic history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers throughout the species' distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a complex population structure across the species' distribution (overall θ(ST)=0.038, P<0.01). Across transition zones markers indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact of mutation in the species' southern distribution in the Mediterranean region. These results were interpreted to reflect more recent divergence times between northern populations in accordance with previous findings. This study demonstrates the usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population genetic studies in species with weak genetic structure, as is the case in many marine species.

  18. A molecular modeling approach to understand the structure and conformation relationship of (GlcpA)Xylan.

    PubMed

    Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y

    2015-12-10

    The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules. Copyright © 2015. Published by Elsevier Ltd.

  19. Resin blending for toughness in balloon films

    NASA Technical Reports Server (NTRS)

    Farr, M. P.; Harrison, I. R.

    1993-01-01

    The influence of chain architecture on toughness is examined by testing blends of HDPE with different types of low density PEs. The LDPE and LLDPE used have reported similar molecular weights, and densities. Two structural factors differentiate these polymers, long chain branching is peculiar to LDPE, and the short chain branching distribution of the two polymers are different. LDPE has branches which are evenly distributed among all chains. In contrast, the short chain branches in LLDPE are distributed heterogeneously. LLDPE and ULDPE have similar branch distributions but, ULDPE has a higher average number of branches per 1000 carbons and consequently a lower density. The effect which these structural differences have on mechanical properties can be used to investigate which parameters control toughness in PE materials.

  20. Universality of Generalized Parton Distributions in Light-Front Holographic QCD

    NASA Astrophysics Data System (ADS)

    de Téramond, Guy F.; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J.; Deur, Alexandre; Hlfhs Collaboration

    2018-05-01

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w (x ) which incorporates Regge behavior at small x and inclusive counting rules at x →1 . A simple ansatz for w (x ) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  1. Universality of Generalized Parton Distributions in Light-Front Holographic QCD.

    PubMed

    de Téramond, Guy F; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J; Deur, Alexandre

    2018-05-04

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w(x) which incorporates Regge behavior at small x and inclusive counting rules at x→1. A simple ansatz for w(x) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  2. Research and Implementation of Key Technologies in Multi-Agent System to Support Distributed Workflow

    NASA Astrophysics Data System (ADS)

    Pan, Tianheng

    2018-01-01

    In recent years, the combination of workflow management system and Multi-agent technology is a hot research field. The problem of lack of flexibility in workflow management system can be improved by introducing multi-agent collaborative management. The workflow management system adopts distributed structure. It solves the problem that the traditional centralized workflow structure is fragile. In this paper, the agent of Distributed workflow management system is divided according to its function. The execution process of each type of agent is analyzed. The key technologies such as process execution and resource management are analyzed.

  3. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  4. FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing

    2010-01-01

    Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.

  5. Evaluating the performance of distributed approaches for modal identification

    NASA Astrophysics Data System (ADS)

    Krishnan, Sriram S.; Sun, Zhuoxiong; Irfanoglu, Ayhan; Dyke, Shirley J.; Yan, Guirong

    2011-04-01

    In this paper two modal identification approaches appropriate for use in a distributed computing environment are applied to a full-scale, complex structure. The natural excitation technique (NExT) is used in conjunction with a condensed eigensystem realization algorithm (ERA), and the frequency domain decomposition with peak-picking (FDD-PP) are both applied to sensor data acquired from a 57.5-ft, 10 bay highway sign truss structure. Monte-Carlo simulations are performed on a numerical example to investigate the statistical properties and sensitivity to noise of the two distributed algorithms. Experimental results are provided and discussed.

  6. Defect states and their energetic position and distribution in organic molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, Akanksha; Yadav, Sarita; Kumar, Pramod; Ray Chaudhuri, Sumita; Ghosh, Subhasis

    2013-04-01

    Energetic position and distribution of defect states due to structural disorder in pentacene and copper phthalocyanine have been obtained by capacitance based spectroscopic techniques. It has been shown that capacitance-frequency and capacitance-voltage characteristics exhibit Gaussian distribution of traps with an energetic position at around 0.5 eV above the highest occupied molecular orbital level of the pentacene and CuPc. These traps have been created by varying growth conditions and almost identical trap parameters in pentacene and copper phthalocyanine indicate that similar structural disorder is responsible for these traps.

  7. Tunable and Memory Metamaterials

    DTIC Science & Technology

    2015-12-02

    THz beams [APL   102,   224103   (2013)]. In 2014 our group reported for the first time an observation of propagating phonon polaritons in a...Finally, we have fabricated hybrid graphene/hBN structures and proposed a new concept of a van der Walls polaritonic metamaterial. In these...structures plasmon polaritons of graphene hybridize with phonon polaritons of hBN. The hybrid polaritons DISTRIBUTION A: Distribution approved for public

  8. Geoacoustic Models of the Hudson Canyon Area

    DTIC Science & Technology

    1987-01-01

    structural basin , play a strong historical role In shaping the sediment distribution and topography in this region. Several prominent horizons, A", A...Ridge, a lower Cretaceous carbonate reef, and a deep structural basin , play a strong historical role in shaping the sediment distribution and...TERRIGENOUS DEPOSIT j I SHALE \\^^% DOLOMITIC MARL I:/ j ARGi ^ACEOUS LIMESTOUE \\^ BASALT I sm.LO:. ,’,;-ER ;;■;=_ Figure 3. Stratigraphic sequence

  9. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    found that different capabilities were being used to determine inspection intervals for different aircraft [7]. This led to an internal effort...capability of the NDI technique determines the inspection intervals and the Distribution Statement A. Approved for public release; distribution...damage and that the aircraft structure had to be inspectable . The results of the damage tolerance assessments were incorporated into USAF Technical

  10. Recent and Future Enhancement in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    found that different capabilities were being used to determine inspection intervals for different aircraft [7]. This led to an internal effort...capability of the NDI technique determines the inspection intervals and the Distribution Statement A. Approved for public release; distribution...damage and that the aircraft structure had to be inspectable . The results of the damage tolerance assessments were incorporated into USAF Technical

  11. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;

  12. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.

    PubMed

    Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir

    2017-02-07

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.

  13. Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  14. Structural health monitoring of plates with surface features using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2009-03-01

    Distributed array systems for guided ultrasonic waves offer an efficient way for the long-term monitoring of the structural integrity of large plate-like structures. The measurement concept involving baseline subtraction has been demonstrated under laboratory conditions. For the application to real technical structures it needs to be shown that the methodology works equally well in the presence of structural and surface features. Problems employing this structural health monitoring concept can occur due to the presence of additional changes in the signal reflected at undamaged parts of the structure. The influence of the signal processing parameters and transducer placement on the damage detection and localization accuracy is discussed. The use of permanently attached, distributed sensors for the A0 Lamb wave mode has been investigated. Results are presented using experimental data obtained from laboratory measurements and Finite Element simulated signals for a large steel plate with a welded stiffener.

  15. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  16. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  17. The VMC Survey. XXVII. Young Stellar Structures in the LMC’s Bar Star-forming Complex

    NASA Astrophysics Data System (ADS)

    Sun, Ning-Chen; de Grijs, Richard; Subramanian, Smitha; Bekki, Kenji; Bell, Cameron P. M.; Cioni, Maria-Rosa L.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; Rubele, Stefano; Tatton, Ben L.; van Loon, Jacco Th.

    2017-11-01

    Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(τ/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(τ/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300 pc, suggesting that the young stellar structures are completely dispersed on a timescale of ˜100 Myr. These results are consistent with the characteristics of the 30 Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.

  18. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-05-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.

  19. Energy harvesting through gas dynamics in the free molecular flow regime between structured surfaces at different temperatures.

    PubMed

    Baier, Tobias; Dölger, Julia; Hardt, Steffen

    2014-05-01

    For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.

  20. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Frank; Detmold, William; Gambhir, Arjun S.

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less

  2. Investigation of discrete states and quasidiscrete structures observed in 150Sm and 152Sm using the ( p,tγ) reaction

    DOE PAGES

    Peter, Humby; Simon, Anna; Beausang, C. W.; ...

    2016-01-01

    New levels and γ-ray transitions were identified in 150,152Sm utilizing the (p,t) reaction and particle-γ coincidence data. A large, peak-like structure observed between 2.3–3.0 MeV in excitation energy in the triton energy spectra was also investigated. The orbital angular-momentum transfer was probed by comparing the experimental angular distributions of the outgoing tritons to calculated distorted wave Born approximation curves. The angular distributions of the outgoing tritons populating the peak-like structure are remarkably similar in the two reactions and are significantly different from the angular distributions associated with the nearby continuum region. Relative partial cross sections for the observed levels, anglemore » averaged between 34 and 58 degrees, were measured. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states. This compares with a value of 93(15)% for 152Sm« less

  3. Investigation of discrete states and quasidiscrete structures observed in 150Sm and 152Sm using the ( p,tγ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Humby; Simon, Anna; Beausang, C. W.

