Sample records for distributed virtual machine

  1. LHCb experience with running jobs in virtual machines

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Luzzi, C.

    2015-12-01

    The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.

  2. Using PVM to host CLIPS in distributed environments

    NASA Technical Reports Server (NTRS)

    Myers, Leonard; Pohl, Kym

    1994-01-01

    It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.

  3. Staghorn: An Automated Large-Scale Distributed System Analysis Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabert, Kasimir; Burns, Ian; Elliott, Steven

    2016-09-01

    Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less

  4. Simplified Virtualization in a HEP/NP Environment with Condor

    NASA Astrophysics Data System (ADS)

    Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.

    2012-12-01

    In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.

  5. Web Service Distributed Management Framework for Autonomic Server Virtualization

    NASA Astrophysics Data System (ADS)

    Solomon, Bogdan; Ionescu, Dan; Litoiu, Marin; Mihaescu, Mircea

    Virtualization for the x86 platform has imposed itself recently as a new technology that can improve the usage of machines in data centers and decrease the cost and energy of running a high number of servers. Similar to virtualization, autonomic computing and more specifically self-optimization, aims to improve server farm usage through provisioning and deprovisioning of instances as needed by the system. Autonomic systems are able to determine the optimal number of server machines - real or virtual - to use at a given time, and add or remove servers from a cluster in order to achieve optimal usage. While provisioning and deprovisioning of servers is very important, the way the autonomic system is built is also very important, as a robust and open framework is needed. One such management framework is the Web Service Distributed Management (WSDM) system, which is an open standard of the Organization for the Advancement of Structured Information Standards (OASIS). This paper presents an open framework built on top of the WSDM specification, which aims to provide self-optimization for applications servers residing on virtual machines.

  6. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  7. Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks

    NASA Astrophysics Data System (ADS)

    Karpov, Kirill; Fedotova, Irina; Siemens, Eduard

    2017-07-01

    In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.

  8. An Analysis of Hardware-Assisted Virtual Machine Based Rootkits

    DTIC Science & Technology

    2014-06-01

    certain aspects of TPM implementation just to name a few. HyperWall is an architecture proposed by Szefer and Lee to protect guest VMs from...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The use of virtual machine (VM) technology has expanded rapidly since AMD and Intel implemented ...Intel VT-x implementations of Blue Pill to identify commonalities in the respective versions’ attack methodologies from both a functional and technical

  9. Distributed computing methodology for training neural networks in an image-guided diagnostic application.

    PubMed

    Plagianakos, V P; Magoulas, G D; Vrahatis, M N

    2006-03-01

    Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.

  10. Computer network defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less

  11. Enterprise Cloud Architecture for Chinese Ministry of Railway

    NASA Astrophysics Data System (ADS)

    Shan, Xumei; Liu, Hefeng

    Enterprise like PRC Ministry of Railways (MOR), is facing various challenges ranging from highly distributed computing environment and low legacy system utilization, Cloud Computing is increasingly regarded as one workable solution to address this. This article describes full scale cloud solution with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as computing platform, and self developed SaaS interface, gluing virtual machine and HDFS with Xen hypervisor. As a result, on demand computing task application and deployment have been tackled per MOR real working scenarios at the end of article.

  12. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    NASA Astrophysics Data System (ADS)

    Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan

    2012-12-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

  13. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  14. Modeling and simulation of five-axis virtual machine based on NX

    NASA Astrophysics Data System (ADS)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  15. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  16. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences

    PubMed Central

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099

  17. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    PubMed

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  18. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  19. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  20. Effects of virtualization on a scientific application - Running a hyperspectral radiative transfer code on virtual machines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikotekar, Anand A; Vallee, Geoffroy R; Naughton III, Thomas J

    2008-01-01

    The topic of system-level virtualization has recently begun to receive interest for high performance computing (HPC). This is in part due to the isolation and encapsulation offered by the virtual machine. These traits enable applications to customize their environments and maintain consistent software configurations in their virtual domains. Additionally, there are mechanisms that can be used for fault tolerance like live virtual machine migration. Given these attractive benefits to virtualization, a fundamental question arises, how does this effect my scientific application? We use this as the premise for our paper and observe a real-world scientific code running on a Xenmore » virtual machine. We studied the effects of running a radiative transfer simulation, Hydrolight, on a virtual machine. We discuss our methodology and report observations regarding the usage of virtualization with this application.« less

  1. A distributed version of the NASA Engine Performance Program

    NASA Technical Reports Server (NTRS)

    Cours, Jeffrey T.; Curlett, Brian P.

    1993-01-01

    Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in a distributed computer environment. Multiple workstations connected by a network increase the program's speed and, more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing many different architectures. It includes the capability to link with other computers, allowing them to process NEPP jobs in parallel. This paper discusses the design issues and granularity considerations that entered into programming Distributed NEPP and presents the results of timing runs.

  2. Managing virtual machines with Vac and Vcycle

    NASA Astrophysics Data System (ADS)

    McNab, A.; Love, P.; MacMahon, E.

    2015-12-01

    We compare the Vac and Vcycle virtual machine lifecycle managers and our experiences in providing production job execution services for ATLAS, CMS, LHCb, and the GridPP VO at sites in the UK, France and at CERN. In both the Vac and Vcycle systems, the virtual machines are created outside of the experiment's job submission and pilot framework. In the case of Vac, a daemon runs on each physical host which manages a pool of virtual machines on that host, and a peer-to-peer UDP protocol is used to achieve the desired target shares between experiments across the site. In the case of Vcycle, a daemon manages a pool of virtual machines on an Infrastructure-as-a-Service cloud system such as OpenStack, and has within itself enough information to create the types of virtual machines to achieve the desired target shares. Both systems allow unused shares for one experiment to temporarily taken up by other experiements with work to be done. The virtual machine lifecycle is managed with a minimum of information, gathered from the virtual machine creation mechanism (such as libvirt or OpenStack) and using the proposed Machine/Job Features API from WLCG. We demonstrate that the same virtual machine designs can be used to run production jobs on Vac and Vcycle/OpenStack sites for ATLAS, CMS, LHCb, and GridPP, and that these technologies allow sites to be operated in a reliable and robust way.

  3. Hardware/software codesign for embedded RISC core

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    2001-12-01

    This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.

  4. Software platform virtualization in chemistry research and university teaching

    PubMed Central

    2009-01-01

    Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997

  5. Software platform virtualization in chemistry research and university teaching.

    PubMed

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  6. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    PubMed

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  7. Liberating Virtual Machines from Physical Boundaries through Execution Knowledge

    DTIC Science & Technology

    2015-12-01

    trivial infrastructures such as VM distribution networks, clients need to wait for an extended period of time before launching a VM. In cloud settings...hardware support. MobiDesk [28] efficiently supports virtual desktops in mobile environments by decou- pling the user’s workload from host systems and...experiment set-up. VMs are migrated between a pair of source and destination hosts, which are connected through a backend 10 Gbps network for

  8. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  9. Hardware assisted hypervisor introspection.

    PubMed

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.

  10. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    There is a lack of state-of-the-art quantum computing simulation software that scales on heterogeneous systems like Titan. Tensor Network Quantum Virtual Machine (TNQVM) provides a quantum simulator that leverages a distributed network of GPUs to simulate quantum circuits in a manner that leverages recent results from tensor network theory.

  12. An Overview of Cloud Computing in Distributed Systems

    NASA Astrophysics Data System (ADS)

    Divakarla, Usha; Kumari, Geetha

    2010-11-01

    Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.

  13. Computer Associates International, CA-ACF2/VM Release 3.1

    DTIC Science & Technology

    1987-09-09

    Associates CA-ACF2/VM Bibliography International Business Machines Corporation, IBM Virtual Machine/Directory Maintenance Program Logic Manual...publication number LY20-0889 International Business Machines International Business Machines Corporation, IBM System/370 Principles of Operation...publication number GA22-7000 International Business Machines Corporation, IBM Virtual Machine/Directory Maintenance Installation and System Administrator’s

  14. An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud

    NASA Astrophysics Data System (ADS)

    Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.

    2017-08-01

    Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.

  15. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    PubMed Central

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  16. Agreements in Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Pankowska, Malgorzata

    This chapter is an attempt to explain the important impact that contract theory delivers with respect to the concept of virtual organization. The author believes that not enough research has been conducted in order to transfer theoretical foundations for networking to the phenomena of virtual organizations and open autonomic computing environment to ensure the controllability and management of them. The main research problem of this chapter is to explain the significance of agreements for virtual organizations governance. The first part of this chapter comprises explanations of differences among virtual machines and virtual organizations for further descriptions of the significance of the first ones to the development of the second. Next, the virtual organization development tendencies are presented and problems of IT governance in highly distributed organizational environment are discussed. The last part of this chapter covers analysis of contracts and agreements management for governance in open computing environments.

  17. Paging memory from random access memory to backing storage in a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E

    2013-05-21

    Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.

  18. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  19. Grids, virtualization, and clouds at Fermilab

    NASA Astrophysics Data System (ADS)

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  20. "Tactic": Traffic Aware Cloud for Tiered Infrastructure Consolidation

    ERIC Educational Resources Information Center

    Sangpetch, Akkarit

    2013-01-01

    Large-scale enterprise applications are deployed as distributed applications. These applications consist of many inter-connected components with heterogeneous roles and complex dependencies. Each component typically consumes 5-15% of the server capacity. Deploying each component as a separate virtual machine (VM) allows us to consolidate the…

  1. Integration of virtualized worker nodes in standard batch systems

    NASA Astrophysics Data System (ADS)

    Büge, Volker; Hessling, Hermann; Kemp, Yves; Kunze, Marcel; Oberst, Oliver; Quast, Günter; Scheurer, Armin; Synge, Owen

    2010-04-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  2. The StratusLab cloud distribution: Use-cases and support for scientific applications

    NASA Astrophysics Data System (ADS)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.

  3. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of data files concurrently. Our experience shows the viability and flexibility of this approach to workflow management for scientific data processing. - Finally, cloud computing is a promising platform for distributed volunteer ('interstitial') computing, via mechanisms such as the Berkeley Open Infrastructure for Network Computing (BOINC) popularized with the SETI@Home project and others such as ClimatePrediction.net and NASA's Climate@Home. Interstitial computing faces significant challenges as commodity computing shifts from (always on) desktop computers towards smartphones and tablets (untethered and running on scarce battery power); but cloud computing offers significant slack capacity. This capacity includes virtual machines with unused RAM or underused CPUs; virtual storage volumes allocated (& paid for) but not full; and virtual machines that are paid up for the current hour but whose work is complete. We are devising ways to facilitate the reuse of these resources (i.e., cloud-based interstitial computing) for satellite data processing and related analyses. We will present our findings and research directions on these and related topics.

  4. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  5. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  6. Charliecloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priedhorsky, Reid; Randles, Tim

    Charliecloud is a set of scripts to let users run a virtual cluster of virtual machines (VMs) on a desktop or supercomputer. Key functions include: 1. Creating (typically by installing an operating system from vendor media) and updating VM images; 2. Running a single VM; 3. Running multiple VMs in a virtual cluster. The virtual machines can talk to one another over the network and (in some cases) the outside world. This is accomplished by calling external programs such as QEMU and the Virtual Distributed Ethernet (VDE) suite. The goal is to let users have a virtual cluster containing nodesmore » where they have privileged access, while isolating that privilege within the virtual cluster so it cannot affect the physical compute resources. Host configuration enforces security; this is not included in Charliecloud, though security guidelines are included in its documentation and Charliecloud is designed to facilitate such configuration. Charliecloud manages passing information from host computers into and out of the virtual machines, such as parameters of the virtual cluster, input data specified by the user, output data from virtual compute jobs, VM console display, and network connections (e.g., SSH or X11). Parameters for the virtual cluster (number of VMs, RAM and disk per VM, etc.) are specified by the user or gathered from the environment (e.g., SLURM environment variables). Example job scripts are included. These include computation examples (such as a "hello world" MPI job) as well as performance tests. They also include a security test script to verify that the virtual cluster is appropriately sandboxed. Tests include: 1. Pinging hosts inside and outside the virtual cluster to explore connectivity; 2. Port scans (again inside and outside) to see what services are available; 3. Sniffing tests to see what traffic is visible to running VMs; 4. IP address spoofing to test network functionality in this case; 5. File access tests to make sure host access permissions are enforced. This test script is not a comprehensive scanner and does not test for specific vulnerabilities. Importantly, no information about physical hosts or network topology is included in this script (or any of Charliecloud); while part of a sensible test, such information is specified by the user when the test is run. That is, one cannot learn anything about the LANL network or computing infrastructure by examining Charliecloud code.« less

  7. Design and implementation of a reliable and cost-effective cloud computing infrastructure: the INFN Napoli experience

    NASA Astrophysics Data System (ADS)

    Capone, V.; Esposito, R.; Pardi, S.; Taurino, F.; Tortone, G.

    2012-12-01

    Over the last few years we have seen an increasing number of services and applications needed to manage and maintain cloud computing facilities. This is particularly true for computing in high energy physics, which often requires complex configurations and distributed infrastructures. In this scenario a cost effective rationalization and consolidation strategy is the key to success in terms of scalability and reliability. In this work we describe an IaaS (Infrastructure as a Service) cloud computing system, with high availability and redundancy features, which is currently in production at INFN-Naples and ATLAS Tier-2 data centre. The main goal we intended to achieve was a simplified method to manage our computing resources and deliver reliable user services, reusing existing hardware without incurring heavy costs. A combined usage of virtualization and clustering technologies allowed us to consolidate our services on a small number of physical machines, reducing electric power costs. As a result of our efforts we developed a complete solution for data and computing centres that can be easily replicated using commodity hardware. Our architecture consists of 2 main subsystems: a clustered storage solution, built on top of disk servers running GlusterFS file system, and a virtual machines execution environment. GlusterFS is a network file system able to perform parallel writes on multiple disk servers, providing this way live replication of data. High availability is also achieved via a network configuration using redundant switches and multiple paths between hypervisor hosts and disk servers. We also developed a set of management scripts to easily perform basic system administration tasks such as automatic deployment of new virtual machines, adaptive scheduling of virtual machines on hypervisor hosts, live migration and automated restart in case of hypervisor failures.

  8. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  9. An imperialist competitive algorithm for virtual machine placement in cloud computing

    NASA Astrophysics Data System (ADS)

    Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza

    2017-05-01

    Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.

  10. Dynamic data distributions in Vienna Fortran

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Moritsch, Hans; Zima, Hans

    1993-01-01

    Vienna Fortran is a machine-independent language extension of Fortran, which is based upon the Single-Program-Multiple-Data (SPMD) paradigm and allows the user to write programs for distributed-memory systems using global addresses. The language features focus mainly on the issue of distributing data across virtual processor structures. Those features of Vienna Fortran that allow the data distributions of arrays to change dynamically, depending on runtime conditions are discussed. The relevant language features are discussed, their implementation is outlined, and how they may be used in applications is described.

  11. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  12. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.

  13. Hybrid polylingual object model: an efficient and seamless integration of Java and native components on the Dalvik virtual machine.

    PubMed

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.

  14. The ASSERT Virtual Machine Kernel: Support for Preservation of Temporal Properties

    NASA Astrophysics Data System (ADS)

    Zamorano, J.; de la Puente, J. A.; Pulido, J. A.; Urueña

    2008-08-01

    A new approach to building embedded real-time software has been developed in the ASSERT project. One of its key elements is the concept of a virtual machine preserving the non-functional properties of the system, and especially real-time properties, all the way down from high- level design models down to executable code. The paper describes one instance of the virtual machine concept that provides support for the preservation of temporal properties both at the source code level —by accept- ing only "legal" entities, i.e. software components with statically analysable real-tim behaviour— and at run-time —by monitoring the temporal behaviour of the system. The virtual machine has been validated on several pilot projects carried out by aerospace companies in the framework of the ASSERT project.

  15. Means and method of balancing multi-cylinder reciprocating machines

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1985-01-01

    A virtual balancing axis arrangement is described for multi-cylinder reciprocating piston machines for effectively balancing out imbalanced forces and minimizing residual imbalance moments acting on the crankshaft of such machines without requiring the use of additional parallel-arrayed balancing shafts or complex and expensive gear arrangements. The novel virtual balancing axis arrangement is capable of being designed into multi-cylinder reciprocating piston and crankshaft machines for substantially reducing vibrations induced during operation of such machines with only minimal number of additional component parts. Some of the required component parts may be available from parts already required for operation of auxiliary equipment, such as oil and water pumps used in certain types of reciprocating piston and crankshaft machine so that by appropriate location and dimensioning in accordance with the teachings of the invention, the virtual balancing axis arrangement can be built into the machine at little or no additional cost.

  16. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  17. Cooperating reduction machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, W.E.

    1983-11-01

    This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less

  18. Complementary Machine Intelligence and Human Intelligence in Virtual Teaching Assistant for Tutoring Program Tracing

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen

    2011-01-01

    This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…

  19. "Pack[superscript2]": VM Resource Scheduling for Fine-Grained Application SLAs in Highly Consolidated Environment

    ERIC Educational Resources Information Center

    Sukwong, Orathai

    2013-01-01

    Virtualization enables the ability to consolidate multiple servers on a single physical machine, increasing the infrastructure utilization. Maximizing the ratio of server virtual machines (VMs) to physical machines, namely the consolidation ratio, becomes an important goal toward infrastructure cost saving in a cloud. However, the consolidation…

  20. Elevating Virtual Machine Introspection for Fine-Grained Process Monitoring: Techniques and Applications

    ERIC Educational Resources Information Center

    Srinivasan, Deepa

    2013-01-01

    Recent rapid malware growth has exposed the limitations of traditional in-host malware-defense systems and motivated the development of secure virtualization-based solutions. By running vulnerable systems as virtual machines (VMs) and moving security software from inside VMs to the outside, the out-of-VM solutions securely isolate the anti-malware…

  1. Hybrid PolyLingual Object Model: An Efficient and Seamless Integration of Java and Native Components on the Dalvik Virtual Machine

    PubMed Central

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded. PMID:25110745

  2. An incremental anomaly detection model for virtual machines.

    PubMed

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform.

  3. An incremental anomaly detection model for virtual machines

    PubMed Central

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform. PMID:29117245

  4. Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines

    DTIC Science & Technology

    2016-09-01

    DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement

  5. Analysis towards VMEM File of a Suspended Virtual Machine

    NASA Astrophysics Data System (ADS)

    Song, Zheng; Jin, Bo; Sun, Yongqing

    With the popularity of virtual machines, forensic investigators are challenged with more complicated situations, among which discovering the evidences in virtualized environment is of significant importance. This paper mainly analyzes the file suffixed with .vmem in VMware Workstation, which stores all pseudo-physical memory into an image. The internal file structure of .vmem file is studied and disclosed. Key information about processes and threads of a suspended virtual machine is revealed. Further investigation into the Windows XP SP3 heap contents is conducted and a proof-of-concept tool is provided. Different methods to obtain forensic memory images are introduced, with both advantages and limits analyzed. We conclude with an outlook.

  6. Feasibility of Virtual Machine and Cloud Computing Technologies for High Performance Computing

    DTIC Science & Technology

    2014-05-01

    Hat Enterprise Linux SaaS software as a service VM virtual machine vNUMA virtual non-uniform memory access WRF weather research and forecasting...previously mentioned in Chapter I Section B1 of this paper, which is used to run the weather research and forecasting ( WRF ) model in their experiments...against a VMware virtualization solution of WRF . The experiment consisted of running WRF in a standard configuration between the D-VTM and VMware while

  7. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    2012-12-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  8. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  9. Security model for VM in cloud

    NASA Astrophysics Data System (ADS)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  10. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  11. Virtual C Machine and Integrated Development Environment for ATMS Controllers.

    DOT National Transportation Integrated Search

    2000-04-01

    The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...

  12. System-Level Virtualization Research at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Stephen L; Vallee, Geoffroy R; Naughton, III, Thomas J

    2010-01-01

    System-level virtualization is today enjoying a rebirth as a technique to effectively share what were then considered large computing resources to subsequently fade from the spotlight as individual workstations gained in popularity with a one machine - one user approach. One reason for this resurgence is that the simple workstation has grown in capability to rival that of anything available in the past. Thus, computing centers are again looking at the price/performance benefit of sharing that single computing box via server consolidation. However, industry is only concentrating on the benefits of using virtualization for server consolidation (enterprise computing) whereas ourmore » interest is in leveraging virtualization to advance high-performance computing (HPC). While these two interests may appear to be orthogonal, one consolidating multiple applications and users on a single machine while the other requires all the power from many machines to be dedicated solely to its purpose, we propose that virtualization does provide attractive capabilities that may be exploited to the benefit of HPC interests. This does raise the two fundamental questions of: is the concept of virtualization (a machine sharing technology) really suitable for HPC and if so, how does one go about leveraging these virtualization capabilities for the benefit of HPC. To address these questions, this document presents ongoing studies on the usage of system-level virtualization in a HPC context. These studies include an analysis of the benefits of system-level virtualization for HPC, a presentation of research efforts based on virtualization for system availability, and a presentation of research efforts for the management of virtual systems. The basis for this document was material presented by Stephen L. Scott at the Collaborative and Grid Computing Technologies meeting held in Cancun, Mexico on April 12-14, 2007.« less

  13. An element search ant colony technique for solving virtual machine placement problem

    NASA Astrophysics Data System (ADS)

    Srija, J.; Rani John, Rose; Kanaga, Grace Mary, Dr.

    2017-09-01

    The data centres in the cloud environment play a key role in providing infrastructure for ubiquitous computing, pervasive computing, mobile computing etc. This computing technique tries to utilize the available resources in order to provide services. Hence maintaining the resource utilization without wastage of power consumption has become a challenging task for the researchers. In this paper we propose the direct guidance ant colony system for effective mapping of virtual machines to the physical machine with maximal resource utilization and minimal power consumption. The proposed algorithm has been compared with the existing ant colony approach which is involved in solving virtual machine placement problem and thus the proposed algorithm proves to provide better result than the existing technique.

  14. LHCb Dockerized Build Environment

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Belin, M.; Closier, J.; Couturier, B.

    2017-10-01

    Used as lightweight virtual machines or as enhanced chroot environments, Linux containers, and in particular the Docker abstraction over them, are more and more popular in the virtualization communities. The LHCb Core Software team decided to investigate how to use Docker containers to provide stable and reliable build environments for the different supported platforms, including the obsolete ones which cannot be installed on modern hardware, to be used in integration builds, releases and by any developer. We present here the techniques and procedures set up to define and maintain the Docker images and how these images can be used to develop on modern Linux distributions for platforms otherwise not accessible.

  15. Predictive Anomaly Management for Resilient Virtualized Computing Infrastructures

    DTIC Science & Technology

    2015-05-27

    PREC: Practical Root Exploit Containment for Android Devices, ACM Conference on Data and Application Security and Privacy (CODASPY) . 03-MAR-14...05-OCT-11, . : , Hiep Nguyen, Yongmin Tan, Xiaohui Gu. Propagation-aware Anomaly Localization for Cloud Hosted Distributed Applications , ACM...Workshop on Managing Large-Scale Systems via the Analysis of System Logs and the Application of Machine Learning Techniques (SLAML) in conjunction with SOSP

  16. Performance Analysis of Ivshmem for High-Performance Computing in Virtual Machines

    NASA Astrophysics Data System (ADS)

    Ivanovic, Pavle; Richter, Harald

    2018-01-01

    High-Performance computing (HPC) is rarely accomplished via virtual machines (VMs). In this paper, we present a remake of ivshmem which can change this. Ivshmem was a shared memory (SHM) between virtual machines on the same server, with SHM-access synchronization included, until about 5 years ago when newer versions of Linux and its virtualization library libvirt evolved. We restored that SHM-access synchronization feature because it is indispensable for HPC and made ivshmem runnable with contemporary versions of Linux, libvirt, KVM, QEMU and especially MPICH, which is an implementation of MPI - the standard HPC communication library. Additionally, MPICH was transparently modified by us to get ivshmem included, resulting in a three to ten times performance improvement compared to TCP/IP. Furthermore, we have transparently replaced MPI_PUT, a single-side MPICH communication mechanism, by an own MPI_PUT wrapper. As a result, our ivshmem even surpasses non-virtualized SHM data transfers for block lengths greater than 512 KBytes, showing the benefits of virtualization. All improvements were possible without using SR-IOV.

