Distributed virtual environment for emergency medical training
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; Banks, Sheila B.; Garcia, Brian W.; Godsell-Stytz, Gayl M.
1997-07-01
In many professions where individuals must work in a team in a high stress environment to accomplish a time-critical task, individual and team performance can benefit from joint training using distributed virtual environments (DVEs). One professional field that lacks but needs a high-fidelity team training environment is the field of emergency medicine. Currently, emergency department (ED) medical personnel train by using words to create a metal picture of a situation for the physician and staff, who then cooperate to solve the problems portrayed by the word picture. The need in emergency medicine for realistic virtual team training is critical because ED staff typically encounter rarely occurring but life threatening situations only once in their careers and because ED teams currently have no realistic environment in which to practice their team skills. The resulting lack of experience and teamwork makes diagnosis and treatment more difficult. Virtual environment based training has the potential to redress these shortfalls. The objective of our research is to develop a state-of-the-art virtual environment for emergency medicine team training. The virtual emergency room (VER) allows ED physicians and medical staff to realistically prepare for emergency medical situations by performing triage, diagnosis, and treatment on virtual patients within an environment that provides them with the tools they require and the team environment they need to realistically perform these three tasks. There are several issues that must be addressed before this vision is realized. The key issues deal with distribution of computations; the doctor and staff interface to the virtual patient and ED equipment; the accurate simulation of individual patient organs' response to injury, medication, and treatment; and an accurate modeling of the symptoms and appearance of the patient while maintaining a real-time interaction capability. Our ongoing work addresses all of these issues. In this paper we report on our prototype VER system and its distributed system architecture for an emergency department distributed virtual environment for emergency medical staff training. The virtual environment enables emergency department physicians and staff to develop their diagnostic and treatment skills using the virtual tools they need to perform diagnostic and treatment tasks. Virtual human imagery, and real-time virtual human response are used to create the virtual patient and present a scenario. Patient vital signs are available to the emergency department team as they manage the virtual case. The work reported here consists of the system architectures we developed for the distributed components of the virtual emergency room. The architectures we describe consist of the network level architecture as well as the software architecture for each actor within the virtual emergency room. We describe the role of distributed interactive simulation and other enabling technologies within the virtual emergency room project.
SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Tobias, R; Pankuch, M
Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less
Taylor, Michael J; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah
2017-01-01
Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility.
Taylor, Michael J.; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah
2015-01-01
Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility. PMID:28239187
Embodying self-compassion within virtual reality and its effects on patients with depression.
Falconer, Caroline J; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel; Brewin, Chris R
2016-01-01
Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence.
Embodying self-compassion within virtual reality and its effects on patients with depression
Falconer, Caroline J.; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel
2016-01-01
Background Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. Aims To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. Method We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. Results In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. Conclusions The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence. PMID:27703757
Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong
2011-02-01
To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.
NASA Astrophysics Data System (ADS)
Yang, Weiguang; Vignon-Clementel, Irene; Troianowski, Guillaume; Shadden, Shawn; Mohhan Reddy, V.; Feinstein, Jeffrey; Marsden, Alison
2010-11-01
The Fontan surgery is the third and final stage in a palliative series to treat children with single ventricle heart defects. In the extracardiac Fontan procedure, the inferior vena cava (IVC) is connected to the pulmonary arteries via a tube-shaped Gore-tex graft. Clinical observations have shown that the absence of a hepatic factor, carried in the IVC flow, can cause pulmonary arteriovenous malformations. Although it is clear that hepatic flow distribution is an important determinant of Fontan performance, few studies have quantified its relation to Fontan design. In this study, we virtually implanted three types of grafts (T-junction, offset and Y-graft) into 5 patient specific models of the Glenn (stage 2) anatomy. We then performed 3D time-dependent simulations and systematically compared the IVC flow distribution, energy loss, and pressure levels in different surgical designs. A robustness test is performed to evaluate the sensitivity of hepatic distribution to pulmonary flow split. Results show that the Y-graft design effectively improves the IVC flow distribution, compared to traditional designs and that surgical designs could be customized on a patient-by-patient basis.
Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.
Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O
2015-10-01
Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.
Virtual Patients on the Semantic Web: A Proof-of-Application Study
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David
2015-01-01
Background Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. Objective An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. Methods A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. Results We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system’s main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications’ ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. Conclusions The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning. PMID:25616272
Virtual patients on the semantic Web: a proof-of-application study.
Dafli, Eleni; Antoniou, Panagiotis; Ioannidis, Lazaros; Dombros, Nicholas; Topps, David; Bamidis, Panagiotis D
2015-01-22
Virtual patients are interactive computer simulations that are increasingly used as learning activities in modern health care education, especially in teaching clinical decision making. A key challenge is how to retrieve and repurpose virtual patients as unique types of educational resources between different platforms because of the lack of standardized content-retrieving and repurposing mechanisms. Semantic Web technologies provide the capability, through structured information, for easy retrieval, reuse, repurposing, and exchange of virtual patients between different systems. An attempt to address this challenge has been made through the mEducator Best Practice Network, which provisioned frameworks for the discovery, retrieval, sharing, and reuse of medical educational resources. We have extended the OpenLabyrinth virtual patient authoring and deployment platform to facilitate the repurposing and retrieval of existing virtual patient material. A standalone Web distribution and Web interface, which contains an extension for the OpenLabyrinth virtual patient authoring system, was implemented. This extension was designed to semantically annotate virtual patients to facilitate intelligent searches, complex queries, and easy exchange between institutions. The OpenLabyrinth extension enables OpenLabyrinth authors to integrate and share virtual patient case metadata within the mEducator3.0 network. Evaluation included 3 successive steps: (1) expert reviews; (2) evaluation of the ability of health care professionals and medical students to create, share, and exchange virtual patients through specific scenarios in extended OpenLabyrinth (OLabX); and (3) evaluation of the repurposed learning objects that emerged from the procedure. We evaluated 30 repurposed virtual patient cases. The evaluation, with a total of 98 participants, demonstrated the system's main strength: the core repurposing capacity. The extensive metadata schema presentation facilitated user exploration and filtering of resources. Usability weaknesses were primarily related to standard computer applications' ease of use provisions. Most evaluators provided positive feedback regarding educational experiences on both content and system usability. Evaluation results replicated across several independent evaluation events. The OpenLabyrinth extension, as part of the semantic mEducator3.0 approach, is a virtual patient sharing approach that builds on a collection of Semantic Web services and federates existing sources of clinical and educational data. It is an effective sharing tool for virtual patients and has been merged into the next version of the app (OpenLabyrinth 3.3). Such tool extensions may enhance the medical education arsenal with capacities of creating simulation/game-based learning episodes, massive open online courses, curricular transformations, and a future robust infrastructure for enabling mobile learning.
New trends in the virtualization of hospitals--tools for global e-Health.
Graschew, Georgi; Roelofs, Theo A; Rakowsky, Stefan; Schlag, Peter M; Heinzlreiter, Paul; Kranzlmüller, Dieter; Volkert, Jens
2006-01-01
The development of virtual hospitals and digital medicine helps to bridge the digital divide between different regions of the world and enables equal access to high-level medical care. Pre-operative planning, intra-operative navigation and minimally-invasive surgery require a digital and virtual environment supporting the perception of the physician. As data and computing resources in a virtual hospital are distributed over many sites the concept of the Grid should be integrated with other communication networks and platforms. A promising approach is the implementation of service-oriented architectures for an invisible grid, hiding complexity for both application developers and end-users. Examples of promising medical applications of Grid technology are the real-time 3D-visualization and manipulation of patient data for individualized treatment planning and the creation of distributed intelligent databases of medical images.
The role of intellectual property in creating, sharing and repurposing virtual patients.
Campbell, Gabrielle; Miller, Angela; Balasubramaniam, Chara
2009-08-01
Medical schools are integrating more technology into the training of health care practitioners. Electronic Virtual Patients (VPs) provide interactive simulations to facilitate learning. The time, cost and effort required to create robust VPs on an individual school basis are significant; sharing of VPs by medical schools allows for access to a broad range of VPs across a variety of disciplines with lower investment. When this digital content is shared with other schools and distributed widely, digital copyright issues come into play. Unless all intellectual property rights (IPRs) and plans of the authors regarding the VP are confirmed upfront, the ability of the school to share the VP may be inhibited. Schools should also identify under what licensing/sharing model they plan to distribute the VPs - how do you plan to share the VPs and what will allow users to do with the VPs in the context of IPRs? This article highlights the role of IPRs in VPs and discusses a case-study of a European Virtual Patient collaboration to demonstrate how IPRs were managed.
Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P
2004-01-01
Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.
Song, Gui bin; Park, Eun cho
2015-01-01
[Purpose] The purpose of the study was to determine the effects of training using virtual reality games on balance and gait ability, as well as the psychological characteristics of stroke patients, such as depression and interpersonal relationships, by comparing them with the effects of ergometer training. [Subjects] Forty stroke patients were randomly divided into a virtual reality group (VRG, N = 20) and an ergometer training group (ETG, N = 20). [Methods] VRG performed training using the Xbox Kinect. ETG performed training using an ergometer bicycle. Both groups received training 30 min per day, five times per week, for eight weeks. [Results] Both the VRG and ETG subjects exhibited a significant difference in weight distribution ratio on the paralyzed side and balance ability. Both the VRG and ETG patients showed significant improvement in psychological measures BDI and RCS, after the intervention, and the VRG sowed a more significant increase in BDI than the ETG. [Conclusion] According to the result of this study, virtual reality training and ergometer training were both effective at improving balance, gait abilities, depression, and interpersonal relationships among stroke patients. PMID:26311925
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, MM; University of California San Diego, La Jolla, California; Long, T
Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes canmore » be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for large-scale radiation therapy optimization research.« less
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2018-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128
Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S
2011-06-06
We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale.
Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.
2011-01-01
We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214
An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.
Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P
2005-01-01
The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.
Distributed Computer Networks in Support of Complex Group Practices
Wess, Bernard P.
1978-01-01
The economics of medical computer networks are presented in context with the patient care and administrative goals of medical networks. Design alternatives and network topologies are discussed with an emphasis on medical network design requirements in distributed data base design, telecommunications, satellite systems, and software engineering. The success of the medical computer networking technology is predicated on the ability of medical and data processing professionals to design comprehensive, efficient, and virtually impenetrable security systems to protect data bases, network access and services, and patient confidentiality.
An e-consent-based shared EHR system architecture for integrated healthcare networks.
Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold
2007-01-01
Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.
[The virtual university in medicine. Context, concepts, specifications, users' manual].
Duvauferrier, R; Séka, L P; Rolland, Y; Rambeau, M; Le Beux, P; Morcet, N
1998-09-01
The widespread use of Web servers, with the emergence of interactive functions and the possibility of credit card payment via Internet, together with the requirement for continuing education and the subsequent need for a computer to link into the health care network have incited the development of a virtual university scheme on Internet. The Virtual University of Radiology is not only a computer-assisted teaching tool with a set of attractive features, but also a powerful engine allowing the organization, distribution and control of medical knowledge available in the www.server. The scheme provides patient access to general information, a secretary's office for enrollment and the Virtual University itself, with its library, image database, a forum for subspecialties and clinical case reports, an evaluation module and various guides and help tools for diagnosis, prescription and indexing. Currently the Virtual University of Radiology offers diagnostic imaging, but can also be used by other specialties and for general practice.
Sarkar, V; Gutierrez, A N; Stathakis, S; Swanson, G P; Papanikolaou, N
2009-01-01
The purpose of this project was to develop a software platform to produce a virtual fluoroscopic image as an aid for permanent prostate seed implants. Seed location information from a pre-plan was extracted and used as input to in-house developed software to produce a virtual fluoroscopic image. In order to account for differences in patient positioning on the day of treatment, the user was given the ability to make changes to the virtual image. The system has been shown to work as expected for all test cases. The system allows for quick (on average less than 10 sec) generation of a virtual fluoroscopic image of the planned seed pattern. The image can be used as a verification tool to aid the physician in evaluating how close the implant is to the planned distribution throughout the procedure and enable remedial action should a large deviation be observed.
Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes
Wroblewski, Dariusz; Francis, Brian A.; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4–6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode. PMID:25050326
Wang, Peng; Yin, Lingshu; Zhang, Yawei; Kirk, Maura; Song, Gang; Ahn, Peter H; Lin, Alexander; Gee, James; Dolney, Derek; Solberg, Timothy D; Maughan, Richard; McDonough, James; Teo, Boon-Keng Kevin
2016-03-08
The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.
ERIC Educational Resources Information Center
Ngoma, Ngoma Sylvestre
2013-01-01
Virtual teams are increasingly viewed as a powerful determinant of competitive advantage in geographically distributed organizations. This study was designed to provide insights into the interdependencies between virtual collaboration, collaboration technologies, knowledge transfer, and virtual team performance in an effort to understand whether…
Taglieri, Catherine A; Crosby, Steven J; Zimmerman, Kristin; Schneider, Tulip; Patel, Dhiren K
2017-06-01
Objective. To assess the effect of incorporating virtual patient activities in a pharmacy skills lab on student competence and confidence when conducting real-time comprehensive clinic visits with mock patients. Methods. Students were randomly assigned to a control or intervention group. The control group completed the clinic visit prior to completing virtual patient activities. The intervention group completed the virtual patient activities prior to the clinic visit. Student proficiency was evaluated in the mock lab. All students completed additional exercises with the virtual patient and were subsequently assessed. Student impressions were assessed via a pre- and post-experience survey. Results. Student performance conducting clinic visits was higher in the intervention group compared to the control group. Overall student performance continued to improve in the subsequent module. There was no change in student confidence from pre- to post-experience. Student rating of the ease of use and realistic simulation of the virtual patient increased; however, student rating of the helpfulness of the virtual patient decreased. Despite student rating of the helpfulness of the virtual patient program, student performance improved. Conclusion. Virtual patient activities enhanced student performance during mock clinic visits. Students felt the virtual patient realistically simulated a real patient. Virtual patients may provide additional learning opportunities for students.
General practice ethics: text messages and boundaries in the GP-patient relationship.
Mintzker, Yishai; Rogers, Wendy
2015-08-01
Virtual forms of communication (eg texting) can support patients and may contribute to better care. However, these informal communication methods may intrude on the doctor’s leisure time and undermine standards of care if they replace face-to-face consultations.Texting may cross boundaries in potentially unprofessional ways, especially when particular patients are favoured with this privilege. It may disadvantage patients who are not favoured or who are not comfortable using mobile technology. We also note that GPs cannot control the distribution of their number or recall it without the inconvenience of changing the number once it has been disclosed.Virtual communication is an integral part of the way we live, despite the potential pitfalls. Each form (social media, electronic messaging systems, video consultations, mobile phones, etc) has its advantages and disadvantages. This makes it important for practices to develop policies supporting the responsible use of virtual communication. Such policies should:clarify (for patients and GPs) when its use is appropriate accommodate doctors’ individual preferences regarding technology provide guidance regarding GPs’ duties, especially for interactions that do not allow full evaluation of patients.GPs may wish to have specific criteria for providing patients with this degree of access, set very clear indications and contraindications to its use, explain the potential pitfalls, and ensure that text messages augment good care rather than replace it.
NASA Technical Reports Server (NTRS)
Jefferson, David; Beckman, Brian
1986-01-01
This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.
New developments in digital pathology: from telepathology to virtual pathology laboratory.
Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander
2004-01-01
To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under development and does not completely fulfil the requirements of a conventional pathology institution at present. VIRTUAL PATHOLOGY AND E-LEARNING: At present, e-learning systems are "stand-alone" solutions distributed on CD or via internet. A characteristic example is the Digital Lung Pathology CD (www.pathology-online.org), which includes about 60 different rare and common lung diseases and internet access to scientific library systems (PubMed), distant measurement servers (EuroQuant), or electronic journals (Elec J Pathol Histol). A new and complete data base based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. Telepathology serves as promotor for a new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years.
Korocsec, D; Holobar, A; Divjak, M; Zazula, D
2005-12-01
Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.
Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms
Boussel, L.; Ge, L.; Leach, J. R.; Martin, A. J.; Lawton, M. T.; McCulloch, C.; Saloner, D.
2010-01-01
Thrombus formation in intracranial aneurysms, while sometimes stabilizing lesion growth, can present additional risk of thrombo-embolism. The role of hemodynamics in the progression of aneurysmal disease can be elucidated by patient-specific computational modeling. In our previous work, patient-specific computational fluid dynamics (CFD) models were constructed from MRI data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intraluminal thrombus. In this study, we investigated the effect of increased flow residence time (RT) by modeling passive scalar advection in the same aneurysmal geometries. Non-Newtonian pulsatile flow simulations were carried out in base-line geometries and a new postprocessing technique, referred to as “virtual ink” and based on the passive scalar distribution maps, was used to visualize the flow and estimate the flow RT. The virtual ink technique clearly depicted regions of flow separation. The flow RT at different locations adjacent to aneurysmal walls was calculated as the time the virtual ink scalar remained above a threshold value. The RT values obtained in different areas were then correlated with the location of intra-aneurysmal thrombus observed at a follow-up MR study. For each patient, the wall shear stress (WSS) distribution was also obtained from CFD simulations and correlated with thrombus location. The correlation analysis determined a significant relationship between regions where CFD predicted either an increased RT or low WSS and the regions where thrombus deposition was observed to occur in vivo. A model including both low WSS and increased RT predicted thrombus-prone regions significantly better than the models with RT or WSS alone. PMID:20499185
NASA Astrophysics Data System (ADS)
Wangerin, Kristen A.; Muzi, Mark; Peterson, Lanell M.; Linden, Hannah M.; Novakova, Alena; Mankoff, David A.; E Kinahan, Paul
2017-05-01
We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i = 17%, SUV = 13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i = 0.54, SUV = 0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC < 1), dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p < 0.05). For the patient cohort in this study, which is comprised of non-high-grade ER+ tumors, K i outperformed SUV in an ROC analysis of the parameter uncertainty distributions pre- and post-therapy. This methodology can be applied to different scenarios with the ability to inform the design of clinical trials using PET imaging.