    New levels and γ-ray transitions were identified in 150,152Sm utilizing the (p,t) reaction and particle-γ coincidence data. A large, peak-like structure observed between 2.3–3.0 MeV in excitation energy in the triton energy spectra was also investigated. The orbital angular-momentum transfer was probed by comparing the experimental angular distributions of the outgoing tritons to calculated distorted wave Born approximation curves. The angular distributions of the outgoing tritons populating the peak-like structure are remarkably similar in the two reactions and are significantly different from the angular distributions associated with the nearby continuum region. Relative partial cross sections for the observed levels, anglemore » averaged between 34 and 58 degrees, were measured. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states. This compares with a value of 93(15)% for 152Sm« less

  4. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  5. The Load Distribution in Bolted or Riveted Joints in Light-Alloy Structures

    NASA Technical Reports Server (NTRS)

    Vogt, F.

    1947-01-01

    This report contains a theoretical discussion of the load distribution in bolted or riveted joints in light-alloy structures which is applicable not only for loads below the limit of proportionality but also for loads above this limit. The theory is developed for double and single shear joints. The methods given are illustrated by numerical examples and the values assumed for the bolt (or rivet) stiffnesses are based partly on theory and partly on known experimental values. It is shown that the load distribution does not vary greatly with the bolt (or rivet) stiffnesses and that for design purposes it is usually sufficient to know their order of magnitude. The theory may also be directly used for spot-welded structures and, with small modifications, for seam-welded structures, The computational work involved in the methods described is simple and may be completed in a reasonable time for most practical problems. A summary of earlier theoretical and experimental investigations on the subject is included in the report.

  6. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames.

    PubMed

    Kotzagianni, Maria; Kakkava, Eirini; Couris, Stelios

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the mapping of local structures (i.e., reactants and products zones) and for the determination of fuel distribution by means of the local equivalence ratio ϕ in laminar, premixed air-hydrocarbon flames. The determination of laser threshold energy to induce breakdown in the different zones of flames is employed for the identification and demarcation of the local structures of a premixed laminar flame, while complementary results about fuel concentration were obtained from measurements of the cyanogen (CN) band Β(2)Σ(+)--Χ(2)Σ(+), (Δυ = 0) at 388.3 nm and the ratio of the atomic lines of hydrogen (Hα) and oxygen (O(I)), Hα/O. The combination of these LIBS-based methods provides a relatively simple to use, rapid, and accurate tool for online and in situ combustion diagnostics, providing valuable information about the fuel distribution and the spatial variations of the local structures of a flame. © The Author(s) 2016.

  7. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  8. Dependence of credit spread and macro-conditions based on an alterable structure model.

    PubMed

    Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.

  9. Dependence of credit spread and macro-conditions based on an alterable structure model

    PubMed Central

    2018-01-01

    The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295

  10. ParallelStructure: A R Package to Distribute Parallel Runs of the Population Genetics Program STRUCTURE on Multi-Core Computers

    PubMed Central

    Besnier, Francois; Glover, Kevin A.

    2013-01-01

    This software package provides an R-based framework to make use of multi-core computers when running analyses in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses among combinations of populations within a single data set without the need to manually produce multiple projects, as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and parallel_structure() as well as an example data file. We compared the performance in computing time for this example data on two computer architectures and showed that the use of the present functions can result in several-fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/projects/parallstructure/. PMID:23923012

  11. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions.

    PubMed

    Garnica, Sigisfredo; Spahn, Philipp; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2011-07-19

    Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C. elegantior gave rise to the New World and Old World haplotypes, respectively; and 3) the low levels of genetic divergence within C. aureofulvus and C. napus may be the result of more recent demographic population expansions. The scenario of migration via the Bering Land Bridge provides the most probable explanation for contemporaneous disjunct geographic distributions of these species, but it does not offer an explanation for the low degree of genetic divergence between populations of C. aureofulvus and C. napus. Our findings are mostly consistent with the designation of New World allopatric populations as separate species from the European counterpart species C. arcuatorum and C. elegantior. We propose the synonymy of C. albobrunnoides, C. albobrunnoides var. violaceovelatus and C. subpurpureophyllus var. sulphureovelatus with C. napus. The results also reinforce previous observations that linked C. arcuatorum and C. aureofulvus displaying distributions in parts of North America and Europe. Interpretations of the population structure of these fungi suggest that host tree history has heavily influenced their modern distributions; however, the complex issues related to co-migration of these fungi with their tree hosts remain unclear at this time.

  12. On the Origin of Protein Superfamilies and Superfolds

    NASA Astrophysics Data System (ADS)

    Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke

    2015-02-01

    Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.

  13. The genomic structure: proof of the role of non-coding DNA.

    PubMed

    Bouaynaya, Nidhal; Schonfeld, Dan

    2006-01-01

    We prove that the introns play the role of a decoy in absorbing mutations in the same way hollow uninhabited structures are used by the military to protect important installations. Our approach is based on a probability of error analysis, where errors are mutations which occur in the exon sequences. We derive the optimal exon length distribution, which minimizes the probability of error in the genome. Furthermore, to understand how can Nature generate the optimal distribution, we propose a diffusive random walk model for exon generation throughout evolution. This model results in an alpha stable exon length distribution, which is asymptotically equivalent to the optimal distribution. Experimental results show that both distributions accurately fit the real data. Given that introns also drive biological evolution by increasing the rate of unequal crossover between genes, we conclude that the role of introns is to maintain a genius balance between stability and adaptability in eukaryotic genomes.

  14. TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less

  15. On the use of distributed sensing in control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Ghosh, Dave

    1990-01-01

    Distributed processing technology is being developed to process signals from distributed sensors using distributed computations. Thiw work presents a scheme for calculating the operators required to emulate a conventional Kalman filter and regulator using such a computer. The scheme makes use of conventional Kalman theory as applied to the control of large flexible structures. The required computation of the distributed operators given the conventional Kalman filter and regulator is explained. A straightforward application of this scheme may lead to nonsmooth operators whose convergence is not apparent. This is illustrated by application to the Mini-Mast, a large flexible truss at the Langley Research Center used for research in structural dynamics and control. Techniques for developing smooth operators are presented. These involve spatial filtering as well as adjusting the design constants in the Kalman theory. Results are presented that illustrate the degree of smoothness achieved.

  16. Multi-level structure in the large scale distribution of optically luminous galaxies

    NASA Astrophysics Data System (ADS)

    Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen

    1992-04-01

    Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.

  17. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  18. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-05-15

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  19. The physics of light distribution in hollow structures

    NASA Technical Reports Server (NTRS)

    Whitehead, Lorne A.

    1994-01-01

    The purpose of this paper is to serve as an introduction, for non-physicists, to the subject of light distribution in hollow structures. The motivation for light distribution is the importance of getting the maximum value from available light. We all recognize that photons cost money (one photon costs about $10(exp -25) to make) so we obviously want to try to make the maximum number of photons for a given cost. What is often overlooked, however, is that these photons have the highest value only if they are delivered to the right place in the correct quantity. This means that there is often substantial economic value in the high quality distribution of light. This problem is discussed from a very general perspective, in order to show the role of general optical films for manipulating light. The underlying physics at work in such films is described, and examples of common optical light distribution films are provided.

  20. Beyond lognormal inequality: The Lorenz Flow Structure

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-11-01

    Observed from a socioeconomic perspective, the intrinsic inequality of the lognormal law happens to manifest a flow generated by an underlying ordinary differential equation. In this paper we extend this feature of the lognormal law to a general ;Lorenz Flow Structure; of Lorenz curves-objects that quantify socioeconomic inequality. The Lorenz Flow Structure establishes a general framework of size distributions that span continuous spectra of socioeconomic states ranging from the pure-communism extreme to the absolute-monarchy extreme. This study introduces and explores the Lorenz Flow Structure, analyzes its statistical properties and its inequality properties, unveils the unique role of the lognormal law within this general structure, and presents various examples of this general structure. Beyond the lognormal law, the examples include the inverse-Pareto and Pareto laws-which often govern the tails of composite size distributions.

  1. DSSTOX (DISTRIBUTED STRUCTURE-SEARCHABLE ...

    EPA Pesticide Factsheets

    Distributed Structure-Searchable Toxicity Database Network Major trends affecting public toxicity information resources have the potential to significantly alter the future of predictive toxicology. Chemical toxicity screening is undergoing shifts towards greater use of more fundamental information on gene/protein expression patterns and bioactivity and bioassay profiles, the latter generated with highthroughput screening technologies. Curated, systematically organized, and webaccessible toxicity and biological activity data in association with chemical structures, enabling the integration of diverse data information domains, will fuel the next frontier of advancement for QSAR (quantitative structure-activity relationship) and data mining technologies. The DSSTox project is supporting progress towards these goals on many fronts, promoting the use of formalized and structure-annotated toxicity data models, helping to interface these efforts with QSAR modelers, linking data from diverse sources, and creating a large, quality reviewed, central chemical structure information resource linked to various toxicity data sources

  2. AB INITIO Molecular Dynamics Simulations on Local Structure and Electronic Properties in Liquid MgxBi1-x Alloys

    NASA Astrophysics Data System (ADS)

    Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.