  17. Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a Docked Analysis Facility for ALICE

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.

  18. Efficient Checkpointing of Virtual Machines using Virtual Machine Introspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Han, Fang; Scott, Stephen L

    Cloud Computing environments rely heavily on system-level virtualization. This is due to the inherent benefits of virtualization including fault tolerance through checkpoint/restart (C/R) mechanisms. Because clouds are the abstraction of large data centers and large data centers have a higher potential for failure, it is imperative that a C/R mechanism for such an environment provide minimal latency as well as a small checkpoint file size. Recently, there has been much research into C/R with respect to virtual machines (VM) providing excellent solutions to reduce either checkpoint latency or checkpoint file size. However, these approaches do not provide both. This papermore » presents a method of checkpointing VMs by utilizing virtual machine introspection (VMI). Through the usage of VMI, we are able to determine which pages of memory within the guest are used or free and are better able to reduce the amount of pages written to disk during a checkpoint. We have validated this work by using various benchmarks to measure the latency along with the checkpoint size. With respect to checkpoint file size, our approach results in file sizes within 24% or less of the actual used memory within the guest. Additionally, the checkpoint latency of our approach is up to 52% faster than KVM s default method.« less

  19. Monte Carlo verification of radiotherapy treatments with CloudMC.

    PubMed

    Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José

    2018-06-27

    A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

  20. MISR Center Block Time Tool

    Atmospheric Science Data Center

    2013-04-01

      MISR Center Block Time Tool The misr_time tool calculates the block center times for MISR Level 1B2 files. This is ... version of the IDL package or by using the IDL Virtual Machine application. The IDL Virtual Machine is bundled with IDL and is ...

  1. System-Level Virtualization for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian

    2008-01-01

    System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less

  2. The Machine / Job Features Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alef, M.; Cass, T.; Keijser, J. J.

    Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and themore » design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.« less

  3. The machine/job features mechanism

    NASA Astrophysics Data System (ADS)

    Alef, M.; Cass, T.; Keijser, J. J.; McNab, A.; Roiser, S.; Schwickerath, U.; Sfiligoi, I.

    2017-10-01

    Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and the design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.

  4. A three phase optimization method for precopy based VM live migration.

    PubMed

    Sharma, Sangeeta; Chawla, Meenu

    2016-01-01

    Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.

  5. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  6. Optimizing Virtual Network Functions Placement in Virtual Data Center Infrastructure Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2018-01-01

    We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.

  7. Protection of Mission-Critical Applications from Untrusted Execution Environment: Resource Efficient Replication and Migration of Virtual Machines

    DTIC Science & Technology

    2015-09-28

    the performance of log-and- replay can degrade significantly for VMs configured with multiple virtual CPUs, since the shared memory communication...whether based on checkpoint replication or log-and- replay , existing HA ap- proaches use in- memory backups. The backup VM sits in the memory of a...efficiently. 15. SUBJECT TERMS High-availability virtual machines, live migration, memory and traffic overheads, application suspension, Java

  8. Distributed Object Technology with CORBA and Java: Key Concepts and Implications.

    DTIC Science & Technology

    1997-06-01

    commercial use should be addressed to the SEI Licensing Agent. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL...retrieval. This power is not derived from the language per se, but from the architecture-neutral approach used by Java. The Java Virtual Machine...pattern that is focused on performance considerations, the PCo archi- tecture also uses CORBA interface definition language (IDL) to model the

  9. CAGE IIIA Distributed Simulation Design Methodology

    DTIC Science & Technology

    2014-05-01

    2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this

  10. Large Scale Hierarchical K-Means Based Image Retrieval With MapReduce

    DTIC Science & Technology

    2014-03-27

    hadoop distributed file system: Architecture and design, 2007. [10] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000. [11] Terry Costlow. Big data ...million images running on 20 virtual machines are shown. 15. SUBJECT TERMS Image Retrieval, MapReduce, Hierarchical K-Means, Big Data , Hadoop U U U UU 87...13 2.1.1.2 HDFS Data Representation . . . . . . . . . . . . . . . . 14 2.1.1.3 Hadoop Engine

  11. RHE: A JVM Courseware

    ERIC Educational Resources Information Center

    Liu, S.; Tang, J.; Deng, C.; Li, X.-F.; Gaudiot, J.-L.

    2011-01-01

    Java Virtual Machine (JVM) education has become essential in training embedded software engineers as well as virtual machine researchers and practitioners. However, due to the lack of suitable instructional tools, it is difficult for students to obtain any kind of hands-on experience and to attain any deep understanding of JVM design. To address…

  12. Virtual Machine Language 2.1

    NASA Technical Reports Server (NTRS)

    Riedel, Joseph E.; Grasso, Christopher A.

    2012-01-01

    VML (Virtual Machine Language) is an advanced computing environment that allows spacecraft to operate using mechanisms ranging from simple, time-oriented sequencing to advanced, multicomponent reactive systems. VML has developed in four evolutionary stages. VML 0 is a core execution capability providing multi-threaded command execution, integer data types, and rudimentary branching. VML 1 added named parameterized procedures, extensive polymorphism, data typing, branching, looping issuance of commands using run-time parameters, and named global variables. VML 2 added for loops, data verification, telemetry reaction, and an open flight adaptation architecture. VML 2.1 contains major advances in control flow capabilities for executable state machines. On the resource requirements front, VML 2.1 features a reduced memory footprint in order to fit more capability into modestly sized flight processors, and endian-neutral data access for compatibility with Intel little-endian processors. Sequence packaging has been improved with object-oriented programming constructs and the use of implicit (rather than explicit) time tags on statements. Sequence event detection has been significantly enhanced with multi-variable waiting, which allows a sequence to detect and react to conditions defined by complex expressions with multiple global variables. This multi-variable waiting serves as the basis for implementing parallel rule checking, which in turn, makes possible executable state machines. The new state machine feature in VML 2.1 allows the creation of sophisticated autonomous reactive systems without the need to develop expensive flight software. Users specify named states and transitions, along with the truth conditions required, before taking transitions. Transitions with the same signal name allow separate state machines to coordinate actions: the conditions distributed across all state machines necessary to arm a particular signal are evaluated, and once found true, that signal is raised. The selected signal then causes all identically named transitions in all present state machines to be taken simultaneously. VML 2.1 has relevance to all potential space missions, both manned and unmanned. It was under consideration for use on Orion.

  13. CFCC: A Covert Flows Confinement Mechanism for Virtual Machine Coalitions

    NASA Astrophysics Data System (ADS)

    Cheng, Ge; Jin, Hai; Zou, Deqing; Shi, Lei; Ohoussou, Alex K.

    Normally, virtualization technology is adopted to construct the infrastructure of cloud computing environment. Resources are managed and organized dynamically through virtual machine (VM) coalitions in accordance with the requirements of applications. Enforcing mandatory access control (MAC) on the VM coalitions will greatly improve the security of VM-based cloud computing. However, the existing MAC models lack the mechanism to confine the covert flows and are hard to eliminate the convert channels. In this paper, we propose a covert flows confinement mechanism for virtual machine coalitions (CFCC), which introduces dynamic conflicts of interest based on the activity history of VMs, each of which is attached with a label. The proposed mechanism can be used to confine the covert flows between VMs in different coalitions. We implement a prototype system, evaluate its performance, and show that our mechanism is practical.

  14. PISCES: An environment for parallel scientific computation

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.

    1985-01-01

    The parallel implementation of scientific computing environment (PISCES) is a project to provide high-level programming environments for parallel MIMD computers. Pisces 1, the first of these environments, is a FORTRAN 77 based environment which runs under the UNIX operating system. The Pisces 1 user programs in Pisces FORTRAN, an extension of FORTRAN 77 for parallel processing. The major emphasis in the Pisces 1 design is in providing a carefully specified virtual machine that defines the run-time environment within which Pisces FORTRAN programs are executed. Each implementation then provides the same virtual machine, regardless of differences in the underlying architecture. The design is intended to be portable to a variety of architectures. Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32 is under construction. An introduction to the Pisces 1 virtual computer and the FORTRAN 77 extensions is presented. An example of an algorithm for the iterative solution of a system of equations is given. The most notable features of the design are the provision for several granularities of parallelism in programs and the provision of a window mechanism for distributed access to large arrays of data.

  15. Context-aware distributed cloud computing using CloudScheduler

    NASA Astrophysics Data System (ADS)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  16. Interactive analysis of geographically distributed population imaging data collections over light-path data networks

    NASA Astrophysics Data System (ADS)

    van Lew, Baldur; Botha, Charl P.; Milles, Julien R.; Vrooman, Henri A.; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.

    2015-03-01

    The cohort size required in epidemiological imaging genetics studies often mandates the pooling of data from multiple hospitals. Patient data, however, is subject to strict privacy protection regimes, and physical data storage may be legally restricted to a hospital network. To enable biomarker discovery, fast data access and interactive data exploration must be combined with high-performance computing resources, while respecting privacy regulations. We present a system using fast and inherently secure light-paths to access distributed data, thereby obviating the need for a central data repository. A secure private cloud computing framework facilitates interactive, computationally intensive exploration of this geographically distributed, privacy sensitive data. As a proof of concept, MRI brain imaging data hosted at two remote sites were processed in response to a user command at a third site. The system was able to automatically start virtual machines, run a selected processing pipeline and write results to a user accessible database, while keeping data locally stored in the hospitals. Individual tasks took approximately 50% longer compared to a locally hosted blade server but the cloud infrastructure reduced the total elapsed time by a factor of 40 using 70 virtual machines in the cloud. We demonstrated that the combination light-path and private cloud is a viable means of building an analysis infrastructure for secure data analysis. The system requires further work in the areas of error handling, load balancing and secure support of multiple users.

  17. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  18. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  19. Software architecture standard for simulation virtual machine, version 2.0

    NASA Technical Reports Server (NTRS)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  20. Cloud services for the Fermilab scientific stakeholders

    DOE PAGES

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; ...

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  1. Cloud services for the Fermilab scientific stakeholders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  2. Runtime Performance and Virtual Network Control Alternatives in VM-Based High-Fidelity Network Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives formore » the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.« less

  3. Virtualizing access to scientific applications with the Application Hosting Environment

    NASA Astrophysics Data System (ADS)

    Zasada, S. J.; Coveney, P. V.

    2009-12-01

    The growing power and number of high performance computing resources made available through computational grids present major opportunities as well as a number of challenges to the user. At issue is how these resources can be accessed and how their power can be effectively exploited. In this paper we first present our views on the usability of contemporary high-performance computational resources. We introduce the concept of grid application virtualization as a solution to some of the problems with grid-based HPC usability. We then describe a middleware tool that we have developed to realize the virtualization of grid applications, the Application Hosting Environment (AHE), and describe the features of the new release, AHE 2.0, which provides access to a common platform of federated computational grid resources in standard and non-standard ways. Finally, we describe a case study showing how AHE supports clinical use of whole brain blood flow modelling in a routine and automated fashion. Program summaryProgram title: Application Hosting Environment 2.0 Catalogue identifier: AEEJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence, Version 2 No. of lines in distributed program, including test data, etc.: not applicable No. of bytes in distributed program, including test data, etc.: 1 685 603 766 Distribution format: tar.gz Programming language: Perl (server), Java (Client) Computer: x86 Operating system: Linux (Server), Linux/Windows/MacOS (Client) RAM: 134 217 728 (server), 67 108 864 (client) bytes Classification: 6.5 External routines: VirtualBox (server), Java (client) Nature of problem: The middleware that makes grid computing possible has been found by many users to be too unwieldy, and presents an obstacle to use rather than providing assistance [1,2]. Such problems are compounded when one attempts to harness the power of a grid, or a federation of different grids, rather than just a single resource on the grid. Solution method: To address the above problem, we have developed AHE, a lightweight interface, designed to simplify the process of running scientific codes on a grid of HPC and local resources. AHE does this by introducing a layer of middleware between the user and the grid, which encapsulates much of the complexity associated with launching grid applications. Unusual features: The server is distributed as a VirtualBox virtual machine. VirtualBox ( http://www.virtualbox.org) must be downloaded and installed in order to run the AHE server virtual machine. Details of how to do this are given in the AHE 2.0 Quick Start Guide. Running time: Not applicable References:J. Chin, P.V. Coveney, Towards tractable toolkits for the grid: A plea for lightweight, useable middleware, NeSC Technical Report, 2004, http://nesc.ac.uk/technical_papers/UKeS-2004-01.pdf. P.V. Coveney, R.S. Saksena, S.J. Zasada, M. McKeown, S. Pickles, The Application Hosting Environment: Lightweight middleware for grid-based computational science, Computer Physics Communications 176 (2007) 406-418.

  4. minimega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Fritz, John Floren

    2013-08-27

    Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.

  5. A security-awareness virtual machine management scheme based on Chinese wall policy in cloud computing.

    PubMed

    Yu, Si; Gui, Xiaolin; Lin, Jiancai; Tian, Feng; Zhao, Jianqiang; Dai, Min

    2014-01-01

    Cloud computing gets increasing attention for its capacity to leverage developers from infrastructure management tasks. However, recent works reveal that side channel attacks can lead to privacy leakage in the cloud. Enhancing isolation between users is an effective solution to eliminate the attack. In this paper, to eliminate side channel attacks, we investigate the isolation enhancement scheme from the aspect of virtual machine (VM) management. The security-awareness VMs management scheme (SVMS), a VMs isolation enhancement scheme to defend against side channel attacks, is proposed. First, we use the aggressive conflict of interest relation (ACIR) and aggressive in ally with relation (AIAR) to describe user constraint relations. Second, based on the Chinese wall policy, we put forward four isolation rules. Third, the VMs placement and migration algorithms are designed to enforce VMs isolation between the conflict users. Finally, based on the normal distribution, we conduct a series of experiments to evaluate SVMS. The experimental results show that SVMS is efficient in guaranteeing isolation between VMs owned by conflict users, while the resource utilization rate decreases but not by much.

  6. A Security-Awareness Virtual Machine Management Scheme Based on Chinese Wall Policy in Cloud Computing

    PubMed Central

    Gui, Xiaolin; Lin, Jiancai; Tian, Feng; Zhao, Jianqiang; Dai, Min

    2014-01-01

    Cloud computing gets increasing attention for its capacity to leverage developers from infrastructure management tasks. However, recent works reveal that side channel attacks can lead to privacy leakage in the cloud. Enhancing isolation between users is an effective solution to eliminate the attack. In this paper, to eliminate side channel attacks, we investigate the isolation enhancement scheme from the aspect of virtual machine (VM) management. The security-awareness VMs management scheme (SVMS), a VMs isolation enhancement scheme to defend against side channel attacks, is proposed. First, we use the aggressive conflict of interest relation (ACIR) and aggressive in ally with relation (AIAR) to describe user constraint relations. Second, based on the Chinese wall policy, we put forward four isolation rules. Third, the VMs placement and migration algorithms are designed to enforce VMs isolation between the conflict users. Finally, based on the normal distribution, we conduct a series of experiments to evaluate SVMS. The experimental results show that SVMS is efficient in guaranteeing isolation between VMs owned by conflict users, while the resource utilization rate decreases but not by much. PMID:24688434

  7. Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less

  8. Virtual Machine Language Controls Remote Devices

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  9. A Virtual Astronomical Research Machine in No Time (VARMiNT)

    NASA Astrophysics Data System (ADS)

    Beaver, John

    2012-05-01

    We present early results of using virtual machine software to help make astronomical research computing accessible to a wider range of individuals. Our Virtual Astronomical Research Machine in No Time (VARMiNT) is an Ubuntu Linux virtual machine with free, open-source software already installed and configured (and in many cases documented). The purpose of VARMiNT is to provide a ready-to-go astronomical research computing environment that can be freely shared between researchers, or between amateur and professional, teacher and student, etc., and to circumvent the often-difficult task of configuring a suitable computing environment from scratch. Thus we hope that VARMiNT will make it easier for individuals to engage in research computing even if they have no ready access to the facilities of a research institution. We describe our current version of VARMiNT and some of the ways it is being used at the University of Wisconsin - Fox Valley, a two-year teaching campus of the University of Wisconsin System, as a means to enhance student independent study research projects and to facilitate collaborations with researchers at other locations. We also outline some future plans and prospects.

  10. Human-machine interface for a VR-based medical imaging environment

    NASA Astrophysics Data System (ADS)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  11. Dynamically allocated virtual clustering management system

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  12. The distributed agent-based approach in the e-manufacturing environment

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.

    2015-11-01

    The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.

  13. Virtual reality applied to teletesting

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  14. The Implications of Virtual Machine Introspection for Digital Forensics on Nonquiescent Virtual Machines

    DTIC Science & Technology

    2011-06-01

    metacity [ 2788] gnome-panel [ 2790] nautilus [ 2794] bonobo -activati [ 2797] gnome-vfs-daemo [ 2799] eggcups [ 2800] gnome-volume-ma [ 2809] bt...xrdb [ 2784] metacity [ 2788] gnome-panel [ 2790] nautilus [ 2794] bonobo -activati [ 2797] gnome-vfs-daemo [ 2799] eggcups [ 2800] gnome-volume...gnome-keyring-d [ 2764] gnome-settings- [ 2780] xrdb [ 2784] metacity [ 2788] gnome-panel [ 2790] nautilus [ 2794] bonobo -activati [ 2797] gnome

  15. Slot Machines: Pursuing Responsible Gaming Practices for Virtual Reels and Near Misses

    ERIC Educational Resources Information Center

    Harrigan, Kevin A.

    2009-01-01

    Since 1983, slot machines in North America have used a computer and virtual reels to determine the odds. Since at least 1988, a technique called clustering has been used to create a high number of near misses, failures that are close to wins. The result is that what the player sees does not represent the underlying probabilities and randomness,…

  16. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach

    PubMed Central

    Kudisthalert, Wasu

    2018-01-01

    Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912

  17. A Virtual Upgrade Validation Method for Software-Reliant Systems

    DTIC Science & Technology

    2012-06-01

    3.4 Root Cause Areas of System-Level Faults 11 3.4.1 End-to-End Flow of Data Streams 11 3.4.2 Distributed Communicating State Machines 13 3.4.3...FlyByWire/FlyByWire_english.pdf (Accessed on November 11 , 2011.) [Apple 2005] Apple Support Communities , jazzman40. iTunes Crashes When Ripping...Strategies 39 7.1 Application Pattern Modeling Strategies 39 7.1.1 Control Loops 39 7.1.2 State Transition Communication 42 7.1.3 Sensor/Signal Fusion

  18. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  19. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  20. sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine.

    PubMed

    Gómez-Martín, Cristina; Lebrón, Ricardo; Rueda, Antonio; Oliver, José L; Hackenberg, Michael

    2017-01-01

    High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20-250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.

  1. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  2. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.

  3. AIRE-Linux

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  4. Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application

    DTIC Science & Technology

    1993-05-01

    The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.

  5. Migrating EO/IR sensors to cloud-based infrastructure as service architectures

    NASA Astrophysics Data System (ADS)

    Berglie, Stephen T.; Webster, Steven; May, Christopher M.

    2014-06-01

    The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.

  6. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE PAGES

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  7. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less

  8. A Security Monitoring Framework For Virtualization Based HEP Infrastructures

    NASA Astrophysics Data System (ADS)

    Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.; ALICE Collaboration

    2017-10-01

    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.

  9. A Virtual Sensor for Online Fault Detection of Multitooth-Tools

    PubMed Central

    Bustillo, Andres; Correa, Maritza; Reñones, Anibal

    2011-01-01

    The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a Bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases. PMID:22163766

  10. Modeling and Analysis Compute Environments, Utilizing Virtualization Technology in the Climate and Earth Systems Science domain

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Nemani, R. R.; Wang, W.; Votava, P.; Hashimoto, H.

    2010-12-01

    Given the increasing complexity of climate modeling and analysis tools, it is often difficult and expensive to build or recreate an exact replica of the software compute environment used in past experiments. With the recent development of new technologies for hardware virtualization, an opportunity exists to create full modeling, analysis and compute environments that are “archiveable”, transferable and may be easily shared amongst a scientific community or presented to a bureaucratic body if the need arises. By encapsulating and entire modeling and analysis environment in a virtual machine image, others may quickly gain access to the fully built system used in past experiments, potentially easing the task and reducing the costs of reproducing and verify past results produced by other researchers. Moreover, these virtual machine images may be used as a pedagogical tool for others that are interested in performing an academic exercise but don't yet possess the broad expertise required. We built two virtual machine images, one with the Community Earth System Model (CESM) and one with Weather Research Forecast Model (WRF), then ran several small experiments to assess the feasibility, performance overheads costs, reusability, and transferability. We present a list of the pros and cons as well as lessoned learned from utilizing virtualization technology in the climate and earth systems modeling domain.

  11. A virtual sensor for online fault detection of multitooth-tools.

    PubMed

    Bustillo, Andres; Correa, Maritza; Reñones, Anibal

    2011-01-01

    The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases.

  12. A Comprehensive Availability Modeling and Analysis of a Virtualized Servers System Using Stochastic Reward Nets

    PubMed Central

    Kim, Dong Seong; Park, Jong Sou

    2014-01-01

    It is important to assess availability of virtualized systems in IT business infrastructures. Previous work on availability modeling and analysis of the virtualized systems used a simplified configuration and assumption in which only one virtual machine (VM) runs on a virtual machine monitor (VMM) hosted on a physical server. In this paper, we show a comprehensive availability model using stochastic reward nets (SRN). The model takes into account (i) the detailed failures and recovery behaviors of multiple VMs, (ii) various other failure modes and corresponding recovery behaviors (e.g., hardware faults, failure and recovery due to Mandelbugs and aging-related bugs), and (iii) dependency between different subcomponents (e.g., between physical host failure and VMM, etc.) in a virtualized servers system. We also show numerical analysis on steady state availability, downtime in hours per year, transaction loss, and sensitivity analysis. This model provides a new finding on how to increase system availability by combining both software rejuvenations at VM and VMM in a wise manner. PMID:25165732

  13. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  14. Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded Languages

    DTIC Science & Technology

    2013-01-02

    Compilation JVM Java Virtual Machine KB Kilobyte KDT Knowledge Discovery Toolbox LAPACK Linear Algebra Package LLVM Low-Level Virtual Machine LOC Lines...different starting points. Leo Meyerovich also helped solidify some of the ideas here in discussions during Par Lab retreats. I would also like to thank...multi-timestep computations by blocking in both time and space. 88 Implementation Output Approx DSL Type Language Language Parallelism LoC Graphite

  15. Robust Airborne Networking Extensions (RANGE)

    DTIC Science & Technology

    2008-02-01

    IMUNES [13] project, which provides an entire network stack virtualization and topology control inside a single FreeBSD machine . The emulated topology...Multicast versus broadcast in a manet.” in ADHOC-NOW, 2004, pp. 14–27. [9] J. Mukherjee, R. Atwood , “ Rendezvous point relocation in protocol independent...computer with an Ethernet connection, or a Linux virtual machine on some other (e.g., Windows) operating system, should work. 2.1 Patching the source code

  16. Lifelong personal health data and application software via virtual machines in the cloud.

    PubMed

    Van Gorp, Pieter; Comuzzi, Marco

    2014-01-01

    Personal Health Records (PHRs) should remain the lifelong property of patients, who should be able to show them conveniently and securely to selected caregivers and institutions. In this paper, we present MyPHRMachines, a cloud-based PHR system taking a radically new architectural solution to health record portability. In MyPHRMachines, health-related data and the application software to view and/or analyze it are separately deployed in the PHR system. After uploading their medical data to MyPHRMachines, patients can access them again from remote virtual machines that contain the right software to visualize and analyze them without any need for conversion. Patients can share their remote virtual machine session with selected caregivers, who will need only a Web browser to access the pre-loaded fragments of their lifelong PHR. We discuss a prototype of MyPHRMachines applied to two use cases, i.e., radiology image sharing and personalized medicine.