Villalar, J L; Arredondo, M T; Meneu, T; Traver, V; Cabrera, M F; Guillen, S; Del Pozo, F
2002-01-01
Centralized testing demands costly laboratories, which are inefficient and may provide poor services. Recent advances make it feasible to move clinical testing nearer to patients and the requesting physicians, thus reducing the time to treatment. Internet technologies can be used to create a virtual laboratory information system in a distributed health-care environment. This allows clinical testing to be transferred to a cooperative scheme of several point-of-care testing (POCT) nodes. Two pilot virtual laboratories were established, one in Italy (AUSL Modena) and one in Greece (Athens Medical Centre). They were constructed on a three-layer model to allow both technical and clinical verification. Different POCT devices were connected. The pilot sites produced good preliminary results in relation to user acceptance, efficiency, convenience and costs. Decentralized laboratories can be expected to become cost-effective.
Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study
2017-01-01
Background Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Objective Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. Methods The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. Results During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was “very” or “somewhat” helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can –$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can –$8.68, P<.001). Conclusions Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. PMID:28550006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Shawver, D.; Sobel, A.
This paper presents a prototype virtual reality (VR) system for training medical first responders. The initial application is to battlefield medicine and focuses on the training of medical corpsmen and other front-line personnel who might be called upon to provide emergency triage on the battlefield. The system is built upon Sandia`s multi-user, distributed VR platform and provides an interactive, immersive simulation capability. The user is represented by an Avatar and is able to manipulate his virtual instruments and carry out medical procedures. A dynamic casualty simulation provides realistic cues to the patient`s condition (e.g. changing blood pressure and pulse) andmore » responds to the actions of the trainee (e.g. a change in the color of a patient`s skin may result from a check of the capillary refill rate). The current casualty simulation is of an injury resulting in a tension pneumothorax. This casualty model was developed by the University of Pennsylvania and integrated into the Sandia MediSim system.« less
European Pharmacy Students' Experience With Virtual Patient Technology
Madeira, Filipe
2012-01-01
Objective. To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe. Methods. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument. Results. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries. Conclusion. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education. PMID:22919082
European pharmacy students' experience with virtual patient technology.
Cavaco, Afonso Miguel; Madeira, Filipe
2012-08-10
To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education.
NASA Astrophysics Data System (ADS)
Chen, Jiao-Kai
2018-04-01
We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.
Virtual patient simulation at US and Canadian medical schools.
Huang, Grace; Reynolds, Robby; Candler, Chris
2007-05-01
"Virtual patients" are computer-based simulations designed to complement clinical training. These applications possess numerous educational benefits but are costly to develop. Few medical schools can afford to create them. The purpose of this inventory was to gather information regarding in-house virtual patient development at U.S. and Canadian medical schools to promote the sharing of existing cases and future collaboration. From February to September 2005, the authors contacted 142 U.S. and Canadian medical schools and requested that they report on virtual patient simulation activities at their respective institutions. The inventory elicited information regarding the pedagogic and technical characteristics of each virtual patient application. The schools were also asked to report on their willingness to share virtual patients. Twenty-six out of 108 responding schools reported that they were producing virtual patients. Twelve schools provided additional data on 103 cases and 111 virtual patients. The vast majority of virtual patients were media rich and were associated with significant production costs and time. The reported virtual patient cases tended to focus on primary care disciplines and did not as a whole exhibit racial or ethnic diversity. Funding sources, production costs, and production duration influenced the extent of schools' willingness to share. Broader access to and cooperative development of these resources would allow medical schools to enhance their clinical curricula. Virtual patient development should include basic science objectives for more integrative learning, simulate the consequences of clinical decision making, and include additional cases in cultural competency. Together, these efforts can enhance medical education despite external constraints on clinical training.
Anomalous neural circuit function in schizophrenia during a virtual Morris water task.
Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D
2010-02-15
Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional neuroanatomy, and behavior, patients activated different task-related neural circuits, not associated with appropriate regional neuroanatomy. GLM analysis elucidated several comparable regions, with the exception of the hippocampus. Inefficient allocentric learning and memory in patients may be related to an inability to recruit appropriate task-dependent neural circuits. Copyright 2009 Elsevier Inc. All rights reserved.
A Monte Carlo investigation of lung brachytherapy treatment planning
NASA Astrophysics Data System (ADS)
Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.
2013-07-01
Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used in conjunction with sublobar resection to reduce the local recurrence of stage I non-small cell lung cancer compared with resection alone. Treatment planning for this procedure is typically performed using only a seed activity nomogram or look-up table to determine seed strand spacing for the implanted mesh. Since the post-implant seed geometry is difficult to predict, the nomogram is calculated using the TG-43 formalism for seeds in a planar geometry. In this work, the EGSnrc user-code BrachyDose is used to recalculate nomograms using a variety of tissue models for 125I and 131Cs seeds. Calculated prescription doses are compared to those calculated using TG-43. Additionally, patient CT and contour data are used to generate virtual implants to study the effects that post-implant deformation and patient-specific tissue heterogeneity have on perturbing nomogram-derived dose distributions. Differences of up to 25% in calculated prescription dose are found between TG-43 and Monte Carlo calculations with the TG-43 formalism underestimating prescription doses in general. Differences between the TG-43 formalism and Monte Carlo calculated prescription doses are greater for 125I than for 131Cs seeds. Dose distributions are found to change significantly based on implant deformation and tissues surrounding implants for patient-specific virtual implants. Results suggest that accounting for seed grid deformation and the effects of non-water media, at least approximately, are likely required to reliably predict dose distributions in lung brachytherapy patients.
Virtual Visits and Patient-Centered Care: Results of a Patient Survey and Observational Study.
McGrail, Kimberlyn Marie; Ahuja, Megan Alyssa; Leaver, Chad Andrew
2017-05-26
Virtual visits are clinical interactions in health care that do not involve the patient and provider being in the same room at the same time. The use of virtual visits is growing rapidly in health care. Some health systems are integrating virtual visits into primary care as a complement to existing modes of care, in part reflecting a growing focus on patient-centered care. There is, however, limited empirical evidence about how patients view this new form of care and how it affects overall health system use. Descriptive objectives were to assess users and providers of virtual visits, including the reasons patients give for use. The analytic objective was to assess empirically the influence of virtual visits on overall primary care use and costs, including whether virtual care is with a known or a new primary care physician. The study took place in British Columbia, Canada, where virtual visits have been publicly funded since October 2012. A survey of patients who used virtual visits and an observational study of users and nonusers of virtual visits were conducted. Comparison groups included two groups: (1) all other BC residents, and (2) a group matched (3:1) to the cohort. The first virtual visit was used as the intervention and the main outcome measures were total primary care visits and costs. During 2013-2014, there were 7286 virtual visit encounters, involving 5441 patients and 144 physicians. Younger patients and physicians were more likely to use and provide virtual visits (P<.001), with no differences by sex. Older and sicker patients were more likely to see a known provider, whereas the lowest socioeconomic groups were the least likely (P<.001). The survey of 399 virtual visit patients indicated that virtual visits were liked by patients, with 372 (93.2%) of respondents saying their virtual visit was of high quality and 364 (91.2%) reporting their virtual visit was "very" or "somewhat" helpful to resolve their health issue. Segmented regression analysis and the corresponding regression parameter estimates suggested virtual visits appear to have the potential to decrease primary care costs by approximately Can $4 per quarter (Can -$3.79, P=.12), but that benefit is most associated with seeing a known provider (Can -$8.68, P<.001). Virtual visits may be one means of making the health system more patient-centered, but careful attention needs to be paid to how these services are integrated into existing health care delivery systems. ©Kimberlyn Marie McGrail, Megan Alyssa Ahuja, Chad Andrew Leaver. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 26.05.2017.
Berman, Anne H; Biguet, Gabriele; Stathakarou, Natalia; Westin-Hägglöf, Beata; Jeding, Kerstin; McGrath, Cormac; Zary, Nabil; Kononowicz, Andrzej A
2017-10-01
The purpose of this article is to explore learners' perceptions of using virtual patients in a behavioral medicine Massive Open Online Course (MOOCs) and thereby describe innovative ways of disseminating knowledge in health-related areas. A 5-week MOOC on behavioral medicine was hosted on the edX platform. The authors developed two branched virtual patients consisting of video recordings of a live standardized patient, with multiple clinical decision points and narration unfolding depending on learners' choices. Students interacted with the virtual patients to treat stress and sleep problems. Answers to the exit survey and participant comments from the discussion forum were analyzed qualitatively and quantitatively. In total, 19,236 participants enrolled in the MOOC, out of which 740 received the final certificate. The virtual patients were completed by 2317 and 1640 participants respectively. Among survey respondents (n = 442), 83.1% agreed that the virtual patient exercise was helpful. The qualitative analysis resulted in themes covering what it was like to work with the virtual patient, with subthemes on learner-centered education, emotions/eustress, game comparisons, what the participants learned, what surprised them, how confident participants felt about applying interventions in practice, suggestions for improvement, and previous experiences of virtual patients. Students were enthusiastic about interacting with the virtual patients as a means to apply new knowledge about behavioral medicine interventions. The most common suggestion was to incorporate more interactive cases with various levels of complexity. Further research should include patient outcomes and focus on interprofessional aspects of learning with virtual patients in a MOOC.
[Distribution of virtual water of crops in Beijing].
Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing
2007-11-01
Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.
Allen, R J; Rieger, T R; Musante, C J
2016-03-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed "virtual patients." In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations.
[Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E
2002-05-01
In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the accuracy and efficacy of 4 dimensional imaging compared to conventional evaluations.
NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams
NASA Technical Reports Server (NTRS)
Prahst, Steve
2003-01-01
Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.
Online virtual cases to teach resource stewardship.
Zhou, Linghong Linda; Tait, Gordon; Sandhu, Sharron; Steiman, Amanda; Lake, Shirley
2018-06-11
As health care costs rise, medical education must focus on high-value clinical decision making. To teach and assess efficient resource use in rheumatology, online virtual interactive cases (VICs) were developed to simulate real patient encounters to increase price transparency and reinforce cost consciousness. To teach and assess efficient resource use in rheumatology, online virtual interactive cases (VICs) were developed METHODS: The VIC modules were distributed to a sample of medical students and internal medicine residents, who were required to assess patients, order appropriate investigations, develop differential diagnoses and formulate management plans. Each action was associated with a time and price, with the totals compared against ideals. Trainees were evaluated not only on their diagnosis and patient management, but also on the total time, cost and value of their selected workup. Trainee responses were tracked anonymously, with opportunity to provide feedback at the end of each case. Seventeen medical trainees completed a total of 48 VIC modules. On average, trainees spent CAN $227.52 and 68 virtual minutes on each case, which was lower than expected. This may have been the result of a low management score of 52.4%, although on average 92.0% of participants in each case achieved the correct diagnosis. In addition, 85.7% felt more comfortable working up similar cases, and 57.1% believed that the modules increased their ability to appropriately order cost-conscious rheumatology investigations. Our initial assessment of the VIC rheumatology modules was positive, supporting their role as an effective tool in teaching an approach to rheumatology patients, with an emphasis on resource stewardship. Future directions include the expansion of cases, based on feedback, wider dissemination and an evaluation of learning retention. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Rieger, TR; Musante, CJ
2016-01-01
Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients become overrepresented in virtual populations. PMID:27069777
Utilization of a virtual patient for advanced assessment of student performance in pain management.
Smith, Michael A; Waite, Laura H
2017-09-01
To assess student performance and achievement of course objectives following the integration of a virtual patient case designed to promote active, patient-centered learning in a required pharmacy course. DecisionSim™ (Kynectiv, Inc., Chadsford, PA), a dynamic virtual patient platform, was used to implement an interactive patient case to augment pain management material presented during a didactic session in a pharmacotherapy course. Simulation performance data were collected and analyzed. Student exam performance on pain management questions was compared to student exam performance on nearly identical questions from a prior year when a paper-based case was used instead of virtual patient technology. Students who performed well on the virtual patient case performed better on exam questions related to patient assessment (p = 0.0244), primary pharmacological therapy (p = 0.0001), and additional pharmacological therapy (p = 0.0001). Overall exam performance did not differ between the two groups. However, students with exposure to the virtual patient case demonstrated significantly better performance on higher level Bloom's Taxonomy questions that required them to create pharmacotherapy regimens (p=0.0005). Students in the previous year (exposed only to a paper patient case) performed better in calculating conversions of opioids for patients (p = 0.0001). Virtual patient technology may enhance student performance on high-level Bloom's Taxonomy examination questions. This study adds to the current literature demonstrating the value of virtual patient technology as an active-learning strategy. Copyright © 2017 Elsevier Inc. All rights reserved.
From telepathology to virtual pathology institution: the new world of digital pathology.
Kayser, K; Kayser, G; Radziszowski, D; Oehmann, A
Telepathology has left its childhood. Its technical development is mature, and its use for primary (frozen section) and secondary (expert consultation) diagnosis has been expanded to a great amount. This is in contrast to a virtual pathology laboratory, which is still under technical constraints. Similar to telepathology, which can also be used for e-learning and e-training in pathology, as exemplarily is demonstrated on Digital Lung Pathology (Klaus.Kayser@charite.de) at least two kinds of virtual pathology laboratories will be implemented in the near future: a) those with distributed pathologists and distributed (> or = 1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists (usually situated in one institution) and a centralized laboratory, which digitizes complete histological slides. Both scenarios are under intensive technical investigations. The features of virtual pathology comprise a virtual pathology institution (mode a) that accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The Internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size and number of transferred images have to be limited, and usual different magnifications have to be used. The sender needs to possess experiences in image sampling techniques, which present with the most significant information. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. The first experiences of a virtual pathology institution group working with the iPATH server working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalization of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalization is still under development. Virtual pathology can be combined with e-learning and e-training, that will serve for a powerful daily-work-integrated pathology system. At present, e-learning systems are "stand-alone" solutions distributed on CD or via Internet. A characteristic example is the Digital Lung Pathology CD, which includes about 60 different rare and common lung diseases with some features of electronic communication. These features include access to scientific library systems (PubMed), distant measurement servers (EuroQuant), automated immunohisto-chemistry measurements, or electronic journals (Elec J Pathol Histol, www.pathology-online.org). It combines e-learning and e-training with some acoustic support. A new and complete database based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. At present, telepathology serves as promoter for a complete new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years with exciting diagnostic and scientific perspectives.
Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong
2017-08-01
We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.
Wilkening, G Lucy; Gannon, Jessica M; Ross, Clint; Brennan, Jessica L; Fabian, Tanya J; Marcsisin, Michael J; Benedict, Neal J
2017-02-01
This pilot study evaluated the utility of branched-narrative virtual patients in an interprofessional education series for psychiatry residents. Third-year psychiatry residents attended four interprofessional education advanced psychopharmacology sessions that involved completion of a branched-narrative virtual patient and a debriefing session with a psychiatric pharmacist. Pre- and post-assessments analyzed resident learning and were administered around each virtual patient. Simulation 4 served as a comprehensive review. The primary outcome was differences in pre- and post-assessment scores. Secondary outcomes included resident satisfaction with the virtual patient format and psychiatric pharmacist involvement. Post-test scores for simulations 1, 2, and 3 demonstrated significant improvement (p < 0.05) from pre-test scores. Scores for simulation 4 did not retain significance. Resident satisfaction with the branched-narrative virtual patient format and psychiatric pharmacist involvement was high throughout the series (100 %; n = 18). Although there are important methodological limitations to this study including a small sample size and absence of a comparator group, this pilot study supports the use of branched-narrative virtual patients in an interprofessional education series for advanced learners.
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen
2002-02-01
In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.
In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests.
Lafon, Yoann; Lafage, Virginie; Steib, Jean-Paul; Dubousset, Jean; Skalli, Wafa
2010-01-15
A numerical study was conducted to identify the intervertebral stiffness of scoliotic spines from spinal flexibility tests. To study the intervertebral 3-dimensional (3D) stiffness distribution along scoliotic spine. Few methods have been reported in literature to quantify the in vivo 3D intervertebral stiffness of the scoliotic spine. Based on the simulation of flexibility tests, these methods were operator-dependent and could yield to clinically irrelevant stiffnesses. This study included 30 patients surgically treated for severe idiopathic scoliosis. A previously validated trunk model, with patient-specific geometry, was used to simulate bending tests according to the in vivo displacements of T1 and L5 measured from bending test radiographs. Differences between in vivo and virtual spinal behaviors during bending tests (left and right) were computed in terms of vertebral rotations and translation. An automated method, driven by a priori knowledge, identified intervertebral stiffnesses in order to reproduce the in vivo spinal behavior. Because of the identification of intervertebral stiffnesses, differences between in vivo and virtual spinal displacements were drastically reduced (95% of the differences less than +/-3 mm for vertebral translation). Intervertebral stiffness distribution after identification was analyzed. On convex side test, the intervertebral stiffness of the compensatory curves increased in most cases, whereas the major curve became more flexible. Stiffness singularities were found in junctional zones: these specific levels were predominantly flexible, both in torsion and in lateral bending. The identification of in vivo intervertebral stiffness may improve our understanding of scoliotic spine and the relevance of patient-specific methods for surgical planning.
Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.
Li, Nan; Ainsworth, Richard I; Ding, Bo; Hou, Tingjun; Wang, Wei
2015-07-27
Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.
Shader Lamps Virtual Patients: the physical manifestation of virtual patients.
Rivera-Gutierrez, Diego; Welch, Greg; Lincoln, Peter; Whitton, Mary; Cendan, Juan; Chesnutt, David A; Fuchs, Henry; Lok, Benjamin
2012-01-01
We introduce the notion of Shader Lamps Virtual Patients (SLVP) - the combination of projector-based Shader Lamps Avatars and interactive virtual humans. This paradigm uses Shader Lamps Avatars technology to give a 3D physical presence to conversational virtual humans, improving their social interactivity and enabling them to share the physical space with the user. The paradigm scales naturally to multiple viewers, allowing for scenarios where an instructor and multiple students are involved in the training. We have developed a physical-virtual patient for medical students to conduct ophthalmic exams, in an interactive training experience. In this experience, the trainee practices multiple skills simultaneously, including using a surrogate optical instrument in front of a physical head, conversing with the patient about his fears, observing realistic head motion, and practicing patient safety. Here we present a prototype system and results from a preliminary formative evaluation of the system.