    2013-03-01

    The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.

  3. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  4. A Rational Approach to Determine Minimum Strength Thresholds in Novel Structural Materials

    NASA Technical Reports Server (NTRS)

    Schur, Willi W.; Bilen, Canan; Sterling, Jerry

    2003-01-01

    Design of safe and survivable structures requires the availability of guaranteed minimum strength thresholds for structural materials to enable a meaningful comparison of strength requirement and available strength. This paper develops a procedure for determining such a threshold with a desired degree of confidence, for structural materials with none or minimal industrial experience. The problem arose in attempting to use a new, highly weight-efficient structural load tendon material to achieve a lightweight super-pressure balloon. The developed procedure applies to lineal (one dimensional) structural elements. One important aspect of the formulation is that it extrapolates to expected probability distributions for long length specimen samples from some hypothesized probability distribution that has been obtained from a shorter length specimen sample. The use of the developed procedure is illustrated using both real and simulated data.

  5. Analysis on Voltage Profile of Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua

    2018-02-01

    Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.

  6. Structural Case Assignment in Korean

    ERIC Educational Resources Information Center

    Koak, Heeshin

    2012-01-01

    In this dissertation, I aim to provide a theory on the distribution of structural Case in Korean. I propose the following Structural Case Assignment Hypothesis (SCAH) regarding the assignment of structural Case: "Structural Case is assigned by phase heads (C: nominative; v: accusative) to every argument in the c-command domain of the phase…

  7. Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Kar, Soummya; Moura, José M. F.

    2011-08-01

    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.

  8. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  9. Role of atomistic structure in the stochastic nature of conductivity in substoichiometric tantalum pentoxide

    DOE PAGES

    Bondi, Robert James; Fox, Brian Philip; Marinella, Matthew J.

    2016-03-22

    In this study, first-principles calculations of electrical conductivity (σ o) are revisited to determine the atomistic origin of its stochasticity in a distribution generated from sampling 14 ab-initio molecular dynamics configurations from 10 independently quenched models (n = 140) of substoichiometric amorphous Ta 2O 5, where each structure contains a neutral O monovacancy (V O 0). Structural analysis revealed a distinct minimum Ta-Ta separation (dimer/trimer) corresponding to each V O 0 location. Bader charge decomposition using a commonality analysis approach based on the σ o distribution extremes revealed nanostructural signatures indicating that both the magnitude and distribution of cationic chargemore » on the Ta subnetwork have a profound influence on σ o. Furthermore, visualization of local defect structures and their electron densities reinforces these conclusions and suggests σ o in the amorphous oxide is best suppressed by a highly charged, compact Ta cation shell that effectively screens and minimizes localized V O 0 interaction with the a-Ta 2O 5 network; conversely, delocalization of V O 0 corresponds to metallic character and high σ o. The random network of a-Ta 2O 5 provides countless variations of an ionic configuration scaffold in which small perturbations affect the electronic charge distribution and result in a fixed-stoichiometry distribution of σ o; consequently, precisely controlled and highly repeatable oxide fabrication processes are likely paramount for advancement of resistive memory technologies.« less

  10. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  11. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  12. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    PubMed

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  13. Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies

    PubMed Central

    Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan

    2017-01-01

    Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons. PMID:28659765

  14. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patoul, Judith de; Foullon, Claire; Riley, Pete, E-mail: j.depatoul@exeter.ac.uk, E-mail: c.foullon@exeter.ac.uk, E-mail: rileype@saic.com

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models aremore » more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.« less

  15. Structure and Spatial Distribution of the Chironomidae Community in Mesohabitats in a First Order Stream at the Poço D'Anta Municipal Biological Reserve in Brazil

    PubMed Central

    Vescovi Rosa, Beatriz Figueiraujo Jabour; de Oliveira, Vívian Campos; Alves, Roberto da Gama

    2011-01-01

    The Chironomidae occupy different habitats along the lotic system with their distribution determined by different factors such as the substrate characteristics and water speed. The input of vegetable material from the riparian forest allows a higher habitat diversity and food to the benthic fauna. The main aim of this paper is to verify the structure and spatial distribution of the Chironomidae fauna in different mesohabitats in a first order stream located at a Biological Reserve in the southeast of Brazil. In the months of July, August, and September 2007, and in January, February, and March 2008, samples were collected with a hand net (250 µm) in the following mesohabitats: litter from riffles, litter from pools, and sediment from pools. The community structure of each mesohabitat was analyzed through the abundance of organisms, taxa richness, Pielou's evenness, Shannon's diversity, and taxa dominance. Similarity among the mesohabitats was obtained by Cluster analysis, and Chironomidae larvae distribution through the Correspondence analysis. Indicator species analysis was used to identify possible taxa preference for a determined mesohabitat. The analyzed mesohabitats showed high species richness and diversity favored by the large environmental heterogeneity. Some taxa were indicators of the type of mesohabitat. The substrate was the main factor that determined taxa distribution in relation to water flow differences (riffle and pool). Stream characteristics such as low water speed and the presence of natural mechanisms of retention may have provided a higher faunistic similarity between the areas with different flows. The results showed that the physical characteristics of each environment presented a close relationship with the structure and spatial distribution of the Chironomidae fauna in lotic systems. PMID:21529258

  16. 3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, J.; Foullon, C.; Riley, P.

    2015-12-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling, and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. We derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method. First we compare the density distributions obtained from tomography with magnetohydrodynamic (MHD) solutions. The tomography provides more accurate distributions of electron densities in the polar regions, and we find that the observed density varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We conclude that tomography offers reliable density distribution in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how it is magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in-situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus. This research combined with the MHD coronal modeling efforts has the potential to increase the reliability for future space weather forecasting.

  17. Anomalous transport regimes and asymptotic concentration distributions in the presence of advection and diffusion on a comb structure

    NASA Astrophysics Data System (ADS)

    Dvoretskaya, Olga A.; Kondratenko, Peter S.

    2009-04-01

    We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.

  18. Pair distribution function study and mechanical behavior of as-cast and structurally relaxed Zr-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Cang; Liaw, P. K.; Wilson, T. W.; Choo, H.; Gao, Y. F.; Liu, C. T.; Proffen, Th.; Richardson, J. W.

    2006-12-01

    Contrary to reported results on structural relaxation inducing brittleness in amorphous alloys, the authors found that structural relaxation actually caused an increase in the strength of Zr55Cu35Al10 bulk metallic glass (BMG) without changing the plasticity. Three dimensional models were rebuilt for the as-cast and structurally relaxed BMGs by reverse Monte Carlo (RMC) simulations based on the pair distribution function (PDF) measured by neutron scattering. Only a small portion of the atom pairs was found to change to more dense packing. The concept of free volume was defined based on the PDF and RMC studies, and the mechanism of mechanical behavior was discussed.

  19. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  20. Growth of nanostructures with controlled diameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less

  1. Beyond topology: coevolution of structure and flux in metabolic networks.

    PubMed

    Morrison, E S; Badyaev, A V

    2017-10-01

    Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Population-wide changes in pinyon-juniper woodlands caused by drought in the American Southwest: Effects on structure, composition, and distribution

    Treesearch

    John D. Shaw

    2006-01-01

    A complex of drought, insects, and disease caused widespread mortality in the pinyon-juniper forest types of the American Southwest in recent years. Data from 14,929 plots spanning 25 years and representing over 25 million hectares were analyzed to characterize effects of drought-related mortality on the structure, composition, and distribution of pinyon and juniper...

  3. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  4. Studies of Ionospheric Plasma Structuring at Low Latitudes from Space and Ground, Their Modeling and Relationship to Scintillations

    DTIC Science & Technology

    2009-01-01

    1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Studies of Ionospheric Plasma Structuring at Low...program combines observations and modeling of the nighttime ionosphere to come to a better physical understanding of the factors that contribute to...the day-to-day variability of the development of ionospheric irregularities. The scope encompasses irregularities developing at equatorial and mid

  5. Glider Observations of Upper Ocean Structure in the Bay of Bengal

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider Observations of Upper Ocean Structure in the Bay...using gliders and floats • Improve glider technology to overcome fresh, buoyant surface layers • Establish a new technology to observe turbulence...with profiling floats APPROACH We use two approaches to observe the upper ocean in the BoB. First, we deploy Spray underwater gliders to resolve

  6. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction

    NASA Astrophysics Data System (ADS)

    Koch, Sebastian; Duvigneau, Fabian; Orszulik, Ryan; Gabbert, Ulrich; Woschke, Elmar

    2017-04-01

    In this paper, the damping effect of granular materials is explored to reduce the vibration and noise of mechanical structures. To this end, a honeycomb structure with high stiffness is used to contain a granular filling which presents the possiblity for the distribution of the granular material to be designed. As a particular application example, the oil pan bottom of a combustion engine is used to investigate the influence on the vibration behavior and the sound emission. The effect of the honeycomb structure along with the granular mass, distribution, and type on the vibration behaviour of the structure is investigated via laser scanning vibrometry. From this, an optimized filling is determined and then its noise suppression level validated on an engine test bench through measurements with an acoustic array.