  17. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  18. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on east campus, and a CT scan machine in UIC Hospital. CT data was pulled directly from the scan machine to the Tele-Immersion server in our Laboratory, and then the data was synchronously distributed by our Onyx2 Rack server to all the VR setups. Instead of permitting medical volume visualization at one VR device, by combining teleconferencing, tele-presence, and virtual reality, the Tele-Immersive environment will enable geographically distributed clinicians to intuitively interact with the same medical volumetric models, point, gesture, converse, and see each other. This environment will bring together clinicians at different geographic locations to participate in Tele-Immersive consultation and collaboration.

  19. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  20. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  1. A Parallel Vector Machine for the PM Programming Language

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2016-04-01

    PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.

  2. Virtualization for Cost-Effective Teaching of Assembly Language Programming

    ERIC Educational Resources Information Center

    Cadenas, José O.; Sherratt, R. Simon; Howlett, Des; Guy, Chris G.; Lundqvist, Karsten O.

    2015-01-01

    This paper describes a virtual system that emulates an ARM-based processor machine, created to replace a traditional hardware-based system for teaching assembly language. The virtual system proposed here integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language…

  3. Proposal of Modification Strategy of NC Program in the Virtual Manufacturing Environment

    NASA Astrophysics Data System (ADS)

    Narita, Hirohisa; Chen, Lian-Yi; Fujimoto, Hideo; Shirase, Keiichi; Arai, Eiji

    Virtual manufacturing will be a key technology in process planning, because there are no evaluation tools for cutting conditions. Therefore, virtual machining simulator (VMSim), which can predict end milling processes, has been developed. The modification strategy of NC program using VMSim is proposed in this paper.

  4. Active Gaming: Is "Virtual" Reality Right for Your Physical Education Program?

    ERIC Educational Resources Information Center

    Hansen, Lisa; Sanders, Stephen W.

    2012-01-01

    Active gaming is growing in popularity and the idea of increasing children's physical activity by using technology is largely accepted by physical educators. Teachers nationwide have been providing active gaming equipment such as virtual bikes, rhythmic dance machines, virtual sporting games, martial arts simulators, balance boards, and other…

  5. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.

    PubMed

    Segil, Jacob L; Controzzi, Marco; Weir, Richard F ff; Cipriani, Christian

    2014-01-01

    A myoelectric controller should provide an intuitive and effective human-machine interface that deciphers user intent in real-time and is robust enough to operate in daily life. Many myoelectric control architectures have been developed, including pattern recognition systems, finite state machines, and more recently, postural control schemes. Here, we present a comparative study of two types of finite state machines and a postural control scheme using both virtual and physical assessment procedures with seven nondisabled subjects. The Southampton Hand Assessment Procedure (SHAP) was used in order to compare the effectiveness of the controllers during activities of daily living using a multigrasp artificial hand. Also, a virtual hand posture matching task was used to compare the controllers when reproducing six target postures. The performance when using the postural control scheme was significantly better (p < 0.05) than the finite state machines during the physical assessment when comparing within-subject averages using the SHAP percent difference metric. The virtual assessment results described significantly greater completion rates (97% and 99%) for the finite state machines, but the movement time tended to be faster (2.7 s) for the postural control scheme. Our results substantiate that postural control schemes rival other state-of-the-art myoelectric controllers.

  8. Prospects for Evidence -Based Software Assurance: Models and Analysis

    DTIC Science & Technology

    2015-09-01

    virtual machine is much lighter than the workstation. The virtual machine doesn’t need to run anti- virus , firewalls, intrusion preven- tion systems...34] Maiorca, D., Corona , I., and Giacinto, G. Looking at the bag is not enough to find the bomb: An evasion of structural methods for malicious PDF...CCS ’13, ACM, pp. 119–130. [35] Maiorca, D., Giacinto, G., and Corona , I. A pattern recognition system for malicious PDF files detection. In

  9. Pilots 2.0: DIRAC pilots for all the skies

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; McNab, A.; Luzzi, C.

    2015-12-01

    In the last few years, new types of computing infrastructures, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are opportunistic. Most of these new infrastructures are based on virtualization techniques. Meanwhile, some concepts, such as distributed queues, lost appeal, while still supporting a vast amount of resources. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to hide the diversity of underlying resources has become essential. The DIRAC WMS is based on the concept of pilot jobs that was introduced back in 2004. A pilot is what creates the possibility to run jobs on a worker node. Within DIRAC, we developed a new generation of pilot jobs, that we dubbed Pilots 2.0. Pilots 2.0 are not tied to a specific infrastructure; rather they are generic, fully configurable and extendible pilots. A Pilot 2.0 can be sent, as a script to be run, or it can be fetched from a remote location. A pilot 2.0 can run on every computing resource, e.g.: on CREAM Computing elements, on DIRAC Computing elements, on Virtual Machines as part of the contextualization script, or IAAC resources, provided that these machines are properly configured, hiding all the details of the Worker Nodes (WNs) infrastructure. Pilots 2.0 can be generated server and client side. Pilots 2.0 are the “pilots to fly in all the skies”, aiming at easy use of computing power, in whatever form it is presented. Another aim is the unification and simplification of the monitoring infrastructure for all kinds of computing resources, by using pilots as a network of distributed sensors coordinated by a central resource monitoring system. Pilots 2.0 have been developed using the command pattern. VOs using DIRAC can tune pilots 2.0 as they need, and extend or replace each and every pilot command in an easy way. In this paper we describe how Pilots 2.0 work with distributed and heterogeneous resources providing the necessary abstraction to deal with different kind of computing resources.

  10. Final Report: Enabling Exascale Hardware and Software Design through Scalable System Virtualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Patrick G.

    2015-02-01

    In this grant, we enhanced the Palacios virtual machine monitor to increase its scalability and suitability for addressing exascale system software design issues. This included a wide range of research on core Palacios features, large-scale system emulation, fault injection, perfomrance monitoring, and VMM extensibility. This research resulted in large number of high-impact publications in well-known venues, the support of a number of students, and the graduation of two Ph.D. students and one M.S. student. In addition, our enhanced version of the Palacios virtual machine monitor has been adopted as a core element of the Hobbes operating system under active DOE-fundedmore » research and development.« less

  11. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    PubMed

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  12. minimega v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crussell, Jonathan; Erickson, Jeremy; Fritz, David

    minimega is an emulytics platform for creating testbeds of networked devices. The platoform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. minimega allows experiments to be brought up quickly with almost no configuration. minimega also includes tools for simple cluster, management, as well as tools for creating Linux-based virtual machines. This release of minimega includes new emulated sensors for Android devices to improve the fidelity of testbeds that include mobile devices. Emulated sensors include GPS and

  13. Phenomenology tools on cloud infrastructures using OpenStack

    NASA Astrophysics Data System (ADS)

    Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.

    2013-04-01

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.

  14. Configurable software for satellite graphics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartzman, P D

    An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less

  15. Enhanced networked server management with random remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2003-08-01

    In this paper, the model is focused on available server management in network environments. The (remote) backup servers are hooked up by VPN (Virtual Private Network) and replace broken main severs immediately. A virtual private network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The servers can be represent as "machines" and then the system deals with main unreliable and random auxiliary spare (remote backup) machines. When the system performs a mandatory routine maintenance, auxiliary machines are being used for backups during idle periods. Unlike other existing models, the availability of auxiliary machines is changed for each activation in this enhanced model. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems.

  16. A Cooperative Approach to Virtual Machine Based Fault Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R

    Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM).more » We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.« less

  17. Multiplexing Low and High QoS Workloads in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Verboven, Sam; Vanmechelen, Kurt; Broeckhove, Jan

    Virtualization technology has introduced new ways for managing IT infrastructure. The flexible deployment of applications through self-contained virtual machine images has removed the barriers for multiplexing, suspending and migrating applications with their entire execution environment, allowing for a more efficient use of the infrastructure. These developments have given rise to an important challenge regarding the optimal scheduling of virtual machine workloads. In this paper, we specifically address the VM scheduling problem in which workloads that require guaranteed levels of CPU performance are mixed with workloads that do not require such guarantees. We introduce a framework to analyze this scheduling problem and evaluate to what extent such mixed service delivery is beneficial for a provider of virtualized IT infrastructure. Traditionally providers offer IT resources under a guaranteed and fixed performance profile, which can lead to underutilization. The findings of our simulation study show that through proper tuning of a limited set of parameters, the proposed scheduling algorithm allows for a significant increase in utilization without sacrificing on performance dependability.

  18. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  19. Dynamic provisioning of local and remote compute resources with OpenStack

    NASA Astrophysics Data System (ADS)

    Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.

    2015-12-01

    Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.

  20. An alternative model to distribute VO software to WLCG sites based on CernVM-FS: a prototype at PIC Tier1

    NASA Astrophysics Data System (ADS)

    Lanciotti, E.; Merino, G.; Bria, A.; Blomer, J.

    2011-12-01

    In a distributed computing model as WLCG the software of experiment specific application software has to be efficiently distributed to any site of the Grid. Application software is currently installed in a shared area of the site visible for all Worker Nodes (WNs) of the site through some protocol (NFS, AFS or other). The software is installed at the site by jobs which run on a privileged node of the computing farm where the shared area is mounted in write mode. This model presents several drawbacks which cause a non-negligible rate of job failure. An alternative model for software distribution based on the CERN Virtual Machine File System (CernVM-FS) has been tried at PIC, the Spanish Tierl site of WLCG. The test bed used and the results are presented in this paper.

  1. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

  2. Virtualization for the LHCb Online system

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-12-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R&D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  3. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  4. A performance study of live VM migration technologies: VMotion vs XenMotion

    NASA Astrophysics Data System (ADS)

    Feng, Xiujie; Tang, Jianxiong; Luo, Xuan; Jin, Yaohui

    2011-12-01

    Due to the growing demand of flexible resource management for cloud computing services, researches on live virtual machine migration have attained more and more attention. Live migration of virtual machine across different hosts has been a powerful tool to facilitate system maintenance, load balancing, fault tolerance and so on. In this paper, we use a measurement-based approach to compare the performance of two major live migration technologies under certain network conditions, i.e., VMotion and XenMotion. The results show that VMotion generates much less data transferred than XenMotion when migrating identical VMs. However, in network with moderate packet loss and delay, which are typical in a VPN (virtual private network) scenario used to connect the data centers, XenMotion outperforms VMotion in total migration time. We hope that this study can be helpful in choosing suitable virtualization environments for data center administrators and optimizing existing live migration mechanisms.

  5. Designing Multi-target Compound Libraries with Gaussian Process Models.

    PubMed

    Bieler, Michael; Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Kriegl, Jan M; Schneider, Gisbert

    2016-05-01

    We present the application of machine learning models to selecting G protein-coupled receptor (GPCR)-focused compound libraries. The library design process was realized by ant colony optimization. A proprietary Boehringer-Ingelheim reference set consisting of 3519 compounds tested in dose-response assays at 11 GPCR targets served as training data for machine learning and activity prediction. We compared the usability of the proprietary data with a public data set from ChEMBL. Gaussian process models were trained to prioritize compounds from a virtual combinatorial library. We obtained meaningful models for three of the targets (5-HT2c , MCH, A1), which were experimentally confirmed for 12 of 15 selected and synthesized or purchased compounds. Overall, the models trained on the public data predicted the observed assay results more accurately. The results of this study motivate the use of Gaussian process regression on public data for virtual screening and target-focused compound library design. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  6. A multi-group and preemptable scheduling of cloud resource based on HTCondor

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowei; Zou, Jiaheng; Cheng, Yaodong; Shi, Jingyan

    2017-10-01

    Due to the features of virtual machine-flexibility, easy controlling and various system environments, more and more fields utilize the virtualization technology to construct the distributed system with the virtual resources, also including high energy physics. This paper introduce a method used in high energy physics that supports multiple resource group and preemptable cloud resource scheduling, combining virtual machine with HTCondor (a batch system). It makes resource controlling more flexible and more efficient and makes resource scheduling independent of job scheduling. Firstly, the resources belong to different experiment-groups, and the type of user-groups mapping to resource-groups(same as experiment-group) is one-to-one or many-to-one. In order to make the confused group simply to be managed, we designed the permission controlling component to ensure that the different resource-groups can get the suitable jobs. Secondly, for the purpose of elastically allocating resources for suitable resource-group, it is necessary to schedule resources like scheduling jobs. So this paper designs the cloud resource scheduling to maintain a resource queue and allocate an appropriate amount of virtual resources to the request resource-group. Thirdly, in some kind of situations, because of the resource occupied for a long time, resources need to be preempted. This paper adds the preemption function for the resource scheduling that implement resource preemption based on the group priority. Additionally, the way to preempting is soft that when virtual resources are preempted, jobs will not be killed but also be held and rematched later. It is implemented with the help of HTCondor, storing the held job information in scheduler, releasing the job to idle status and doing second matcher. In IHEP (institute of high energy physics), we have built a batch system based on HTCondor with a virtual resources pool based on Openstack. And this paper will show some cases of experiment JUNO and LHAASO. The result indicates that multi-group and preemptable resource scheduling is efficient to support multi-group and soft preemption. Additionally, the permission controlling component has been used in the local computing cluster, supporting for experiment JUNO, CMS and LHAASO, and the scale will be expanded to more experiments at the first half year, including DYW, BES and so on. Its evidence that the permission controlling is efficient.

  7. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; hide

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  8. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  9. Reprint of: Client interfaces to the Virtual Observatory Registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Harrison, P.; Taylor, M.; Normand, J.

    2015-06-01

    The Virtual Observatory Registry is a distributed directory of information systems and other resources relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans and machines alike. This article reviews the development and status of such facilities, also considering the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the history of the standards development, it describes the use of Registry interfaces in some popular clients as well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based interface on the other hand. The article finally lays out some of the less obvious conventions that emerged in the interaction between providers of registry records and Registry users as well as remaining challenges and current developments.

  10. Client interfaces to the Virtual Observatory Registry

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Harrison, P.; Taylor, M.; Normand, J.

    2015-04-01

    The Virtual Observatory Registry is a distributed directory of information systems and other resources relevant to astronomy. To make it useful, facilities to query that directory must be provided to humans and machines alike. This article reviews the development and status of such facilities, also considering the lessons learnt from about a decade of experience with Registry interfaces. After a brief outline of the history of the standards development, it describes the use of Registry interfaces in some popular clients as well as dedicated UIs for interrogating the Registry. It continues with a thorough discussion of the design of the two most recent Registry interface standards, RegTAP on the one hand and a full-text-based interface on the other hand. The article finally lays out some of the less obvious conventions that emerged in the interaction between providers of registry records and Registry users as well as remaining challenges and current developments.

  11. A Concept for Optimizing Behavioural Effectiveness & Efficiency

    NASA Astrophysics Data System (ADS)

    Barca, Jan Carlo; Rumantir, Grace; Li, Raymond

    Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.

  12. The influence of negative training set size on machine learning-based virtual screening.

    PubMed

    Kurczab, Rafał; Smusz, Sabina; Bojarski, Andrzej J

    2014-01-01

    The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening.

  13. The influence of negative training set size on machine learning-based virtual screening

    PubMed Central

    2014-01-01

    Background The paper presents a thorough analysis of the influence of the number of negative training examples on the performance of machine learning methods. Results The impact of this rather neglected aspect of machine learning methods application was examined for sets containing a fixed number of positive and a varying number of negative examples randomly selected from the ZINC database. An increase in the ratio of positive to negative training instances was found to greatly influence most of the investigated evaluating parameters of ML methods in simulated virtual screening experiments. In a majority of cases, substantial increases in precision and MCC were observed in conjunction with some decreases in hit recall. The analysis of dynamics of those variations let us recommend an optimal composition of training data. The study was performed on several protein targets, 5 machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest) and 2 types of molecular fingerprints (MACCS and CDK FP). The most effective classification was provided by the combination of CDK FP with SMO or Random Forest algorithms. The Naïve Bayes models appeared to be hardly sensitive to changes in the number of negative instances in the training set. Conclusions In conclusion, the ratio of positive to negative training instances should be taken into account during the preparation of machine learning experiments, as it might significantly influence the performance of particular classifier. What is more, the optimization of negative training set size can be applied as a boosting-like approach in machine learning-based virtual screening. PMID:24976867

  14. ShareSync: A Solution for Deterministic Data Sharing over Ethernet

    NASA Technical Reports Server (NTRS)

    Dunn, Daniel J., II; Koons, William A.; Kennedy, Richard D.; Davis, Philip A.

    2007-01-01

    As part of upgrading the Contact Dynamics Simulation Laboratory (CDSL) at the NASA Marshall Space Flight Center (MSFC), a simple, cost effective method was needed to communicate data among the networked simulation machines and I/O controllers used to run the facility. To fill this need and similar applicable situations, a generic protocol was developed, called ShareSync. ShareSync is a lightweight, real-time, publish-subscribe Ethernet protocol for simple and deterministic data sharing across diverse machines and operating systems. ShareSync provides a simple Application Programming Interface (API) for simulation programmers to incorporate into their code. The protocol is compatible with virtually all Ethernet-capable machines, is flexible enough to support a variety of applications, is fast enough to provide soft real-time determinism, and is a low-cost resource for distributed simulation development, deployment, and maintenance. The first design cycle iteration of ShareSync has been completed, and the protocol has undergone several testing procedures including endurance and benchmarking tests and approaches the 2001ts data synchronization design goal for the CDSL.

  15. Infrastructures for Distributed Computing: the case of BESIII

    NASA Astrophysics Data System (ADS)

    Pellegrino, J.

    2018-05-01

    The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.

  16. Virtual Reality Enhanced Instructional Learning

    ERIC Educational Resources Information Center

    Nachimuthu, K.; Vijayakumari, G.

    2009-01-01

    Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…

  17. Virtual manufacturing work cell for engineering

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ohashi, Kazushi; Takahashi, Nobuyuki; Kato, Kiyotaka; Fujita, Satoru

    1997-12-01

    The life cycles of products have been getting shorter. To meet this rapid turnover, manufacturing systems must be frequently changed as well. In engineering to develop manufacturing systems, there are several tasks such as process planning, layout design, programming, and final testing using actual machines. This development of manufacturing systems takes a long time and is expensive. To aid the above engineering process, we have developed the virtual manufacturing workcell (VMW). This paper describes a concept of VMW and design method through computer aided manufacturing engineering using VMW (CAME-VMW) related to the above engineering tasks. The VMW has all design data, and realizes a behavior of equipment and devices using a simulator. The simulator has logical and physical functionality. The one simulates a sequence control and the other simulates motion control, shape movement in 3D space. The simulator can execute the same control software made for actual machines. Therefore we can verify the behavior precisely before the manufacturing workcell will be constructed. The VMW creates engineering work space for several engineers and offers debugging tools such as virtual equipment and virtual controllers. We applied this VMW to development of a transfer workcell for vaporization machine in actual manufacturing system to produce plasma display panel (PDP) workcell and confirmed its effectiveness.

  18. Identification of Program Signatures from Cloud Computing System Telemetry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.

    Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less

  19. Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system

    NASA Astrophysics Data System (ADS)

    Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd

    2016-10-01

    Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.

  20. The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud

    PubMed Central

    Karimi, Kamran; Vize, Peter D.

    2014-01-01

    As a model organism database, Xenbase has been providing informatics and genomic data on Xenopus (Silurana) tropicalis and Xenopus laevis frogs for more than a decade. The Xenbase database contains curated, as well as community-contributed and automatically harvested literature, gene and genomic data. A GBrowse genome browser, a BLAST+ server and stock center support are available on the site. When this resource was first built, all software services and components in Xenbase ran on a single physical server, with inherent reliability, scalability and inter-dependence issues. Recent advances in networking and virtualization techniques allowed us to move Xenbase to a virtual environment, and more specifically to a private cloud. To do so we decoupled the different software services and components, such that each would run on a different virtual machine. In the process, we also upgraded many of the components. The resulting system is faster and more reliable. System maintenance is easier, as individual virtual machines can now be updated, backed up and changed independently. We are also experiencing more effective resource allocation and utilization. Database URL: www.xenbase.org PMID:25380782

  1. Naval Applications of Virtual Reality,

    DTIC Science & Technology

    1993-01-01

    Expert Virtual Reality Special Report 󈨡, pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I

  2. Access, Equity, and Opportunity. Women in Machining: A Model Program.

    ERIC Educational Resources Information Center

    Warner, Heather

    The Women in Machining (WIM) program is a Machine Action Project (MAP) initiative that was developed in response to a local skilled metalworking labor shortage, despite a virtual absence of women and people of color from area shops. The project identified post-war stereotypes and other barriers that must be addressed if women are to have an equal…

  3. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    NASA Astrophysics Data System (ADS)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  4. Grid heterogeneity in in-silico experiments: an exploration of drug screening using DOCK on cloud environments.

    PubMed

    Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason

    2010-01-01

    Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.

  5. An Argument for Partial Admissibility of Polygraph Results in Trials by Courts-Martial

    DTIC Science & Technology

    1990-04-01

    FUNDAMENTALS OF THE POLYGRAPH TECHNIQUE 6 A. THE POLYGRAPH MACHINE 7 1. THE CARDIOSPHYMOGRAPH 8 2. THE PNEUMOGRAPH 9 3. THE GALVANOMETER 10 4. THE... Machine Anyone observing a polygraph machine for the first time could easily conclude it is a survivor of the Spanish Inquisition. The lengths of...wire and coils get the immediate attention of the subject. However, the various polygraph machines in use today cause virtually no discomfort. Several

  6. Teaching Cybersecurity Using the Cloud

    ERIC Educational Resources Information Center

    Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali

    2015-01-01

    Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…

  7. Wave scheduling - Decentralized scheduling of task forces in multicomputers

    NASA Technical Reports Server (NTRS)

    Van Tilborg, A. M.; Wittie, L. D.

    1984-01-01

    Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.

  8. Ant-Based Cyber Defense (also known as

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn Fink, PNNL

    2015-09-29

    ABCD is a four-level hierarchy with human supervisors at the top, a top-level agent called a Sergeant controlling each enclave, Sentinel agents located at each monitored host, and mobile Sensor agents that swarm through the enclaves to detect cyber malice and misconfigurations. The code comprises four parts: (1) the core agent framework, (2) the user interface and visualization, (3) test-range software to create a network of virtual machines including a simulated Internet and user and host activity emulation scripts, and (4) a test harness to allow the safe running of adversarial code within the framework of monitored virtual machines.