Promotion of self-directed learning using virtual patient cases.
Benedict, Neal; Schonder, Kristine; McGee, James
2013-09-12
To assess the effectiveness of virtual patient cases to promote self-directed learning (SDL) in a required advanced therapeutics course. Virtual patient software based on a branched-narrative decision-making model was used to create complex patient case simulations to replace lecture-based instruction. Within each simulation, students used SDL principles to learn course objectives, apply their knowledge through clinical recommendations, and assess their progress through patient outcomes and faculty feedback linked to their individual decisions. Group discussions followed each virtual patient case to provide further interpretation, clarification, and clinical perspective. Students found the simulated patient cases to be organized (90%), enjoyable (82%), intellectually challenging (97%), and valuable to their understanding of course content (91%). Students further indicated that completion of the virtual patient cases prior to class permitted better use of class time (78%) and promoted SDL (84%). When assessment questions regarding material on postoperative nausea and vomiting were compared, no difference in scores were found between the students who attended the lecture on the material in 2011 (control group) and those who completed the virtual patient case on the material in 2012 (intervention group). Completion of virtual patient cases, designed to replace lectures and promote SDL, was overwhelmingly supported by students and proved to be as effective as traditional teaching methods.
Promotion of Self-directed Learning Using Virtual Patient Cases
Schonder, Kristine; McGee, James
2013-01-01
Objective. To assess the effectiveness of virtual patient cases to promote self-directed learning (SDL) in a required advanced therapeutics course. Design. Virtual patient software based on a branched-narrative decision-making model was used to create complex patient case simulations to replace lecture-based instruction. Within each simulation, students used SDL principles to learn course objectives, apply their knowledge through clinical recommendations, and assess their progress through patient outcomes and faculty feedback linked to their individual decisions. Group discussions followed each virtual patient case to provide further interpretation, clarification, and clinical perspective. Assessments. Students found the simulated patient cases to be organized (90%), enjoyable (82%), intellectually challenging (97%), and valuable to their understanding of course content (91%). Students further indicated that completion of the virtual patient cases prior to class permitted better use of class time (78%) and promoted SDL (84%). When assessment questions regarding material on postoperative nausea and vomiting were compared, no difference in scores were found between the students who attended the lecture on the material in 2011 (control group) and those who completed the virtual patient case on the material in 2012 (intervention group). Conclusion. Completion of virtual patient cases, designed to replace lectures and promote SDL, was overwhelmingly supported by students and proved to be as effective as traditional teaching methods. PMID:24052654
Full State Feedback Control for Virtual Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Tillay
This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less
Creation of virtual patients for midwifery education.
Urbanová, Eva; Bašková, Martina; Maskálová, Erika; Kvaltínyová, Eva
2018-07-01
The objective of the study was to create several new, original virtual patients (VPs) in the Slovak language, especially for educational purposes in midwifery. Virtual patients have been created for the needs of university midwifery education in Slovakia. The creation of the six virtual patients basically consisted of three fixed stages: preparation, design and development, implementation into the virtual environment. We used the Open Labyrinth (OL) virtual environment, an open-source system for creating VPs. The VPs include six various scenarios of the most common problems seen in midwifery practice: preterm birth, perinatal loss, gestational diabetes, ineffective breastfeeding, postpartum bleeding and sudden home birth. Currently, six original virtual patients are used in university midwifery education in Slovakia. We use them for contact teaching as well as self-study of students. They present the first VPs in Slovakia and the Czech Republic created in academic settings in these countries. The future perspective of a virtual patient as an interactive process between the student and the medium is that it can deepen and improve learning outcomes, solve specific midwifery issues, and reduce mistakes in the clinical environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Kononowicz, Andrzej A; Berman, Anne H; Stathakarou, Natalia; McGrath, Cormac; Bartyński, Tomasz; Nowakowski, Piotr; Malawski, Maciej; Zary, Nabil
2015-09-10
Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants. This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs.
Berman, Anne H; Stathakarou, Natalia; McGrath, Cormac; Bartyński, Tomasz; Nowakowski, Piotr; Malawski, Maciej; Zary, Nabil
2015-01-01
Background Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature. Objective This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale. Methods The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study. Results The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants. Conclusions This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs. PMID:27731844
Antoniou, Panagiotis E; Athanasopoulou, Christina A; Dafli, Eleni
2014-01-01
Background Since their inception, virtual patients have provided health care educators with a way to engage learners in an experience simulating the clinician’s environment without danger to learners and patients. This has led this learning modality to be accepted as an essential component of medical education. With the advent of the visually and audio-rich 3-dimensional multi-user virtual environment (MUVE), a new deployment platform has emerged for educational content. Immersive, highly interactive, multimedia-rich, MUVEs that seamlessly foster collaboration provide a new hotbed for the deployment of medical education content. Objective This work aims to assess the suitability of the Second Life MUVE as a virtual patient deployment platform for undergraduate dental education, and to explore the requirements and specifications needed to meaningfully repurpose Web-based virtual patients in MUVEs. Methods Through the scripting capabilities and available art assets in Second Life, we repurposed an existing Web-based periodontology virtual patient into Second Life. Through a series of point-and-click interactions and multiple-choice queries, the user experienced a specific periodontology case and was asked to provide the optimal responses for each of the challenges of the case. A focus group of 9 undergraduate dentistry students experienced both the Web-based and the Second Life version of this virtual patient. The group convened 3 times and discussed relevant issues such as the group’s computer literacy, the assessment of Second Life as a virtual patient deployment platform, and compared the Web-based and MUVE-deployed virtual patients. Results A comparison between the Web-based and the Second Life virtual patient revealed the inherent advantages of the more experiential and immersive Second Life virtual environment. However, several challenges for the successful repurposing of virtual patients from the Web to the MUVE were identified. The identified challenges for repurposing of Web virtual patients to the MUVE platform from the focus group study were (1) increased case complexity to facilitate the user’s gaming preconception in a MUVE, (2) necessity to decrease textual narration and provide the pertinent information in a more immersive sensory way, and (3) requirement to allow the user to actuate the solutions of problems instead of describing them through narration. Conclusions For a successful systematic repurposing effort of virtual patients to MUVEs such as Second Life, the best practices of experiential and immersive game design should be organically incorporated in the repurposing workflow (automated or not). These findings are pivotal in an era in which open educational content is transferred to and shared among users, learners, and educators of various open repositories/environments. PMID:24927470
Exploiting virtual synchrony in distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Joseph, Thomas A.
1987-01-01
Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.
Teaching professionalism through virtual means.
McEvoy, Michelle; Butler, Bryan; MacCarrick, Geraldine
2012-02-01
Virtual patients are used across a variety of clinical disciplines for both teaching and assessment, but are they an appropriate environment in which to develop professional skills? This study aimed to evaluate students' perceived effectiveness of an online interactive virtual patient developed to augment a personal professional development curriculum, and to identify factors that would maximise the associated educational benefits. Student focus group discussions were conducted to explore students' views on the usefulness and acceptability of the virtual patient as an educational tool to teach professionalism, and to identify factors for improvement. A thematic content analysis was used to capture content and synthesise the range of opinions expressed. Overall there was a positive response to the virtual patient. The students recognised the need to teach and assess professionalism throughout their curriculum, and viewed the virtual patient as a potentially engaging and valuable addition to their curriculum. We identified factors for improvement to guide the development of future virtual patients. It is possible to improve approaches to teaching and learning professionalism by exploring students' views on innovative teaching developments designed to augment personal professional development curricula. © Blackwell Publishing Ltd 2012.
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods
2014-08-01
Approved for public release; distribution is unlimited. A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods...ABSTRACT A Study Comparing the Pedagogical Effectiveness of Virtual Worlds and of Classical Methods Report Title This experiment tests whether a virtual... PEDAGOGICAL EFFECTIVENESS OF VIRTUAL WORLDS AND OF TRADITIONAL TRAINING METHODS A Thesis by BENJAMIN PETERS
Virtual endoscopic imaging of the spine.
Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei
2012-05-20
Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.
Evidence of virtual patients as a facilitative learning tool on an anesthesia course.
Leung, Joseph Y C; Critchley, Lester A H; Yung, Alex L K; Kumta, Shekhar M
2015-10-01
Virtual patients are computerised representations of realistic clinical cases. They were developed to teach clinical reasoning skills through delivery of multiple standardized patient cases. The anesthesia course at The Chinese University of Hong Kong developed two novel types of virtual patients, formative assessment cases studies and storyline, to teach its final year medical students on a 2 week rotational course. Acute pain management cases were used to test if these two types of virtual patient could enhance student learning. A 2 × 2 cross over study was performed in academic year 2010-2011 on 130 students divided into four groups of 32-34. Performance was evaluated by acute pain management items set within three examinations; an end of module 60-item multiple choice paper, a short answer modified essay paper and the end of year final surgery modified essay paper. The pain management case studies were found to enhanced student performance in all three examinations, whilst the storyline virtual patient had no demonstrable effect. Student-teaching evaluation questionnaires showed that the case studies were favored more than the storyline virtual patient. Login times showed that students on average logged onto the case studies for 6 h, whereas only half the students logged on and used the storyline virtual patient. Formative assessment case studies were well liked by the students and reinforced learning of clinical algorithms through repetition and feedback, whereas the educational role of the more narrative and less interactive storyline virtual patient was less clear .
World Virtual Observatory Organization
NASA Astrophysics Data System (ADS)
Ignatyev, Mikhail; Pinigin, Gennadij
On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.
Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M
2014-01-01
To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.
Evidence of Virtual Patients as a Facilitative Learning Tool on an Anesthesia Course
ERIC Educational Resources Information Center
Leung, Joseph Y. C.; Critchley, Lester A. H.; Yung, Alex L. K.; Kumta, Shekhar M.
2015-01-01
Virtual patients are computerised representations of realistic clinical cases. They were developed to teach clinical reasoning skills through delivery of multiple standardized patient cases. The anesthesia course at The Chinese University of Hong Kong developed two novel types of virtual patients, formative assessment cases studies and storyline,…
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Rouleau, Geneviève; Richard, Lauralie; Côté, José
2016-01-01
The use of information and communication technologies for designing web-based nursing interventions is growing exponentially. Despite the interest devoted to such approaches, little is known about their foundational principles and the way they translate into virtual nursing practice to generate meaningful engagement with patients. VIH-TAVIETM is a virtual nursing intervention aiming to empower people living with HIV to help them in managing their antiretroviral therapy. Here we present VIH-TAVIETM relational model of engagement - its core components informed by interview data with patients and a virtual nurse: building a virtual presence founded on caring relational principles and values; creating a caring environment where patients feel safe, supported and respected; stimulating patients' engagement by offering supportive and tailored messages; transposing nursing communication skills into a virtual practice to build trust and reciprocal relationships. This study suggests that empowering connections can develop between a nurse and a patient within a caring virtual environment.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang
2014-09-17
Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.
Guidelines for developing distributed virtual environment applications
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; Banks, Sheila B.
1998-08-01
We have conducted a variety of projects that served to investigate the limits of virtual environments and distributed virtual environment (DVE) technology for the military and medical professions. The projects include an application that allows the user to interactively explore a high-fidelity, dynamic scale model of the Solar System and a high-fidelity, photorealistic, rapidly reconfigurable aircraft simulator. Additional projects are a project for observing, analyzing, and understanding the activity in a military distributed virtual environment, a project to develop a distributed threat simulator for training Air Force pilots, a virtual spaceplane to determine user interface requirements for a planned military spaceplane system, and an automated wingman for use in supplementing or replacing human-controlled systems in a DVE. The last two projects are a virtual environment user interface framework; and a project for training hospital emergency department personnel. In the process of designing and assembling the DVE applications in support of these projects, we have developed rules of thumb and insights into assembling DVE applications and the environment itself. In this paper, we open with a brief review of the applications that were the source for our insights and then present the lessons learned as a result of these projects. The lessons we have learned fall primarily into five areas. These areas are requirements development, software architecture, human-computer interaction, graphical database modeling, and construction of computer-generated forces.
Harris, Bryan T; Montero, Daniel; Grant, Gerald T; Morton, Dean; Llop, Daniel R; Lin, Wei-Shao
2017-02-01
This clinical report proposes a digital workflow using 2-dimensional (2D) digital photographs, a 3D extraoral facial scan, and cone beam computed tomography (CBCT) volumetric data to create a 3D virtual patient with craniofacial hard tissue, remaining dentition (including surrounding intraoral soft tissue), and the realistic appearance of facial soft tissue at an exaggerated smile under static conditions. The 3D virtual patient was used to assist the virtual diagnostic tooth arrangement process, providing patient with a pleasing preoperative virtual smile design that harmonized with facial features. The 3D virtual patient was also used to gain patient's pretreatment approval (as a communication tool), design a prosthetically driven surgical plan for computer-guided implant surgery, and fabricate the computer-aided design and computer-aided manufacturing (CAD-CAM) interim prostheses. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Laboratory E-Notebooks: A Learning Object-Based Repository
ERIC Educational Resources Information Center
Abari, Ilior; Pierre, Samuel; Saliah-Hassane, Hamadou
2006-01-01
During distributed virtual laboratory experiment sessions, a major problem is to be able to collect, store, manage and share heterogeneous data (intermediate results, analysis, annotations, etc) manipulated simultaneously by geographically distributed teammates composing a virtual team. The electronic notebook is a possible response to this…
Role of virtual bronchoscopy in children with a vegetable foreign body in the tracheobronchial tree.
Behera, G; Tripathy, N; Maru, Y K; Mundra, R K; Gupta, Y; Lodha, M
2014-12-01
Multidetector computed tomography virtual bronchoscopy is a non-invasive diagnostic tool which provides a three-dimensional view of the tracheobronchial airway. This study aimed to evaluate the usefulness of virtual bronchoscopy in cases of vegetable foreign body aspiration in children. The medical records of patients with a history of foreign body aspiration from August 2006 to August 2010 were reviewed. Data were collected regarding their clinical presentation and chest X-ray, virtual bronchoscopy and rigid bronchoscopy findings. Cases of metallic and other non-vegetable foreign bodies were excluded from the analysis. Patients with multidetector computed tomography virtual bronchoscopy showing features of vegetable foreign body were included in the analysis. For each patient, virtual bronchoscopy findings were reviewed and compared with those of rigid bronchoscopy. A total of 60 patients; all children ranging from 1 month to 8 years of age, were included. The mean age at presentation was 2.01 years. Rigid bronchoscopy confirmed the results of multidetector computed tomography virtual bronchoscopy (i.e. presence of foreign body, site of lodgement, and size and shape) in 59 patients. In the remaining case, a vegetable foreign body identified by virtual bronchoscopy was revealed by rigid bronchoscopy to be a thick mucus plug. Thus, the positive predictive value of virtual bronchoscopy was 98.3 per cent. Multidetector computed tomography virtual bronchoscopy is a sensitive and specific diagnostic tool for identifying radiolucent vegetable foreign bodies in the tracheobronchial tree. It can also provide a useful pre-operative road map for rigid bronchoscopy. Patients suspected of having an airway foreign body or chronic unexplained respiratory symptoms should undergo multidetector computed tomography virtual bronchoscopy to rule out a vegetable foreign body in the tracheobronchial tree and avoid general anaesthesia and invasive rigid bronchoscopy.
ERIC Educational Resources Information Center
Ferrer-Garcia, Marta; Gutierrez-Maldonado, Jose; Caqueo-Urizar, Alejandra; Moreno, Elena
2009-01-01
This article explores the efficacy of virtual environments representing situations that are emotionally significant to patients with eating disorders (ED) to modify depression and anxiety levels both in these patients and in controls. Eighty-five ED patients and 108 students were randomly exposed to five experimental virtual environments (a…
ERIC Educational Resources Information Center
Taylor, Michael J.; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah
2017-01-01
Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved…
Geissbuhler, Antoine; Spahni, Stéphane; Assimacopoulos, André; Raetzo, Marc-André; Gobet, Gérard
2004-01-01
to design a community healthcare information network for all 450,000 citizen in the State of Geneva, Switzerland, connecting public and private healthcare professionals. Requirements include the decentralized storage of information at the source of its production, the creation of a virtual patient record at the time of the consultation, the control by the patient of the access rights to the information, and the interoperability with other similar networks at the national and european level. a participative approach and real-world pilot projects are used to design, test and validate key components of the network, including its technical architecture and the strategy for the management of access rights by the patients. a distributed architecture using peer-to-peer communication of information mediators can implement the various requirements while limiting to an absolute minimum the amount of centralized information. Access control can be managed by the patient with the help of a medical information mediator, the physician of trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Jung, H; Kim, G
2014-06-01
Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
ERIC Educational Resources Information Center
McCoy, Lise
2014-01-01
Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision…
Design for learning: deconstructing virtual patient activities.
Ellaway, Rachel H; Davies, David
2011-01-01
Digital technologies are used in almost every aspect of contemporary health professional education (HPE) but our understanding of their true potential as instructional tools rather than administrative tools has not significantly advanced in the last decade. One notable exception to this has been the rise of the 'virtual patient' as an educational intervention in HPE. This article attempts to deconstruct the virtual patient concept by developing a model of virtual patients as artifacts with intrinsic encoded properties and emergent constructed properties that build on the core concept of 'activity'.