  7. Solution accuracies of finite element reentry heat transfer and thermal stress analyses of Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1988-01-01

    Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.

  8. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, A. J.; Simunovic, S.; Nanda, J.

    2015-08-25

    Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less

  9. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    NASA Astrophysics Data System (ADS)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Robert

    Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports themore » DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.« less

  11. Distributed teaming on JPL projects

    NASA Technical Reports Server (NTRS)

    Baroff, L. E.

    2002-01-01

    This paper addresses structures, actions and technologies that contribute to real team development of a distributed team, and the leadership skills and tools that are used to implement that team development.

  12. A more accurate modeling of the effects of actuators in large space structures

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1981-01-01

    The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.

  13. Landscape Patterns in Rainforest Phylogenetic Signal: Isolated Islands of Refugia or Structured Continental Distributions?

    PubMed Central

    Kooyman, Robert M.; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W.

    2013-01-01

    Objectives Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. Methods We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Results Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Conclusions/Significance Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances. PMID:24312493

  14. Content Management Middleware for the Support of Distributed Teaching

    ERIC Educational Resources Information Center

    Tsalapatas, Hariklia; Stav, John B.; Kalantzis, Christos

    2004-01-01

    eCMS is a web-based federated content management system for the support of distributed teaching based on an open, distributed middleware architecture for the publication, discovery, retrieval, and integration of educational material. The infrastructure supports the management of both standalone material and structured courses, as well as the…

  15. Predicting the distribution of a novel bark beetle and its pine hosts under future climate conditions

    Treesearch

    Steven E. Smith; Ma.G. Mendoza; Gerardo Zuniga; Kandres Kalbrook; J.L. Hayes; D.N. Byrne

    2013-01-01

    Understanding the distribution of key biotic elements of forest ecosystems is essential in contemporary forest management and in planning to meet future management needs. Habitat distribution (niche) models based on known occurrences provide geographical structure for such management as the environmental factors change....

  16. Distriblets: Java-Based Distributed Computing on the Web.

    ERIC Educational Resources Information Center

    Finkel, David; Wills, Craig E.; Brennan, Brian; Brennan, Chris

    1999-01-01

    Describes a system for using the World Wide Web to distribute computational tasks to multiple hosts on the Web that is written in Java programming language. Describes the programs written to carry out the load distribution, the structure of a "distriblet" class, and experiences in using this system. (Author/LRW)

  17. Distributed Data Processing in a United States Naval Shipyard.

    DTIC Science & Technology

    1979-12-01

    25 1. Evolution ........ ..................... 25 2. Motivations for Distributed Processing ... ....... 30 a. Extensibility...51 B. EVOLUTION ...... ........................ ... 51 C. CONCEPTS .... ... ........................ . 55 D. FORM AND STRUCTURE OF THE...motivations for, and the characteristics of, distributed processing as they apply to management information systems. 1. Evolution Prior to the advent of

  18. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  19. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    PubMed

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  20. Molecular dynamics approach to water structure of HII mesophase of monoolein

    NASA Astrophysics Data System (ADS)

    Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim

    2012-02-01

    The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.

  1. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  2. Distribution and nature of fault architecture in a layered sandstone and shale sequence: An example from the Moab fault, Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Aydin, A.

    2005-01-01

    We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.

  3. Investigation of veritcal graded channel doping in nanoscale fully-depleted SOI-MOSFET

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2016-10-01

    For achieving reliable transistor, we investigate an amended channel doping (ACD) engineering which improves the electrical and thermal performances of fully-depleted silicon-on-insulator (SOI) MOSFET. We have called the proposed structure with the amended channel doping engineering as ACD-SOI structure and compared it with a conventional fully-depleted SOI MOSFET (C-SOI) with uniform doping distribution using 2-D ATLAS simulator. The amended channel doping is a vertical graded doping that is distributed from the surface of structure with high doping density to the bottom of channel, near the buried oxide, with low doping density. Short channel effects (SCEs) and leakage current suppress due to high barrier height near the source region and electric field modification in the ACD-SOI in comparison with the C-SOI structure. Furthermore, by lower electric field and electron temperature near the drain region that is the place of hot carrier generation, we except the improvement of reliability and gate induced drain lowering (GIDL) in the proposed structure. Undesirable Self heating effect (SHE) that become a critical challenge for SOI MOSFETs is alleviated in the ACD-SOI structure because of utilizing low doping density near the buried oxide. Thus, refer to accessible results, the ACD-SOI structure with graded distribution in vertical direction is a reliable device especially in low power and high temperature applications.

  4. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  5. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  6. Population structure in the Arab world and its impact on integration and development trends.

    PubMed

    El-hallak, M N

    1986-12-01

    The author examines three issues: "population structure in the Arab world; trends making for integration and unity among the Arab countries; and economic and social development trends." Data from the United Nations for 1985 and from recent censuses are used to discuss population size, growth, and spatial distribution; the labor force; age and sex distribution; and fertility, mortality, and natural increase. Figures are presented separately for 22 Arab countries. Attention is then given to the relationships between population structure and economic and social development and between development and Arab unity and integration. excerpt

  7. Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1972-01-01

    A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.

  8. [Urbanization and its consequences for socio-demographic structures in Tunisia].

    PubMed

    Taamallah, M

    1986-01-01

    Comparisons are made between rural and urban populations in Tunisia in terms of selected demographic and social factors using official and other published data for the late 1970s and early 1980s. The focus is on the consequences of imbalances created by Tunisia's urbanization for population composition, health, economic development, and certain social structures. The history of urbanization in Tunisia since the end of the nineteenth century is outlined. Urban and rural populations are compared on the basis of sex distribution, age distribution, mortality, and fertility. The relationships among urbanization and economic development, public health, and family structure are considered.

  9. Assessment of the USCENTCOM Medical Distribution Structure

    PubMed Central

    Welser, William; Yoho, Keenan D.; Robbins, Marc; Peltz, Eric; Van Roo, Ben D.; Resnick, Adam C.; Harper, Ronald E.

    2012-01-01

    Abstract This study examined whether there might be a medical supply and distribution structure for U.S. Central Command (USCENTCOM) that would maintain or improve performance while reducing costs. The authors evaluated the likely performance and cost implications of the range of possibilities, considering both the medical and nonmedical logistics structures, for providing medical supplies to support medical activities in USCENTCOM. They found that three options would preserve or improve performance while either lowering or not increasing costs. Additionally, they considered how the value of these solutions would likely change with future shifts in USCENTCOM operations. PMID:28083245

  10. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.

    PubMed

    Bazant, Zdenĕk P; Pang, Sze-Dai

    2006-06-20

    In mechanical design as well as protection from various natural hazards, one must ensure an extremely low failure probability such as 10(-6). How to achieve that goal is adequately understood only for the limiting cases of brittle or ductile structures. Here we present a theory to do that for the transitional class of quasibrittle structures, having brittle constituents and characterized by nonnegligible size of material inhomogeneities. We show that the probability distribution of strength of the representative volume element of material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress dependence of activation energy barriers; that it is statistically modeled by a hierarchy of series and parallel couplings; and that it consists of a broad Gaussian core having a grafted far-left power-law tail with zero threshold and amplitude depending on temperature and load duration. With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to the weakest-link model for a finite chain of representative volume elements. The model captures experimentally observed deviations of the strength distribution from Weibull distribution and of the mean strength scaling law from a power law. These deviations can be exploited for verification and calibration. The proposed theory will increase the safety of concrete structures, composite parts of aircraft or ships, microelectronic components, microelectromechanical systems, prosthetic devices, etc. It also will improve protection against hazards such as landslides, avalanches, ice breaks, and rock or soil failures.

  11. Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula

    USGS Publications Warehouse

    Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.

    2008-01-01

    Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.