  9. Prototyping Faithful Execution in a Java virtual machine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George

    2003-09-01

    This report presents the implementation of a stateless scheme for Faithful Execution, the design for which is presented in a companion report, ''Principles of Faithful Execution in the Implementation of Trusted Objects'' (SAND 2003-2328). We added a simple cryptographic capability to an already simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level implementation of Faithful Execution. The extended class loader and JVM we refer to collectively as the Sandia Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable exploration of more sophisticated techniques which we intend to implement in hardware.

  10. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  11. Build and Execute Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Qiang

    At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less

  12. Prediction based proactive thermal virtual machine scheduling in green clouds.

    PubMed

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.

  13. Virtual Environment Training: Auxiliary Machinery Room (AMR) Watchstation Trainer.

    ERIC Educational Resources Information Center

    Hriber, Dennis C.; And Others

    1993-01-01

    Describes a project implemented at Newport News Shipbuilding that used Virtual Environment Training to improve the performance of submarine crewmen. Highlights include development of the Auxiliary Machine Room (AMR) Watchstation Trainer; Digital Video Interactive (DVI); screen layout; test design and evaluation; user reactions; authoring language;…

  14. The virtual machine (VM) scaler: an infrastructure manager supporting environmental modeling on IaaS clouds

    USDA-ARS?s Scientific Manuscript database

    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...

  15. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    PubMed Central

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631

  16. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  17. Design and fabrication of complete dentures using CAD/CAM technology

    PubMed Central

    Han, Weili; Li, Yanfeng; Zhang, Yue; lv, Yuan; Zhang, Ying; Hu, Ping; Liu, Huanyue; Ma, Zheng; Shen, Yi

    2017-01-01

    Abstract The aim of the study was to test the feasibility of using commercially available computer-aided design and computer-aided manufacturing (CAD/CAM) technology including 3Shape Dental System 2013 trial version, WIELAND V2.0.049 and WIELAND ZENOTEC T1 milling machine to design and fabricate complete dentures. The modeling process of full denture available in the trial version of 3Shape Dental System 2013 was used to design virtual complete dentures on the basis of 3-dimensional (3D) digital edentulous models generated from the physical models. The virtual complete dentures designed were exported to CAM software of WIELAND V2.0.049. A WIELAND ZENOTEC T1 milling machine controlled by the CAM software was used to fabricate physical dentitions and baseplates by milling acrylic resin composite plates. The physical dentitions were bonded to the corresponding baseplates to form the maxillary and mandibular complete dentures. Virtual complete dentures were successfully designed using the software through several steps including generation of 3D digital edentulous models, model analysis, arrangement of artificial teeth, trimming relief area, and occlusal adjustment. Physical dentitions and baseplates were successfully fabricated according to the designed virtual complete dentures using milling machine controlled by a CAM software. Bonding physical dentitions to the corresponding baseplates generated the final physical complete dentures. Our study demonstrated that complete dentures could be successfully designed and fabricated by using CAD/CAM. PMID:28072686

  18. The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud.

    PubMed

    Karimi, Kamran; Vize, Peter D

    2014-01-01

    As a model organism database, Xenbase has been providing informatics and genomic data on Xenopus (Silurana) tropicalis and Xenopus laevis frogs for more than a decade. The Xenbase database contains curated, as well as community-contributed and automatically harvested literature, gene and genomic data. A GBrowse genome browser, a BLAST+ server and stock center support are available on the site. When this resource was first built, all software services and components in Xenbase ran on a single physical server, with inherent reliability, scalability and inter-dependence issues. Recent advances in networking and virtualization techniques allowed us to move Xenbase to a virtual environment, and more specifically to a private cloud. To do so we decoupled the different software services and components, such that each would run on a different virtual machine. In the process, we also upgraded many of the components. The resulting system is faster and more reliable. System maintenance is easier, as individual virtual machines can now be updated, backed up and changed independently. We are also experiencing more effective resource allocation and utilization. Database URL: www.xenbase.org. © The Author(s) 2014. Published by Oxford University Press.

  19. Research on axisymmetric aspheric surface numerical design and manufacturing technology

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-zhong; Guo, Yin-biao; Lin, Zheng

    2006-02-01

    The key technology for aspheric machining offers exact machining path and machining aspheric lens with high accuracy and efficiency, in spite of the development of traditional manual manufacturing into nowadays numerical control (NC) machining. This paper presents a mathematical model between virtual cone and aspheric surface equations, and discusses the technology of uniform wear of grinding wheel and error compensation in aspheric machining. Finally, a software system for high precision aspheric surface manufacturing is designed and realized, based on the mentioned above. This software system can work out grinding wheel path according to input parameters and generate machining NC programs of aspheric surfaces.

  20. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    PubMed Central

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  1. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    PubMed

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  2. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    NASA Astrophysics Data System (ADS)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  3. Virtual reality in surgical training.

    PubMed

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  4. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Access and Interoperability

    NASA Astrophysics Data System (ADS)

    Fan, D.; He, B.; Xiao, J.; Li, S.; Li, C.; Cui, C.; Yu, C.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Mi, L.; Wan, W.; Wang, J.

    2015-09-01

    Data access and interoperability module connects the observation proposals, data, virtual machines and software. According to the unique identifier of PI (principal investigator), an email address or an internal ID, data can be collected by PI's proposals, or by the search interfaces, e.g. conesearch. Files associated with the searched results could be easily transported to cloud storages, including the storage with virtual machines, or several commercial platforms like Dropbox. Benefitted from the standards of IVOA (International Observatories Alliance), VOTable formatted searching result could be sent to kinds of VO software. Latter endeavor will try to integrate more data and connect archives and some other astronomical resources.

  5. An efficient approach for improving virtual machine placement in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Ghobaei-Arani, Mostafa; Shamsi, Mahboubeh; Rahmanian, Ali A.

    2017-11-01

    The ever increasing demand for the cloud services requires more data centres. The power consumption in the data centres is a challenging problem for cloud computing, which has not been considered properly by the data centre developer companies. Especially, large data centres struggle with the power cost and the Greenhouse gases production. Hence, employing the power efficient mechanisms are necessary to optimise the mentioned effects. Moreover, virtual machine (VM) placement can be used as an effective method to reduce the power consumption in data centres. In this paper by grouping both virtual and physical machines, and taking into account the maximum absolute deviation during the VM placement, the power consumption as well as the service level agreement (SLA) deviation in data centres are reduced. To this end, the best-fit decreasing algorithm is utilised in the simulation to reduce the power consumption by about 5% compared to the modified best-fit decreasing algorithm, and at the same time, the SLA violation is improved by 6%. Finally, the learning automata are used to a trade-off between power consumption reduction from one side, and SLA violation percentage from the other side.

  6. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    PubMed

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.

  7. Free Factories: Unified Infrastructure for Data Intensive Web Services

    PubMed Central

    Zaranek, Alexander Wait; Clegg, Tom; Vandewege, Ward; Church, George M.

    2010-01-01

    We introduce the Free Factory, a platform for deploying data-intensive web services using small clusters of commodity hardware and free software. Independently administered virtual machines called Freegols give application developers the flexibility of a general purpose web server, along with access to distributed batch processing, cache and storage services. Each cluster exploits idle RAM and disk space for cache, and reserves disks in each node for high bandwidth storage. The batch processing service uses a variation of the MapReduce model. Virtualization allows every CPU in the cluster to participate in batch jobs. Each 48-node cluster can achieve 4-8 gigabytes per second of disk I/O. Our intent is to use multiple clusters to process hundreds of simultaneous requests on multi-hundred terabyte data sets. Currently, our applications achieve 1 gigabyte per second of I/O with 123 disks by scheduling batch jobs on two clusters, one of which is located in a remote data center. PMID:20514356

  8. A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.

    PubMed

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-03-09

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.

  9. A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks

    PubMed Central

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-01-01

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962

  10. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.

    PubMed

    Podlewska, Sabina; Czarnecki, Wojciech M; Kafel, Rafał; Bojarski, Andrzej J

    2017-02-27

    The growing computational abilities of various tools that are applied in the broadly understood field of computer-aided drug design have led to the extreme popularity of virtual screening in the search for new biologically active compounds. Most often, the source of such molecules consists of commercially available compound databases, but they can also be searched for within the libraries of structures generated in silico from existing ligands. Various computational combinatorial approaches are based solely on the chemical structure of compounds, using different types of substitutions for new molecules formation. In this study, the starting point for combinatorial library generation was the fingerprint referring to the optimal substructural composition in terms of the activity toward a considered target, which was obtained using a machine learning-based optimization procedure. The systematic enumeration of all possible connections between preferred substructures resulted in the formation of target-focused libraries of new potential ligands. The compounds were initially assessed by machine learning methods using a hashed fingerprint to represent molecules; the distribution of their physicochemical properties was also investigated, as well as their synthetic accessibility. The examination of various fingerprints and machine learning algorithms indicated that the Klekota-Roth fingerprint and support vector machine were an optimal combination for such experiments. This study was performed for 8 protein targets, and the obtained compound sets and their characterization are publically available at http://skandal.if-pan.krakow.pl/comb_lib/ .

  11. Self-replicating machines in continuous space with virtual physics.

    PubMed

    Smith, Arnold; Turney, Peter; Ewaschuk, Robert

    2003-01-01

    JohnnyVon is an implementation of self-replicating machines in continuous two-dimensional space. Two types of particles drift about in a virtual liquid. The particles are automata with discrete internal states but continuous external relationships. Their internal states are governed by finite state machines, but their external relationships are governed by a simulated physics that includes Brownian motion, viscosity, and springlike attractive and repulsive forces. The particles can be assembled into patterns that can encode arbitrary strings of bits. We demonstrate that, if an arbitrary seed pattern is put in a soup of separate individual particles, the pattern will replicate by assembling the individual particles into copies of itself. We also show that, given sufficient time, a soup of separate individual particles will eventually spontaneously form self-replicating patterns. We discuss the implications of JohnnyVon for research in nanotechnology, theoretical biology, and artificial life.

  12. Noise and Vibration Risk Prevention Virtual Web for Ubiquitous Training

    ERIC Educational Resources Information Center

    Redel-Macías, María Dolores; Cubero-Atienza, Antonio J.; Martínez-Valle, José Miguel; Pedrós-Pérez, Gerardo; del Pilar Martínez-Jiménez, María

    2015-01-01

    This paper describes a new Web portal offering experimental labs for ubiquitous training of university engineering students in work-related risk prevention. The Web-accessible computer program simulates the noise and machine vibrations met in the work environment, in a series of virtual laboratories that mimic an actual laboratory and provide the…

  13. Using shadow page cache to improve isolated drivers performance.

    PubMed

    Zheng, Hao; Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much.

  14. Using Shadow Page Cache to Improve Isolated Drivers Performance

    PubMed Central

    Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe

    2015-01-01

    With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much. PMID:25815373

  15. VirtualSpace: A vision of a machine-learned virtual space environment

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  16. Virtual pools for interactive analysis and software development through an integrated Cloud environment

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Italiano, A.; Salomoni, D.; Calabrese Melcarne, A. K.

    2011-12-01

    WNoDeS, an acronym for Worker Nodes on Demand Service, is software developed at CNAF-Tier1, the National Computing Centre of the Italian Institute for Nuclear Physics (INFN) located in Bologna. WNoDeS provides on demand, integrated access to both Grid and Cloud resources through virtualization technologies. Besides the traditional use of computing resources in batch mode, users need to have interactive and local access to a number of systems. WNoDeS can dynamically select these computers instantiating Virtual Machines, according to the requirements (computing, storage and network resources) of users through either the Open Cloud Computing Interface API, or through a web console. An interactive use is usually limited to activities in user space, i.e. where the machine configuration is not modified. In some other instances the activity concerns development and testing of services and thus implies the modification of the system configuration (and, therefore, root-access to the resource). The former use case is a simple extension of the WNoDeS approach, where the resource is provided in interactive mode. The latter implies saving the virtual image at the end of each user session so that it can be presented to the user at subsequent requests. This work describes how the LHC experiments at INFN-Bologna are testing and making use of these dynamically created ad-hoc machines via WNoDeS to support flexible, interactive analysis and software development at the INFN Tier-1 Computing Centre.

  17. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    ERIC Educational Resources Information Center

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  18. MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development

    PubMed Central

    Korkmaz, Selcuk; Zararsiz, Gokmen; Goksuluk, Dincer

    2015-01-01

    Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/. PMID:25928885

  19. Prediction Based Proactive Thermal Virtual Machine Scheduling in Green Clouds

    PubMed Central

    Kinger, Supriya; Kumar, Rajesh; Sharma, Anju

    2014-01-01

    Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated. PMID:24737962

  20. Virtual reality hardware and graphic display options for brain-machine interfaces

    PubMed Central

    Marathe, Amar R.; Carey, Holle L.; Taylor, Dawn M.

    2009-01-01

    Virtual reality hardware and graphic displays are reviewed here as a development environment for brain-machine interfaces (BMIs). Two desktop stereoscopic monitors and one 2D monitor were compared in a visual depth discrimination task and in a 3D target-matching task where able-bodied individuals used actual hand movements to match a virtual hand to different target hands. Three graphic representations of the hand were compared: a plain sphere, a sphere attached to the fingertip of a realistic hand and arm, and a stylized pacman-like hand. Several subjects had great difficulty using either stereo monitor for depth perception when perspective size cues were removed. A mismatch in stereo and size cues generated inappropriate depth illusions. This phenomenon has implications for choosing target and virtual hand sizes in BMI experiments. Target matching accuracy was about as good with the 2D monitor as with either 3D monitor. However, users achieved this accuracy by exploring the boundaries of the hand in the target with carefully controlled movements. This method of determining relative depth may not be possible in BMI experiments if movement control is more limited. Intuitive depth cues, such as including a virtual arm, can significantly improve depth perception accuracy with or without stereo viewing. PMID:18006069

  1. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  2. myChEMBL: a virtual machine implementation of open data and cheminformatics tools.

    PubMed

    Ochoa, Rodrigo; Davies, Mark; Papadatos, George; Atkinson, Francis; Overington, John P

    2014-01-15

    myChEMBL is a completely open platform, which combines public domain bioactivity data with open source database and cheminformatics technologies. myChEMBL consists of a Linux (Ubuntu) Virtual Machine featuring a PostgreSQL schema with the latest version of the ChEMBL database, as well as the latest RDKit cheminformatics libraries. In addition, a self-contained web interface is available, which can be modified and improved according to user specifications. The VM is available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myChEMBL/current. The web interface and web services code is available at: https://github.com/rochoa85/myChEMBL.

  3. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  4. Examining Effects of Virtual Machine Settings on Voice over Internet Protocol in a Private Cloud Environment

    ERIC Educational Resources Information Center

    Liao, Yuan

    2011-01-01

    The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…

  5. New Virtual Field Trips. Revised Edition.

    ERIC Educational Resources Information Center

    Cooper, Gail; Cooper, Garry

    This book is an annotated guidebook, arranged by subject matter, of World Wide Web sites for K-12 students. The following chapters are included: (1) Virtual Time Machine (i.e., sites that cover topics in world history); (2) Tour the World (i.e., sites that include information about countries); (3) Outer Space; (4) The Great Outdoors; (5) Aquatic…

  6. Virtual Factory Framework for Supporting Production Planning and Control.

    PubMed

    Kibira, Deogratias; Shao, Guodong

    2017-01-01

    Developing optimal production plans for smart manufacturing systems is challenging because shop floor events change dynamically. A virtual factory incorporating engineering tools, simulation, and optimization generates and communicates performance data to guide wise decision making for different control levels. This paper describes such a platform specifically for production planning. We also discuss verification and validation of the constituent models. A case study of a machine shop is used to demonstrate data generation for production planning in a virtual factory.

  7. Sputnik: ad hoc distributed computation.

    PubMed

    Völkel, Gunnar; Lausser, Ludwig; Schmid, Florian; Kraus, Johann M; Kestler, Hans A

    2015-04-15

    In bioinformatic applications, computationally demanding algorithms are often parallelized to speed up computation. Nevertheless, setting up computational environments for distributed computation is often tedious. Aim of this project were the lightweight ad hoc set up and fault-tolerant computation requiring only a Java runtime, no administrator rights, while utilizing all CPU cores most effectively. The Sputnik framework provides ad hoc distributed computation on the Java Virtual Machine which uses all supplied CPU cores fully. It provides a graphical user interface for deployment setup and a web user interface displaying the current status of current computation jobs. Neither a permanent setup nor administrator privileges are required. We demonstrate the utility of our approach on feature selection of microarray data. The Sputnik framework is available on Github http://github.com/sysbio-bioinf/sputnik under the Eclipse Public License. hkestler@fli-leibniz.de or hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less

  9. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  10. Efficient operating system level virtualization techniques for cloud resources

    NASA Astrophysics Data System (ADS)

    Ansu, R.; Samiksha; Anju, S.; Singh, K. John

    2017-11-01

    Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.

  11. Plancton: an opportunistic distributed computing project based on Docker containers

    NASA Astrophysics Data System (ADS)

    Concas, Matteo; Berzano, Dario; Bagnasco, Stefano; Lusso, Stefano; Masera, Massimo; Puccio, Maximiliano; Vallero, Sara

    2017-10-01

    The computing power of most modern commodity computers is far from being fully exploited by standard usage patterns. In this work we describe the development and setup of a virtual computing cluster based on Docker containers used as worker nodes. The facility is based on Plancton: a lightweight fire-and-forget background service. Plancton spawns and controls a local pool of Docker containers on a host with free resources, by constantly monitoring its CPU utilisation. It is designed to release the resources allocated opportunistically, whenever another demanding task is run by the host user, according to configurable policies. This is attained by killing a number of running containers. One of the advantages of a thin virtualization layer such as Linux containers is that they can be started almost instantly upon request. We will show how fast the start-up and disposal of containers eventually enables us to implement an opportunistic cluster based on Plancton daemons without a central control node, where the spawned Docker containers behave as job pilots. Finally, we will show how Plancton was configured to run up to 10 000 concurrent opportunistic jobs on the ALICE High-Level Trigger facility, by giving a considerable advantage in terms of management compared to virtual machines.

  12. Virtual Employment Test Bed Operational Research and Systems Analysis to Test Armaments Designs Early in the Life Cycle

    DTIC Science & Technology

    2014-06-01

    motion capture data used to determine position and orientation of a Soldier’s head, turret and the M2 machine gun • Controlling and acquiring user/weapon...data from the M2 simulation machine gun • Controlling paintball guns used to fire at the GPK during an experimental run • Sending and receiving TCP...Mounted, Armor/Cavalry, Combat Engineers, Field Artillery Cannon Crewmember, or MP duty assignment – Currently M2 .50 Caliber Machine Gun qualified

  13. An Introduction to 3-D Sound

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    This talk will overview the basic technologies related to the creation of virtual acoustic images, and the potential of including spatial auditory displays in human-machine interfaces. Research into the perceptual error inherent in both natural and virtual spatial hearing is reviewed, since the formation of improved technologies is tied to psychoacoustic research. This includes a discussion of Head Related Transfer Function (HRTF) measurement techniques (the HRTF provides important perceptual cues within a virtual acoustic display). Many commercial applications of virtual acoustics have so far focused on games and entertainment ; in this review, other types of applications are examined, including aeronautic safety, voice communications, virtual reality, and room acoustic simulation. In particular, the notion that realistic simulation is optimized within a virtual acoustic display when head motion and reverberation cues are included within a perceptual model.

  14. The research of hourglass worm dynamic balancing simulation based on SolidWorks motion

    NASA Astrophysics Data System (ADS)

    Wang, Zhuangzhuang; Yang, Jie; Liu, Pingyi; Zhao, Junpeng

    2018-02-01

    Hourglass worm is extensively used in industry due to its characteristic of heavy-load and a large reduction ratio. Varying sizes of unbalanced mass distribution appeared in the design of a single head worm. With machines developing towards higher speed and precision, the vibration and shock caused by the unbalanced mass distribution of rotating parts must be considered. Therefore, the balance grade of these parts must meet higher requirements. A method based on theoretical analysis and SolidWorks motion software simulation is presented in this paper; the virtual dynamic balance simulation test of the hourglass worm was carried out during the design of the product, so as to ensure that the hourglass worm meet the requirements of dynamic balance in the design process. This can effectively support the structural design of the hourglass worm and provide a way of thinking and designing the same type of products.

  15. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  16. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  17. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  18. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  19. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  20. PANDA: A distributed multiprocessor operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubb, P.

    1989-01-01

    PANDA is a design for a distributed multiprocessor and an operating system. PANDA is designed to allow easy expansion of both hardware and software. As such, the PANDA kernel provides only message passing and memory and process management. The other features needed for the system (device drivers, secondary storage management, etc.) are provided as replaceable user tasks. The thesis presents PANDA's design and implementation, both hardware and software. PANDA uses multiple 68010 processors sharing memory on a VME bus, each such node potentially connected to others via a high speed network. The machine is completely homogeneous: there are no differencesmore » between processors that are detectable by programs running on the machine. A single two-processor node has been constructed. Each processor contains memory management circuits designed to allow processors to share page tables safely. PANDA presents a programmers' model similar to the hardware model: a job is divided into multiple tasks, each having its own address space. Within each task, multiple processes share code and data. Tasks can send messages to each other, and set up virtual circuits between themselves. Peripheral devices such as disc drives are represented within PANDA by tasks. PANDA divides secondary storage into volumes, each volume being accessed by a volume access task, or VAT. All knowledge about the way that data is stored on a disc is kept in its volume's VAT. The design is such that PANDA should provide a useful testbed for file systems and device drivers, as these can be installed without recompiling PANDA itself, and without rebooting the machine.« less

  1. Open access for ALICE analysis based on virtualization technology

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  2. Exorcising the Ghost in the Machine: Synthetic Spectral Data Cubes for Assessing Big Data Algorithms

    NASA Astrophysics Data System (ADS)

    Araya, M.; Solar, M.; Mardones, D.; Hochfärber, T.

    2015-09-01

    The size and quantity of the data that is being generated by large astronomical projects like ALMA, requires a paradigm change in astronomical data analysis. Complex data, such as highly sensitive spectroscopic data in the form of large data cubes, are not only difficult to manage, transfer and visualize, but they make traditional data analysis techniques unfeasible. Consequently, the attention has been placed on machine learning and artificial intelligence techniques, to develop approximate and adaptive methods for astronomical data analysis within a reasonable computational time. Unfortunately, these techniques are usually sub optimal, stochastic and strongly dependent of the parameters, which could easily turn into “a ghost in the machine” for astronomers and practitioners. Therefore, a proper assessment of these methods is not only desirable but mandatory for trusting them in large-scale usage. The problem is that positively verifiable results are scarce in astronomy, and moreover, science using bleeding-edge instrumentation naturally lacks of reference values. We propose an Astronomical SYnthetic Data Observations (ASYDO), a virtual service that generates synthetic spectroscopic data in the form of data cubes. The objective of the tool is not to produce accurate astrophysical simulations, but to generate a large number of labelled synthetic data, to assess advanced computing algorithms for astronomy and to develop novel Big Data algorithms. The synthetic data is generated using a set of spectral lines, template functions for spatial and spectral distributions, and simple models that produce reasonable synthetic observations. Emission lines are obtained automatically using IVOA's SLAP protocol (or from a relational database) and their spectral profiles correspond to distributions in the exponential family. The spatial distributions correspond to simple functions (e.g., 2D Gaussian), or to scalable template objects. The intensity, broadening and radial velocity of each line is given by very simple and naive physical models, yet ASYDO's generic implementation supports new user-made models, which potentially allows adding more realistic simulations. The resulting data cube is saved as a FITS file, also including all the tables and images used for generating the cube. We expect to implement ASYDO as a virtual observatory service in the near future.