Jump, Robin L.; Banks, Richard; Wilson, Brigid; Montpetite, Michelle M.; Carter, Rebecca; Phillips, Susan; Perez, Federico
2015-01-01
We developed a “virtual clinic” to improve pneumococcal vaccination among asplenic adults. Using an electronic medical record, we identified patients, assessed their vaccination status, entered orders, and notified patients and providers. Within 180 days, 38 of 76 patients (50%) received a pneumococcal vaccination. A virtual clinic may optimize vaccinations among high-risk patients. PMID:26668815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, David; St Luke's Hospital, Dublin; Grabarz, Daniel
Purpose: The purpose of this study was to assess the accuracy of a virtual consultation (VC) process in determining treatment strategy for patients with malignant epidural spinal cord compression (MESCC). Methods and Materials: A prospective clinical database was maintained for patients with MESCC. A virtual consultation process (involving exchange of key predetermined clinical information and diagnostic imaging) facilitated rapid decision-making between oncologists and spinal surgeons. Diagnostic imaging was reviewed retrospectively (by R.R.) for surgical opinions in all patients. The primary outcome was the accuracy of virtual consultation opinion in predicting the final treatment recommendation. Results: After excluding 20 patients whomore » were referred directly to the spinal surgeon, 125 patients were eligible for virtual consultation. Of the 46 patients who had a VC, surgery was recommended in 28 patients and actually given to 23. A retrospective review revealed that 5/79 patients who did not have a VC would have been considered surgical candidates. The overall accuracy of the virtual consultation process was estimated at 92%. Conclusion: The VC process for MESCC patients provides a reliable means of arriving at a multidisciplinary opinion while minimizing patient transfer. This can potentially shorten treatment decision time and enhance clinical outcomes.« less
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M
2016-07-01
Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.
2016-01-01
Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071
Virtual gonio-spectrophotometer for validation of BRDF designs
NASA Astrophysics Data System (ADS)
Mihálik, Andrej; Ďurikovič, Roman
2011-10-01
Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.
Needs analysis for developing a virtual-reality NOTES simulator.
Sankaranarayanan, Ganesh; Matthes, Kai; Nemani, Arun; Ahn, Woojin; Kato, Masayuki; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu
2013-05-01
INTRODUCTION AND STUDY AIM: Natural orifice translumenal endoscopic surgery (NOTES) is an emerging surgical technique that requires a cautious adoption approach to ensure patient safety. High-fidelity virtual-reality-based simulators allow development of new surgical procedures and tools and train medical personnel without risk to human patients. As part of a project funded by the National Institutes of Health, we are developing the virtual transluminal endoscopic surgery trainer (VTEST) for this purpose. The objective of this study is to conduct a structured needs analysis to identify the design parameters for such a virtual-reality-based simulator for NOTES. A 30-point questionnaire was distributed at the 2011 National Orifice Surgery Consortium for Assessment and Research meeting to obtain responses from experts. Ordinal logistic regression and the Wilcoxon rank-sum test were used for analysis. A total of 22 NOTES experts participated in the study. Cholecystectomy (CE, 68 %) followed by appendectomy (AE, 63 %) (CE vs AE, p = 0.0521) was selected as the first choice for simulation. Flexible (FL, 47 %) and hybrid (HY, 47 %) approaches were equally favorable compared with rigid (RI, 6 %) with p < 0.001 for both FL versus RI and HY versus RI. The transvaginal approach was preferred 3 to 1 to the transgastric. Most participants preferred two-channel (2C) scopes (65 %) compared with single (1C) or three (3C) or more channels with p < 0.001 for both 2C versus 1C and 2C versus 3C. The importance of force feedback and the utility of a virtual NOTES simulator in training and testing new tools for NOTES were rated very high by the participants. Our study reinforces the importance of developing a virtual NOTES simulator and clearly presents expert preferences. The results of this analysis will direct our initial development of the VTEST platform.
Distributed computing environments for future space control systems
NASA Technical Reports Server (NTRS)
Viallefont, Pierre
1993-01-01
The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.
Patient Satisfaction with Virtual Obstetric Care.
Pflugeisen, Bethann Mangel; Mou, Jin
2017-07-01
Introduction The importance of patient satisfaction in US healthcare is increasing, in tandem with the advent of new patient care modalities, including virtual care. The purpose of this study was to compare the satisfaction of obstetric patients who received one-third of their antenatal visits in videoconference ("Virtual-care") compared to those who received 12-14 face-to-face visits in-clinic with their physician/midwife ("Traditional-care"). Methods We developed a four-domain satisfaction questionnaire; Virtual-care patients were asked additional questions about technology. Using a modified Dillman method, satisfaction surveys were sent to Virtual-care (N = 378) and Traditional-care (N = 795) patients who received obstetric services at our institution between January 2013 and June 2015. Chi-squared tests of association, t-tests, logistic regression, and ANOVA models were used to evaluate differences in satisfaction and self-reported demographics between respondents. Results Overall satisfaction was significantly higher in the Virtual-care cohort (4.76 ± 0.44 vs. 4.47 ± 0.59; p < .001). Parity ≥ 1 was the sole significant demographic variable impacting Virtual-care selection (OR = 2.4, 95% CI: 1.5-3.8; p < .001). Satisfaction of Virtual-care respondents was not significantly impacted by the incorporation of videoconferencing, Doppler, and blood pressure monitoring technology into their care. The questionnaire demonstrated high internal consistency as measured by domain-based correlations and Cronbach's alpha. Discussion Respondents from both models were highly satisfied with care, but those who had selected the Virtual-care model reported significantly higher mean satisfaction scores. The Virtual-care model was selected by significantly more women who already have children than those experiencing pregnancy for the first time. This model of care may be a reasonable alternative to traditional care.
Distributed collaborative environments for virtual capability-based planning
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.
Ahnood, Dana; Souriti, Ahmad; Williams, Gwyn Samuel
2018-06-01
To explore the views of patients with diabetic retinopathy and maculopathy on their acceptance of virtual clinic review in place of face-to-face clinic appointments. A postal survey was mailed to all 813 patients under the care of the diabetic eye clinic at Singleton Hospital with 7 questions, explanatory information, and a stamped, addressed envelope available for returning completed questionnaires. Four hundred and ninety-eight questionnaires were returned indicating that 86.1% were supportive of the idea of virtual clinics, although only 56.9% were prepared for every visit to be virtual. Of respondents, 6.6% not happy to attend any virtual clinic. This is by far the largest survey of patients' attitudes regarding attending virtual clinics and confirms that the vast majority are supportive of this mode of health care delivery. Copyright © 2018 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Shokur, Solaiman; Gallo, Simone; Moioli, Renan C; Donati, Ana Rita C; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A L
2016-09-19
Spinal cord injuries disrupt bidirectional communication between the patient's brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients' forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency.
Miksys, N; Xu, C; Beaulieu, L; Thomson, R M
2015-08-07
This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose calculation studies for various permanent implant brachytherapy treatments.
A virtual data language and system for scientific workflow management in data grid environments
NASA Astrophysics Data System (ADS)
Zhao, Yong
With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.
Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations
NASA Astrophysics Data System (ADS)
McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.
2012-09-01
Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.
Perpiñá, Conxa; Roncero, María
2016-05-01
Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Selective structural source identification
NASA Astrophysics Data System (ADS)
Totaro, Nicolas
2018-04-01
In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.
Konstantatos, A H; Angliss, M; Costello, V; Cleland, H; Stafrace, S
2009-06-01
Pain arising in burns sufferers is often severe and protracted. The prospect of a dressing change can heighten existing pain by impacting both physically and psychologically. In this trial we examined whether pre-procedural virtual reality guided relaxation added to patient controlled analgesia with morphine reduced pain severity during awake dressings changes in burns patients. We conducted a prospective randomized clinical trial in all patients with burns necessitating admission to a tertiary burns referral centre. Eligible patients requiring awake dressings changes were randomly allocated to single use virtual reality relaxation plus intravenous morphine patient controlled analgesia (PCA) infusion or to intravenous morphine patient controlled analgesia infusion alone. Patients rated their worst pain intensity during the dressing change using a visual analogue scale. The primary outcome measure was presence of 30% or greater difference in pain intensity ratings between the groups in estimation of worst pain during the dressing change. Of 88 eligible and consenting patients having awake dressings changes, 43 were assigned to virtual reality relaxation plus intravenous morphine PCA infusion and 43 to morphine PCA infusion alone. The group receiving virtual reality relaxation plus morphine PCA infusion reported significantly higher pain intensities during the dressing change (mean=7.3) compared with patients receiving morphine PCA alone (mean=5.3) (p=0.003) (95% CI 0.6-2.8). The addition of virtual reality guided relaxation to morphine PCA infusion in burns patients resulted in a significant increase in pain experienced during awake dressings changes. In the absence of a validated predictor for responsiveness to virtual reality relaxation such a therapy cannot be recommended for general use in burns patients having awake dressings changes.
Nesaratnam, N; Thomas, P; Vivian, A
2017-10-01
IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.
Kang, Youn Joo; Park, Hae Kyung; Kim, Hyun Jung; Lim, Taeo; Ku, Jeonghun; Cho, Sangwoo; Kim, Sun I; Park, Eun Sook
2012-10-04
Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients.
2012-01-01
Background Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described. Objectives We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror. Moreover, we attempted to delineate the role of visual modulation within the virtual environment that affected corticospinal excitability in healthy subjects and stroke patients. Methods A total of 18 healthy subjects and 18 hemiplegic patients were enrolled into the study. Motor evoked potential (MEP)s from transcranial magnetic stimulation were recorded in the flexor carpi radialis of the non-dominant or affected upper extremity using three different conditions: (A) relaxation; (B) real mirror; and (C) virtual mirror. Moreover, we compared the MEPs from the virtual mirror paradigm using continuous visual feedback or intermittent visual feedback. Results The rates of amplitude increment and latency decrement of MEPs in both groups were higher during the virtual mirror task than during the real mirror. In healthy subjects and stroke patients, the virtual mirror task with intermittent visual feedback significantly facilitated corticospinal excitability of MEPs compared with continuous visual feedback. Conclusion Corticospinal excitability was facilitated to a greater extent in the virtual mirror paradigm than in the real mirror and in intermittent visual feedback than in the continuous visual feedback, in both groups. This provides neurophysiological evidence supporting the application of the virtual mirror paradigm using various visual modulation technologies to upper extremity rehabilitation in stroke patients. PMID:23035951
ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.
Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu
2015-01-01
In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.
Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation
NASA Astrophysics Data System (ADS)
Benko, Attila; Cecilia, Sik Lanyi
This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the possible future research field.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
Experiencing Virtual Patients in Clinical Learning: A Phenomenological Study
ERIC Educational Resources Information Center
Edelbring, Samuel; Dastmalchi, Maryam; Hult, Hakan; Lundberg, Ingrid E.; Dahlgren, Lars Owe
2011-01-01
Computerised virtual patients (VPs) are increasingly being used in medical education. With more use of this technology, there is a need to increase the knowledge of students' experiences with VPs. The aim of the study was to elicit the nature of virtual patients in a clinical setting, taking the students' experience as a point of departure.…
Developing virtual patients for medical microbiology education.
McCarthy, David; O'Gorman, Ciaran; Gormley, Gerry J
2013-12-01
The landscape of medical education is changing as students embrace the accessibility and interactivity of e-learning. Virtual patients are e-learning resources that may be used to advance microbiology education. Although the development of virtual patients has been widely considered, here we aim to provide a coherent approach for clinical educators. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hirumi, Atsusi; Johnson, Teresa; Reyes, Ramsamooj Javier; Lok, Benjamin; Johnsen, Kyle; Rivera-Gutierrez, Diego J.; Bogert, Kenneth; Kubovec, Stacey; Eakins, Michael; Kleinsmith, Andrea; Bellew, Michael; Cendan, Juan
2016-01-01
In Part I of this two-part series, we examined the design and development of NERVE: A virtual patient simulation created to give medical students standardized experiences in interviewing, examining, and diagnosing virtual patients with cranial nerve disorders. We illustrated key design features and discussed how design-based research studies…
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
2014-01-01
Background Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education. Objective The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education. Methods The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics. Results A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the integration of theory and practice. Conclusions Virtual patients that are adapted to the nursing paradigm can support nursing students’ development of clinical reasoning skills. The proposed virtual patient nursing design and activity models will allow the systematic development of different types of virtual patients from a common model and thereby create opportunities for sharing pedagogical designs across technical solutions. PMID:24727709
Levine, David Michael; Dixon, Ronald F; Linder, Jeffrey A
2018-04-23
Optimal management of hypertension requires frequent monitoring and follow-up. Novel, pragmatic interventions have the potential to engage patients, maintain blood pressure control, and enhance access to busy primary care practices. "Virtual visits" are structured asynchronous online interactions between a patient and a clinician to extend medical care beyond the initial office visit. To compare blood pressure control and healthcare utilization between patients who received virtual visits compared to usual hypertension care. Propensity score-matched, retrospective cohort study with adjustment by difference-in-differences. Primary care patients with hypertension. Patient participation in at least one virtual visit for hypertension. Usual care patients did not use a virtual visit but were seen in-person for hypertension. Adjusted difference in mean systolic blood pressure, primary care office visits, specialist office visits, emergency department visits, and inpatient admissions in the 180 days before and 180 days after the in-person visit. Of the 1051 virtual visit patients and 24,848 usual care patients, we propensity score-matched 893 patients from each group. Both groups were approximately 61 years old, 44% female, 85% White, had about five chronic conditions, and about 20% had a mean pre-visit systolic blood pressure of 140-160 mmHg. Compared to usual care, virtual visit patients had an adjusted 0.8 (95% CI, 0.3 to 1.2) fewer primary care office visits. There was no significant adjusted difference in systolic blood pressure control (0.6 mmHg [95% CI, - 2.0 to 3.1]), specialist visits (0.0 more visits [95% CI, - 0.3 to 0.3]), emergency department visits (0.0 more visits [95% CI, 0.0 to 0.01]), or inpatient admissions (0.0 more admissions [95% CI, 0.0 to 0.1]). Among patients with reasonably well-controlled hypertension, virtual visit participation was associated with equivalent blood pressure control and reduced in-office primary care utilization.
Shaw, James; Jamieson, Trevor; Agarwal, Payal; Griffin, Bailey; Wong, Ivy; Bhatia, R Sacha
2017-01-01
Background The development of new virtual care technologies (including telehealth and telemedicine) is growing rapidly, leading to a number of challenges related to health policy and planning for health systems around the world. Methods We brought together a diverse group of health system stakeholders, including patient representatives, to engage in policy dialogue to set health system priorities for the application of virtual care in the primary care sector in the Province of Ontario, Canada. We applied a nominal group technique (NGT) process to determine key priorities, and synthesized these priorities with group discussion to develop recommendations for virtual care policy. Methods included a structured priority ranking process, open-ended note-taking, and thematic analysis to identify priorities. Results Recommendations were summarized under the following themes: (a) identify clear health system leadership to embed virtual care strategies into all aspects of primary and community care; (b) make patients the focal point of health system decision-making; (c) leverage incentives to achieve meaningful health system improvements; and (d) building virtual care into streamlined workflows. Two key implications of our policy dialogue are especially relevant for an international audience. First, shifting the dialogue away from technology toward more meaningful patient engagement will enable policy planning for applications of technology that better meet patients' needs. Second, a strong conceptual framework on guiding the meaningful use of technology in health care settings is essential for intelligent planning of virtual care policy. Conclusions Policy planning for virtual care needs to shift toward a stronger focus on patient engagement to understand patients' needs.
Ambient clumsiness in virtual environments
NASA Astrophysics Data System (ADS)
Ruzanka, Silvia; Behar, Katherine
2010-01-01
A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.
[Virtual reality therapy in anxiety disorders].
Mitrousia, V; Giotakos, O
2016-01-01
During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.
Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe
2016-01-01
Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.
Cousins Virtual Jane and Virtual Joe, Extraordinary Virtual Helpers
ERIC Educational Resources Information Center
Blignaut, Seugnet; Nagel, Lynette
2009-01-01
Higher education institutions deliver web-based learning with varied success. The success rate of distributed online courses remains low. Factors such as ineffective course facilitation and insufficient communication contribute to the unfulfilled promises of web-based learning. Students consequently feel unmotivated. Instructor control and in the…
Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal
2018-04-01
Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.
Al-Dahir, Sara; Bryant, Kendrea; Kennedy, Kathleen B; Robinson, Donna S
2014-05-15
To evaluate the efficacy of faculty-led problem-based learning (PBL) vs online simulated-patient case in fourth-year (P4) pharmacy students. Fourth-year pharmacy students were randomly assigned to participate in either online branched-case learning using a virtual simulation platform or a small-group discussion. Preexperience and postexperience student assessments and a survey instrument were completed. While there were no significant differences in the preexperience test scores between the groups, there was a significant increase in scores in both the virtual-patient group and the PBL group between the preexperience and postexperience tests. The PBL group had higher postexperience test scores (74.8±11.7) than did the virtual-patient group (66.5±13.6) (p=0.001). The PBL method demonstrated significantly greater improvement in postexperience test scores than did the virtual-patient method. Both were successful learning methods, suggesting that a diverse approach to simulated patient cases may reach more student learning styles.
Virtual Reality as a Distraction Technique in Chronic Pain Patients
Gao, Kenneth; Sulea, Camelia; Wiederhold, Mark D.
2014-01-01
Abstract We explored the use of virtual reality distraction techniques for use as adjunctive therapy to treat chronic pain. Virtual environments were specifically created to provide pleasant and engaging experiences where patients navigated on their own through rich and varied simulated worlds. Real-time physiological monitoring was used as a guide to determine the effectiveness and sustainability of this intervention. Human factors studies showed that virtual navigation is a safe and effective method for use with chronic pain patients. Chronic pain patients demonstrated significant relief in subjective ratings of pain that corresponded to objective measurements in peripheral, noninvasive physiological measures. PMID:24892196
Lichvar, Alicia Beth; Hedges, Ashley; Benedict, Neal J.