  12. Structure of LiPs ground and excited states

    NASA Astrophysics Data System (ADS)

    Bressanini, Dario

    2018-01-01

    The lithium atom in its ground state can bind positronium (Ps) forming LiPs, an electronically stable system. In this study we use the fixed node diffusion Monte Carlo method to perform a detailed investigation of the internal structure of LiPs, establishing to what extent it could be described by smaller interacting subsystems. To study the internal structure of positronic systems we propose a way to analyze the particle distribution functions: We first order the particle-nucleus distances, from the closest to the farthest. We then bin the ordered distances obtaining, for LiPs, five distribution functions that we call sorted distribution functions. We used them to show that Ps is a quite well-defined entity inside LiPs: The positron is forming positronium not only when it is far away from the nucleus, but also when it is in the same region of space occupied by the 2 s electrons. Hence, it is not correct to describe LiPs as positronium "orbiting" around a lithium atom, as sometimes has been done, since the positron penetrates the electronic distribution and can be found close to the nucleus.

  13. Review of probabilistic analysis of dynamic response of systems with random parameters

    NASA Technical Reports Server (NTRS)

    Kozin, F.; Klosner, J. M.

    1989-01-01

    The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems.

  14. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  15. Hydraulic head estimation at unobserved locations: Approximating the distribution of the absolute error based on geologic interpretations

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Kaleris, Vassilios; Xeygeni, Vagia; Magkou, Foteini

    2017-04-01

    Assessing the availability of groundwater reserves at a regional level, requires accurate and robust hydraulic head estimation at multiple locations of an aquifer. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the spatial distribution of the hydraulic conductivity in the aquifer, and it is usually determined through trial-and-error, by solving the groundwater flow based on a properly selected set of alternative but physically plausible geologic structures. In this work, we use: 1) dimensional analysis, and b) a pulse-based stochastic model for simulation of synthetic aquifer structures, to calculate the distribution of the absolute error in hydraulic head estimation as a function of the standardized distance from the nearest measuring locations. The resulting distributions are proved to encompass all possible small-scale structural dependencies, exhibiting characteristics (bounds, multi-modal features etc.) that can be explained using simple geometric arguments. The obtained results are promising, pointing towards the direction of establishing design criteria based on large-scale geologic maps.

  16. Prediction of the low-velocity distribution from the pore structure in simple porous media

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben

    2017-12-01

    The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.

  17. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix E; Repr. from AIAA Journal, v. 36 p 1346-1360

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2001-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  18. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.

  19. A controlled experiment on the impact of software structure on maintainability

    NASA Technical Reports Server (NTRS)

    Rombach, Dieter H.

    1987-01-01

    The impact of software structure on maintainability aspects including comprehensibility, locality, modifiability, and reusability in a distributed system environment is studied in a controlled maintenance experiment involving six medium-size distributed software systems implemented in LADY (language for distributed systems) and six in an extended version of sequential PASCAL. For all maintenance aspects except reusability, the results were quantitatively given in terms of complexity metrics which could be automated. The results showed LADY to be better suited to the development of maintainable software than the extension of sequential PASCAL. The strong typing combined with high parametrization of units is suggested to improve the reusability of units in LADY.

  20. Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.

    NASA Technical Reports Server (NTRS)

    Koenig, B.

    1977-01-01

    Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.

  1. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    NASA Astrophysics Data System (ADS)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  2. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  3. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  4. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    PubMed

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Comparison of Multidimensional Item Response Models: Multivariate Normal Ability Distributions versus Multivariate Polytomous Ability Distributions. Research Report. ETS RR-08-45

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; von Davier, Matthias; Lee, Yi-Hsuan

    2008-01-01

    Multidimensional item response models can be based on multivariate normal ability distributions or on multivariate polytomous ability distributions. For the case of simple structure in which each item corresponds to a unique dimension of the ability vector, some applications of the two-parameter logistic model to empirical data are employed to…

  6. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa

    PubMed Central

    Moreno Díaz de la Espina, Susana

    2013-01-01

    The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures. PMID:23378381

  7. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  8. Novel 16S rDNA primers revealed the diversity and habitats-related community structure of sphingomonads in 10 different niches.

    PubMed

    Huang, Yili; Feng, Hao; Lu, Hang; Zeng, Yanhua

    2017-07-01

    It is believed that sphingomonads are ubiquitously distributed in environments. However detailed information about their community structure and their co-relationship with environmental parameters remain unclear. In this study, novel sphingomonads-specific primers based on the 16S rRNA gene were designed to investigate the distribution of sphingomonads in 10 different niches. Both in silico and in-practice tests on pure cultures and environmental samples showed that Sph384f/Sph701r was an efficient primer set. Illumina MiSeq sequencing revealed that community structures of sphingomonads were significantly different among the 10 samples, although 12 sphingomonad genera were present in all samples. Based on RDA analysis and Monte Carlo permutation test, sphingomonad community structure was significantly correlated with limnetic and marine habitat types. Among these niches, the genus Sphingomicrobium showed strong positive correlation with marine habitats, whereas genera Sphingobium, Novosphingobium, Sphingopyxis, and Sphingorhabdus showed strong positive correlation with limnetic habitats. Our study provided direct evidence that sphingomonads are ubiquitously distributed in environments, and revealed for the first time that their community structure can be correlated with habitats.

  9. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  10. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  11. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa.

    PubMed

    Ciska, Malgorzata; Masuda, Kiyoshi; Moreno Díaz de la Espina, Susana

    2013-04-01

    The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures.

  12. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  13. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  14. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    PubMed Central

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  15. Disentangling neighbors and extended range density oscillations in monatomic amorphous semiconductors.

    PubMed

    Roorda, S; Martin, C; Droui, M; Chicoine, M; Kazimirov, A; Kycia, S

    2012-06-22

    High energy x-ray diffraction measurements of pure amorphous Ge were made and its radial distribution function (RDF) was determined at high resolution, revealing new information on the atomic structure of amorphous semiconductors. Fine structure in the second peak in the RDF provides evidence that a fraction of third neighbors are closer than some second neighbors; taking this into account leads to a narrow distribution of tetrahedral bond angles, (8.5 ± 0.1)°. A small peak which appears near 5 Å upon thermal annealing shows that some ordering in the dihedral bond-angle distribution takes place during structural relaxation. Extended range order is detected (in both a-Ge and a-Si) which persists to beyond 20 Å, and both the periodicity and its decay length increase upon thermal annealing. Previously, the effect of structural relaxation was only detected at intermediate range, involving reduced tetrahedral bond-angle distortions. These results enhance our understanding of the atomic order in continuous random networks and place significantly more stringent requirements on computer models intending to describe these networks, or their alternatives which attempt to describe the structure in terms of an arrangement of paracrystals.

  16. Structural assessment of a Space Station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Kerslake, T. W.; Thompson, R. L.

    1988-01-01

    This paper assesses the structural performance of a Space Station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start-up operating conditions. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite-element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes-188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically-determined temperature was compared with that based on the experimentally-measured temperature data.

  17. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  18. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  19. The Evolution of Galaxies Through the Spatial Distribution of Their Globular Clusters: the Brightest Galaxies in Fornax

    NASA Astrophysics Data System (ADS)

    Zegeye, David W.

    2018-01-01

    We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  20. The gastropod Phorcus sauciatus (Koch, 1845) along the north-west Iberian Peninsula: filling historical gaps

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Moreira, Juan; Sousa-Pinto, Isabel

    2014-03-01

    The intertidal gastropod Phorcus sauciatus is a subtropical grazer that reaches its northern boundary in the Iberian Peninsula. Distribution of P. sauciatus along the Iberian Peninsula shows, however, gaps in its distribution. The present study was aimed at detecting possible recent changes on the population structure and distribution of P. sauciatus along the north-west Atlantic coast of the Iberian Peninsula. To achieve this aim, we adopted a qualitative sampling design to explore the presence of P. sauciatus along a region within its historical gap of distribution (north Portuguese coast). In addition, a quantitative sampling design was adopted to test hypotheses about the abundance and size structure of P. sauciatus populations among regions with different historical records of its abundance and among shores with different exposure. Results showed that P. sauciatus was present along the north Portuguese coast. However, the abundance and size structure of the newly settled populations were significantly different to those of the historically recorded populations. Moreover, P. sauciatus was able to establish populations at sheltered shores. Considering these results, we propose models for the distribution of P. sauciatus along the Iberian Peninsula, based on effects of sea surface temperature, and to explain the size-frequency of their populations based on their density.

  1. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-02-01

    An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.

  2. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  3. Wealth of the world's richest publicly traded companies per industry and per employee: Gamma, Log-normal and Pareto power-law as universal distributions?

    NASA Astrophysics Data System (ADS)

    Soriano-Hernández, P.; del Castillo-Mussot, M.; Campirán-Chávez, I.; Montemayor-Aldrete, J. A.