  3. Enhanced emotional responses during social coordination with a virtual partner

    PubMed Central

    Dumas, Guillaume; Kelso, J.A. Scott; Tognoli, Emmanuelle

    2016-01-01

    Emotion and motion, though seldom studied in tandem, are complementary aspects of social experience. This study investigates variations in emotional responses during movement coordination between a human and a Virtual Partner (VP), an agent whose virtual finger movements are driven by the Haken-Kelso-Bunz (HKB) equations of Coordination Dynamics. Twenty-one subjects were instructed to coordinate finger movements with the VP in either inphase or antiphase patterns. By adjusting model parameters, we manipulated the ‘intention’ of VP as cooperative or competitive with the human's instructed goal. Skin potential responses (SPR) were recorded to quantify the intensity of emotional response. At the end of each trial, subjects rated the VP's intention and whether they thought their partner was another human being or a machine. We found greater emotional responses when subjects reported that their partner was human and when coordination was stable. That emotional responses are strongly influenced by dynamic features of the VP's behavior, has implications for mental health, brain disorders and the design of socially cooperative machines. PMID:27094374

  4. iRODS-Based Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.

    2011-12-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.

  5. Introduction of Virtualization Technology to Multi-Process Model Checking

    NASA Technical Reports Server (NTRS)

    Leungwattanakit, Watcharin; Artho, Cyrille; Hagiya, Masami; Tanabe, Yoshinori; Yamamoto, Mitsuharu

    2009-01-01

    Model checkers find failures in software by exploring every possible execution schedule. Java PathFinder (JPF), a Java model checker, has been extended recently to cover networked applications by caching data transferred in a communication channel. A target process is executed by JPF, whereas its peer process runs on a regular virtual machine outside. However, non-deterministic target programs may produce different output data in each schedule, causing the cache to restart the peer process to handle the different set of data. Virtualization tools could help us restore previous states of peers, eliminating peer restart. This paper proposes the application of virtualization technology to networked model checking, concentrating on JPF.

  6. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  7. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  8. Strength computation of forged parts taking into account strain hardening and damage

    NASA Astrophysics Data System (ADS)

    Cristescu, Michel L.

    2004-06-01

    Modern non-linear simulation software, such as FORGE 3 (registered trade mark of TRANSVALOR), are able to compute the residual stresses, the strain hardening and the damage during the forging process. A thermally dependent elasto-visco-plastic law is used to simulate the behavior of the material of the hot forged piece. A modified Lemaitre law coupled with elasticiy, plasticity and thermic is used to simulate the damage. After the simulation of the different steps of the forging process, the part is cooled and then virtually machined, in order to obtain the finished part. An elastic computation is then performed to equilibrate the residual stresses, so that we obtain the true geometry of the finished part after machining. The response of the part to the loadings it will sustain during it's life is then computed, taking into account the residual stresses, the strain hardening and the damage that occur during forging. This process is illustrated by the forging, virtual machining and stress analysis of an aluminium wheel hub.

  9. GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography

    NASA Technical Reports Server (NTRS)

    Roark, J. H.; Masuoka, C. M.; Frey, H. V.

    2004-01-01

    GRIDVIEW is being developed by the GEODYNAMICS Branch at NASA's Goddard Space Flight Center and can be downloaded on the web at http://geodynamics.gsfc.nasa.gov/gridview/. The program is very mature and has been successfully used for more than four years, but is still under development as we add new features for data analysis and visualization. The software can run on any computer supported by the IDL virtual machine application supplied by RSI. The virtual machine application is currently available for recent versions of MS Windows, MacOS X, Red Hat Linux and UNIX. Minimum system memory requirement is 32 MB, however loading large data sets may require larger amounts of RAM to function adequately.

  10. Dynamically programmable cache

    NASA Astrophysics Data System (ADS)

    Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas

    1998-10-01

    Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).

  11. Volunteered Cloud Computing for Disaster Management

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.

  12. SU-F-E-13: Design and Fabrication of Gynacological Brachytherapy Shielding & Non Shielding Applicators Using Indigenously Developed 3D Printing Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, S

    Purpose: In this innovative work we have developed Gynecological Brachytherapy shielding & Non Shielding Applicators and compared with the commercially available applicators by using the indigenously developed 3D Printing machine. Methods: We have successfully indigenously developed the 3D printing machine. Which contain the 3 dimensional motion platform, Heater unit, base plate, ect… To fabricate the Gynecological Brachytherapy shielding & non shielding applicators the 3D design were developed in the computer as virtual design. This virtual design is made in a CAD computer file using a 3D modeling program. Separate programme for the shielding & non shielding applicators. We have alsomore » provided the extra catheter insert provision in the applicator for the multiple catheter. The DICOM file of the applicator were then converted to stereo Lithography file for the 3D printer. The shielding & Non Shielding Applicators were printed on a indigenously developed 3D printer material. The same dimensions were used to develop the applicators in the acrylic material also for the comparative study. A CT scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. To commission the process, basic CT and dose properties of the printing materials were measured in photon beams and compared against water and soft tissue. Applicator were then scanned to confirm the placement of multiple catheter position. Finally dose distributions with rescanned CTs were compared with those computer-generated applicators. Results: The doses measured from the ion Chamber and X-Omat film test were within 2%. The shielded applicator reduce the rectal dose comparatively with the non shielded applicator. Conclusion: As of submission 3 unique cylinders have been designed, printed, and tested dosimetrically. A standardizable workflow for commissioning custom 3D printed applicators was codified and will be reported.« less

  13. The Linux operating system: An introduction

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1995-01-01

    Linux is a Unix-like operating system for Intel 386/486/Pentium based IBM-PCs and compatibles. The kernel of this operating system was written from scratch by Linus Torvalds and, although copyrighted by the author, may be freely distributed. A world-wide group has collaborated in developing Linux on the Internet. Linux can run the powerful set of compilers and programming tools of the Free Software Foundation, and XFree86, a port of the X Window System from MIT. Most capabilities associated with high performance workstations, such as networking, shared file systems, electronic mail, TeX, LaTeX, etc. are freely available for Linux. It can thus transform cheap IBM-PC compatible machines into Unix workstations with considerable capabilities. The author explains how Linux may be obtained, installed and networked. He also describes some interesting applications for Linux that are freely available. The enormous consumer market for IBM-PC compatible machines continually drives down prices of CPU chips, memory, hard disks, CDROMs, etc. Linux can convert such machines into powerful workstations that can be used for teaching, research and software development. For professionals who use Unix based workstations at work, Linux permits virtually identical working environments on their personal home machines. For cost conscious educational institutions Linux can create world-class computing environments from cheap, easily maintained, PC clones. Finally, for university students, it provides an essentially cost-free path away from DOS into the world of Unix and X Windows.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  15. The Fluke Security Project

    DTIC Science & Technology

    2000-04-01

    be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling

  16. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    NASA Astrophysics Data System (ADS)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  17. The perception of spatial layout in real and virtual worlds.

    PubMed

    Arthur, E J; Hancock, P A; Chrysler, S T

    1997-01-01

    As human-machine interfaces grow more immersive and graphically-oriented, virtual environment systems become more prominent as the medium for human-machine communication. Often, virtual environments (VE) are built to provide exact metrical representations of existing or proposed physical spaces. However, it is not known how individuals develop representational models of these spaces in which they are immersed and how those models may be distorted with respect to both the virtual and real-world equivalents. To evaluate the process of model development, the present experiment examined participant's ability to reproduce a complex spatial layout of objects having experienced them previously under different viewing conditions. The layout consisted of nine common objects arranged on a flat plane. These objects could be viewed in a free binocular virtual condition, a free binocular real-world condition, and in a static monocular view of the real world. The first two allowed active exploration of the environment while the latter condition allowed the participant only a passive opportunity to observe from a single viewpoint. Viewing conditions were a between-subject variable with 10 participants randomly assigned to each condition. Performance was assessed using mapping accuracy and triadic comparisons of relative inter-object distances. Mapping results showed a significant effect of viewing condition where, interestingly, the static monocular condition was superior to both the active virtual and real binocular conditions. Results for the triadic comparisons showed a significant interaction for gender by viewing condition in which males were more accurate than females. These results suggest that the situation model resulting from interaction with a virtual environment was indistinguishable from interaction with real objects at least within the constraints of the present procedure.

  18. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  19. Performance of machine-learning scoring functions in structure-based virtual screening.

    PubMed

    Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel

    2017-04-25

    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).

  20. Bridging Realty to Virtual Reality: Investigating Gender Effect and Student Engagement on Learning through Video Game Play in an Elementary School Classroom

    ERIC Educational Resources Information Center

    Annetta, Leonard; Mangrum, Jennifer; Holmes, Shawn; Collazo, Kimberly; Cheng, Meng-Tzu

    2009-01-01

    The purpose of this study was to examine students' learning of simple machines, a fifth-grade (ages 10-11) forces and motion unit, and student engagement using a teacher-created Multiplayer Educational Gaming Application. This mixed-method study collected pre-test/post-test results to determine student knowledge about simple machines. A survey…

  1. Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts

    NASA Astrophysics Data System (ADS)

    hong, Zhou; Wenhua, Lu

    2017-01-01

    Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.

  2. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  3. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  4. DIRAC universal pilots

    NASA Astrophysics Data System (ADS)

    Stagni, F.; McNab, A.; Luzzi, C.; Krzemien, W.; Consortium, DIRAC

    2017-10-01

    In the last few years, new types of computing models, such as IAAS (Infrastructure as a Service) and IAAC (Infrastructure as a Client), gained popularity. New resources may come as part of pledged resources, while others are in the form of opportunistic ones. Most but not all of these new infrastructures are based on virtualization techniques. In addition, some of them, present opportunities for multi-processor computing slots to the users. Virtual Organizations are therefore facing heterogeneity of the available resources and the use of an Interware software like DIRAC to provide the transparent, uniform interface has become essential. The transparent access to the underlying resources is realized by implementing the pilot model. DIRAC’s newest generation of generic pilots (the so-called Pilots 2.0) are the “pilots for all the skies”, and have been successfully released in production more than a year ago. They use a plugin mechanism that makes them easily adaptable. Pilots 2.0 have been used for fetching and running jobs on every type of resource, being it a Worker Node (WN) behind a CREAM/ARC/HTCondor/DIRAC Computing element, a Virtual Machine running on IaaC infrastructures like Vac or BOINC, on IaaS cloud resources managed by Vcycle, the LHCb High Level Trigger farm nodes, and any type of opportunistic computing resource. Make a machine a “Pilot Machine”, and all diversities between them will disappear. This contribution describes how pilots are made suitable for different resources, and the recent steps taken towards a fully unified framework, including monitoring. Also, the cases of multi-processor computing slots either on real or virtual machines, with the whole node or a partition of it, is discussed.

  5. A virtual simulator designed for collision prevention in proton therapy.

    PubMed

    Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Hee Chul; Kim, Jin Sung; Choi, Doo Ho

    2015-10-01

    In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. Three-dimensional (3D) modeling of a gantry inner-floor, nozzle, and robotic-couch was performed using SolidWorks based on the manufacturer's machine data. To obtain patient body information, a 3D-scanner was utilized right before CT scanning. Using the acquired images, a 3D-image of the patient's body contour was reconstructed. The accuracy of the image was confirmed against the CT image of a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of the gantry, nozzle, and couch in real scale. A collision, if any, was examined both in static and dynamic modes. The static mode assessed collisions only at fixed positions of the machine's components, while the dynamic mode operated any time a component was in motion. A collision was identified if any voxels of two components, e.g., the nozzle and the patient or couch, overlapped when calculating volume locations. The event and collision point were visualized, and collision volumes were reported. All components were successfully assembled, and the motions were accurately controlled. The 3D-shape of the phantom agreed with CT images within a deviation of 2 mm. Collision situations were simulated within minutes, and the results were displayed and reported. The developed software will be useful in improving patient safety and clinical efficiency of proton therapy.

  6. Application of a distributed network in computational fluid dynamic simulations

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  7. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    NASA Technical Reports Server (NTRS)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  8. How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach.

    PubMed

    Ichikawa, Daisuke; Saito, Toki; Ujita, Waka; Oyama, Hiroshi

    2016-12-01

    Our purpose was to develop a new machine-learning approach (a virtual health check-up) toward identification of those at high risk of hyperuricemia. Applying the system to general health check-ups is expected to reduce medical costs compared with administering an additional test. Data were collected during annual health check-ups performed in Japan between 2011 and 2013 (inclusive). We prepared training and test datasets from the health check-up data to build prediction models; these were composed of 43,524 and 17,789 persons, respectively. Gradient-boosting decision tree (GBDT), random forest (RF), and logistic regression (LR) approaches were trained using the training dataset and were then used to predict hyperuricemia in the test dataset. Undersampling was applied to build the prediction models to deal with the imbalanced class dataset. The results showed that the RF and GBDT approaches afforded the best performances in terms of sensitivity and specificity, respectively. The area under the curve (AUC) values of the models, which reflected the total discriminative ability of the classification, were 0.796 [95% confidence interval (CI): 0.766-0.825] for the GBDT, 0.784 [95% CI: 0.752-0.815] for the RF, and 0.785 [95% CI: 0.752-0.819] for the LR approaches. No significant differences were observed between pairs of each approach. Small changes occurred in the AUCs after applying undersampling to build the models. We developed a virtual health check-up that predicted the development of hyperuricemia using machine-learning methods. The GBDT, RF, and LR methods had similar predictive capability. Undersampling did not remarkably improve predictive power. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2012-03-20

    The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less

  10. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.

    PubMed

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  11. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    PubMed

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  12. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing

    PubMed Central

    Sjöström, Hans-Erik; Englund, Claire

    2016-01-01

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990

  13. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  14. Making extreme computations possible with virtual machines

    NASA Astrophysics Data System (ADS)

    Reuter, J.; Chokoufe Nejad, B.; Ohl, T.

    2016-10-01

    State-of-the-art algorithms generate scattering amplitudes for high-energy physics at leading order for high-multiplicity processes as compiled code (in Fortran, C or C++). For complicated processes the size of these libraries can become tremendous (many GiB). We show that amplitudes can be translated to byte-code instructions, which even reduce the size by one order of magnitude. The byte-code is interpreted by a Virtual Machine with runtimes comparable to compiled code and a better scaling with additional legs. We study the properties of this algorithm, as an extension of the Optimizing Matrix Element Generator (O'Mega). The bytecode matrix elements are available as alternative input for the event generator WHIZARD. The bytecode interpreter can be implemented very compactly, which will help with a future implementation on massively parallel GPUs.

  15. A One-Year Case Study: Understanding the Rich Potential of Project-Based Learning in a Virtual Reality Class for High School Students

    ERIC Educational Resources Information Center

    Morales, Teresa M.; Bang, EunJin; Andre, Thomas

    2013-01-01

    This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…

  16. Can Science Education Research Give an Answer to Questions Posed by History of Science and Technology? The Case of Steam Engine's Measurement

    ERIC Educational Resources Information Center

    Kanderakis, Nikos E.

    2009-01-01

    According to the principle of virtual velocities, if on a simple machine in equilibrium we suppose a slight virtual movement, then the ratio of weights or forces equals the inverse ratio of velocities or displacements. The product of the weight raised or force applied multiplied by the height or displacement plays a central role there. British…

  17. Methods For Self-Organizing Software

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2005-10-18

    A method for dynamically self-assembling and executing software is provided, containing machines that self-assemble execution sequences and data structures. In addition to ordered functions calls (found commonly in other software methods), mutual selective bonding between bonding sites of machines actuates one or more of the bonding machines. Two or more machines can be virtually isolated by a construct, called an encapsulant, containing a population of machines and potentially other encapsulants that can only bond with each other. A hierarchical software structure can be created using nested encapsulants. Multi-threading is implemented by populations of machines in different encapsulants that are interacting concurrently. Machines and encapsulants can move in and out of other encapsulants, thereby changing the functionality. Bonding between machines' sites can be deterministic or stochastic with bonding triggering a sequence of actions that can be implemented by each machine. A self-assembled execution sequence occurs as a sequence of stochastic binding between machines followed by their deterministic actuation. It is the sequence of bonding of machines that determines the execution sequence, so that the sequence of instructions need not be contiguous in memory.

  18. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  19. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  20. A Novel Artificial Bee Colony Approach of Live Virtual Machine Migration Policy Using Bayes Theorem

    PubMed Central

    Xu, Gaochao; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24385877

  1. A novel artificial bee colony approach of live virtual machine migration policy using Bayes theorem.

    PubMed

    Xu, Gaochao; Ding, Yan; Zhao, Jia; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  2. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  3. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  4. On Why It Is Impossible to Prove that the BDX90 Dispatcher Implements a Time-sharing System

    NASA Technical Reports Server (NTRS)

    Boyer, R. S.; Moore, J. S.

    1983-01-01

    The Software Implemented Fault Tolerance SIFT system, is written in PASCAL except for about a page of machine code. The SIFT system implements a small time sharing system in which PASCAL programs for separate application tasks are executed according to a schedule with real time constraints. The PASCAL language has no provision for handling the notion of an interrupt such as the B930 clock interrupt. The PASCAL language also lacks the notion of running a PASCAL subroutine for a given amount of time, suspending it, saving away the suspension, and later activating the suspension. Machine code was used to overcome these inadequacies of PASCAL. Code which handles clock interrupts and suspends processes is called a dispatcher. The time sharing/virtual machine idea is completely destroyed by the reconfiguration task. After termination of the reconfiguration task, the tasks run by the dispatcher have no relation to those run before reconfiguration. It is impossible to view the dispatcher as a time-sharing system implementing virtual BDX930s running concurrently when one process can wipe out the others.

  5. Distributed decision support for the 21st century mission space

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2002-07-01

    The past decade has produced significant changes in the conduct of military operations: increased humanitarian missions, asymmetric warfare, the reliance on coalitions and allies, stringent rules of engagement, concern about casualties, and the need for sustained air operations. Future mission commanders will need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Integral to this process is creating situational assessment-understanding the mission space, simulation to analyze alternative futures, current capabilities, planning assessments, course-of-action assessments, and a common operational picture-keeping everyone on the same sheet of paper. Decision support tools in a distributed collaborative environment offer the capability of decomposing these complex multitask processes and distributing them over a dynamic set of execution assets. Decision support technologies can semi-automate activities, such as planning an operation, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that is not currently fused. The marriage of information and simulation technologies provides the mission commander with a collaborative virtual environment for planning and decision support.

  6. Virtualization of open-source secure web services to support data exchange in a pediatric critical care research network

    PubMed Central

    Sward, Katherine A; Newth, Christopher JL; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael

    2015-01-01

    Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. PMID:25796596

  7. The Impact of Virtual Collaboration and Collaboration Technologies on Knowledge Transfer and Team Performance in Distributed Organizations

    ERIC Educational Resources Information Center

    Ngoma, Ngoma Sylvestre

    2013-01-01

    Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…

  8. Mapping, Awareness, and Virtualization Network Administrator Training Tool (MAVNATT) Architecture and Framework

    DTIC Science & Technology

    2015-06-01

    unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python

  9. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  10. Fundamental Study about the Landscape Estimation and Analysis by CG

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshio; Miyagoshi, Takashi; Takamatsu, Mamoru; Sassa, Kazuhiro

    In recent years, the color of advertising signboards or vending machines on the streets should be harmonized with the surrounding landscape. In this study, we investigated how the colors (red and white) of the vending machines virtually installed by CG would affect the traditional landscape. 20 subjects estimated landscape samples in Hida-Furukawa by the SD technique. The result of our experiment shows that the vending machines have great influence on the surrounding landscape. On the other hand, we have confirmed that they can harmonize with the circumference landscape by the color to use.

  11. A Framework for Analyzing the Whole Body Surface Area from a Single View

    PubMed Central

    Doretto, Gianfranco; Adjeroh, Donald

    2017-01-01

    We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895

  12. Performance of machine-learning scoring functions in structure-based virtual screening

    PubMed Central

    Wójcikowski, Maciej; Ballester, Pedro J.; Siedlecki, Pawel

    2017-01-01

    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and −0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary). PMID:28440302

  13. Decentralized real-time simulation of forest machines

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael

    2000-10-01

    To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.

  14. Virtual terrain: a security-based representation of a computer network

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh; Argauer, Brian

    2008-03-01

    Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.

  15. Distributed virtual environment for emergency medical training

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.; Garcia, Brian W.; Godsell-Stytz, Gayl M.

    1997-07-01

    In many professions where individuals must work in a team in a high stress environment to accomplish a time-critical task, individual and team performance can benefit from joint training using distributed virtual environments (DVEs). One professional field that lacks but needs a high-fidelity team training environment is the field of emergency medicine. Currently, emergency department (ED) medical personnel train by using words to create a metal picture of a situation for the physician and staff, who then cooperate to solve the problems portrayed by the word picture. The need in emergency medicine for realistic virtual team training is critical because ED staff typically encounter rarely occurring but life threatening situations only once in their careers and because ED teams currently have no realistic environment in which to practice their team skills. The resulting lack of experience and teamwork makes diagnosis and treatment more difficult. Virtual environment based training has the potential to redress these shortfalls. The objective of our research is to develop a state-of-the-art virtual environment for emergency medicine team training. The virtual emergency room (VER) allows ED physicians and medical staff to realistically prepare for emergency medical situations by performing triage, diagnosis, and treatment on virtual patients within an environment that provides them with the tools they require and the team environment they need to realistically perform these three tasks. There are several issues that must be addressed before this vision is realized. The key issues deal with distribution of computations; the doctor and staff interface to the virtual patient and ED equipment; the accurate simulation of individual patient organs' response to injury, medication, and treatment; and an accurate modeling of the symptoms and appearance of the patient while maintaining a real-time interaction capability. Our ongoing work addresses all of these issues. In this paper we report on our prototype VER system and its distributed system architecture for an emergency department distributed virtual environment for emergency medical staff training. The virtual environment enables emergency department physicians and staff to develop their diagnostic and treatment skills using the virtual tools they need to perform diagnostic and treatment tasks. Virtual human imagery, and real-time virtual human response are used to create the virtual patient and present a scenario. Patient vital signs are available to the emergency department team as they manage the virtual case. The work reported here consists of the system architectures we developed for the distributed components of the virtual emergency room. The architectures we describe consist of the network level architecture as well as the software architecture for each actor within the virtual emergency room. We describe the role of distributed interactive simulation and other enabling technologies within the virtual emergency room project.

  16. Humans and machines in space: The vision, the challenge, the payoff; AAS Goddard Memorial Symposium, 29th, Washington, DC, March 14-15, 1991

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.

  17. Software Support Measurement and Estimating for Oracle Database Applications Using Mark II Function Points

    DTIC Science & Technology

    1992-12-01

    36 V.33. Coe ncint of De minstioi ........................ 37 V3A. F-Raio .................................... 37 V3.5... de ations. Instructions ae defined as lines of code or card images. Thus, a line containin two or mome souce statements counts as one instruction; a...understand the productivity paradox, recall de concept of virtual machines. When a higher level machine groups ogether many instructm of a lower level

  18. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    PubMed

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further using multiple metrics with much larger scale comparisons, prospective testing as well as assessment of different fingerprints and DNN architectures beyond those used.