2016-01-01
Objective. To design and evaluate the integration of a virtual patient activity in a required therapeutics course already using a flipped-classroom teaching format. Design. A narrative-branched, dynamic virtual-patient case was designed to replace the static written cases that students worked through during the class, which was dedicated to teaching the complications of liver disease. Students completed pre- and posttests before and after completing the virtual patient case. Examination scores were compared to those in the previous year. Assessment. Students’ posttest scores were higher compared to pretest scores (33% vs 50%). Overall median examination scores were higher compared to the historical control group (70% vs 80%), as well as scores on questions assessing higher-level learning (67% vs 83%). A majority of students (68%) felt the virtual patient helped them apply knowledge gained in the pre-class video lecture. Students preferred this strategy to usual in-class activities (33%) or indicated it was of equal value (37%). Conclusion. The combination of a pre-class video lecture with an in-class virtual patient case is an effective active-learning strategy. PMID:28179724
Lichvar, Alicia Beth; Hedges, Ashley; Benedict, Neal J; Donihi, Amy C
2016-12-25
Objective. To design and evaluate the integration of a virtual patient activity in a required therapeutics course already using a flipped-classroom teaching format. Design. A narrative-branched, dynamic virtual-patient case was designed to replace the static written cases that students worked through during the class, which was dedicated to teaching the complications of liver disease. Students completed pre- and posttests before and after completing the virtual patient case. Examination scores were compared to those in the previous year. Assessment. Students' posttest scores were higher compared to pretest scores (33% vs 50%). Overall median examination scores were higher compared to the historical control group (70% vs 80%), as well as scores on questions assessing higher-level learning (67% vs 83%). A majority of students (68%) felt the virtual patient helped them apply knowledge gained in the pre-class video lecture. Students preferred this strategy to usual in-class activities (33%) or indicated it was of equal value (37%). Conclusion. The combination of a pre-class video lecture with an in-class virtual patient case is an effective active-learning strategy.
Manipulation of volumetric patient data in a distributed virtual reality environment.
Dech, F; Ai, Z; Silverstein, J C
2001-01-01
Due to increases in network speed and bandwidth, distributed exploration of medical data in immersive Virtual Reality (VR) environments is becoming increasingly feasible. The volumetric display of radiological data in such environments presents a unique set of challenges. The shear size and complexity of the datasets involved not only make them difficult to transmit to remote sites, but these datasets also require extensive user interaction in order to make them understandable to the investigator and manageable to the rendering hardware. A sophisticated VR user interface is required in order for the clinician to focus on the aspects of the data that will provide educational and/or diagnostic insight. We will describe a software system of data acquisition, data display, Tele-Immersion, and data manipulation that supports interactive, collaborative investigation of large radiological datasets. The hardware required in this strategy is still at the high-end of the graphics workstation market. Future software ports to Linux and NT, along with the rapid development of PC graphics cards, open the possibility for later work with Linux or NT PCs and PC clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
2014-01-15
Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxelmore » and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.« less
Virtual Reality Exploration and Planning for Precision Colorectal Surgery.
Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco
2018-06-01
Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.
Shokur, Solaiman; Gallo, Simone; Moioli, Renan C.; Donati, Ana Rita C.; Morya, Edgard; Bleuler, Hannes; Nicolelis, Miguel A.L.
2016-01-01
Spinal cord injuries disrupt bidirectional communication between the patient’s brain and body. Here, we demonstrate a new approach for reproducing lower limb somatosensory feedback in paraplegics by remapping missing leg/foot tactile sensations onto the skin of patients’ forearms. A portable haptic display was tested in eight patients in a setup where the lower limbs were simulated using immersive virtual reality (VR). For six out of eight patients, the haptic display induced the realistic illusion of walking on three different types of floor surfaces: beach sand, a paved street or grass. Additionally, patients experienced the movements of the virtual legs during the swing phase or the sensation of the foot rolling on the floor while walking. Relying solely on this tactile feedback, patients reported the position of the avatar leg during virtual walking. Crossmodal interference between vision of the virtual legs and tactile feedback revealed that patients assimilated the virtual lower limbs as if they were their own legs. We propose that the addition of tactile feedback to neuroprosthetic devices is essential to restore a full lower limb perceptual experience in spinal cord injury (SCI) patients, and will ultimately, lead to a higher rate of prosthetic acceptance/use and a better level of motor proficiency. PMID:27640345
Staghorn: An Automated Large-Scale Distributed System Analysis Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabert, Kasimir; Burns, Ian; Elliott, Steven
2016-09-01
Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less
Using Immersive Virtual Reality for Electrical Substation Training
ERIC Educational Resources Information Center
Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana
2015-01-01
Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…
Developing a Hybrid Virtualization Platform Design for Cyber Warfare Training and Education
2010-06-01
CYBER WARFARE TRAINING AND EDUCATION THESIS Kyle E. Stewart 2nd...Government. AFIT/GCE/ENG/10-06 DEVELOPING A HYBRID VIRTUALIZATION PLATFORM DESIGN FOR CYBER WARFARE TRAINING...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GCE/ENG/10-06 DEVELOPING A HYBRID VIRTUALIZATION PLATFORM DESIGN FOR CYBER WARFARE
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe
2018-01-01
Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. PMID:29703715
Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert
2016-07-01
The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P < 0.001), knee angle at peak vGRF (P = 0.01) and knee flexion excursion (P = 0.03). There was larger effect of virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.
Basak, Muzaffer; Ozkurt, Huseyin; Tanriverdi, Orhan; Cay, Esra; Aydin, Mustafa; Miroglu, Cengiz
2009-01-01
The purpose of this study was to evaluate the use of virtual cystoscopy performed with multidetector computed tomography (CT) in patients with suspected bladder tumors and histories of bladder carcinoma operation. Thirty-six patients (29 men and 7 women) with a mean age of 66 years (range, 24-88 years) with suspected bladder tumors and histories of bladder carcinoma operation were included in this prospective study. Virtual cystoscopy was performed by 16-slice multidetector CT scanner. The bladder was filled with diluted contrast material solution through a Foley catheter. Then, all patients underwent conventional cystoscopy examination. Two reviewers found 18 lesions detected by virtual cystoscopy by consensus, whereas 19 lesions were depicted by conventional cystoscopy. At virtual and conventional cystoscopies, the conditions of 3 patients, 2 with chronic inflammations and 1 with foreign body reaction, were wrongly diagnosed as tumors. At conventional cystoscopy, one patient's result was wrongly interpreted as normal. In pathologic evaluation, all tumors were diagnosed as transitional cell carcinoma. Bladder tumor can be noninvasively diagnosed using virtual cystoscopy. Use of virtual cystoscopy should be considered inpatients who present with hematuria or have histories of bladder carcinoma operation and are for follow-up because of its lesser complication risk and its being a less invasive, easily applied procedure without need of anesthesia. In the future, owing to the development of the CT technology and image processing technique, virtual cystoscopy may have a part in the detection of bladder cancer.
Greene, D D; Heeter, C
1998-01-01
Two new cancer patient information CD-ROMs extend the personal stories within virtual environments model of cancer patient information developed for Breast Cancer Lighthouse. Cancer Pain Retreat and Cancer Prevention Park: Games for Life are intended to inform and inspire users in an emotionally calming and intimately informative manner. The software offers users an experience--of visiting a virtual place and meeting and talking with patients and health care professionals.
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2017-10-01
The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
González-González, Ana Isabel; Orrego, Carola; Perestelo-Perez, Lilisbeth; Bermejo-Caja, Carlos Jesús; Mora, Nuria; Koatz, Débora; Ballester, Marta; Del Pino, Tasmania; Pérez-Ramos, Jeannet; Toledo-Chavarri, Ana; Robles, Noemí; Pérez-Rivas, Francisco Javier; Ramírez-Puerta, Ana Belén; Canellas-Criado, Yolanda; Del Rey-Granado, Yolanda; Muñoz-Balsa, Marcos José; Becerril-Rojas, Beatriz; Rodríguez-Morales, David; Sánchez-Perruca, Luis; Vázquez, José Ramón; Aguirre, Armando
2017-10-30
Communities of practice are based on the idea that learning involves a group of people exchanging experiences and knowledge. The e-MPODERA project aims to assess the effectiveness of a virtual community of practice aimed at improving primary healthcare professional attitudes to the empowerment of patients with chronic diseases. This paper describes the protocol for a cluster randomized controlled trial. We will randomly assign 18 primary-care practices per participating region of Spain (Catalonia, Madrid and Canary Islands) to a virtual community of practice or to usual training. The primary-care practice will be the randomization unit and the primary healthcare professional will be the unit of analysis. We will need a sample of 270 primary healthcare professionals (general practitioners and nurses) and 1382 patients. We will perform randomization after professionals and patients are selected. We will ask the intervention group to participate for 12 months in a virtual community of practice based on a web 2.0 platform. We will measure the primary outcome using the Patient-Provider Orientation Scale questionnaire administered at baseline and after 12 months. Secondary outcomes will be the sociodemographic characteristics of health professionals, sociodemographic and clinical characteristics of patients, the Patient Activation Measure questionnaire for patient activation and outcomes regarding use of the virtual community of practice. We will calculate a linear mixed-effects regression to estimate the effect of participating in the virtual community of practice. This cluster randomized controlled trial will show whether a virtual intervention for primary healthcare professionals improves attitudes to the empowerment of patients with chronic diseases. ClicalTrials.gov, NCT02757781 . Registered on 25 April 2016. Protocol Version. PI15.01 22 January 2016.
2008-01-01
Distributed Drug Discovery (D3) proposes solving large drug discovery problems by breaking them into smaller units for processing at multiple sites. A key component of the synthetic and computational stages of D3 is the global rehearsal of prospective reagents and their subsequent use in the creation of virtual catalogs of molecules accessible by simple, inexpensive combinatorial chemistry. The first section of this article documents the feasibility of the synthetic component of Distributed Drug Discovery. Twenty-four alkylating agents were rehearsed in the United States, Poland, Russia, and Spain, for their utility in the synthesis of resin-bound unnatural amino acids 1, key intermediates in many combinatorial chemistry procedures. This global reagent rehearsal, coupled to virtual library generation, increases the likelihood that any member of that virtual library can be made. It facilitates the realistic integration of worldwide virtual D3 catalog computational analysis with synthesis. The second part of this article describes the creation of the first virtual D3 catalog. It reports the enumeration of 24 416 acylated unnatural amino acids 5, assembled from lists of either rehearsed or well-precedented alkylating and acylating reagents, and describes how the resulting catalog can be freely accessed, searched, and downloaded by the scientific community. PMID:19105725
Simplified Virtualization in a HEP/NP Environment with Condor
NASA Astrophysics Data System (ADS)
Strecker-Kellogg, W.; Caramarcu, C.; Hollowell, C.; Wong, T.
2012-12-01
In this work we will address the development of a simple prototype virtualized worker node cluster, using Scientific Linux 6.x as a base OS, KVM and the libvirt API for virtualization, and the Condor batch software to manage virtual machines. The discussion in this paper provides details on our experience with building, configuring, and deploying the various components from bare metal, including the base OS, creation and distribution of the virtualized OS images and the integration of batch services with the virtual machines. Our focus was on simplicity and interoperability with our existing architecture.
Grids, virtualization, and clouds at Fermilab
Timm, S.; Chadwick, K.; Garzoglio, G.; ...
2014-06-11
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less
Grids, virtualization, and clouds at Fermilab
NASA Astrophysics Data System (ADS)
Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.
2014-06-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.
Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases
NASA Astrophysics Data System (ADS)
Romero, Salvador J.; Fernandez-Luque, Luis; Sevillano, José L.; Vognild, Lars
For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising.
Transforming Professional Healthcare Narratives into Structured Game-Informed-Learning Activities
ERIC Educational Resources Information Center
Begg, Michael; Ellaway, Rachel; Dewhurst, David; Macleod, Hamish
2007-01-01
Noting the dependency of healthcare education on practice-based learning, Michael Begg, Rachel Ellaway, David Dewhurst, and Hamish Macleod suggest that creating a virtual clinical setting for students to interact with virtual patients can begin to address educational demands for clinical experience. They argue that virtual patient simulations that…
Swennen, Gwen R J
2014-11-01
The purpose of this article is to evaluate the timing for three-dimensional (3D) virtual treatment planning of orthognathic surgery in the daily clinical routine. A total of 350 consecutive patients were included in this study. All patients were scanned following the standardized "Triple CBCT Scan Protocol" in centric relation. Integrated 3D virtual planning and actual surgery were performed by the same surgeon in all patients. Although clinically acceptable, still software improvements especially toward 3D virtual occlusal definition are mandatory to make 3D virtual planning of orthognathic surgery less time-consuming and more user-friendly to the clinician. Copyright © 2014 Elsevier Inc. All rights reserved.
Exploiting Virtual Synchrony in Distributed Systems
1987-02-01
for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, J; Xu, H; Gordon, J
2014-06-01
Purpose: To to determine if tumor control probability (TCP) and normal tissue control probability (NTCP) values computed on the treatment planning image are representative of TCP/NTCP distributions resulting from probable positioning variations encountered during external-beam radiotherapy. Methods: We compare TCP/NTCP as typically computed on the planning PTV/OARs with distributions of those parameters computed for CTV/OARs via treatment delivery simulations which include the effect of patient organ deformations for a group of 19 prostate IMRT pseudocases. Planning objectives specified 78 Gy to PTV1=prostate CTV+5 mm margin, 66 Gy to PTV2=seminal vesicles+8 mm margin, and multiple bladder/rectum OAR objectives to achieve typicalmore » clinical OAR sparing. TCP were computed using the Poisson Model while NTCPs used the Lyman-Kutcher-Bruman model. For each patient, 1000 30-fraction virtual treatment courses were simulated with each fractional pseudo- time-oftreatment anatomy sampled from a principle component analysis patient deformation model. Dose for each virtual treatment-course was determined via deformable summation of dose from the individual fractions. CTVTCP/ OAR-NTCP values were computed for each treatment course, statistically analyzed, and compared with the planning PTV-TCP/OARNTCP values. Results: Mean TCP from the simulations differed by <1% from planned TCP for 18/19 patients; 1/19 differed by 1.7%. Mean bladder NTCP differed from the planned NTCP by >5% for 12/19 patients and >10% for 4/19 patients. Similarly, mean rectum NTCP differed by >5% for 12/19 patients, >10% for 4/19 patients. Both mean bladder and mean rectum NTCP differed by >5% for 10/19 patients and by >10% for 2/19 patients. For several patients, planned NTCP was less than the minimum or more than the maximum from the treatment course simulations. Conclusion: Treatment course simulations yield TCP values that are similar to planned values, while OAR NTCPs differ significantly, indicating the need for probabilistic methods or PRVs for OAR risk assessment. Presenting author receives support from Philips Medical Systems.« less
Deficient gaze pattern during virtual multiparty conversation in patients with schizophrenia.
Han, Kiwan; Shin, Jungeun; Yoon, Sang Young; Jang, Dong-Pyo; Kim, Jae-Jin
2014-06-01
Virtual reality has been used to measure abnormal social characteristics, particularly in one-to-one situations. In real life, however, conversations with multiple companions are common and more complicated than two-party conversations. In this study, we explored the features of social behaviors in patients with schizophrenia during virtual multiparty conversations. Twenty-three patients with schizophrenia and 22 healthy controls performed the virtual three-party conversation task, which included leading and aiding avatars, positive- and negative-emotion-laden situations, and listening and speaking phases. Patients showed a significant negative correlation in the listening phase between the amount of gaze on the between-avatar space and reasoning ability, and demonstrated increased gaze on the between-avatar space in the speaking phase that was uncorrelated with attentional ability. These results suggest that patients with schizophrenia have active avoidance of eye contact during three-party conversations. Virtual reality may provide a useful way to measure abnormal social characteristics during multiparty conversations in schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.
The National Virtual Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.
2001-06-01
The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .
[Real patients in virtual reality: the link between phantom heads and clinical dentistry].
Serrano, C M; Wesselink, P R; Vervoorn, J M
2018-05-01
Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Nursing Education Trial Using a Virtual Nightingale Ward.
Tsuji, Keiko; Iwata, Naomi; Kodama, Hiromi; Hagiwara, Tomoko; Takai, Kiyako; Sasaki, Yoko; Nagata, Yoshie; Matsumoto, Maki
2017-01-01
Nursing department students are expected to correctly grasp the entire concept of nursing through their education. The authors created a movie of a Nightingale ward (virtual ward, hereafter) with an architectural computer design software for education. The students' reaction to the virtual ward was categorized into three viewpoints: that of nurses, of patients, and of nurses and patients in common. Most of the reactions in each viewpoint were: "easy to observe patients" in the nurses' viewpoint; "no privacy" in the patients' viewpoint; and "wide room" in the common viewpoint, respectively. These reactions show the effectiveness of using a virtual ward in nursing education. Because these reactions are characteristics of a Nightingale ward, and even students, who have generally less experiences, recognized these characteristics from the both viewpoints of nurses and patients.
Distributing Variable Star Data to the Virtual Observatory
NASA Astrophysics Data System (ADS)
Kinne, Richard C.; Templeton, M. R.; Henden, A. A.; Zografou, P.; Harbo, P.; Evans, J.; Rots, A. H.; LAZIO, J.
2013-01-01
Effective distribution of data is a core element of effective astronomy today. The AAVSO is the home of several different unique databases. The AAVSO International Database (AID) contains over a century of photometric and time-series data on thousands of individual variable stars comprising over 22 million observations. The AAVSO Photometric All-Sky Survey (APASS) is a new photometric catalog containing calibrated photometry in Johnson B, V and Sloan g', r' and i' filters for stars with magnitudes of 10 < V < 17. The AAVSO is partnering with researchers and technologists at the Virtual Astronomical Observatory (VAO) to solve the data distribution problem for these datasets by making them available via various VO tools. We give specific examples of how these data can be accessed through Virtual Observatory (VO) toolsets and utilized for astronomical research.
A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients.