    2017-04-01

    Forbes Magazine published its list of leading or strongest publicly-traded two thousand companies in the world (G-2000) based on four independent metrics: sales or revenues, profits, assets and market value. Every one of these wealth metrics yields particular information on the corporate size or wealth size of each firm. The G-2000 cumulative probability wealth distribution per employee (per capita) for all four metrics exhibits a two-class structure: quasi-exponential in the lower part, and a Pareto power-law in the higher part. These two-class structure per capita distributions are qualitatively similar to income and wealth distributions in many countries of the world, but the fraction of firms per employee within the high-class Pareto is about 49% in sales per employee, and 33% after averaging on the four metrics, whereas in countries the fraction of rich agents in the Pareto zone is less than 10%. The quasi-exponential zone can be adjusted by Gamma or Log-normal distributions. On the other hand, Forbes classifies the G-2000 firms in 82 different industries or economic activities. Within each industry, the wealth distribution per employee also follows a two-class structure, but when the aggregate wealth of firms in each industry for the four metrics is divided by the total number of employees in that industry, then the 82 points of the aggregate wealth distribution by industry per employee can be well adjusted by quasi-exponential curves for the four metrics.

  4. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate

    PubMed Central

    Stige, Leif Christian; Yaragina, Natalia A.; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr.; Ottersen, Geir

    2017-01-01

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment–temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959−1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts. PMID:28115694

  5. Impact of Alternative Rate Structures on Distributed Solar Customer Electricity Bills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce A

    Electric utilities are increasingly proposing changes to residential rate structures, in order to address concerns about their inability to recover fixed system costs from customers with grid connected distributed generation. The most common proposals have been to increase fixed charges, set minimum bills or instigate residential demand charges. This presentation provides results of an analysis to explore how these rate design alternatives impact electricity bills for PV and non-PV customers.

  6. Novel fluorescence adjustable photonic crystal materials

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.

  7. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    NASA Astrophysics Data System (ADS)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  8. Structure of massive star forming clumps from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.; Morgan, L.

    2014-01-01

    We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.

  9. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    PubMed

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  10. Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M

    2009-11-12

    A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.

  11. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    NASA Astrophysics Data System (ADS)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.

  12. A product Pearson-type VII density distribution

    NASA Astrophysics Data System (ADS)

    Nadarajah, Saralees; Kotz, Samuel

    2008-01-01

    The Pearson-type VII distributions (containing the Student's t distributions) are becoming increasing prominent and are being considered as competitors to the normal distribution. Motivated by real examples in decision sciences, Bayesian statistics, probability theory and Physics, a new Pearson-type VII distribution is introduced by taking the product of two Pearson-type VII pdfs. Various structural properties of this distribution are derived, including its cdf, moments, mean deviation about the mean, mean deviation about the median, entropy, asymptotic distribution of the extreme order statistics, maximum likelihood estimates and the Fisher information matrix. Finally, an application to a Bayesian testing problem is illustrated.

  13. Properties of two-mode squeezed number states

    NASA Technical Reports Server (NTRS)

    Chizhov, Alexei V.; Murzakhmetov, B. K.

    1994-01-01

    Photon statistics and phase properties of two-mode squeezed number states are studied. It is shown that photon number distribution and Pegg-Barnett phase distribution for such states have similar (N + 1)-peak structure for nonzero value of the difference in the number of photons between modes. Exact analytical formulas for phase distributions based on different phase approaches are derived. The Pegg-Barnett phase distribution and the phase quasiprobability distribution associated with the Wigner function are close to each other, while the phase quasiprobability distribution associated with the Q function carries less phase information.

  14. DSSTox and Chemical Information Technologies in Support of PredictiveToxicology

    EPA Science Inventory

    The EPA NCCT Distributed Structure-Searchable Toxicity (DSSTox) Database project initially focused on the curation and publication of high-quality, standardized, chemical structure-annotated toxicity databases for use in structure-activity relationship (SAR) modeling. In recent y...

  15. Geostatistical analysis of fault and joint measurements in Austin Chalk, Superconducting Super Collider Site, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, R.E.; Nance, H.S.; Laubach, S.E.

    1995-06-01

    Faults and joints are conduits for ground-water flow and targets for horizontal drilling in the petroleum industry. Spacing and size distribution are rarely predicted accurately by current structural models or documented adequately by conventional borehole or outcrop samples. Tunnel excavations present opportunities to measure fracture attributes in continuous subsurface exposures. These fracture measurements ran be used to improve structural models, guide interpretation of conventional borehole and outcrop data, and geostatistically quantify spatial and spacing characteristics for comparison to outcrop data or for generating distributions of fracture for numerical flow and transport modeling. Structure maps of over 9 mi of nearlymore » continuous tunnel excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, provide a unique database of fault and joint populations for geostatistical analysis. Observationally, small faults (<10 ft. throw) occur in clusters or swarms that have as many as 24 faults, fault swarms are as much as 2,000 ft. wide and appear to be on average 1,000 ft. apart, and joints are in swarms spaced 500 to more than 2l,000 ft. apart. Semi-variograms show varying degrees of spatial correlation. These variograms have structured sills that correlate directly to highs and lows in fracture frequency observed in the tunnel. Semi-variograms generated with respect to fracture spacing and number also have structured sills, but tend to not show any near-field correlation. The distribution of fault spacing can be described with a negative exponential, which suggests a random distribution. However, there is clearly some structure and clustering in the spacing data as shown by running average and variograms, which implies that a number of different methods should be utilized to characterize fracture spacing.« less

  16. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  17. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  18. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  19. Distributed bragg reflector using AIGaN/GaN

    DOEpatents

    Waldrip, Karen E.; Lee, Stephen R.; Han, Jung

    2004-08-10

    A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.

  20. Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.

    2003-01-01

    We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.

  1. Normal versus Noncentral Chi-Square Asymptotics of Misspecified Models

    ERIC Educational Resources Information Center

    Chun, So Yeon; Shapiro, Alexander

    2009-01-01

    The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…

  2. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention

    NASA Astrophysics Data System (ADS)

    Torres, D.; Pinilla, J. L.; Suelves, I.

    2017-12-01

    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  3. Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.

    PubMed

    Stirnemann, Guillaume; Laage, Damien

    2012-07-21

    We combine molecular dynamics simulations and analytic modeling to determine the origin of the non-Arrhenius temperature dependence of liquid water's reorientation and hydrogen-bond dynamics between 235 K and 350 K. We present a quantitative model connecting hydrogen-bond exchange dynamics to local structural fluctuations, measured by the asphericity of Voronoi cells associated with each water molecule. For a fixed local structure the regular Arrhenius behavior is recovered, and the global anomalous temperature dependence is demonstrated to essentially result from a continuous shift in the unimodal structure distribution upon cooling. The non-Arrhenius behavior can thus be explained without invoking an equilibrium between distinct structures. In addition, the large width of the homogeneous structural distribution is shown to cause a growing dynamical heterogeneity and a non-exponential relaxation at low temperature.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jia; Zhang, Ziang; Weng, Zhankun

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beammore » laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.« less

  5. Polymorphic nuclear markers for coastal plant species with dynamic geographic distributions, the rock samphire (Crithmum maritimum) and the vulnerable dune pansy (Viola tricolor subsp. curtisii).

    PubMed

    Latron, Mathilde; Arnaud, Jean-François; Ferla, Héloïse; Godé, Cécile; Duputié, Anne

    2018-06-01

    Identifying spatial patterns of genetic differentiation across a species range is critical to set up conservation and restoration decision-making. This is especially timely, since global change triggers shifts in species' geographic distribution and in the geographical variation of mating system and patterns of genetic differentiation, with varying consequences at the trailing and leading edges of a species' distribution. Using 454 pyrosequencing, we developed nuclear microsatellite loci for two plant species showing a strictly coastal geographical distribution and contrasting range dynamics: the expanding rock samphire (Crithmum maritimum, 21 loci) and the highly endangered and receding dune pansy (Viola tricolor subsp. curtisii, 12 loci). Population genetic structure was then assessed by genotyping more than 100 individuals from four populations of each of the two target species. Rock samphire displayed high levels of genetic differentiation (F ST  = 0.38), and a genetic structure typical of a mostly selfing species (F IS ranging from 0.16 to 0.58). Populations of dune pansy showed a less pronounced level of population structuring (F ST  = 0.25) and a genotypic structure more suggestive of a mixed-mating system when excluding two loci with heterozygote excess. These results demonstrate that the genetic markers developed here are useful to assess the mating system of populations of these two species. They will be tools of choice to investigate phylogeographical patterns and variation in mating system over the geographical distribution ranges for two coastal plant species that are subject to dynamic evolution due to rapid contemporary global change.