  19. Detecting Distributed SQL Injection Attacks in a Eucalyptus Cloud Environment

    NASA Technical Reports Server (NTRS)

    Kebert, Alan; Barnejee, Bikramjit; Solano, Juan; Solano, Wanda

    2013-01-01

    The cloud computing environment offers malicious users the ability to spawn multiple instances of cloud nodes that are similar to virtual machines, except that they can have separate external IP addresses. In this paper we demonstrate how this ability can be exploited by an attacker to distribute his/her attack, in particular SQL injection attacks, in such a way that an intrusion detection system (IDS) could fail to identify this attack. To demonstrate this, we set up a small private cloud, established a vulnerable website in one instance, and placed an IDS within the cloud to monitor the network traffic. We found that an attacker could quite easily defeat the IDS by periodically altering its IP address. To detect such an attacker, we propose to use multi-agent plan recognition, where the multiple source IPs are considered as different agents who are mounting a collaborative attack. We show that such a formulation of this problem yields a more sophisticated approach to detecting SQL injection attacks within a cloud computing environment.

  20. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  1. NGScloud: RNA-seq analysis of non-model species using cloud computing.

    PubMed

    Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai

    2018-05-03

    RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.

  2. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  3. Implementation of NASTRAN on the IBM/370 CMS operating system

    NASA Technical Reports Server (NTRS)

    Britten, S. S.; Schumacker, B.

    1980-01-01

    The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.

  4. Virtual reality hardware for use in interactive 3D data fusion and visualization

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  5. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  6. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE PAGES

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...

    2017-02-03

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  7. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  8. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.

    PubMed

    Aromaa, Susanna; Väänänen, Kaisa

    2016-09-01

    In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...

  10. 34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...

  11. 34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending machines on Federal property which has been disbursed to the State licensing agency by a property managing...

  12. Grid Application Meta-Repository System: Repository Interconnectivity and Cross-domain Application Usage in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen

    Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.

  13. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  14. Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED

    NASA Astrophysics Data System (ADS)

    Fang, Bao-Long; Yang, Zhen; Ye, Liu

    2009-05-01

    We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.

  15. A Unified Access Model for Interconnecting Heterogeneous Wireless Networks

    DTIC Science & Technology

    2015-05-01

    Defined Networking, OpenFlow, WiFi, LTE 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 18 19a. NAME OF...Machine Configurations with WiFi and LTE 4 2.3 Three Virtual Machine Configurations with WiFi and LTE 5 3. Results and Discussion 5 4. Summary and...WiFi and long-term evolution ( LTE ), and created a communication pathway between them via a central controller node. Our simulation serves as a

  16. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.

  17. Logical optical line terminal technologies towards flexible and highly reliable metro- and access-integrated networks

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki

    2017-01-01

    In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele

    The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center are working on a multi-year Collaborative Research and Development Agreement.With the knowledge developed in the first year on how to provision and manage a federation of virtual machines through Cloud management systems. In this second year, we expanded the work on provisioning and federation, increasing both scale and diversity of solutions, and we started to build on-demand services on the established fabric, introducing the paradigm of Platform as a Service to assist with the execution of scientific workflows. We have enabled scientific workflows ofmore » stakeholders to run on multiple cloud resources at the scale of 1,000 concurrent machines. The demonstrations have been in the areas of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federation of Cloud Resources, and (c) On-demand Services for ScientificWorkflows.« less

  19. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  20. A Cloud-based Approach to Medical NLP

    PubMed Central

    Chard, Kyle; Russell, Michael; Lussier, Yves A.; Mendonça, Eneida A; Silverstein, Jonathan C.

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN. PMID:22195072

  1. A cloud-based approach to medical NLP.

    PubMed

    Chard, Kyle; Russell, Michael; Lussier, Yves A; Mendonça, Eneida A; Silverstein, Jonathan C

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN.

  2. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions.

    PubMed

    Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

    2013-04-01

    Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71-100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.

  3. Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury.

    PubMed

    Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe

    2016-01-01

    Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.

  4. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    NASA Technical Reports Server (NTRS)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!

  5. Media-Augmented Exercise Machines

    NASA Astrophysics Data System (ADS)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Laszewski, G.; Gawor, J.; Lane, P.

    In this paper we report on the features of the Java Commodity Grid Kit (Java CoG Kit). The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus Toolkit protocols, allowing the Java CoG Kit to also communicate with the services distributed as part of the C Globus Toolkit reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well asmore » numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise and peer-to-peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus Toolkit software. In this paper we also report on the efforts to develop serverside Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Grid jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.« less

  7. MO-FG-202-09: Virtual IMRT QA Using Machine Learning: A Multi-Institutional Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, G; Scheuermann, R; Solberg, T

    Purpose: To validate a machine learning approach to Virtual IMRT QA for accurately predicting gamma passing rates using different QA devices at different institutions. Methods: A Virtual IMRT QA was constructed using a machine learning algorithm based on 416 IMRT plans, in which QA measurements were performed using diode-array detectors and a 3%local/3mm with 10% threshold. An independent set of 139 IMRT measurements from a different institution, with QA data based on portal dosimetry using the same gamma index and 10% threshold, was used to further test the algorithm. Plans were characterized by 90 different complexity metrics. A weighted poisonmore » regression with Lasso regularization was trained to predict passing rates using the complexity metrics as input. Results: In addition to predicting passing rates with 3% accuracy for all composite plans using diode-array detectors, passing rates for portal dosimetry on per-beam basis were predicted with an error <3.5% for 120 IMRT measurements. The remaining measurements (19) had large areas of low CU, where portal dosimetry has larger disagreement with the calculated dose and, as such, large errors were expected. These beams need to be further modeled to correct the under-response in low dose regions. Important features selected by Lasso to predict gamma passing rates were: complete irradiated area outline (CIAO) area, jaw position, fraction of MLC leafs with gaps smaller than 20 mm or 5mm, fraction of area receiving less than 50% of the total CU, fraction of the area receiving dose from penumbra, weighted Average Irregularity Factor, duty cycle among others. Conclusion: We have demonstrated that the Virtual IMRT QA can predict passing rates using different QA devices and across multiple institutions. Prediction of QA passing rates could have profound implications on the current IMRT process.« less

  8. Virtualization and cloud computing in dentistry.

    PubMed

    Chow, Frank; Muftu, Ali; Shorter, Richard

    2014-01-01

    The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.

  9. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  10. An Analysis Platform for Mobile Ad Hoc Network (MANET) Scenario Execution Log Data

    DTIC Science & Technology

    2016-01-01

    these technologies. 4.1 Backend Technologies • Java 1.8 • my-sql-connector- java -5.0.8.jar • Tomcat • VirtualBox • Kali MANET Virtual Machine 4.2...Frontend Technologies • LAMPP 4.3 Database • MySQL Server 5. Database The SEDAP database settings and structure are described in this section...contains all the backend java functionality including the web services, should be placed in the webapps directory inside the Tomcat installation

  11. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  12. A Lightweight Intelligent Virtual Cinematography System for Machinima Production

    DTIC Science & Technology

    2007-01-01

    portmanteau of machine and cinema , machinima refers to the innovation of leveraging video game technology to greatly ease the creation of computer...selecting camera angles to capture the action of an a priori unknown script as aesthetically appropriate cinema . There are a number of challenges therein...Proc. of the 4th International Conf. on Autonomous Agents. Young, R.M. and Riedl, M.O. 2003. Towards an Architecture for Intelligent Control of Narrative in Interactive Virtual Worlds. In Proc. of IUI 2003.

  13. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    NASA Astrophysics Data System (ADS)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic models varied by type of model (static, physical, virtual), but were generally favorable. The Traditional group students, however, indicated that the lack of adequate representation of motion in the static diagrams was a problem, and wished they had access to the physical and virtual models.

  14. Testing simple deceptive honeypot tools

    NASA Astrophysics Data System (ADS)

    Yahyaoui, Aymen; Rowe, Neil C.

    2015-05-01

    Deception can be a useful defensive technique against cyber-attacks; it has the advantage of unexpectedness to attackers and offers a variety of tactics. Honeypots are a good tool for deception. They act as decoy computers to confuse attackers and exhaust their time and resources. This work tested the effectiveness of two free honeypot tools in real networks by varying their location and virtualization, and the effects of adding more deception to them. We tested a Web honeypot tool, Glastopf and an SSH honeypot tool Kippo. We deployed the Web honeypot in both a residential network and our organization's network and as both real and virtual machines; the organization honeypot attracted more attackers starting in the third week. Results also showed that the virtual honeypots received attacks from more unique IP addresses. They also showed that adding deception to the Web honeypot, in the form of additional linked Web pages and interactive features, generated more interest by attackers. For the purpose of comparison, we used examined log files of a legitimate Web-site www.cmand.org. The traffic distributions for the Web honeypot and the legitimate Web site showed similarities (with much malicious traffic from Brazil), but the SSH honeypot was different (with much malicious traffic from China). Contrary to previous experiments where traffic to static honeypots decreased quickly, our honeypots received increasing traffic over a period of three months. It appears that both honeypot tools are useful for providing intelligence about cyber-attack methods, and that additional deception is helpful.

  15. Automated Inference of Chemical Discriminants of Biological Activity.

    PubMed

    Raschka, Sebastian; Scott, Anne M; Huertas, Mar; Li, Weiming; Kuhn, Leslie A

    2018-01-01

    Ligand-based virtual screening has become a standard technique for the efficient discovery of bioactive small molecules. Following assays to determine the activity of compounds selected by virtual screening, or other approaches in which dozens to thousands of molecules have been tested, machine learning techniques make it straightforward to discover the patterns of chemical groups that correlate with the desired biological activity. Defining the chemical features that generate activity can be used to guide the selection of molecules for subsequent rounds of screening and assaying, as well as help design new, more active molecules for organic synthesis.The quantitative structure-activity relationship machine learning protocols we describe here, using decision trees, random forests, and sequential feature selection, take as input the chemical structure of a single, known active small molecule (e.g., an inhibitor, agonist, or substrate) for comparison with the structure of each tested molecule. Knowledge of the atomic structure of the protein target and its interactions with the active compound are not required. These protocols can be modified and applied to any data set that consists of a series of measured structural, chemical, or other features for each tested molecule, along with the experimentally measured value of the response variable you would like to predict or optimize for your project, for instance, inhibitory activity in a biological assay or ΔG binding . To illustrate the use of different machine learning algorithms, we step through the analysis of a dataset of inhibitor candidates from virtual screening that were tested recently for their ability to inhibit GPCR-mediated signaling in a vertebrate.

  16. Electro-chemical grinding

    NASA Technical Reports Server (NTRS)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Wayne; Borders, Tammie

    INL successfully developed a proof of concept for "Software Defined Anything" by emulating the laboratory's business applications that run on Virtual Machines. The work INL conducted demonstrates to industry on how this methodology can be used to improve security, automate and repeat processes, and improve consistency.

  18. Develop, Build, and Test a Virtual Lab to Support a Vulnerability Training System

    DTIC Science & Technology

    2004-09-01

    docs.us.dell.com/support/edocs/systems/pe1650/ en /it/index.htm> (20 August 2004) “HOWTO: Installing Web Services with Linux /Tomcat/Apache/Struts...configured as host machines with VMware and VNC running on a Linux RedHat 9 Kernel. An Apache-Tomcat web server was configured as the external interface to...1650, dual processor, blade servers were configured as host machines with VMware and VNC running on a Linux RedHat 9 Kernel. An Apache-Tomcat web

  19. Increasing Realism in Virtual Marksmanship Simulators

    DTIC Science & Technology

    2012-12-01

    M16 5.56 mm service rifle M2 .50-caliber machine gun M240 7.62 mm machine gun M9 9 mm Berretta MPI Mean Point of Impact NHQC Navy Handgun...Corps 14 Concepts in Programs, 2008, p. 214). ISMT has the capability to use a wide variety of weapons, including the .50cal. machinegun ( M2 ), 9...a time. ISMT has the unique capability to “provide immediate feedback to the instructor and trainee on weapon trigger pull, cant position, barrel

  20. Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams

    DTIC Science & Technology

    1987-07-30

    The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines

  1. Handling knowledge via Concept Maps: a space weather use case

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro; Fox, Peter

    Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.

  2. Design of virtual SCADA simulation system for pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less

  3. Numerical Solutions of One Reduced Bethe-Salpeter Equation for the Coulombic Bound States Composed of Virtual Constituents

    NASA Astrophysics Data System (ADS)

    Chen, Jiao-Kai

    2018-04-01

    We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.

  4. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    PubMed

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  5. The fully programmable spacecraft: procedural sequencing for JPL deep space missions using VML (Virtual Machine Language)

    NASA Technical Reports Server (NTRS)

    Grasso, C. A.

    2002-01-01

    This paper lays out language constructs and capabilities, code features, and VML operations development concepts. The ability to migrate to the spacecraft functionality which is more traditionally implemented on the ground is examined.

  6. IPCS user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGoldrick, P.R.

    1980-12-11

    The Interprocess Communications System (IPCS) was written to provide a virtual machine upon which the Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) could be built. The hardware upon which the IPCS runs consists of nine minicomputers sharing some common memory.

  7. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  8. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  9. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    PubMed Central

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-01-01

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722

  10. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  11. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    PubMed

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  12. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment.

    PubMed

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C; Poizner, Howard; Liu, Thomas T

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects' brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as "theory of mind." However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners' operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording.

  13. Virtualization of open-source secure web services to support data exchange in a pediatric critical care research network.

    PubMed

    Frey, Lewis J; Sward, Katherine A; Newth, Christopher J L; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael

    2015-11-01

    To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  15. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  16. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment

    PubMed Central

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C.; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects’ brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as “theory of mind.” However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners’ operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording. PMID:26150964

  17. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    PubMed

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1

    NASA Technical Reports Server (NTRS)

    Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.

    2010-01-01

    This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards

  19. Performance prediction: A case study using a multi-ring KSR-1 machine

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhu, Jianping

    1995-01-01

    While computers with tens of thousands of processors have successfully delivered high performance power for solving some of the so-called 'grand-challenge' applications, the notion of scalability is becoming an important metric in the evaluation of parallel machine architectures and algorithms. In this study, the prediction of scalability and its application are carefully investigated. A simple formula is presented to show the relation between scalability, single processor computing power, and degradation of parallelism. A case study is conducted on a multi-ring KSR1 shared virtual memory machine. Experimental and theoretical results show that the influence of topology variation of an architecture is predictable. Therefore, the performance of an algorithm on a sophisticated, heirarchical architecture can be predicted and the best algorithm-machine combination can be selected for a given application.

  20. 34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... blind vendor in any amount exceeding the average net income of the total number of blind vendors in the... 34 Education 2 2010-07-01 2010-07-01 false Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending...

  1. 34 CFR 395.8 - Distribution and use of income from vending machines on Federal property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... blind vendor in any amount exceeding the average net income of the total number of blind vendors in the... 34 Education 2 2011-07-01 2010-07-01 true Distribution and use of income from vending machines on... use of income from vending machines on Federal property. (a) Vending machine income from vending...

  2. Integration of Openstack cloud resources in BES III computing cluster

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cheng, Yaodong; Huang, Qiulan; Cheng, Zhenjing; Shi, Jingyan

    2017-10-01

    Cloud computing provides a new technical means for data processing of high energy physics experiment. However, the resource of each queue is fixed and the usage of the resource is static in traditional job management system. In order to make it simple and transparent for physicist to use, we developed a virtual cluster system (vpmanager) to integrate IHEPCloud and different batch systems such as Torque and HTCondor. Vpmanager provides dynamic virtual machines scheduling according to the job queue. The BES III use case results show that resource efficiency is greatly improved.

  3. [Distribution of virtual water of crops in Beijing].

    PubMed

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  4. A location selection policy of live virtual machine migration for power saving and load balancing.

    PubMed

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  5. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    PubMed Central

    Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165

  6. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    NASA Astrophysics Data System (ADS)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  7. Synthetic hardware performance analysis in virtualized cloud environment for healthcare organization.

    PubMed

    Tan, Chee-Heng; Teh, Ying-Wah

    2013-08-01

    The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.

  8. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    PubMed

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.

  9. Suitability of digital camcorders for virtual reality image data capture

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola; Maas, Hans-Gerd

    1998-12-01

    Today's consumer market digital camcorders offer features which make them appear quite interesting devices for virtual reality data capture. The paper compares a digital camcorder with an analogue camcorder and a machine vision type CCD camera and discusses the suitability of these three cameras for virtual reality applications. Besides the discussion of technical features of the cameras, this includes a detailed accuracy test in order to define the range of applications. In combination with the cameras, three different framegrabbers are tested. The geometric accuracy potential of all three cameras turned out to be surprisingly large, and no problems were noticed in the radiometric performance. On the other hand, some disadvantages have to be reported: from the photogrammetrists point of view, the major disadvantage of most camcorders is the missing possibility to synchronize multiple devices, limiting the suitability for 3-D motion data capture. Moreover, the standard video format contains interlacing, which is also undesirable for all applications dealing with moving objects or moving cameras. Further disadvantages are computer interfaces with functionality, which is still suboptimal. While custom-made solutions to these problems are probably rather expensive (and will make potential users turn back to machine vision like equipment), this functionality could probably be included by the manufacturers at almost zero cost.

  10. 76 FR 174 - International Business Machines (IBM), Global Sales Operations Organization, Sales and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...] International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Manager Roles; One Teleworker Located in Charleston, WV; International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Unit, Relations Analyst and Band 8...

  11. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.

  12. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.

    PubMed

    Han, Bucong; Ma, Xiaohua; Zhao, Ruiying; Zhang, Jingxian; Wei, Xiaona; Liu, Xianghui; Liu, Xin; Zhang, Cunlong; Tan, Chunyan; Jiang, Yuyang; Chen, Yuzong

    2012-11-23

    Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates.

  13. Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less

  14. The effective use of virtualization for selection of data centers in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Parthiban, Latha

    2018-04-01

    Data centers are the places which consist of network of remote servers to store, access and process the data. Cloud computing is a technology where users worldwide will submit the tasks and the service providers will direct the requests to the data centers which are responsible for execution of tasks. The servers in the data centers need to employ the virtualization concept so that multiple tasks can be executed simultaneously. In this paper we proposed an algorithm for data center selection based on energy of virtual machines created in server. The virtualization energy in each of the server is calculated and total energy of the data center is obtained by the summation of individual server energy. The tasks submitted are routed to the data center with least energy consumption which will result in minimizing the operational expenses of a service provider.

  15. Using virtualization to protect the proprietary material science applications in volunteer computing

    NASA Astrophysics Data System (ADS)

    Khrapov, Nikolay P.; Rozen, Valery V.; Samtsevich, Artem I.; Posypkin, Mikhail A.; Sukhomlin, Vladimir A.; Oganov, Artem R.

    2018-04-01

    USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.

  16. A nested virtualization tool for information technology practical education.

    PubMed

    Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R

    2016-01-01

    A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.

  17. Virtual hospital--a computer-aided platform to evaluate the sense of direction.

    PubMed

    Jiang, Ching-Fen; Li, Yuan-Shyi

    2007-01-01

    This paper presents a computer-aided platform, named Virtual Hospital (VH), to evaluate the wayfinding ability that is found impaired in senile people with early dementia. The development of the VH takes the advantage of virtual reality technology to make the evaluation of the sense of direction more convenient and accurate then the conventional way. A pilot study was carried out to test its feasibility in differentiating the sense of direction between different genders. The results with significant differences in the response time (p<0.05) and the pointing error (p<0.01) between genders suggest the potential of the VH for clinical uses. Further improvement on the human-machine interface is necessary to make it easy for geriatric people to use.

  18. Parallel computation and the Basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1992-12-16

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to-use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communication costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis and Parallelmore » Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  19. Parallel computation and the basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1993-05-01

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communications costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis andmore » Parallel Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  20. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  1. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    PubMed Central

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-01-01

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors. PMID:28934163

  2. Human Factors Consideration for the Design of Collaborative Machine Assistants

    NASA Astrophysics Data System (ADS)

    Park, Sung; Fisk, Arthur D.; Rogers, Wendy A.

    Recent improvements in technology have facilitated the use of robots and virtual humans not only in entertainment and engineering but also in the military (Hill et al., 2003), healthcare (Pollack et al., 2002), and education domains (Johnson, Rickel, & Lester, 2000). As active partners of humans, such machine assistants can take the form of a robot or a graphical representation and serve the role of a financial assistant, a health manager, or even a social partner. As a result, interactive technologies are becoming an integral component of people's everyday lives.

  3. Hardware Support for Malware Defense and End-to-End Trust

    DTIC Science & Technology

    2017-02-01

    IoT) sensors and actuators, mobile devices and servers; cloud based, stand alone, and traditional mainframes. The prototype developed demonstrated...virtual machines. For mobile platforms we developed and prototyped an architecture supporting separation of personalities on the same platform...4 3.1. MOBILE

  4. Request queues for interactive clients in a shared file system of a parallel computing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin

    Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less

  5. Geometric dimension model of virtual astronaut body for ergonomic analysis of man-machine space system

    NASA Astrophysics Data System (ADS)

    Qianxiang, Zhou

    2012-07-01

    It is very important to clarify the geometric characteristic of human body segment and constitute analysis model for ergonomic design and the application of ergonomic virtual human. The typical anthropometric data of 1122 Chinese men aged 20-35 years were collected using three-dimensional laser scanner for human body. According to the correlation between different parameters, curve fitting were made between seven trunk parameters and ten body parameters with the SPSS 16.0 software. It can be concluded that hip circumference and shoulder breadth are the most important parameters in the models and the two parameters have high correlation with the others parameters of human body. By comparison with the conventional regressive curves, the present regression equation with the seven trunk parameters is more accurate to forecast the geometric dimensions of head, neck, height and the four limbs with high precision. Therefore, it is greatly valuable for ergonomic design and analysis of man-machine system.This result will be very useful to astronaut body model analysis and application.

  6. A Virtual Geant4 Environment

    NASA Astrophysics Data System (ADS)

    Iwai, Go

    2015-12-01

    We describe the development of an environment for Geant4 consisting of an application and data that provide users with a more efficient way to access Geant4 applications without having to download and build the software locally. The environment is platform neutral and offers the users near-real time performance. In addition, the environment consists of data and Geant4 libraries built using low-level virtual machine (LLVM) tools which can produce bitcode that can be embedded in HTML and accessed via a browser. The bitcode is downloaded to the local machine via the browser and can then be configured by the user. This approach provides a way of minimising the risk of leaking potentially sensitive data used to construct the Geant4 model and application in the medical domain for treatment planning. We describe several applications that have used this approach and compare their performance with that of native applications. We also describe potential user communities that could benefit from this approach.

  7. The core legion object model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, M.; Grimshaw, A.

    1996-12-31

    The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes themore » core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.« less

  8. An Extended Proof-Carrying Code Framework for Security Enforcement

    NASA Astrophysics Data System (ADS)

    Pirzadeh, Heidar; Dubé, Danny; Hamou-Lhadj, Abdelwahab

    The rapid growth of the Internet has resulted in increased attention to security to protect users from being victims of security threats. In this paper, we focus on security mechanisms that are based on Proof-Carrying Code (PCC) techniques. In a PCC system, a code producer sends a code along with its safety proof to the consumer. The consumer executes the code only if the proof is valid. Although PCC has been shown to be a useful security framework, it suffers from the sheer size of typical proofs -proofs of even small programs can be considerably large. In this paper, we propose an extended PCC framework (EPCC) in which, instead of the proof, a proof generator for the program in question is transmitted. This framework enables the execution of the proof generator and the recovery of the proof on the consumer's side in a secure manner using a newly created virtual machine called the VEP (Virtual Machine for Extended PCC).