Claessen, Michiel H G; Visser-Meily, Johanna M A; de Rooij, Nicolien K; Postma, Albert; van der Ham, Ineke J M
2016-04-01
An increasing number of studies have presented evidence that various patient groups with acquired brain injury suffer from navigation problems in daily life. This skill is, however, scarcely addressed in current clinical neuropsychological practice and suitable diagnostic instruments are lacking. Real-world navigation tests are limited by geographical location and associated with practical constraints. It was, therefore, investigated whether virtual navigation might serve as a useful alternative. To investigate the convergent validity of virtual navigation testing, performance on the Virtual Tubingen test was compared to that on an analogous real-world navigation test in 68 chronic stroke patients. The same eight subtasks, addressing route and survey knowledge aspects, were assessed in both tests. In addition, navigation performance of stroke patients was compared to that of 44 healthy controls. A correlation analysis showed moderate overlap (r = .535) between composite scores of overall real-world and virtual navigation performance in stroke patients. Route knowledge composite scores correlated somewhat stronger (r = .523) than survey knowledge composite scores (r = .442). When comparing group performances, patients obtained lower scores than controls on seven subtasks. Whereas the real-world test was found to be easier than its virtual counterpart, no significant interaction-effects were found between group and environment. Given moderate overlap of the total scores between the two navigation tests, we conclude that virtual testing of navigation ability is a valid alternative to navigation tests that rely on real-world route exposure.
Lee, Kyoung-Hee
2015-01-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287
Shared virtual environments for telerehabilitation.
Popescu, George V; Burdea, Grigore; Boian, Rares
2002-01-01
Current VR telerehabilitation systems use offline remote monitoring from the clinic and patient-therapist videoconferencing. Such "store and forward" and video-based systems cannot implement medical services involving patient therapist direct interaction. Real-time telerehabilitation applications (including remote therapy) can be developed using a shared Virtual Environment (VE) architecture. We developed a two-user shared VE for hand telerehabilitation. Each site has a telerehabilitation workstation with a videocamera and a Rutgers Master II (RMII) force feedback glove. Each user can control a virtual hand and interact hapticly with virtual objects. Simulated physical interactions between therapist and patient are implemented using hand force feedback. The therapist's graphic interface contains several virtual panels, which allow control over the rehabilitation process. These controls start a videoconferencing session, collect patient data, or apply therapy. Several experimental telerehabilitation scenarios were successfully tested on a LAN. A Web-based approach to "real-time" patient telemonitoring--the monitoring portal for hand telerehabilitation--was also developed. The therapist interface is implemented as a Java3D applet that monitors patient hand movement. The monitoring portal gives real-time performance on off-the-shelf desktop workstations.
Lee, Kyoung-Hee
2015-06-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.
Shinbane, Jerold S; Saxon, Leslie A
Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2016-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR
Model Predictive Control of Type 1 Diabetes: An in Silico Trial
Magni, Lalo; Raimondo, Davide M.; Bossi, Luca; Man, Chiara Dalla; De Nicolao, Giuseppe; Kovatchev, Boris; Cobelli, Claudio
2007-01-01
Background The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation. Methods A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose–insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input–output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. Results Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels. Conclusions The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation. PMID:19885152
Wichmann, D; Heinemann, A; Zähler, S; Vogel, H; Höpker, W; Püschel, K; Kluge, S
2018-06-01
There has been increasing use of invasive techniques, such as extracorporeal organ support, in intensive care units (ICU), and declining autopsy rates. Thus, new measures are needed to maintain high-quality standards. We investigated the potential of computed tomography (CT)-based virtual autopsy to substitute for medical autopsy in this setting. We investigated the potential of virtual autopsy by post-mortem CT to identify complications associated with medical devices in a prospective study of patients who had died in the ICU. Clinical records were reviewed to determine the number and types of medical devices used, and findings from medical and virtual autopsies, related and unrelated to the medical devices, were compared. Medical and virtual autopsies could be performed in 61 patients (Group M/V), and virtual autopsy only in 101 patients (Group V). In Group M/V, 41 device-related complications and 30 device malpositions were identified, but only with a low inter-method agreement. Major findings unrelated to a device were identified in about 25% of patients with a high level of agreement between methods. In Group V, 8 device complications and 36 device malpositions were identified. Device-related complications are frequent in ICU patients. Virtual and medical autopsies showed clear differences in the detection of complications and device malpositions. Both methods should supplement each other rather than one alone for quality control of medical devices in the ICU. Further studies should focus on the identification of special patient populations in which virtual autopsy might be of particular benefit. NCT01541982. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
The virtual-casing principle and Helmholtz's theorem
Hanson, J. D.
2015-09-10
The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.
The virtual-casing principle and Helmholtz’s theorem
Hanson, J. D.
2015-09-10
The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz’s theorem.
Virtual Worlds Turn Therapeutic for Autistic Disorders
ERIC Educational Resources Information Center
Mangan, Katherine
2008-01-01
Asperger's patients have been treated by role-playing with real-life therapists. The virtual-reality town at the medical center is a new twist. The University of Texas at Dallas uses a platform from Second Life, the popular virtual world, in which patients go to an "island" customized for therapeutic purposes. The island was built by…
Lin, Wei-Shao; Harris, Bryan T; Phasuk, Kamolphob; Llop, Daniel R; Morton, Dean
2018-02-01
This clinical report describes a digital workflow using the virtual smile design approach augmented with a static 3-dimensional (3D) virtual patient with photorealistic appearance to restore maxillary central incisors by using computer-aided design and computer-aided manufacturing (CAD-CAM) monolithic lithium disilicate ceramic veneers. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Objective structured clinical interview training using a virtual human patient.
Parsons, Thomas D; Kenny, Patrick; Ntuen, Celestine A; Pataki, Caroly S; Pato, Michele T; Rizzo, Albert A; St-George, Cheryl; Sugar, Jeffery
2008-01-01
Effective interview skills are a core competency for psychiatry residents and developing psychotherapists. Although schools commonly make use of standardized patients to teach interview skills, the diversity of the scenarios standardized patients can characterize is limited by availability of human actors. Further, there is the economic concern related to the time and money needed to train standardized patients. Perhaps most damaging is the "standardization" of standardized patients -- will they in fact consistently proffer psychometrically reliable and valid interactions with the training clinicians. Virtual Human Agent (VHA) technology has evolved to a point where researchers may begin developing mental health applications that make use of virtual reality patients. The work presented here is a preliminary attempt at what we believe to be a large application area. Herein we describe an ongoing study of our virtual patients (VP). We present an approach that allows novice mental health clinicians to conduct an interview with a virtual character that emulates an adolescent male with conduct disorder. This study illustrates the ways in which a variety of core research components developed at the University of Southern California facilitates the rapid development of mental health applications.
Medical Student Bias and Care Recommendations for an Obese versus Non-Obese Virtual Patient
Persky, Susan; Eccleston, Collette P.
2010-01-01
Objective This study examined the independent effect of a patient's weight on medical students' attitudes, beliefs, and interpersonal behavior toward the patient, in addition to the clinical recommendations they make for her care. Design Seventy-six clinical-level medical students were randomly assigned to interact with a digital, virtual female patient who was visibly either obese or non-obese. Methods Interactions with the patient took place in an immersive virtual clinical environment (i.e., virtual reality) which allowed standardization of all patient behaviors and characteristics except for weight. Visual contact behavior was automatically recorded during the interaction. Afterward, participants filled out a battery of self-report questionnaires. Results Analyses revealed more negative stereotyping, less anticipated patient adherence, worse perceived health, more responsibility attributed for potentially weight-related presenting complaints, and less visual contact directed toward the obese version of a virtual patient than the non-obese version of the patient. In contrast, there was no clear evidence of bias in clinical recommendations made for the patient's care. Conclusion Biases in attitudes, beliefs, and interpersonal behavior have important implications because they can influence the tone of clinical encounters and rapport in the patient-provider relationship, which can have important downstream consequences. Gaining a clear understanding of the nature and source of weight bias in the clinical encounter is an important first step toward development of strategies to address it. PMID:20820169
The development of the virtual reality system for the treatment of the fears of public speaking.
Jo, H J; Ku, J H; Jang, D P; Shin, M B; Ahn, H B; Lee, J M; Cho, B H; Kim, S I
2001-01-01
The fear of public speaking is a kind of social phobias. The patients having the fear of public speaking show some symptoms like shame and timidity in the daily personal relationship. They are afraid that the other person would be puzzled, feel insulted, and they also fear that they should be underestimated for their mistakes. For the treatment of the fear of public speaking, the cognitive-behavioral therapy has been generally used. The cognitive-behavioral therapy is the method that makes the patients gradually experience some situations inducing the fears and overcome those at last. Recently, the virtual reality technology has been introduced as an alternative method for providing phobic situations. In this study, we developed the public speaking simulator and the virtual environments for the treatment of the fear of public speaking. The head-mounted display, the head-tracker and the 3 dimensional sound system were used for the immersive virtual environment. The imagery of the virtual environment consists of a seminar room and 8 virtual audiences. The patient will speak in front of these virtual audiences and the therapist can control motions, facial expressions, sounds, and voices of each virtual audience.
Guo, Chunlan; Deng, Hongyan; Yang, Jian
2015-01-01
To assess the effect of virtual reality distraction on pain among patients with a hand injury undergoing a dressing change. Virtual reality distraction can effectively alleviate pain among patients undergoing a dressing change. Clinical research has not addressed pain control during a dressing change. A randomised controlled trial was performed. In the first dressing change sequence, 98 patients were randomly divided into an experimental group and a control group, with 49 cases in each group. Pain levels were compared between the two groups before and after the dressing change using a visual analog scale. The sense of involvement in virtual environments was measured using the Pearson correlation coefficient analysis, which determined the relationship between the sense of involvement and pain level. The difference in visual analog scale scores between the two groups before the dressing change was not statistically significant (t = 0·196, p > 0·05), but the scores became statistically significant after the dressing change (t = -30·792, p < 0·01). The correlation between the sense of involvement in a virtual environment and pain level during the dressing was statistically significant (R(2) = 0·5538, p < 0·05). Virtual reality distraction can effectively alleviate pain among patients with a hand injury undergoing a dressing change. Better results can be obtained by increasing the sense of involvement in a virtual environment. Virtual reality distraction can effectively relieve pain without side effects and is not reliant on a doctor's prescription. This tool is convenient for nurses to use, especially when analgesics are unavailable. © 2014 John Wiley & Sons Ltd.
Pion distribution amplitude and quasidistributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radyushkin, Anatoly V.
2017-03-27
We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k 2 ⊥) and the pion quasidistribution amplitude (QDA) Q π(y,p 3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p 3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, andmore » asymptotic distribution amplitude. Finally, our results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less
Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-23
Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian
2018-04-27
Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus, Mark Erik Larsen, Christophe Lemey, Sofian Berrouiguet. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.
The Impact of Different Scoring Rubrics for Grading Virtual Patient-Based Exams
ERIC Educational Resources Information Center
Fors, Uno G. H.; Gunning, William T.
2014-01-01
Virtual patient cases (VPs) are used for healthcare education and assessment. Most VP systems track user interactions to be used for assessment. Few studies have investigated how virtual exam cases should be scored and graded. We have applied eight different scoring models on a data set from 154 students. Issues studied included the impact of…
Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.
Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P
2017-01-01
Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.
2012-01-01
Background The concept of virtual patients (VPs) encompasses a great variety of predominantly case-based e-learning modules with different complexity and fidelity levels. Methods for effective placement of VPs in the process of medical education are sought. The aim of this study was to determine whether the introduction of a voluntary virtual patients module into a basic life support with an automated external defibrillator (BLS-AED) course improved the knowledge and skills of students taking the course. Methods Half of the students were randomly assigned to an experimental group and given voluntary access to a virtual patient module consisting of six cases presenting BLS-AED knowledge and skills. Pre- and post-course knowledge tests and skills assessments were performed, as well as a survey of students' satisfaction with the VP usage. In addition, time spent using the virtual patient system, percentage of screen cards viewed and scores in the formative questions in the VP system throughout the course were traced and recorded. Results The study was conducted over a six week period and involved 226 first year medical students. The voluntary module was used by 61 (54%) of the 114 entitled study participants. The group that used VPs demonstrated better results in knowledge acquisition and in some key BLS-AED action skills than the group without access, or those students from the experimental group deliberately not using virtual patients. Most of the students rated the combination of VPs and corresponding teaching events positively. Conclusions The overall positive reaction of students and encouraging results in knowledge and skills acquisition suggest that the usage of virtual patients in a BLS-AED course on a voluntary basis is feasible and should be further investigated. PMID:22709278
Kononowicz, Andrzej A; Krawczyk, Paweł; Cebula, Grzegorz; Dembkowska, Marta; Drab, Edyta; Frączek, Bartosz; Stachoń, Aleksandra J; Andres, Janusz
2012-06-18
The concept of virtual patients (VPs) encompasses a great variety of predominantly case-based e-learning modules with different complexity and fidelity levels. Methods for effective placement of VPs in the process of medical education are sought. The aim of this study was to determine whether the introduction of a voluntary virtual patients module into a basic life support with an automated external defibrillator (BLS-AED) course improved the knowledge and skills of students taking the course. Half of the students were randomly assigned to an experimental group and given voluntary access to a virtual patient module consisting of six cases presenting BLS-AED knowledge and skills. Pre- and post-course knowledge tests and skills assessments were performed, as well as a survey of students' satisfaction with the VP usage. In addition, time spent using the virtual patient system, percentage of screen cards viewed and scores in the formative questions in the VP system throughout the course were traced and recorded. The study was conducted over a six week period and involved 226 first year medical students. The voluntary module was used by 61 (54%) of the 114 entitled study participants. The group that used VPs demonstrated better results in knowledge acquisition and in some key BLS-AED action skills than the group without access, or those students from the experimental group deliberately not using virtual patients. Most of the students rated the combination of VPs and corresponding teaching events positively. The overall positive reaction of students and encouraging results in knowledge and skills acquisition suggest that the usage of virtual patients in a BLS-AED course on a voluntary basis is feasible and should be further investigated.
Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong
2017-11-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong
2017-01-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328
Intersecting Virtual Patients and Microbiology: Fostering a culture of learning.
McCarthy, David; O'Gorman, Ciaran; Gormley, Gerard
2015-10-01
The use and integration of Technology Enhanced Learning (TEL) resources in medical education has attracted considerable commentary and support. "Virtual Patients" are one such resource. Whilst evidence exists supporting the benefits of these resources, there has not been specific consideration of their implications for teaching microbiology; nor attention paid to both the internal and external factors that influence learner engagement with virtual patients. The principle aims of this study are to identify factors that explicitly and implicitly influence the student's interaction with a microbiology virtual patient resource and how these interactions reflect upon the use of the resource. A mixed method quantitative (online questionnaire; n=161) and qualitative (student focus groups; N=11) study was undertaken amongst third year medical students enrolled at Queen's University Belfast in the academic year 2012-2013. The results supported prior evidence that virtual patients are a useful learning tool (mean score of 5.09 out of 7) that helped them to integrate microbiology principles with clinical experiences. How students used the virtual patients and the depth of the subsequent benefits was dependent upon their perception of the importance of the resource. This was influenced by a number of factors including how the resources were presented and positioned within the curriculum, whether they were formally examined or timetabled and the importance attributed by peers who had already completed the examinations. Integration of virtual patients into the microbiology curriculum is widely endorsed and may even be considered superior to other methods of teaching. How students use these resources is dependent upon a positive perception of their importance. Educators should be aware of the factors that shape this perception when integrating TEL resources into curricula.
Satellite medical centers project
NASA Astrophysics Data System (ADS)
Aggarwal, Arvind
2002-08-01
World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-11-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-01-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis. PMID:27942130
Cagran, Branka
2018-01-01
Introduction A “virtual patient” is defined as a computer program which simulates real patients' cases. The aim of this study was to determine whether the inclusion of virtual patients affects the level of factual knowledge of family medicine students at the undergraduate level. Methods This was a case-controlled prospective study. The students were randomly divided into experimental (EG: N = 51) and control (CG: N = 48) groups. The students in the EG were asked to practice diagnosis using virtual patients instead of the paper-based clinical cases which were solved by the students in the CG. The main observed variable in the study was knowledge of family medicine, determined by 50 multiple choice questions (MCQs) about knowledge of family medicine. Results There were no statistically significant differences in the groups' initial knowledge. At the final assessment of knowledge, there were no statistically significant differences between the groups, but there was a statistically significant difference between their initial and final knowledge. Conclusions The study showed that adding virtual patient cases to the curriculum, instead of paper clinical cases, did not affect the level of factual knowledge about family medicine. Virtual patients can be used, but a significant educational outcome is not expected. PMID:29568779
Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.
Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz
2015-01-01
This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.
Virtual rehabilitation--benefits and challenges.
Burdea, G C
2003-01-01
To discuss the advantages and disadvantages of rehabilitation applications of virtual reality. VR can be used as an enhancement to conventional therapy for patients with conditions ranging from musculoskeletal problems, to stroke-induced paralysis, to cognitive deficits. This approach is called "VR-augmented rehabilitation." Alternately, VR can replace conventional interventions altogether, in which case the rehabilitation is "VR-based." If the intervention is done at a distance, then it is called "telerehabilitation." Simulation exercises for post-stroke patients have been developed using a "teacher object" approach or a video game approach. Simulations for musculo-skeletal patients use virtual replicas of rehabilitation devices (such as rubber ball, power putty, peg board). Phobia-inducing virtual environments are prescribed for patients with cognitive deficits. VR-augmented rehabilitation has been shown effective for stroke patients in the chronic phase of the disease. VR-based rehabilitation has been improving patients with fear of flying, Vietnam syndrome, fear of heights, and chronic stroke patients. Telerehabilitation interventions using VR have improved musculo-skeletal and post-stroke patients, however less data is available at this time. Virtual reality presents significant advantages when applied to rehabilitation of patients with varied conditions. These advantages include patient motivation, adaptability and variability based on patient baseline, transparent data storage, online remote data access, economy of scale, reduced medical costs. Challenges in VR use for rehabilitation relate to lack of computer skills on the part of therapists, lack of support infrastructure, expensive equipment (initially), inadequate communication infrastructure (for telerehabilitation in rural areas), and patient safety concerns.
Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel
2014-09-06
In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).