  6. A comparison of likelihood ratio tests and Rao's score test for three separable covariance matrix structures.

    PubMed

    Filipiak, Katarzyna; Klein, Daniel; Roy, Anuradha

    2017-01-01

    The problem of testing the separability of a covariance matrix against an unstructured variance-covariance matrix is studied in the context of multivariate repeated measures data using Rao's score test (RST). The RST statistic is developed with the first component of the separable structure as a first-order autoregressive (AR(1)) correlation matrix or an unstructured (UN) covariance matrix under the assumption of multivariate normality. It is shown that the distribution of the RST statistic under the null hypothesis of any separability does not depend on the true values of the mean or the unstructured components of the separable structure. A significant advantage of the RST is that it can be performed for small samples, even smaller than the dimension of the data, where the likelihood ratio test (LRT) cannot be used, and it outperforms the standard LRT in a number of contexts. Monte Carlo simulations are then used to study the comparative behavior of the null distribution of the RST statistic, as well as that of the LRT statistic, in terms of sample size considerations, and for the estimation of the empirical percentiles. Our findings are compared with existing results where the first component of the separable structure is a compound symmetry (CS) correlation matrix. It is also shown by simulations that the empirical null distribution of the RST statistic converges faster than the empirical null distribution of the LRT statistic to the limiting χ 2 distribution. The tests are implemented on a real dataset from medical studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of atomistic structure in the stochastic nature of conductivity in substoichiometric tantalum pentoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondi, Robert J., E-mail: rjbondi@sandia.gov; Fox, Brian P.; Marinella, Matthew J.

    2016-03-28

    First-principles calculations of electrical conductivity (σ{sub o}) are revisited to determine the atomistic origin of its stochasticity in a distribution generated from sampling 14 ab-initio molecular dynamics configurations from 10 independently quenched models (n = 140) of substoichiometric amorphous Ta{sub 2}O{sub 5}, where each structure contains a neutral O monovacancy (V{sub O}{sup 0}). Structural analysis revealed a distinct minimum Ta-Ta separation (dimer/trimer) corresponding to each V{sub O}{sup 0} location. Bader charge decomposition using a commonality analysis approach based on the σ{sub o} distribution extremes revealed nanostructural signatures indicating that both the magnitude and distribution of cationic charge on the Ta subnetwork havemore » a profound influence on σ{sub o}. Furthermore, visualization of local defect structures and their electron densities reinforces these conclusions and suggests σ{sub o} in the amorphous oxide is best suppressed by a highly charged, compact Ta cation shell that effectively screens and minimizes localized V{sub O}{sup 0} interaction with the a-Ta{sub 2}O{sub 5} network; conversely, delocalization of V{sub O}{sup 0} corresponds to metallic character and high σ{sub o}. The random network of a-Ta{sub 2}O{sub 5} provides countless variations of an ionic configuration scaffold in which small perturbations affect the electronic charge distribution and result in a fixed-stoichiometry distribution of σ{sub o}; consequently, precisely controlled and highly repeatable oxide fabrication processes are likely paramount for advancement of resistive memory technologies.« less

  8. A computational framework to empower probabilistic protein design

    PubMed Central

    Fromer, Menachem; Yanover, Chen

    2008-01-01

    Motivation: The task of engineering a protein to perform a target biological function is known as protein design. A commonly used paradigm casts this functional design problem as a structural one, assuming a fixed backbone. In probabilistic protein design, positional amino acid probabilities are used to create a random library of sequences to be simultaneously screened for biological activity. Clearly, certain choices of probability distributions will be more successful in yielding functional sequences. However, since the number of sequences is exponential in protein length, computational optimization of the distribution is difficult. Results: In this paper, we develop a computational framework for probabilistic protein design following the structural paradigm. We formulate the distribution of sequences for a structure using the Boltzmann distribution over their free energies. The corresponding probabilistic graphical model is constructed, and we apply belief propagation (BP) to calculate marginal amino acid probabilities. We test this method on a large structural dataset and demonstrate the superiority of BP over previous methods. Nevertheless, since the results obtained by BP are far from optimal, we thoroughly assess the paradigm using high-quality experimental data. We demonstrate that, for small scale sub-problems, BP attains identical results to those produced by exact inference on the paradigmatic model. However, quantitative analysis shows that the distributions predicted significantly differ from the experimental data. These findings, along with the excellent performance we observed using BP on the smaller problems, suggest potential shortcomings of the paradigm. We conclude with a discussion of how it may be improved in the future. Contact: fromer@cs.huji.ac.il PMID:18586717

  9. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  10. Failure-Time Distribution Of An m-Out-of-n System

    NASA Technical Reports Server (NTRS)

    Scheuer, Ernest M.

    1988-01-01

    Formulas for reliability extended to more general cases. Useful in analyses of reliabilities of practical systems and structures, especially of redundant systems of identical components, among which operating loads distributed equally.

  11. Neutral-current x-distributions

    DOE R&D Accomplishments Database

    Friedman, J. I.; Kendall, H. W.; Bogert, D.; Burnstein, R.; Fisk, R.; Fuess, S.; Bofill, J.; Busza, W.; Eldridge, T.; Abolins, M.; Brock, R.; et al.

    1984-06-01

    The role of the semi leptonic neutral current interaction as a probe of nucleon structure is examined. Previous measurements of neutral current x-distributions are reviewed, and new results from the Fermilab - MIT - MSU collaboration are presented.

  12. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, Phiala A.

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCDmore » calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.« less

  14. Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.

    PubMed

    He, H; Wang, W J; Hu, J; Gallop, R; Crits-Christoph, P; Xia, Y L

    2015-10-01

    Count reponses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated poisson (ZIP) and zero-inflated negative binomial (ZINB) models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or zero-inflated Poisson (ZIP) distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling zero-inflated binomial (ZIB)-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.

  15. A geometric theory for Lévy distributions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2014-08-01

    Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.

  16. A geometric theory for Lévy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2014-08-15

    Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts ofmore » the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.« less

  17. Effect of node attributes on the temporal dynamics of network structure

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2017-03-01

    Many natural and social networks evolve in time and their structures are dynamic. In most networks, nodes are heterogeneous, and their roles in the evolution of structure differ. This paper focuses on the role of individual attributes on the temporal dynamics of network structure. We focus on a basic model for growing networks that incorporates node attributes (which we call "quality"), and we focus on the problem of forecasting the structural properties of the network in arbitrary times for an arbitrary initial network. That is, we address the following question: If we are given a certain initial network with given arbitrary structure and known node attributes, then how does the structure change in time as new nodes with given distribution of attributes join the network? We solve the model analytically and obtain the quality-degree joint distribution and degree correlations. We characterize the role of individual attributes in the position of individual nodes in the hierarchy of connections. We confirm the theoretical findings with Monte Carlo simulations.

  18. Seismic damage identification for steel structures using distributed fiber optics.

    PubMed

    Hou, Shuang; Cai, C S; Ou, Jinping

    2009-08-01

    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  19. Household Structure and Suburbia Residence in U.S. Metropolitan Areas: Evidence from the American Housing Survey.

    PubMed

    Jung, Gowoon; Yang, Tse-Chuan

    2016-01-01

    Suburbs have demographically diversified in terms of race, yet little research has been done on household structures in suburbs. Using the 2011 American Housing Survey and 2009-2013 American Community Survey, this study investigates the distributions of household structures in suburbia and central cities, and the relationship between household structures and residential attainment. The findings of this research include: (1) The distribution of household structures differs between suburbia and central cities. Married-couple households are the most common household type in both central cities and suburbs, but they are more likely to reside in suburbia than in central cities; (2) Household structure is a determinant of residential attainment and the relationship varies by race/ethnicity groups. Among Hispanics and Asians, multigenerational household structure is indicative of central city residence, but this association does not hold for whites and blacks. For multigenerational households, the odds of living in suburbia decreases by almost 40 percent among Hispanics and by almost 50 percent for Asians.

  20. Household Structure and Suburbia Residence in U.S. Metropolitan Areas: Evidence from the American Housing Survey

    PubMed Central

    Jung, Gowoon; Yang, Tse-Chuan

    2016-01-01

    Suburbs have demographically diversified in terms of race, yet little research has been done on household structures in suburbs. Using the 2011 American Housing Survey and 2009–2013 American Community Survey, this study investigates the distributions of household structures in suburbia and central cities, and the relationship between household structures and residential attainment. The findings of this research include: (1) The distribution of household structures differs between suburbia and central cities. Married-couple households are the most common household type in both central cities and suburbs, but they are more likely to reside in suburbia than in central cities; (2) Household structure is a determinant of residential attainment and the relationship varies by race/ethnicity groups. Among Hispanics and Asians, multigenerational household structure is indicative of central city residence, but this association does not hold for whites and blacks. For multigenerational households, the odds of living in suburbia decreases by almost 40 percent among Hispanics and by almost 50 percent for Asians. PMID:27917300

  1. On the consequences of bi-Maxwellian plasma distributions for parallel electric fields

    NASA Technical Reports Server (NTRS)

    Olsen, Richard C.

    1992-01-01

    The objective is to use the measurements of the equatorial particle distributions to obtain the parallel electric field structure and the evolution of the plasma distribution function along the field line. Appropriate uses of kinetic theory allows us to use the measured ( and inferred) particle distributions to obtain the electric field, and hence the variation on plasma density along the magnetic field line. The approach, here, is to utilize the adiabatic invariants, and assume the plasma distributions are in equilibrium.