  9. Development of a HIPAA-compliant environment for translational research data and analytics.

    PubMed

    Bradford, Wayne; Hurdle, John F; LaSalle, Bernie; Facelli, Julio C

    2014-01-01

    High-performance computing centers (HPC) traditionally have far less restrictive privacy management policies than those encountered in healthcare. We show how an HPC can be re-engineered to accommodate clinical data while retaining its utility in computationally intensive tasks such as data mining, machine learning, and statistics. We also discuss deploying protected virtual machines. A critical planning step was to engage the university's information security operations and the information security and privacy office. Access to the environment requires a double authentication mechanism. The first level of authentication requires access to the university's virtual private network and the second requires that the users be listed in the HPC network information service directory. The physical hardware resides in a data center with controlled room access. All employees of the HPC and its users take the university's local Health Insurance Portability and Accountability Act training series. In the first 3 years, researcher count has increased from 6 to 58.

  10. New Web Server - the Java Version of Tempest - Produced

    NASA Technical Reports Server (NTRS)

    York, David W.; Ponyik, Joseph G.

    2000-01-01

    A new software design and development effort has produced a Java (Sun Microsystems, Inc.) version of the award-winning Tempest software (refs. 1 and 2). In 1999, the Embedded Web Technology (EWT) team received a prestigious R&D 100 Award for Tempest, Java Version. In this article, "Tempest" will refer to the Java version of Tempest, a World Wide Web server for desktop or embedded systems. Tempest was designed at the NASA Glenn Research Center at Lewis Field to run on any platform for which a Java Virtual Machine (JVM, Sun Microsystems, Inc.) exists. The JVM acts as a translator between the native code of the platform and the byte code of Tempest, which is compiled in Java. These byte code files are Java executables with a ".class" extension. Multiple byte code files can be zipped together as a "*.jar" file for more efficient transmission over the Internet. Today's popular browsers, such as Netscape (Netscape Communications Corporation) and Internet Explorer (Microsoft Corporation) have built-in Virtual Machines to display Java applets.

  11. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.

    PubMed

    Yeh, Shih-Ching; Huang, Ming-Chun; Wang, Pa-Chun; Fang, Te-Yung; Su, Mu-Chun; Tsai, Po-Yi; Rizzo, Albert

    2014-10-01

    Dizziness is a major consequence of imbalance and vestibular dysfunction. Compared to surgery and drug treatments, balance training is non-invasive and more desired. However, training exercises are usually tedious and the assessment tool is insufficient to diagnose patient's severity rapidly. An interactive virtual reality (VR) game-based rehabilitation program that adopted Cawthorne-Cooksey exercises, and a sensor-based measuring system were introduced. To verify the therapeutic effect, a clinical experiment with 48 patients and 36 normal subjects was conducted. Quantified balance indices were measured and analyzed by statistical tools and a Support Vector Machine (SVM) classifier. In terms of balance indices, patients who completed the training process are progressed and the difference between normal subjects and patients is obvious. Further analysis by SVM classifier show that the accuracy of recognizing the differences between patients and normal subject is feasible, and these results can be used to evaluate patients' severity and make rapid assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. So ware-Defined Network Solutions for Science Scenarios: Performance Testing Framework and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh

    High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less

  13. Low Latency Messages on Distributed Memory Multiprocessors

    DOE PAGES

    Rosing, Matt; Saltz, Joel

    1995-01-01

    This article describes many of the issues in developing an efficient interface for communication on distributed memory machines. Although the hardware component of message latency is less than 1 ws on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 μs. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. This article describes several tests performed and many of the issues involvedmore » in supporting low latency messages on distributed memory machines.« less

  14. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    PubMed

    Nadkarni, P M; Miller, P L

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations.

  15. Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong

    2017-08-01

    We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.

  16. 75 FR 48955 - Arbitration Panel Decision Under the Randolph-Sheppard Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... vending machine facility operated by a blind vendor at the USPS's Chicago Processing and Distribution... cafeteria operations are exempt from the Act and whether the vending machines operated by a private vendor at the Chicago Processing and Distribution Center are in direct competition with the vending machines...

  17. Airlift Operation Modeling Using Discrete Event Simulation (DES)

    DTIC Science & Technology

    2009-12-01

    Java ......................................................................................................20 2. Simkit...JRE Java Runtime Environment JVM Java Virtual Machine lbs Pounds LAM Load Allocation Mode LRM Landing Spot Reassignment Mode LEGO Listener Event...SOFTWARE DEVELOPMENT ENVIRONMENT The following are the software tools and development environment used for constructing the models. 1. Java Java

  18. The Warsaw Ghetto: A Shattered Window on the Holocaust.

    ERIC Educational Resources Information Center

    Burstin, Barbara Stern

    1980-01-01

    Reviews literature about the Warsaw ghetto uprising in April, 1943, in which Jewish resistance fighters fought to the last against the Nazi war machine. The author notes that history textbooks at both high school and college levels give virtually no mention of the revolt. (Author/KC)

  19. Networked Resources.

    ERIC Educational Resources Information Center

    Nickerson, Gord

    1991-01-01

    Describes the use and applications of the communications program Telenet for remote log-in, a basic interactive resource sharing service that enables users to connect to any machine on the Internet and conduct a session. The Virtual Terminal--the central component of Telenet--is also described, as well as problems with terminals, services…

  20. Lean Green Machines

    ERIC Educational Resources Information Center

    Villano, Matt

    2011-01-01

    Colleges and universities have been among the leaders nationwide in adopting green initiatives, partly due to their demographics, but also because they are facing their own budget pressures. Virtualization has become the poster child of many schools' efforts, because it provides significant bang for the buck. However, more and more higher…

  1. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  2. CHRONOS architecture: Experiences with an open-source services-oriented architecture for geoinformatics

    USGS Publications Warehouse

    Fils, D.; Cervato, C.; Reed, J.; Diver, P.; Tang, X.; Bohling, G.; Greer, D.

    2009-01-01

    CHRONOS's purpose is to transform Earth history research by seamlessly integrating stratigraphic databases and tools into a virtual on-line stratigraphic record. In this paper, we describe the various components of CHRONOS's distributed data system, including the encoding of semantic and descriptive data into a service-based architecture. We give examples of how we have integrated well-tested resources available from the open-source and geoinformatic communities, like the GeoSciML schema and the simple knowledge organization system (SKOS), into the services-oriented architecture to encode timescale and phylogenetic synonymy data. We also describe on-going efforts to use geospatially enhanced data syndication and informally including semantic information by embedding it directly into the XHTML Document Object Model (DOM). XHTML DOM allows machine-discoverable descriptive data such as licensing and citation information to be incorporated directly into data sets retrieved by users. ?? 2008 Elsevier Ltd. All rights reserved.

  3. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    PubMed

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four patients who were on medication reduced their intake by 81% (absolute reduction 1300 mg, gabapentin) and 33% (absolute reduction 75 mg, pregabalin). Improvements remained 6 months after the last treatment. Our findings suggest potential value in motor execution of the phantom limb as a treatment for phantom limb pain. Promotion of phantom motor execution aided by machine learning, augmented and virtual reality, and gaming is a non-invasive, non-pharmacological, and engaging treatment with no identified side-effects at present. Promobilia Foundation, VINNOVA, Jimmy Dahlstens Fond, PicoSolve, and Innovationskontor Väst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  5. Manufacturing data analytics using a virtual factory representation.

    PubMed

    Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun

    2017-01-01

    Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.

  6. Virtual Proprioception for eccentric training.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2017-07-01

    Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.

  7. The Multimission Image Processing Laboratory's virtual frame buffer interface

    NASA Technical Reports Server (NTRS)

    Wolfe, T.

    1984-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied interfaces. This variety of architectures and interfaces creates software development, maintenance and portability problems for application programs. Several machine-dependent graphics standards such as ANSI Core and GKS are available, but none of them are adequate for image processing. Therefore, the Multimission Image Processing laboratory project has implemented a programmer level virtual frame buffer interface. This interface makes all frame buffers appear as a generic frame buffer with a specified set of characteristics. This document defines the virtual frame uffer interface and provides information such as FORTRAN subroutine definitions, frame buffer characteristics, sample programs, etc. It is intended to be used by application programmers and system programmers who are adding new frame buffers to a system.

  8. Kanerva's sparse distributed memory: An associative memory algorithm well-suited to the Connection Machine

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1988-01-01

    The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.

  9. Cloud Based Resource for Data Hosting, Visualization and Analysis Using UCSC Cancer Genomics Browser | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.

  10. Performance Analysis of Saturated Induction Motors by Virtual Tests

    ERIC Educational Resources Information Center

    Ojaghi, M.; Faiz, J.; Kazemi, M.; Rezaei, M.

    2012-01-01

    Many undergraduate-level electrical machines textbooks give detailed treatments of the performance of induction motors. Students can deepen this understanding of motor performance by performing the appropriate practical work in laboratories or in simulation using proper software packages. This paper considers various common and less-common tests…

  11. Untangling the Tangled Webs We Weave: A Team Approach to Cyberspace.

    ERIC Educational Resources Information Center

    Broidy, Ellen; And Others

    Working in a cooperative team environment across libraries and job classifications, librarians and support staff at the University of California at Irvine (UCI) have mounted several successful web projects, including two versions of the Libraries' home page, a virtual reference collection, and Science Library "ANTswer Machine." UCI's…

  12. Computer Security Primer: Systems Architecture, Special Ontology and Cloud Virtual Machines

    ERIC Educational Resources Information Center

    Waguespack, Leslie J.

    2014-01-01

    With the increasing proliferation of multitasking and Internet-connected devices, security has reemerged as a fundamental design concern in information systems. The shift of IS curricula toward a largely organizational perspective of security leaves little room for focus on its foundation in systems architecture, the computational underpinnings of…

  13. Identification and Triage of Compromised Virtual Machines

    DTIC Science & Technology

    2014-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA APPLIED CYBER OPERATIONS CAPSTONE PROJECT REPORT Approved for public release...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S...IN APPLIED CYBER OPERATIONS from the NAVAL POSTGRADUATE SCHOOL September 2014 Authors: John Paulenich Chukwuemeka Agbedo

  14. Parallel Compilation on Virtual Machines in a Development Cloud Environment

    DTIC Science & Technology

    2013-09-01

    the potential impact of a possible course of action. 1-2 2. Approach We performed a simple experiment to determine whether the multiple CPUs...PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT NUMBER D-4996 H13 -001206 Institute for Defense Analyses 4850 Mark

  15. Big data analytics : predicting traffic flow regimes from simulated connected vehicle messages using data analytics and machine learning.

    DOT National Transportation Integrated Search

    2016-12-25

    The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...

  16. Full State Feedback Control for Virtual Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less

  17. Scientific Platform as a Service - Tools and solutions for efficient access to and analysis of oceanographic data

    NASA Astrophysics Data System (ADS)

    Vines, Aleksander; Hansen, Morten W.; Korosov, Anton

    2017-04-01

    Existing infrastructure international and Norwegian projects, e.g., NorDataNet, NMDC and NORMAP, provide open data access through the OPeNDAP protocol following the conventions for CF (Climate and Forecast) metadata, designed to promote the processing and sharing of files created with the NetCDF application programming interface (API). This approach is now also being implemented in the Norwegian Sentinel Data Hub (satellittdata.no) to provide satellite EO data to the user community. Simultaneously with providing simplified and unified data access, these projects also seek to use and establish common standards for use and discovery metadata. This then allows development of standardized tools for data search and (subset) streaming over the internet to perform actual scientific analysis. A combinnation of software tools, which we call a Scientific Platform as a Service (SPaaS), will take advantage of these opportunities to harmonize and streamline the search, retrieval and analysis of integrated satellite and auxiliary observations of the oceans in a seamless system. The SPaaS is a cloud solution for integration of analysis tools with scientific datasets via an API. The core part of the SPaaS is a distributed metadata catalog to store granular metadata describing the structure, location and content of available satellite, model, and in situ datasets. The analysis tools include software for visualization (also online), interactive in-depth analysis, and server-based processing chains. The API conveys search requests between system nodes (i.e., interactive and server tools) and provides easy access to the metadata catalog, data repositories, and the tools. The SPaaS components are integrated in virtual machines, of which provisioning and deployment are automatized using existing state-of-the-art open-source tools (e.g., Vagrant, Ansible, Docker). The open-source code for scientific tools and virtual machine configurations is under version control at https://github.com/nansencenter/, and is coupled to an online continuous integration system (e.g., Travis CI).

  18. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imae, T; Haga, A; Saotome, N

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less

  19. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  20. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  1. Reliability Analysis of Uniaxially Ground Brittle Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.

    1995-01-01

    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.

  2. Exploiting virtual synchrony in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, Thomas A.

    1987-01-01

    Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.

  3. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    PubMed Central

    Nadkarni, P. M.; Miller, P. L.

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations. PMID:1807632

  4. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    PubMed

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  5. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.

    PubMed

    Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A; Cabanes, Itziar; Pombo, Iñigo

    2014-05-19

    Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations.

  6. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  7. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods

    DTIC Science & Technology

    2014-08-01

    Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS

  8. World Virtual Observatory Organization

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail; Pinigin, Gennadij

    On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.

  9. Visualization and characterization of individual type III protein secretion machines in live bacteria

    PubMed Central

    Lara-Tejero, María; Bewersdorf, Jörg; Galán, Jorge E.

    2017-01-01

    Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine’s assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines. PMID:28533372

  10. Notes on a storage manager for the Clouds kernel

    NASA Technical Reports Server (NTRS)

    Pitts, David V.; Spafford, Eugene H.

    1986-01-01

    The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.

  11. Hands-free human-machine interaction with voice

    NASA Astrophysics Data System (ADS)

    Juang, B. H.

    2004-05-01

    Voice is natural communication interface between a human and a machine. The machine, when placed in today's communication networks, may be configured to provide automation to save substantial operating cost, as demonstrated in AT&T's VRCP (Voice Recognition Call Processing), or to facilitate intelligent services, such as virtual personal assistants, to enhance individual productivity. These intelligent services often need to be accessible anytime, anywhere (e.g., in cars when the user is in a hands-busy-eyes-busy situation or during meetings where constantly talking to a microphone is either undersirable or impossible), and thus call for advanced signal processing and automatic speech recognition techniques which support what we call ``hands-free'' human-machine communication. These techniques entail a broad spectrum of technical ideas, ranging from use of directional microphones and acoustic echo cancellatiion to robust speech recognition. In this talk, we highlight a number of key techniques that were developed for hands-free human-machine communication in the mid-1990s after Bell Labs became a unit of Lucent Technologies. A video clip will be played to demonstrate the accomplishement.

  12. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  13. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    NASA Astrophysics Data System (ADS)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  14. On the Selection of Models for Runtime Prediction of System Resources

    NASA Astrophysics Data System (ADS)

    Casolari, Sara; Colajanni, Michele

    Applications and services delivered through large Internet Data Centers are now feasible thanks to network and server improvement, but also to virtualization, dynamic allocation of resources and dynamic migrations. The large number of servers and resources involved in these systems requires autonomic management strategies because no amount of human administrators would be capable of cloning and migrating virtual machines in time, as well as re-distributing or re-mapping the underlying hardware. At the basis of most autonomic management decisions, there is the need of evaluating own global behavior and change it when the evaluation indicates that they are not accomplishing what they were intended to do or some relevant anomalies are occurring. Decisions algorithms have to satisfy different time scales constraints. In this chapter we are interested to short-term contexts where runtime prediction models work on the basis of time series coming from samples of monitored system resources, such as disk, CPU and network utilization. In similar environments, we have to address two main issues. First, original time series are affected by limited predictability because measurements are characterized by noises due to system instability, variable offered load, heavy-tailed distributions, hardware and software interactions. Moreover, there is no existing criteria that can help us to choose a suitable prediction model and related parameters with the purpose of guaranteeing an adequate prediction quality. In this chapter, we evaluate the impact that different choices on prediction models have on different time series, and we suggest how to treat input data and whether it is convenient to choose the parameters of a prediction model in a static or dynamic way. Our conclusions are supported by a large set of analyses on realistic and synthetic data traces.

  15. Guidelines for developing distributed virtual environment applications

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    1998-08-01

    We have conducted a variety of projects that served to investigate the limits of virtual environments and distributed virtual environment (DVE) technology for the military and medical professions. The projects include an application that allows the user to interactively explore a high-fidelity, dynamic scale model of the Solar System and a high-fidelity, photorealistic, rapidly reconfigurable aircraft simulator. Additional projects are a project for observing, analyzing, and understanding the activity in a military distributed virtual environment, a project to develop a distributed threat simulator for training Air Force pilots, a virtual spaceplane to determine user interface requirements for a planned military spaceplane system, and an automated wingman for use in supplementing or replacing human-controlled systems in a DVE. The last two projects are a virtual environment user interface framework; and a project for training hospital emergency department personnel. In the process of designing and assembling the DVE applications in support of these projects, we have developed rules of thumb and insights into assembling DVE applications and the environment itself. In this paper, we open with a brief review of the applications that were the source for our insights and then present the lessons learned as a result of these projects. The lessons we have learned fall primarily into five areas. These areas are requirements development, software architecture, human-computer interaction, graphical database modeling, and construction of computer-generated forces.

  16. Laboratory E-Notebooks: A Learning Object-Based Repository

    ERIC Educational Resources Information Center

    Abari, Ilior; Pierre, Samuel; Saliah-Hassane, Hamadou

    2006-01-01

    During distributed virtual laboratory experiment sessions, a major problem is to be able to collect, store, manage and share heterogeneous data (intermediate results, analysis, annotations, etc) manipulated simultaneously by geographically distributed teammates composing a virtual team. The electronic notebook is a possible response to this…

  17. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.

    PubMed

    Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib

    2017-09-12

    Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.

  18. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification

    PubMed Central

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  19. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    PubMed

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).

  20. Context-based virtual metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  1. Thundercloud: Domain specific information security training for the smart grid

    NASA Astrophysics Data System (ADS)

    Stites, Joseph

    In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.

  2. Virtual prototyping of drop test using explicit analysis

    NASA Astrophysics Data System (ADS)

    Todorov, Georgi; Kamberov, Konstantin

    2017-12-01

    Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.

  3. [Porting Radiotherapy Software of Varian to Cloud Platform].

    PubMed

    Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin

    2017-09-30

    To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.

  4. Virtual reality systems

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  5. Kevlar: Transitioning Helix from Research to Practice

    DTIC Science & Technology

    2015-04-01

    protective transformations are applied to application binaries before they are deployed. Salient features of Kevlar include applying high- entropy ...variety of classes. Kevlar uses novel, fine-grained, high- entropy diversification transformations to prevent an attacker from successfully exploiting...Kevlar include applying high- entropy randomization techniques, automated program repairs, leveraging highly-optimized virtual machine technology, and in

  6. Kevlar: Transitioning Helix for Research to Practice

    DTIC Science & Technology

    2016-03-01

    entropy randomization techniques, automated program repairs leveraging highly-optimized virtual machine technology, and developing a novel framework...attacker from exploiting residual vulnerabilities in a wide variety of classes. Helix/Kevlar uses novel, fine-grained, high- entropy diversification...the Air Force, and IARPA). Salient features of Helix/Kevlar include developing high- entropy randomization techniques, automated program repairs

  7. Identifying and Embedding Common Indicators of Compromise in Virtual Machines for Lab-Based Incident Response Education

    DTIC Science & Technology

    2015-09-01

    resistant to an attack. However, with techniques and motives ever-changing, it is not realistic to think that any organization is immune to threat...Berkeley, CA: McGraw- Hill/Osborne. Sikorski, M., & Honig, A. (2012). Practical malware analysis. San Francisco: No Starch Press. Skoudis, E

  8. Constructing Stylish Characters on Computer Graphics Systems.

    ERIC Educational Resources Information Center

    Goldman, Gary S.

    1980-01-01

    Computer graphics systems typically produce a single, machine-like character font. At most, these systems enable the user to (1) alter the aspect ratio (height-to-width ratio) of the characters, (2) specify a transformation matrix to slant the characters, and (3) define a virtual pen table to change the lineweight of the plotted characters.…

  9. Teach CAD and Measuring Skills through Reverse Engineering

    ERIC Educational Resources Information Center

    Board, Keith

    2012-01-01

    This article describes a reverse engineering activity that gives students hands-on, minds-on experience with measuring tools, machine parts, and CAD. The author developed this activity to give students an abundance of practical experience with measuring tools. Equally important, it provides a good interface between the virtual world of CAD 3D…

  10. Protein Analysis Meets Visual Word Recognition: A Case for String Kernels in the Brain

    ERIC Educational Resources Information Center

    Hannagan, Thomas; Grainger, Jonathan

    2012-01-01

    It has been recently argued that some machine learning techniques known as Kernel methods could be relevant for capturing cognitive and neural mechanisms (Jakel, Scholkopf, & Wichmann, 2009). We point out that "String kernels," initially designed for protein function prediction and spam detection, are virtually identical to one contending proposal…

  11. Nomadic Teaching, Vagabond Dreaming: An Examination of the Spaces That Schools Might Become

    ERIC Educational Resources Information Center

    Burke, Kevin J.; DeLeon, Abraham

    2015-01-01

    This article examines the multiple spaces of schooling as it shifts architecturally, geographically, and increasingly virtually. It aims to examine how how teachers might find new networks of power and subjectivities--using the interlocking concepts of the vagabond, the nomad, and imaginal machines--of historically situated bodies that perform and…

  12. From Floppies to Flash--Your Guide to Removable Media

    ERIC Educational Resources Information Center

    Berdinka, Matthew J.

    2005-01-01

    Technology that once involved a scary, mysterious machine the size of a small house now fits on desktops and commonly appears in offices, schools, and homes. Computers allow for processing, storing and transmitting data between two or more people virtually anywhere in the world. They also allow users to save documents, presentations, photos and…

  13. Using Amazon Web Services (AWS) to enable real-time, remote sensing of biophysical and anthropogenic conditions in green infrastructure systems in Philadelphia, an ultra-urban application of the Internet of Things (IoT)

    NASA Astrophysics Data System (ADS)

    Montalto, F. A.; Yu, Z.; Soldner, K.; Israel, A.; Fritch, M.; Kim, Y.; White, S.

    2017-12-01

    Urban stormwater utilities are increasingly using decentralized "green" infrastructure (GI) systems to capture stormwater and achieve compliance with regulations. Because environmental conditions, and design varies by GSI facility, monitoring of GSI systems under a range of conditions is essential. Conventional monitoring efforts can be costly because in-field data logging requires intense data transmission rates. The Internet of Things (IoT) can be used to more cost-effectively collect, store, and publish GSI monitoring data. Using 3G mobile networks, a cloud-based database was built on an Amazon Web Services (AWS) EC2 virtual machine to store and publish data collected with environmental sensors deployed in the field. This database can store multi-dimensional time series data, as well as photos and other observations logged by citizen scientists through a public engagement mobile app through a new Application Programming Interface (API). Also on the AWS EC2 virtual machine, a real-time QAQC flagging algorithm was developed to validate the sensor data streams.

  14. A dataset of stereoscopic images and ground-truth disparity mimicking human fixations in peripersonal space

    PubMed Central

    Canessa, Andrea; Gibaldi, Agostino; Chessa, Manuela; Fato, Marco; Solari, Fabio; Sabatini, Silvio P.

    2017-01-01

    Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO—GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction. PMID:28350382

  15. CernVM WebAPI - Controlling Virtual Machines from the Web

    NASA Astrophysics Data System (ADS)

    Charalampidis, I.; Berzano, D.; Blomer, J.; Buncic, P.; Ganis, G.; Meusel, R.; Segal, B.