Wandner, Laura D; Heft, Marc W; Lok, Benjamin C; Hirsh, Adam T; George, Steven Z; Horgas, Anne L; Atchison, James W; Torres, Calia A; Robinson, Michael E
2014-05-01
Previous literature indicates that biases exist in pain ratings. Healthcare professionals have been found to use patient demographic cues such as sex, race, and age when making decisions about pain treatment. However, there has been little research comparing healthcare professionals' (i.e., physicians and nurses) pain decision policies based on patient demographic cues. The current study used virtual human technology to examine the impact of patients' sex, race, and age on healthcare professionals' pain ratings. One hundred and ninety-three healthcare professionals (nurses and physicians) participated in this online study. Healthcare professionals assessed virtual human patients who were male and African American to be experiencing greater pain intensity and were more willing to administer opioid analgesics to them than to their demographic counterparts. Similarly, nurses were more willing to administer opioids make treatment decisions than physicians. There was also a significant virtual human-sex by healthcare professional interaction for pain assessment and treatment decisions. The sex difference (male>female) was greater for nurses than physicians. Results replicated findings of previous studies using virtual human patients to assess the effect of sex, race, and age in pain decision-making. In addition, healthcare professionals' pain ratings differed depending on healthcare profession. Nurses were more likely to rate pain higher and be more willing to administer opioid analgesics than were physicians. Healthcare professionals rated male and African American virtual human patients as having higher pain in most pain assessment and treatment domains compared to their demographic counterparts. Similarly the virtual human-sex difference ratings were more pronounced for nurses than physicians. Given the large number of patients seen throughout the healthcare professionals' careers, these pain practice biases have important public health implications. This study suggests attention to the influence of patient demographic cues in pain management education is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of distributions on the archetypes and prototypes in heterogeneous nanoparticle ensembles.
Fernandez, Michael; Wilson, Hugh F; Barnard, Amanda S
2017-01-05
The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.
The Integrated Distributed Virtual Research Network: An Introduction
2014-06-01
Tom Kile , Theron Trout, and Gary Cohn for their extensive contribution to this document to include reviews, comments, and edits, which contributed...to the quality of the document. The ARL Integrated Distributed Virtual Research Testbed (IDVRT) team, consisting of Alex Tarantin, Khoa Bui, Tom Kile ...n. Network Engineer (non-voting member) Tom Kile o. Network Engineer (non-voting member) Theron Trout p. Non-voting members (serving at the
Modeling of luminance distribution in CAVE-type virtual reality systems
NASA Astrophysics Data System (ADS)
Meironke, Michał; Mazikowski, Adam
2017-08-01
At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.
Augmenting breath regulation using a mobile driven virtual reality therapy framework.
Abushakra, Ahmad; Faezipour, Miad
2014-05-01
This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.
Baxter-Lowe, L A; Cecka, M; Kamoun, M; Sinacore, J; Melcher, M L
2014-07-01
Multi-center kidney paired donation (KPD) is an exciting new transplant option that has not yet approached its full potential. One barrier to progress is accurate virtual crossmatching for KPD waitlists with many highly sensitized patients. Virtual crossmatch results from a large multi-center consortium, the National Kidney Registry (NKR), were analyzed to determine the effectiveness of flexible center-specific criteria for virtual crossmatching. Approximately two-thirds of the patients on the NKR waitlist are highly sensitized (>80% CPRA). These patients have antibodies against HLA-A (63%), HLA-B (66%), HLA-C (41%), HLA-DRB1 (60%), HLA-DRB3/4/5 (18-22%), HLA-DQB1 (54%) and HLA-DPB1 (26%). With donors typed for these loci before activation, 91% of virtual crossmatches accurately predicted an acceptable cell-based donor crossmatch. Failed virtual crossmatches were attributed to equivocal virtual crossmatches (46%), changes in HLA antibodies (21%), antibodies against HLA-DQA (6%), transcription errors (6%), suspected non-HLA antibodies (5%), allele-specific antibodies (1%) and unknown causes (15%). Some failed crossmatches could be prevented by modifiable factors such as more frequent assessment of HLA antibodies, DQA1 typing of donors and auditing data entry. Importantly, when transplant centers have flexibility to define crossmatch criteria, it is currently feasible to use virtual crossmatching for highly sensitized patients to reliably predict acceptable cell-based crossmatches. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Chase, J Geoffrey; Preiser, Jean-Charles; Dickson, Jennifer L; Pironet, Antoine; Chiew, Yeong Shiong; Pretty, Christopher G; Shaw, Geoffrey M; Benyo, Balazs; Moeller, Knut; Safaei, Soroush; Tawhai, Merryn; Hunter, Peter; Desaive, Thomas
2018-02-20
Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, J. D.
The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.
Constructing Virtual Training Demonstrations
2008-12-01
virtual environments have been shown to be effective for training, and distributed game -based architectures contribute an added benefit of wide...investigation of how a demonstration authoring toolset can be constructed from existing virtual training environments using 3-D multiplayer gaming ...intelligent agents project to create AI middleware for simulations and videogames . The result was SimBionic®, which enables users to graphically author
ERIC Educational Resources Information Center
Fors, Uno G. H.; Courteille, Olivier
2014-01-01
Healthcare professionals need good communication skills to be able to communicate with patients. In such provider-patient communication, the professional needs to be well understood by the patient, but also be able to understand subtle parts of a medical history taking dialogue with worried, sick or mentally affected patients. Virtual Patients…
Effects of virtual reality training on mobility and physical function in stroke.
Malik, Arshad Nawaz; Masood, Tahir
2017-10-01
Stroke is a common disabling condition which declines the functional and mobility level. The purpose of the case series was to determine the effect of virtual reality training on sensorimotor function and mobility level in stroke patients. Ten male (40-60 year) patients of stroke (08 Infarction, 02 Haemorrhagic) were selected from Physiotherapy department of Pakistan Railway Hospital, Rawalpindi. The additional virtual reality training (15-20 minutes) was provided 03 days per week for 06weeks along with task oriented training. All patients were assessed through Fugl-Meyer Assessment-Lower Extremity (FMA-LE) and Timed Get Up and Go Test (TUG) at baseline and after 06 weeks of training. The results showed that there was significant improvement in mobility level of stroke patients. It is concluded that combination of task oriented and virtual reality training considerably improves the physical performance and mobility level in stroke patients.
Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe
2018-07-01
Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.
Novel Virtual Environment for Alternative Treatment of Children with Cerebral Palsy
de Oliveira, Juliana M.; Fernandes, Rafael Carneiro G.; Pinto, Cristtiano S.; Pinheiro, Plácido R.; Ribeiro, Sidarta
2016-01-01
Cerebral palsy is a severe condition usually caused by decreased brain oxygenation during pregnancy, at birth or soon after birth. Conventional treatments for cerebral palsy are often tiresome and expensive, leading patients to quit treatment. In this paper, we describe a virtual environment for patients to engage in a playful therapeutic game for neuropsychomotor rehabilitation, based on the experience of the occupational therapy program of the Nucleus for Integrated Medical Assistance (NAMI) at the University of Fortaleza, Brazil. Integration between patient and virtual environment occurs through the hand motion sensor “Leap Motion,” plus the electroencephalographic sensor “MindWave,” responsible for measuring attention levels during task execution. To evaluate the virtual environment, eight clinical experts on cerebral palsy were subjected to a questionnaire regarding the potential of the experimental virtual environment to promote cognitive and motor rehabilitation, as well as the potential of the treatment to enhance risks and/or negatively influence the patient's development. Based on the very positive appraisal of the experts, we propose that the experimental virtual environment is a promising alternative tool for the rehabilitation of children with cerebral palsy. PMID:27403154
Virtual network embedding in cross-domain network based on topology and resource attributes
NASA Astrophysics Data System (ADS)
Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan
2018-03-01
Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.
Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás
2016-01-01
Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates were very similar. In conclusion, the using of 2D environments in virtual therapy may be a more appropriate and comfortable way to perform tasks for upper limb rehabilitation of post-stroke patients, in terms of accuracy in order to effectuate optimal kinematic trajectories. PMID:27616992
Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-01
Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. Conclusions This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. PMID:24463466
Schittek Janda, M; Mattheos, N; Nattestad, A; Wagner, A; Nebel, D; Färbom, C; Lê, D-H; Attström, R
2004-08-01
Simulations are important educational tools in the development of health care competence. This study describes a virtual learning environment (VLE) for diagnosis and treatment planning in oral health care. The VLE is a web-based, database application where the learner uses free text communication on the screen to interact with patient data. The VLE contains forms for history taking, clinical images, clinical data and X-rays. After reviewing the patient information, the student proposes therapy and makes prognostic evaluations of the case in free text. A usability test of the application was performed with seven dental students. The usability test showed that the software responded with correct answers to the majority of the free text questions. The application is generic in its basic functions and can be adapted to other dental or medical subject areas. A randomised controlled trial was carried out with 39 students who attended instruction in history taking with problem-based learning cases, lectures and seminars. In addition, 16 of the 39 students were randomly chosen to practise history taking using the virtual patient prior to their first patient encounter. The performance of each student was recorded on video during the patient sessions. The type and order of the questions asked by the student and the degree of empathy displayed towards the patient were analysed systematically on the videos. The data indicate that students who also undertook history taking with a virtual patient asked more relevant questions, spent more time on patient issues, and performed a more complete history interview compared with students who had only undergone standard teaching. The students who had worked with the virtual patient also seemed to have more empathy for the patients than the students who had not. The practising of history taking with a virtual patient appears to improve the capability of dental students to take a relevant oral health history.
Tsuda, Kenji; Sudo, Kazuaki; Goto, Goro; Takai, Makiko; Itokawa, Tatsuo; Isshiki, Takahiro; Takei, Naoko; Tanimoto, Tetsuya; Komatsu, Tsunehiko
2016-01-01
Adherence to rehabilitation exercise is much lower in patients with hematologic malignancies (22.5-45.8%) than in patients with solid tumors (60-85%) due to the administration of more intensive chemotherapeutic regimens in the former. Virtual reality exercise can be performed even in a biological clean room and it may improve the adherence rates in elderly patients with hematologic malignancies. Thus, in this pilot study, we aimed to investigate the feasibility and safety of virtual reality exercise intervention using Nintendo Wii Fit in patients with hematologic malignancies receiving chemotherapy. In this feasibility study, 16 hospitalized patients with hematologic malignancies aged ≥60 years performed virtual reality exercise for 20 minutes using the Nintendo Wii Fit once a day, five times a week, from the start of chemotherapy until hospital discharge. The adherence rate, safety, and physical and psychological performances were assessed. The adherence rate for all 16 patients was 66.5%. Nine patients completed the virtual reality exercise intervention with 88 sessions, and the adherence rate was 62.0%. No intervention-related adverse effects >Grade 2, according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0, were observed. We noted maintenance of the physical performance (e.g., Barthel index, handgrip strength, knee extension strength, one-leg standing time, and the scores of timed up and go test and Instrumental Activities of Daily Living) and psychosocial performance (e.g., score of hospital anxiety and depression scale). Virtual reality exercise using the Wii Fit may be feasible, safe and efficacious, as demonstrated in our preliminary results, for patients with hematologic malignancies receiving chemotherapy.
Hsu, Su-Yi; Fang, Te-Yung; Yeh, Shih-Ching; Su, Mu-Chun; Wang, Pa-Chun; Wang, Victoria Y
2017-08-01
The purpose of this study was to evaluate a three-dimensional, virtual reality system for vestibular rehabilitation in patients with intractable Ménière's disease and chronic vestibular dysfunction. We included 70 patients (36 for study, 34 as control) with a chronic imbalance problem caused by uncompensated Ménière's disease. The virtual reality vestibular rehabilitation comprised four training tasks (modified Cawthorne-Cooksey exercises: eye, head, extension, and coordination exercises) performed in six training sessions (in 4 weeks). Measurements of the task scores and balance parameters obtained at the baseline and after final training sessions were compared. A significant improvement was observed in extension and coordination scores. Patients in the early stages of Ménière's disease had a significantly greater improvement in the center of gravity sway and trajectory excursion in the mediolateral direction than did patients in the late stages of Ménière's disease. Mild functional disability attributable to Ménière's disease was a predictor of improvement in the statokinesigram and maximum trajectory excursion in the anteroposterior direction after rehabilitation. The control group showed no significant improvement in almost all parameters. Virtual reality vestibular rehabilitation may be useful in patients with Ménière's disease, particular those in the early stages or having mild functional disability. Implication for rehabilitation Chronic imbalance caused by uncompensated Ménière's disease is an indication for vestibular rehabilitation. The interactive virtual reality video game, when integrated into vestibular rehabilitation exercise protocol, may assist patients who have mild disability Ménière's disease and who cannot benefit from treatment with drugs or surgery. The initial data from this study support the applicability of three-dimensional virtual reality technology in vestibular rehabilitation programs. The technology gives professionals a new tool to guide patients for vestibular rehabilitation exercises through three-dimensional virtual reality video game playing. The virtual reality vestibular exercise game can provide patients a step-wise, interactive, dynamic, three-dimensional, and interesting rehabilitation environment.
Knowledge-Driven Design of Virtual Patient Simulations
ERIC Educational Resources Information Center
Vergara, Victor; Caudell, Thomas; Goldsmith, Timothy; Panaiotis; Alverson, Dale
2009-01-01
Virtual worlds provide unique opportunities for instructors to promote, study, and evaluate student learning and comprehension. In this article, Victor Vergara, Thomas Caudell, Timothy Goldsmith, Panaiotis, and Dale Alverson explore the advantages of using virtual reality environments to create simulations for medical students. Virtual simulations…
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Fisher, Richard R. (Technical Monitor)
2002-01-01
NASA is currently engaged in the study phase of a modest effort to establish a Virtual Solar Observatory (VSO). The VSO would serve ground- and space-based solar physics data sets from a distributed network of archives through a small number of interfaces to the scientific community. The basis of this approach, as of all planned virtual observatories, is the translation of metadata from the various sources via source-specific dictionaries so the user will not have to distinguish among keyword usages. A single Web interface should give access to all the distributed data. We present the current status of the VSO, its initial scope, and its relation to the European EGSO effort.
Gao, Changwei; Liu, Xiaoming; Chen, Hai
2017-08-22
This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.
Experiences with developing and implementing a virtual clinic for glaucoma care in an NHS setting.
Kotecha, Aachal; Baldwin, Alex; Brookes, John; Foster, Paul J
2015-01-01
This article describes the development of a virtual glaucoma clinic, whereby technicians collect information for remote review by a consultant specialist. This was a hospital-based service evaluation study. Patients suitable for the stable monitoring service (SMS) were low-risk patients with "suspect", "early"-to-"moderate" glaucoma who were deemed stable by their consultant care team. Three technicians and one health care assistant ran the service. Patients underwent tests in a streamlined manner in a dedicated clinical facility, with virtual review of data by a consultant specialist through an electronic patient record. Feasibility of developing a novel service within a UK National Health Service setting and improvement of patient journey time within the service were studied. Challenges to implementation of virtual clinic include staffing issues and use of information technology. Patient journey time within the SMS averaged 51 minutes, compared with 92 minutes in the glaucoma outpatient department. Patient satisfaction with the new service was high. Implementing innovation into existing services of the National Health Service is challenging. However, the virtual clinic showed an improved patient journey time compared with that experienced within the general glaucoma outpatient department. There exists a discrepancy between patient management decisions of reviewers, suggesting that some may be more risk averse than others when managing patients seen within this model. Future work will assess the ability to detect progression of disease in this model compared with the general outpatient model of care.
Cogné, M; Taillade, M; N'Kaoua, B; Tarruella, A; Klinger, E; Larrue, F; Sauzéon, H; Joseph, P-A; Sorita, E
2017-06-01
Spatial navigation, which involves higher cognitive functions, is frequently implemented in daily activities, and is critical to the participation of human beings in mainstream environments. Virtual reality is an expanding tool, which enables on one hand the assessment of the cognitive functions involved in spatial navigation, and on the other the rehabilitation of patients with spatial navigation difficulties. Topographical disorientation is a frequent deficit among patients suffering from neurological diseases. The use of virtual environments enables the information incorporated into the virtual environment to be manipulated empirically. But the impact of manipulations seems differ according to their nature (quantity, occurrence, and characteristics of the stimuli) and the target population. We performed a systematic review of research on virtual spatial navigation covering the period from 2005 to 2015. We focused first on the contribution of virtual spatial navigation for patients with brain injury or schizophrenia, or in the context of ageing and dementia, and then on the impact of visual or auditory stimuli on virtual spatial navigation. On the basis of 6521 abstracts identified in 2 databases (Pubmed and Scopus) with the keywords « navigation » and « virtual », 1103 abstracts were selected by adding the keywords "ageing", "dementia", "brain injury", "stroke", "schizophrenia", "aid", "help", "stimulus" and "cue"; Among these, 63 articles were included in the present qualitative analysis. Unlike pencil-and-paper tests, virtual reality is useful to assess large-scale navigation strategies in patients with brain injury or schizophrenia, or in the context of ageing and dementia. Better knowledge about both the impact of the different aids and the cognitive processes involved is essential for the use of aids in neurorehabilitation. Copyright © 2016. Published by Elsevier Masson SAS.
Tomography for two-dimensional gas temperature distribution based on TDLAS
NASA Astrophysics Data System (ADS)
Luo, Can; Wang, Yunchu; Xing, Fei
2018-03-01
Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.
LVC interaction within a mixed-reality training system
NASA Astrophysics Data System (ADS)
Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio
2012-03-01
The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.
Stathakarou, Natalia; Zary, Nabil; Kononowicz, Andrzej A
2014-01-01
Background. Massive Open Online Courses (MOOCs) are an emerging trend in online learning. However, their technology is not yet completely adjusted to the needs of healthcare education. Integration of Virtual Patients within MOOCs to increase interactivity and foster clinical reasoning skills training, has been discussed in the past, but not verified by a practical implementation. Objective. To investigate the technical feasibility of integrating MOOCs with Virtual Patients for the purpose of enabling further research into the potential pedagogical benefits of this approach. Methods. We selected OpenEdx and Open Labyrinth as representative constituents of a MOOC platform and Virtual Patient system integration. Based upon our prior experience we selected the most fundamental technical requirement to address. Grounded in the available literature we identified an e-learning standard to guide the integration. We attempted to demonstrate the feasibility of the integration by designing a "proof-of-concept" prototype. The resulting pilot implementation was subject of verification by two test cases. Results. A Single Sign-On mechanism connecting Open Labyrinth with OpenEdx and based on the IMS LTI standard was successfully implemented and verified. Conclusion. We investigated the technical perspective of integrating Virtual Patients with MOOCs. By addressing this crucial technical requirement we set a base for future research on the educational benefits of using virtual patients in MOOCs. This provides new opportunities for integrating specialized software in healthcare education at massive scale.