  2. Time-dependent breakdown of fiber networks: Uncertainty of lifetime

    NASA Astrophysics Data System (ADS)

    Mattsson, Amanda; Uesaka, Tetsu

    2017-05-01

    Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.

  3. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    PubMed Central

    Maadooliat, Mehdi; Huang, Jianhua Z.

    2013-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence–structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu.edu/∼madoliat/LagSVD) that can be used to produce informative animations. PMID:22926831

  4. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa.

    PubMed

    Lyam, Paul Terwase; Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species' genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species' ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species' adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change.

  5. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa

    PubMed Central

    Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species’ genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species’ ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species’ adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change. PMID:29659603

  6. NavP: Structured and Multithreaded Distributed Parallel Programming

    NASA Technical Reports Server (NTRS)

    Pan, Lei

    2007-01-01

    We present Navigational Programming (NavP) -- a distributed parallel programming methodology based on the principles of migrating computations and multithreading. The four major steps of NavP are: (1) Distribute the data using the data communication pattern in a given algorithm; (2) Insert navigational commands for the computation to migrate and follow large-sized distributed data; (3) Cut the sequential migrating thread and construct a mobile pipeline; and (4) Loop back for refinement. NavP is significantly different from the current prevailing Message Passing (MP) approach. The advantages of NavP include: (1) NavP is structured distributed programming and it does not change the code structure of an original algorithm. This is in sharp contrast to MP as MP implementations in general do not resemble the original sequential code; (2) NavP implementations are always competitive with the best MPI implementations in terms of performance. Approaches such as DSM or HPF have failed to deliver satisfying performance as of today in contrast, even if they are relatively easy to use compared to MP; (3) NavP provides incremental parallelization, which is beyond the reach of MP; and (4) NavP is a unifying approach that allows us to exploit both fine- (multithreading on shared memory) and coarse- (pipelined tasks on distributed memory) grained parallelism. This is in contrast to the currently popular hybrid use of MP+OpenMP, which is known to be complex to use. We present experimental results that demonstrate the effectiveness of NavP.

  7. Distribution of recombination hotspots in the human genome--a comparison of computer simulations with real data.

    PubMed

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.

  8. Distribution of Recombination Hotspots in the Human Genome – A Comparison of Computer Simulations with Real Data

    PubMed Central

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar. PMID:23776462

  9. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions

    PubMed Central

    Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, M. C.; Maia, R. N. A.; Araujo, R. M. T.

    In this article, we investigated structural and thermal properties of an amorphous alloy of the Ga–Se system. The amorphous GaSe{sub 9} alloy was produced by mechanical alloying and it was studied using EXAFS spectroscopy and cumulant expansion method. We also made reverse Monte Carlo simulations using the total structure factor S(K) obtained from x-ray diffraction and the EXAFS χ(k) oscillations on Se and Ga K edges as input data. Several parameters, such as average coordination numbers and interatomic distances, structural and thermal disorders, asymmetry of the partial distribution functions g{sub ij}(r), and Einstein and Debye temperatures, were determined. The g{submore » ij}{sup E}(r) functions were reconstructed from the cumulants C{sub 1}, C{sub 2}, and C{sub 3} obtained from the Einstein model, and they were compared to the g{sub ij}{sup RMC}(r) functions obtained from the simulations. The simulations also furnished the partial bond angle distribution functions Θ{sub ijℓ}(cosθ), which describe the angular distribution of bonds between first neighbors, and give information about the kind of structural units present in the alloy.« less

  11. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring.

    PubMed

    Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki

    2015-02-10

    In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.

  12. Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.

    2015-12-01

    Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.

  13. Investigation of advancing front method for generating unstructured grid

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1992-01-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  14. Reflection of the State of Hunger in Impulse Activity of Nose Wing Muscles and Upper Esophageal Sphincter during Search behavior in Rabbits.

    PubMed

    Kromin, A A; Dvoenko, E E; Zenina, O Yu

    2016-07-01

    Reflection of the state of hunger in impulse activity of nose wing muscles and upper esophageal sphincter muscles was studied in chronic experiments on rabbits subjected to 24-h food deprivation in the absence of locomotion and during search behavior. In the absence of apparent behavioral activity, including sniffing, alai nasi muscles of hungry rabbits constantly generated bursts of action potentials synchronous with breathing, while upper esophageal sphincter muscles exhibited regular aperiodic low-amplitude impulse activity of tonic type. Latent form of food motivation was reflected in the structure of temporal organization of impulse activity of alai nasi muscles in the form of bimodal distribution of interpulse intervals and in temporal structure of impulse activity of upper esophageal sphincter muscles in the form of monomodal distribution. The latent form of food motivation was manifested in the structure of temporal organization of periods of the action potentials burst-like rhythm, generated by alai nasi muscles, in the form of monomodal distribution, characterized by a high degree of dispersion of respiratory cycle periods. In the absence of physical activity hungry animals sporadically exhibited sniffing activity, manifested in the change from the burst-like impulse activity of alai nasi muscles to the single-burst activity type with bimodal distribution of interpulse intervals and monomodal distribution of the burst-like action potentials rhythm periods, the maximum of which was shifted towards lower values, which was the cause of increased respiratory rate. At the same time, the monomodal temporal structure of impulse activity of the upper esophageal sphincter muscles was not changed. With increasing food motivation in the process of search behavior temporal structure of periods of the burst-like action potentials rhythm, generated by alai nasi muscles, became similar to that observed during sniffing, not accompanied by animal's locomotion, which is typical for the increased respiratory rhythm frequency. Increased hunger motivation was reflected in the temporal structure of impulse activity of upper esophageal sphincter muscles in the form of a shift to lower values of the maximum of monomodal distribution of interpulse intervals on the histogram, resulting in higher impulse activity frequency. The simultaneous increase in the frequency of action potentials bursts generation by alai nasi muscles and regular impulse activity of upper esophageal sphincter muscles is a reliable criterion for enhanced food motivation during search behavior in rabbits.

  15. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    NASA Astrophysics Data System (ADS)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.

  16. Structural optimization of 3D-printed synthetic spider webs for high strength

    PubMed Central

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  17. How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, Aneesh; Nason, Paolo; Salam, Gavin P.

    2016-12-09

    It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (ep) scattering data, in effect viewing the ep → e + X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross sectionmore » in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of 1%–2% over a wide range of momentum fractions.« less

  18. How Bright is the Proton? A Precise Determination of the Photon Parton Distribution Function.

    PubMed

    Manohar, Aneesh; Nason, Paolo; Salam, Gavin P; Zanderighi, Giulia

    2016-12-09

    It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton (ep) scattering data, in effect viewing the ep→e+X process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary, beyond the Standard Model process with a flavor changing photon-lepton vertex. We write its cross section in two ways: one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of 1%-2% over a wide range of momentum fractions.

  19. Efficient iteration in data-parallel programs with irregular and dynamically distributed data structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, R.J.

    1990-02-01

    To implement an efficient data-parallel program on a non-shared memory MIMD multicomputer, data and computations must be properly partitioned to achieve good load balance and locality of reference. Programs with irregular data reference patterns often require irregular partitions. Although good partitions may be easy to determine, they can be difficult or impossible to implement in programming languages that provide only regular data distributions, such as blocked or cyclic arrays. We are developing Onyx, a programming system that provides a shared memory model of distributed data structures and extends the concept of data distribution to include irregular and dynamic distributions. Thismore » provides a powerful means to specify irregular partitions. Perhaps surprisingly, programs using it can also execute efficiently. In this paper, we describe and evaluate the Onyx implementation of a model problem that repeatedly executes an irregular but fixed data reference pattern. On an NCUBE hypercube, the speed of the Onyx implementation is comparable to that of carefully handwritten message-passing code.« less

  20. Plasma pressure distribution in the equatorial plane of the Earth's magnetosphere at geocentric distances of 6-10 R E according to the international THEMIS mission data

    NASA Astrophysics Data System (ADS)

    Kirpichev, I. P.; Antonova, E. E.

    2011-08-01

    The structure of the averaged plasma pressure distribution in the plasma ring around the Earth at geocentric distances of ˜6-10 R E has been determined. The distribution function moments measured on the international THEMIS mission satellites have been used. The plasma pressure distribution in the equatorial plane at 15 R E > XSM > -15 R E and 15 R E > YSM > -15 R E has been statistically studied. The radial dependence of the plasma pressure at the day-night and morning-evening meridians has been analyzed. It has been indicated that the plasma ring around the Earth has a structure, which is close to being azimuthally symmetric. The achieved results have been compared with the pressure distributions obtained previously. It has been indicated that in the overlapping regions, the achieved results agree with the previously obtained data within the pressure determination errors.

Top