    2015-12-01

    Lately, there is a trend in scientific projects to look for computing resources in the volunteering community. In addition, to reduce the development effort required to port the scientific software stack to all the known platforms, the use of Virtual Machines (VMs)u is becoming increasingly popular. Unfortunately their use further complicates the software installation and operation, restricting the volunteer audience to sufficiently expert people. CernVM WebAPI is a software solution addressing this specific case in a way that opens wide new application opportunities. It offers a very simple API for setting-up, controlling and interfacing with a VM instance in the users computer, while in the same time offloading the user from all the burden of downloading, installing and configuring the hypervisor. WebAPI comes with a lightweight javascript library that guides the user through the application installation process. Malicious usage is prohibited by offering a per-domain PKI validation mechanism. In this contribution we will overview this new technology, discuss its security features and examine some test cases where it is already in use.

  16. Programming Models for Concurrency and Real-Time

    NASA Astrophysics Data System (ADS)

    Vitek, Jan

    Modern real-time applications are increasingly large, complex and concurrent systems which must meet stringent performance and predictability requirements. Programming those systems require fundamental advances in programming languages and runtime systems. This talk presents our work on Flexotasks, a programming model for concurrent, real-time systems inspired by stream-processing and concurrent active objects. Some of the key innovations in Flexotasks are that it support both real-time garbage collection and region-based memory with an ownership type system for static safety. Communication between tasks is performed by channels with a linear type discipline to avoid copying messages, and by a non-blocking transactional memory facility. We have evaluated our model empirically within two distinct implementations, one based on Purdue’s Ovm research virtual machine framework and the other on Websphere, IBM’s production real-time virtual machine. We have written a number of small programs, as well as a 30 KLOC avionics collision detector application. We show that Flexotasks are capable of executing periodic threads at 10 KHz with a standard deviation of 1.2us and have performance competitive with hand coded C programs.

  17. Faster, Less Expensive Dies Using RSP Tooling

    NASA Astrophysics Data System (ADS)

    Knirsch, James R.

    2007-08-01

    RSP Tooling is an indirect spray form additive process that can produce production tooling for virtually any forming process and from virtually any metal. In the past 24 months a significant amount of research and development has been performed. This resulted in an increase in the basic metallurgical understanding of what transpires during the rapid solidification of the metal, significant improvements in the production machine up time, ceramic developments that have improved finish, process changes that have resulted in a shorter lead time for tool delivery, and the testing of many new alloys. RSP stands for Rapid Solidification Process and is the key to the superior metallurgical properties that result from the technology. Most metals that are sprayed in the process leave the machine with the same physical properties as the same metal normally achieves through heat treatment and in some cases the properties are superior. Many new applications are being pursued including INVAR tools for aerospace composite materials, and bimetallic tools made from tool steel and beryllium copper for die casting and plastic injection molding. Recent feasibility studies have been performed with tremendous success.

  18. Open access to high-level data and analysis tools in the CMS experiment at the LHC

    DOE PAGES

    Calderon, A.; Colling, D.; Huffman, A.; ...

    2015-12-23

    The CMS experiment, in recognition of its commitment to data preservation and open access as well as to education and outreach, has made its first public release of high-level data under the CC0 waiver: up to half of the proton-proton collision data (by volume) at 7 TeV from 2010 in CMS Analysis Object Data format. CMS has prepared, in collaboration with CERN and the other LHC experiments, an open-data web portal based on Invenio. The portal provides access to CMS public data as well as to analysis tools and documentation for the public. The tools include an event display andmore » histogram application that run in the browser. In addition a virtual machine containing a CMS software environment along with XRootD access to the data is available. Within the virtual machine the public can analyse CMS data, example code is provided. As a result, we describe the accompanying tools and documentation and discuss the first experiences of data use.« less

  19. Modeling the Virtual Machine Launching Overhead under Fermicloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele; Wu, Hao; Ren, Shangping

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resourcemore » (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.« less

  20. An International Ki67 Reproducibility Study in Adrenal Cortical Carcinoma.

    PubMed

    Papathomas, Thomas G; Pucci, Eugenio; Giordano, Thomas J; Lu, Hao; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Lloyd, Ricardo V; Tischler, Arthur S; van Nederveen, Francien H; Nose, Vania; Erickson, Lori; Mete, Ozgur; Asa, Sylvia L; Turchini, John; Gill, Anthony J; Matias-Guiu, Xavier; Skordilis, Kassiani; Stephenson, Timothy J; Tissier, Frédérique; Feelders, Richard A; Smid, Marcel; Nigg, Alex; Korpershoek, Esther; van der Spek, Peter J; Dinjens, Winand N M; Stubbs, Andrew P; de Krijger, Ronald R

    2016-04-01

    Despite the established role of Ki67 labeling index in prognostic stratification of adrenocortical carcinomas and its recent integration into treatment flow charts, the reproducibility of the assessment method has not been determined. The aim of this study was to investigate interobserver variability among endocrine pathologists using a web-based virtual microscopy approach. Ki67-stained slides of 76 adrenocortical carcinomas were analyzed independently by 14 observers, each according to their method of preference including eyeballing, formal manual counting, and digital image analysis. The interobserver variation was statistically significant (P<0.001) in the absence of any correlation between the various methods. Subsequently, 61 static images were distributed among 15 observers who were instructed to follow a category-based scoring approach. Low levels of interobserver (F=6.99; Fcrit=1.70; P<0.001) as well as intraobserver concordance (n=11; Cohen κ ranging from -0.057 to 0.361) were detected. To improve harmonization of Ki67 analysis, we tested the utility of an open-source Galaxy virtual machine application, namely Automated Selection of Hotspots, in 61 virtual slides. The software-provided Ki67 values were validated by digital image analysis in identical images, displaying a strong correlation of 0.96 (P<0.0001) and dividing the cases into 3 classes (cutoffs of 0%-15%-30% and/or 0%-10%-20%) with significantly different overall survivals (P<0.05). We conclude that current practices in Ki67 scoring assessment vary greatly, and interobserver variation sets particular limitations to its clinical utility, especially around clinically relevant cutoff values. Novel digital microscopy-enabled methods could provide critical aid in reducing variation, increasing reproducibility, and improving reliability in the clinical setting.

  1. Software architecture and design of the web services facilitating climate model diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.

    2015-12-01

    Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.

  2. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  3. Virtual Raters for Reproducible and Objective Assessments in Radiology

    NASA Astrophysics Data System (ADS)

    Kleesiek, Jens; Petersen, Jens; Döring, Markus; Maier-Hein, Klaus; Köthe, Ullrich; Wick, Wolfgang; Hamprecht, Fred A.; Bendszus, Martin; Biller, Armin

    2016-04-01

    Volumetric measurements in radiologic images are important for monitoring tumor growth and treatment response. To make these more reproducible and objective we introduce the concept of virtual raters (VRs). A virtual rater is obtained by combining knowledge of machine-learning algorithms trained with past annotations of multiple human raters with the instantaneous rating of one human expert. Thus, he is virtually guided by several experts. To evaluate the approach we perform experiments with multi-channel magnetic resonance imaging (MRI) data sets. Next to gross tumor volume (GTV) we also investigate subcategories like edema, contrast-enhancing and non-enhancing tumor. The first data set consists of N = 71 longitudinal follow-up scans of 15 patients suffering from glioblastoma (GB). The second data set comprises N = 30 scans of low- and high-grade gliomas. For comparison we computed Pearson Correlation, Intra-class Correlation Coefficient (ICC) and Dice score. Virtual raters always lead to an improvement w.r.t. inter- and intra-rater agreement. Comparing the 2D Response Assessment in Neuro-Oncology (RANO) measurements to the volumetric measurements of the virtual raters results in one-third of the cases in a deviating rating. Hence, we believe that our approach will have an impact on the evaluation of clinical studies as well as on routine imaging diagnostics.

  4. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  5. e-Addictology: An Overview of New Technologies for Assessing and Intervening in Addictive Behaviors.

    PubMed

    Ferreri, Florian; Bourla, Alexis; Mouchabac, Stephane; Karila, Laurent

    2018-01-01

    New technologies can profoundly change the way we understand psychiatric pathologies and addictive disorders. New concepts are emerging with the development of more accurate means of collecting live data, computerized questionnaires, and the use of passive data. Digital phenotyping , a paradigmatic example, refers to the use of computerized measurement tools to capture the characteristics of different psychiatric disorders. Similarly, machine learning-a form of artificial intelligence-can improve the classification of patients based on patterns that clinicians have not always considered in the past. Remote or automated interventions (web-based or smartphone-based apps), as well as virtual reality and neurofeedback, are already available or under development. These recent changes have the potential to disrupt practices, as well as practitioners' beliefs, ethics and representations, and may even call into question their professional culture. However, the impact of new technologies on health professionals' practice in addictive disorder care has yet to be determined. In the present paper, we therefore present an overview of new technology in the field of addiction medicine. Using the keywords [e-health], [m-health], [computer], [mobile], [smartphone], [wearable], [digital], [machine learning], [ecological momentary assessment], [biofeedback] and [virtual reality], we searched the PubMed database for the most representative articles in the field of assessment and interventions in substance use disorders. We screened 595 abstracts and analyzed 92 articles, dividing them into seven categories: e-health program and web-based interventions, machine learning, computerized adaptive testing, wearable devices and digital phenotyping, ecological momentary assessment, biofeedback, and virtual reality. This overview shows that new technologies can improve assessment and interventions in the field of addictive disorders. The precise role of connected devices, artificial intelligence and remote monitoring remains to be defined. If they are to be used effectively, these tools must be explained and adapted to the different profiles of physicians and patients. The involvement of patients, caregivers and other health professionals is essential to their design and assessment.

  6. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries

    PubMed Central

    2012-01-01

    Background Src plays various roles in tumour progression, invasion, metastasis, angiogenesis and survival. It is one of the multiple targets of multi-target kinase inhibitors in clinical uses and trials for the treatment of leukemia and other cancers. These successes and appearances of drug resistance in some patients have raised significant interest and efforts in discovering new Src inhibitors. Various in-silico methods have been used in some of these efforts. It is desirable to explore additional in-silico methods, particularly those capable of searching large compound libraries at high yields and reduced false-hit rates. Results We evaluated support vector machines (SVM) as virtual screening tools for searching Src inhibitors from large compound libraries. SVM trained and tested by 1,703 inhibitors and 63,318 putative non-inhibitors correctly identified 93.53%~ 95.01% inhibitors and 99.81%~ 99.90% non-inhibitors in 5-fold cross validation studies. SVM trained by 1,703 inhibitors reported before 2011 and 63,318 putative non-inhibitors correctly identified 70.45% of the 44 inhibitors reported since 2011, and predicted as inhibitors 44,843 (0.33%) of 13.56M PubChem, 1,496 (0.89%) of 168 K MDDR, and 719 (7.73%) of 9,305 MDDR compounds similar to the known inhibitors. Conclusions SVM showed comparable yield and reduced false hit rates in searching large compound libraries compared to the similarity-based and other machine-learning VS methods developed from the same set of training compounds and molecular descriptors. We tested three virtual hits of the same novel scaffold from in-house chemical libraries not reported as Src inhibitor, one of which showed moderate activity. SVM may be potentially explored for searching Src inhibitors from large compound libraries at low false-hit rates. PMID:23173901

  7. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment

    PubMed Central

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation. PMID:26981584

  8. An Elliptic Curve Based Schnorr Cloud Security Model in Distributed Environment.

    PubMed

    Muthurajan, Vinothkumar; Narayanasamy, Balaji

    2016-01-01

    Cloud computing requires the security upgrade in data transmission approaches. In general, key-based encryption/decryption (symmetric and asymmetric) mechanisms ensure the secure data transfer between the devices. The symmetric key mechanisms (pseudorandom function) provide minimum protection level compared to asymmetric key (RSA, AES, and ECC) schemes. The presence of expired content and the irrelevant resources cause unauthorized data access adversely. This paper investigates how the integrity and secure data transfer are improved based on the Elliptic Curve based Schnorr scheme. This paper proposes a virtual machine based cloud model with Hybrid Cloud Security Algorithm (HCSA) to remove the expired content. The HCSA-based auditing improves the malicious activity prediction during the data transfer. The duplication in the cloud server degrades the performance of EC-Schnorr based encryption schemes. This paper utilizes the blooming filter concept to avoid the cloud server duplication. The combination of EC-Schnorr and blooming filter efficiently improves the security performance. The comparative analysis between proposed HCSA and the existing Distributed Hash Table (DHT) regarding execution time, computational overhead, and auditing time with auditing requests and servers confirms the effectiveness of HCSA in the cloud security model creation.

  9. Saguaro: a distributed operating system based on pools of servers. Annual report, 1 January 1984-31 December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, G.R.

    1986-03-03

    Prototypes of components of the Saguaro distributed operating system were implemented and the design of the entire system refined based on the experience. The philosophy behind Saguaro is to support the illusion of a single virtual machine while taking advantage of the concurrency and robustness that are possible in a network architecture. Within the system, these advantages are realized by the use of pools of server processes and decentralized allocation protocols. Potential concurrency and robustness are also made available to the user through low-cost mechanisms to control placement of executing commands and files, and to support semi-transparent file replication andmore » access. Another unique aspect of Saguaro is its extensive use of type system to describe user data such as files and to specify the types of arguments to commands and procedures. This enables the system to assist in type checking and leads to a user interface in which command-specific templates are available to facilitate command invocation. A mechanism, channels, is also provided to enable users to construct applications containing general graphs of communication processes.« less

  10. Proceedings: Sisal `93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J.T.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor;more » A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  11. Virtual reality system in conjunction with neurorobotics and neuroprosthetics for rehabilitation of motor disorders.

    PubMed

    De Mauro, Alessandro; Carrasco, Eduardo; Oyarzun, David; Ardanza, Aitor; Frizera Neto, Anselmo; Torricelli, Diego; Pons, José Luis; Gil, Angel; Florez, Julian

    2011-01-01

    Cerebrovascular accidents (CVA) and spinal cord injuries (SCI) are the most common causes of paralysis and paresis with reported prevalence of 12,000 cases per million and 800 cases per million, respectively. Disabilities that follow CVA (hemiplegia) or SCI (paraplegia, tetraplegia) severely impair motor functions (e.g., standing, walking, reaching and grasping) and prevent the affected individuals from healthy-like, full and autonomous participation in daily activities. Our research focuses on the development of a new virtual reality (VR) system combined with wearable neurorobotics (NR), motor-neuroprosthetics (MNP) and brain neuro-machine interface (BNMI) to overcome the major limitations of current rehabilitation solutions.

  12. A Virtual Instrument System for Determining Sugar Degree of Honey

    PubMed Central

    Wu, Qijun; Gong, Xun

    2015-01-01

    This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions. PMID:26504615

  13. Study of the Productivity and Surface Quality of Hybrid EDM

    NASA Astrophysics Data System (ADS)

    Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal

    2016-01-01

    The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

  14. A distributed algorithm for machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Shihong

    2018-04-01

    This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.

  15. Consciousness and the Invention of Morel

    PubMed Central

    Perogamvros, Lampros

    2013-01-01

    A scientific study of consciousness should take into consideration both objective and subjective measures of conscious experiences. To this date, very few studies have tried to integrate third-person data, or data about the neurophysiological correlates of conscious states, with first-person data, or data about subjective experience. Inspired by Morel's invention (Casares, 1940), a literary machine capable of reproducing sensory-dependent external reality, this article suggests that combination of virtual reality techniques and brain reading technologies, that is, decoding of conscious states by brain activity alone, can offer this integration. It is also proposed that the multimodal, simulating, and integrative capacities of the dreaming brain render it an “endogenous” Morel's machine, which can potentially be used in studying consciousness, but not always in a reliable way. Both the literary machine and dreaming could contribute to a better understanding of conscious states. PMID:23467765

  16. Multi-functional dielectric elastomer artificial muscles for soft and smart machines

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.

    2012-08-01

    Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.

  17. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  18. Research on elastic resource management for multi-queue under cloud computing environment

    NASA Astrophysics Data System (ADS)

    CHENG, Zhenjing; LI, Haibo; HUANG, Qiulan; Cheng, Yaodong; CHEN, Gang

    2017-10-01

    As a new approach to manage computing resource, virtualization technology is more and more widely applied in the high-energy physics field. A virtual computing cluster based on Openstack was built at IHEP, using HTCondor as the job queue management system. In a traditional static cluster, a fixed number of virtual machines are pre-allocated to the job queue of different experiments. However this method cannot be well adapted to the volatility of computing resource requirements. To solve this problem, an elastic computing resource management system under cloud computing environment has been designed. This system performs unified management of virtual computing nodes on the basis of job queue in HTCondor based on dual resource thresholds as well as the quota service. A two-stage pool is designed to improve the efficiency of resource pool expansion. This paper will present several use cases of the elastic resource management system in IHEPCloud. The practical run shows virtual computing resource dynamically expanded or shrunk while computing requirements change. Additionally, the CPU utilization ratio of computing resource was significantly increased when compared with traditional resource management. The system also has good performance when there are multiple condor schedulers and multiple job queues.

  19. How virtual reality works: illusions of vision in "real" and virtual environments

    NASA Astrophysics Data System (ADS)

    Stark, Lawrence W.

    1995-04-01

    Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.

  20. Searching Fragment Spaces with feature trees.

    PubMed

    Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger

    2009-02-01

    Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.

  1. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  2. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  3. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Machine-Learning-Driven Sky Model.

    PubMed

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  5. Modeling of Passive Forces of Machine Tool Covers

    NASA Astrophysics Data System (ADS)

    Kolar, Petr; Hudec, Jan; Sulitka, Matej

    The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.

  6. A virtual data language and system for scientific workflow management in data grid environments

    NASA Astrophysics Data System (ADS)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  7. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    NASA Astrophysics Data System (ADS)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other Italian regional and local networks, and with the VBB Mediterranean Network (MedNet) to share waveforms and events detected in real time. The seismic acquisition system at INGV uses a relational database built on standard SQL, for every activity involving the seismic network.

  8. Directional control-response compatibility relationships assessed by physical simulation of an underground bolting machine.

    PubMed

    Steiner, Lisa; Burgess-Limerick, Robin; Porter, William

    2014-03-01

    The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned. Forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant Directional error rates are increased when the control and response are in opposite directions or if the direction of the control and response are perpendicular.The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. Error rates are increased by incompatible directional control-response relationships. Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining.

  9. DPM — efficient storage in diverse environments

    NASA Astrophysics Data System (ADS)

    Hellmich, Martin; Furano, Fabrizio; Smith, David; Brito da Rocha, Ricardo; Álvarez Ayllón, Alejandro; Manzi, Andrea; Keeble, Oliver; Calvet, Ivan; Regala, Miguel Antonio

    2014-06-01

    Recent developments, including low power devices, cluster file systems and cloud storage, represent an explosion in the possibilities for deploying and managing grid storage. In this paper we present how different technologies can be leveraged to build a storage service with differing cost, power, performance, scalability and reliability profiles, using the popular storage solution Disk Pool Manager (DPM/dmlite) as the enabling technology. The storage manager DPM is designed for these new environments, allowing users to scale up and down as they need it, and optimizing their computing centers energy efficiency and costs. DPM runs on high-performance machines, profiting from multi-core and multi-CPU setups. It supports separating the database from the metadata server, the head node, largely reducing its hard disk requirements. Since version 1.8.6, DPM is released in EPEL and Fedora, simplifying distribution and maintenance, but also supporting the ARM architecture beside i386 and x86_64, allowing it to run the smallest low-power machines such as the Raspberry Pi or the CuBox. This usage is facilitated by the possibility to scale horizontally using a main database and a distributed memcached-powered namespace cache. Additionally, DPM supports a variety of storage pools in the backend, most importantly HDFS, S3-enabled storage, and cluster file systems, allowing users to fit their DPM installation exactly to their needs. In this paper, we investigate the power-efficiency and total cost of ownership of various DPM configurations. We develop metrics to evaluate the expected performance of a setup both in terms of namespace and disk access considering the overall cost including equipment, power consumptions, or data/storage fees. The setups tested range from the lowest scale using Raspberry Pis with only 700MHz single cores and a 100Mbps network connections, over conventional multi-core servers to typical virtual machine instances in cloud settings. We evaluate the combinations of different name server setups, for example load-balanced clusters, with different storage setups, from using a classic local configuration to private and public clouds.

  10. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  11. Virtual Reality Simulations and Animations in a Web-Based Interactive Manufacturing Engineering Module

    ERIC Educational Resources Information Center

    Ong, S. K.; Mannan, M. A.

    2004-01-01

    This paper presents a web-based interactive teaching package that provides a comprehensive and conducive yet dynamic and interactive environment for a module on automated machine tools in the Manufacturing Division at the National University of Singapore. The use of Internet technologies in this teaching tool makes it possible to conjure…

  12. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  13. Virtual Parts Engineering Research Center

    DTIC Science & Technology

    2010-05-20

    engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical

  14. ICE: An Automated Tool for Teaching Advanced C Programming

    ERIC Educational Resources Information Center

    Gonzalez, Ruben

    2017-01-01

    There are many difficulties with learning and teaching programming that can be alleviated with the use of software tools. Most of these tools have focused on the teaching of introductory programming concepts where commonly code fragments or small user programs are run in a sandbox or virtual machine, often in the cloud. These do not permit user…

  15. Divide and Recombine for Large Complex Data

    DTIC Science & Technology

    2017-12-01

    Empirical Methods in Natural Language Processing , October 2014 Keywords Enter keywords for the publication. URL Enter the URL...low-latency data processing systems. Declarative Languages for Interactive Visualization: The Reactive Vega Stack Another thread of XDATA research...for array processing operations embedded in the R programming language . Vector virtual machines work well for long vectors. One of the most

  16. Selective structural source identification

    NASA Astrophysics Data System (ADS)

    Totaro, Nicolas

    2018-04-01

    In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.

  17. Air-condition Control System of Weaving Workshop Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Song, Jian

    The project of air-condition measurement and control system based on LabVIEW is put forward for the sake of controlling effectively the environmental targets in the weaving workshop. In this project, which is based on the virtual instrument technology and in which LabVIEW development platform by NI is adopted, the system is constructed on the basis of the virtual instrument technology. It is composed of the upper PC, central control nodes based on CC2530, sensor nodes, sensor modules and executive device. Fuzzy control algorithm is employed to achieve the accuracy control of the temperature and humidity. A user-friendly man-machine interaction interface is designed with virtual instrument technology at the core of the software. It is shown by experiments that the measurement and control system can run stably and reliably and meet the functional requirements for controlling the weaving workshop.

  18. Using blackmail, bribery, and guilt to address the tragedy of the virtual intellectual commons

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; Cook, R. B.; Wilson, B. E.; Gentry, M. J.; Horta, L. M.; McGroddy, M.; Morrell, A. L.; Wilcox, L. E.

    2008-12-01

    One goal of the NSF's vision for 21st Century Cyberinfrastructure is to create a virtual intellectual commons for the scientific community where advanced technologies perpetuate transformation of this community's productivity and capabilities. The metadata describing scientific observations, like the first paragraph of a news story, should answer the questions who? what? why? where? when? and how?, making them discoverable, comprehensible, contextualized, exchangeable, and machine-readable. Investigators who create good scientific metadata increase the scientific value of their observations within such a virtual intellectual commons. But the tragedy of this commons arises when investigators wish to receive without giving in return. The authors of this talk will describe how they have used combinations of blackmail, bribery, and guilt to motivate good behavior by investigators participating in two major scientific programs (NASA's component of the Large-scale Biosphere-Atmosphere Experiment in Amazonia; and the US Climate Change Science Program's North American Carbon Program).

  19. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products.

    PubMed

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-wai

    2016-01-25

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  20. Design of Xen Hybrid Multiple Police Model

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Lin, Renhao; Zhu, Xianwei

    2017-10-01

    Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.

Top