Zary, Nabil; Kononowicz, Andrzej A.
2014-01-01
Background. Massive Open Online Courses (MOOCs) are an emerging trend in online learning. However, their technology is not yet completely adjusted to the needs of healthcare education. Integration of Virtual Patients within MOOCs to increase interactivity and foster clinical reasoning skills training, has been discussed in the past, but not verified by a practical implementation. Objective. To investigate the technical feasibility of integrating MOOCs with Virtual Patients for the purpose of enabling further research into the potential pedagogical benefits of this approach. Methods. We selected OpenEdx and Open Labyrinth as representative constituents of a MOOC platform and Virtual Patient system integration. Based upon our prior experience we selected the most fundamental technical requirement to address. Grounded in the available literature we identified an e-learning standard to guide the integration. We attempted to demonstrate the feasibility of the integration by designing a “proof-of-concept” prototype. The resulting pilot implementation was subject of verification by two test cases. Results. A Single Sign-On mechanism connecting Open Labyrinth with OpenEdx and based on the IMS LTI standard was successfully implemented and verified. Conclusion. We investigated the technical perspective of integrating Virtual Patients with MOOCs. By addressing this crucial technical requirement we set a base for future research on the educational benefits of using virtual patients in MOOCs. This provides new opportunities for integrating specialized software in healthcare education at massive scale. PMID:25405078
Virtual Reality: An Emerging Tool to Treat Pain
2010-04-01
burn patients, physical therapy stretching of the newly healing skin helps to counteract the healing skin’s natural contraction as it scars...room, and substitute more calming music and sound effects. The patient interacts with the virtual world, throwing snowballs at objects in the virtual...care (Hoffman, Patterson et al, 2008) and physical therapy (Hoffman, Patterson, Carrougher, 2000; Hoffman, Patterson, Carrougher, Sharar, 2001; Sharar
[Virtual water content of livestock products in China].
Wang, Hong-rui; Wang, Jun-hong
2006-04-01
The paper expatiated the virtual water content concept of livestock products and the study meaning on developing virtual water trade of livestock products in China, then summarized the calculation methods on virtual water and virtual water trade of livestock products. Based on these, the paper analyzed and researched every province virtual water content of livestock products in details, then elicited various situation of every province virtual water content of livestock products in China by year. Moreover, it compared virtual water content of livestock products with local water resources. The study indicated the following results: (1) The virtual water content of livestock products is increasing rapidly in China recently, especially poultry eggs and pork. (2) The distribution of virtual water content of livestock products is not balanced, mainly lies in North China, East China and so on; (3) The increasing production of livestock in Beijing City, Tianjin City, Hebei, Nei Monggol, Liaononing, Jilin, Shandong, Henan and Ningxia province and autonom ous region will bring pressure to local water shortage.
Addressing data privacy in matched studies via virtual pooling.
Saha-Chaudhuri, P; Weinberg, C R
2017-09-07
Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations. We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains most of the information used in an analysis with individual data and since individual participant data is not shared externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be used in a conditional logistic regression model to estimate individual-level odds ratios of interest. The parameter estimates from the standard conditional logistic regression are compared to the estimates based on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to those without pooling and to have comparable standard errors and confidence interval coverage. Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be particularly useful in research with large-scale distributed data.
Web Service Distributed Management Framework for Autonomic Server Virtualization
NASA Astrophysics Data System (ADS)
Solomon, Bogdan; Ionescu, Dan; Litoiu, Marin; Mihaescu, Mircea
Virtualization for the x86 platform has imposed itself recently as a new technology that can improve the usage of machines in data centers and decrease the cost and energy of running a high number of servers. Similar to virtualization, autonomic computing and more specifically self-optimization, aims to improve server farm usage through provisioning and deprovisioning of instances as needed by the system. Autonomic systems are able to determine the optimal number of server machines - real or virtual - to use at a given time, and add or remove servers from a cluster in order to achieve optimal usage. While provisioning and deprovisioning of servers is very important, the way the autonomic system is built is also very important, as a robust and open framework is needed. One such management framework is the Web Service Distributed Management (WSDM) system, which is an open standard of the Organization for the Advancement of Structured Information Standards (OASIS). This paper presents an open framework built on top of the WSDM specification, which aims to provide self-optimization for applications servers residing on virtual machines.
Siallagan, Dominik; Loke, Yue-Hin; Olivieri, Laura; Opfermann, Justin; Ong, Chin Siang; de Zélicourt, Diane; Petrou, Anastasios; Daners, Marianne Schmid; Kurtcuoglu, Vartan; Meboldt, Mirko; Nelson, Kevin; Vricella, Luca; Johnson, Jed; Hibino, Narutoshi; Krieger, Axel
2018-04-01
Despite advances in the Fontan procedure, there is an unmet clinical need for patient-specific graft designs that are optimized for variations in patient anatomy. The objective of this study is to design and produce patient-specific Fontan geometries, with the goal of improving hepatic flow distribution (HFD) and reducing power loss (P loss ), and manufacturing these designs by electrospinning. Cardiac magnetic resonance imaging data from patients who previously underwent a Fontan procedure (n = 2) was used to create 3-dimensional models of their native Fontan geometry using standard image segmentation and geometry reconstruction software. For each patient, alternative designs were explored in silico, including tube-shaped and bifurcated conduits, and their performance in terms of P loss and HFD probed by computational fluid dynamic (CFD) simulations. The best-performing options were then fabricated using electrospinning. CFD simulations showed that the bifurcated conduit improved HFD between the left and right pulmonary arteries, whereas both types of conduits reduced P loss . In vitro testing with a flow-loop chamber supported the CFD results. The proposed designs were then successfully electrospun into tissue-engineered vascular grafts. Our unique virtual cardiac surgery approach has the potential to improve the quality of surgery by manufacturing patient-specific designs before surgery, that are also optimized with balanced HFD and minimal P loss , based on refinement of commercially available options for image segmentation, computer-aided design, and flow simulations. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Peperkorn, Henrik M; Diemer, Julia E; Alpers, Georg W; Mühlberger, Andreas
2016-01-01
Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient's body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant's hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant's hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations.
Ferng, Alice S; Oliva, Isabel; Jokerst, Clinton; Avery, Ryan; Connell, Alana M; Tran, Phat L; Smith, Richard G; Khalpey, Zain
2017-08-01
Since the creation of SynCardia's 50 cc Total Artificial Hearts (TAHs), patients with irreversible biventricular failure now have two sizing options. Herein, a case series of three patients who have undergone successful 50 and 70 cc TAH implantation with complete closure of the chest cavity utilizing preoperative "virtual implantation" of different sized devices for surgical planning are presented. Computed tomography (CT) images were used for preoperative planning prior to TAH implantation. Three-dimensional (3D) reconstructions of preoperative chest CT images were generated and both 50 and 70 cc TAHs were virtually implanted into patients' thoracic cavities. During the simulation, the TAHs were projected over the native hearts in a similar position to the actual implantation, and the relationship between the devices and the atria, ventricles, chest wall, and diaphragm were assessed. The 3D reconstructed images and virtual modeling were used to simulate and determine for each patient if the 50 or 70 cc TAH would have a higher likelihood of successful implantation without complications. Subsequently, all three patients received clinical implants of the properly sized TAH based on virtual modeling, and their chest cavities were fully closed. This virtual implantation increases our confidence that the selected TAH will better fit within the thoracic cavity allowing for improved surgical outcome. Clinical implantation of the TAHs showed that our virtual modeling was an effective method for determining the correct fit and sizing of 50 and 70 cc TAHs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
Shin, Yu-Bin; Kim, Jae-Jin; Kim, Min-Kyeong; Kyeong, Sunghyon; Jung, Young Hoon; Eom, Hyojung; Kim, Eunjoo
2018-01-01
Internet gaming disorder (IGD) is a new disorder that warrants further investigation, as recently noted in the research criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Offering controlled environments that increase cue-induced craving, virtual reality cue-exposure therapy has been shown to be effective for some addiction disorders. To assess the feasibility of virtual reality for patients with IGD, this study aimed to develop virtual environments that represent risk situations for inducing craving, and assess the effect of virtual reality in cue reactivity. A total of 64 male adolescents and young adults (34 with IGD and 30 without) were recruited for participation. We developed a virtual internet café environment and the participants were exposed to four different tasks. As the primary feasibility outcome, cravings were measured with a visual analogue scale measuring current urge to play a game after exposure to each task. The virtual internet café induced significantly greater cravings in patients with IGD compared to controls. Additionally, patients exhibited a significantly higher acceptance rate of an avatar's invitation to play a game together than that of controls. In IGD, craving response to the tasks was positively associated with the symptom severity score as measured by Young's Internet Addiction Test. These findings reveal that virtual reality laden with complex game-related cues could evoke game craving in patients with IGD and could be used in the treatment of IGD as a cue-exposure therapy tool for eliciting craving.
Shin, Yu-Bin; Kim, Jae-Jin; Kim, Min-Kyeong; Kyeong, Sunghyon; Jung, Young Hoon; Eom, Hyojung
2018-01-01
Internet gaming disorder (IGD) is a new disorder that warrants further investigation, as recently noted in the research criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Offering controlled environments that increase cue-induced craving, virtual reality cue-exposure therapy has been shown to be effective for some addiction disorders. To assess the feasibility of virtual reality for patients with IGD, this study aimed to develop virtual environments that represent risk situations for inducing craving, and assess the effect of virtual reality in cue reactivity. A total of 64 male adolescents and young adults (34 with IGD and 30 without) were recruited for participation. We developed a virtual internet café environment and the participants were exposed to four different tasks. As the primary feasibility outcome, cravings were measured with a visual analogue scale measuring current urge to play a game after exposure to each task. The virtual internet café induced significantly greater cravings in patients with IGD compared to controls. Additionally, patients exhibited a significantly higher acceptance rate of an avatar’s invitation to play a game together than that of controls. In IGD, craving response to the tasks was positively associated with the symptom severity score as measured by Young's Internet Addiction Test. These findings reveal that virtual reality laden with complex game-related cues could evoke game craving in patients with IGD and could be used in the treatment of IGD as a cue-exposure therapy tool for eliciting craving. PMID:29672530
Yilmaz Yelvar, Gul Deniz; Çırak, Yasemin; Dalkılınç, Murat; Parlak Demir, Yasemin; Guner, Zeynep; Boydak, Ayşenur
2017-02-01
According to literature, virtual reality was found to reduce pain and kinesiophobia in patients with chronic pain. The purpose of the study was to investigate short-term effect of the virtual reality on pain, function, and kinesiophobia in patients with subacute and chronic non-specific low-back pain METHODS: This randomised controlled study in which 44 patients were randomly assigned to the traditional physiotherapy (control group, 22 subjects) or virtual walking integrated physiotherapy (experimental group, 22 subjects). Before and after treatment, Visual Analog Scale (VAS), TAMPA Kinesiophobia Scale (TKS), Oswestry Disability Index (ODI), Nottingham Health Profile (NHP), Timed-up and go Test (TUG), 6-Minute Walk Test (6MWT), and Single-Leg Balance Test were assessed. The interaction effect between group and time was assessed by using repeated-measures analysis of covariance. After treatment, both groups showed improvement in all parameters. However, VAS, TKS, TUG, and 6MWT scores showed significant differences in favor of the experimental group. Virtual walking integrated physiotherapy reduces pain and kinesiophobia, and improved function in patients with subacute and chronic non-specific low-back pain in short term.
ERIC Educational Resources Information Center
Gupta, Akriti; Singh, Satendra; Khaliq, Farah; Dhaliwal, Upreet; Madhu, S. V.
2018-01-01
In the country presently, preclinical medical students are not routinely exposed to real patients. Thus, when they start clinical postings, they are found to have poor clinical reasoning skills. Simulated virtual patients (SVPs) can improve clinical skills without endangering real patients. This pilot study describes the development of two SVPs in…
Nifakos, Sokratis; Zary, Nabil
2014-01-01
The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.
Pereira, D; Gomes, P; Faria, S; Cruz-Correia, R; Coimbra, M
2016-08-01
Auscultation is currently both a powerful screening tool, providing a cheap and quick initial assessment of a patient's clinical condition, and a hard skill to master. The teaching of auscultation in Universities is today reduced to an unsuitable number of hours. Virtual patient simulators can potentially mitigate this problem, by providing an interesting high-quality alternative to teaching with real patients or patient simulators. In this paper we evaluate the pedagogical impact of using a virtual patient simulation technology in a short workshop format for medical students, training them to detect cardiac pathologies. Results showed a significant improvement (+16%) in the differentiation between normal and pathological cases, although longer duration formats seem to be needed to accurately identify specific pathologies.
Sanders, Carla; Kleinert, Harold L; Boyd, Sara E; Herren, Chris; Theiss, Lynn; Mink, John
2008-01-01
An interactive, virtual-patient module was produced on compact disc (CD-ROM) in response to the critical need to increase dental students' clinical exposure to patients with developmental disabilities. A content development team consisting of dental faculty members, parents of children with developmental disabilities, an individual with a developmental disability, and educational specialists developed the interactive, virtual-patient module. The module focused on a young man with congenital deafblindness presenting as a new patient with a painful molar. Students were required to make decisions regarding clinical interactions throughout the module. Differences in both comfort and knowledge level were measured pre- and post-module completion, as well as the dental students' overall satisfaction with the learning experience. Significant results were obtained in students' perceived comfort and knowledge base. Participants reported overall satisfaction using the modules. This study demonstrated that an interactive, multi-media (CD-ROM), virtual patient learning module for dental students could be an effective tool in providing students needed clinical exposure to patients with developmental disabilities.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng
2013-11-05
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng
2013-01-01
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611
Ellaway, Rachel H; Poulton, Terry; Jivram, Trupti
2015-01-01
In 2009, St George's University of London (SGUL) replaced their paper-based problem-based learning (PBL) cases with virtual patients for intermediate-level undergraduate students. This involved the development of Decision-Problem-Based Learning (D-PBL), a variation on progressive-release PBL that uses virtual patients instead of paper cases, and focuses on patient management decisions and their consequences. Using a case study method, this paper describes four years of developing and running D-PBL at SGUL from individual activities up to the ways in which D-PBL functioned as an educational system. A number of broad issues were identified: the importance of debates and decision-making in making D-PBL activities engaging and rewarding; the complexities of managing small group dynamics; the time taken to complete D-PBL activities; the changing role of the facilitator; and the erosion of the D-PBL process over time. A key point in understanding this work is the construction and execution of the D-PBL activity, as much of the value of this approach arises from the actions and interactions of students, their facilitators and the virtual patients rather than from the design of the virtual patients alone. At a systems level D-PBL needs to be periodically refreshed to retain its effectiveness.
[Commercial video games in the rehabilitation of patients with sub-acute stroke: a pilot study].
Cano-Manas, M J; Collado-Vazquez, S; Cano-de-la-Cuerda, R
2017-10-16
Stroke generates dependence on the patients due to the various impairments associated. The use of low-cost technologies for neurological rehabilitation may be beneficial for the treatment of these patients. To determine whether combined treatment using a semi-immersive virtual reality protocol to an interdisciplinary rehabilitation approach, improve balance and postural control, functional independence, quality of life, motivation, self-esteem and adherence to intervention in stroke patients in subacute stage. A longitudinal prospective study with pre and post-intervention evaluation was carried out. Fourteen were recruited at La Fuenfria Hospital (Spain) and completed the intervention. Experimental intervention was performed during eight weeks in combination with conventional treatment of physiotherapy and occupational therapy. Each session was increased in time and intensity, using commercial video games linked to Xbox 360° videoconsole and Kinect sensor. There were statistical significant improvements in modified Rankin scale (p = 0.04), baropodometry (load distribution, p = 0.03; support surface, p = 0.01), Barthel Index (p = 0.01), EQ-5D Questionnaire (p = 0.01), motivation (p = 0.02), self-esteem (p = 0.01) and adherence to the intervention (p = 0.02). An interdisciplinary rehabilitation approach supplemented with semi-immersive virtual reality seems to be useful for improving balance and postural control, functional independence in basic activities of daily living, quality of life, as well as motivation and self-esteem, with excellent adherence. This intervention modality could be adopted as a therapeutic tool in neurological rehabilitation of stroke patients in subacute stage.
Hospital admission avoidance through the introduction of a virtual ward.
Jones, Joanne; Carroll, Andrea
2014-07-01
The ageing British population is placing increased demands on the delivery of care in mainstream health-care institutions. While people are living longer, a significant percentage is also living with one or more long-term conditions. These issues, alongside continuing financial austerity measures, require a radical improvement in the care of patients away from hospitals. The Wyre Forest Clinical Commissioning Group introduced a virtual ward model for two main purposes: to save on spiralling costs of hospital admissions, and, secondly, to ensure the preferred wishes of most patients to be cared for and even die at home were achieved. This commentary describes how the virtual ward model was implemented and the impact of preventing unplanned emergency admissions to hospitals. The setting up of enhanced care services and virtual wards in one county is discussed, aiming to highlight success points and potential pitfalls to avoid. The results from the implementation of the virtual ward model show a significant reduction in emergency and avoidable patient admissions to hospital. The success of virtual wards is dependent on integrated working between different health-care disciplines.
National randomized controlled trial of virtual house calls for Parkinson disease.
Beck, Christopher A; Beran, Denise B; Biglan, Kevin M; Boyd, Cynthia M; Dorsey, E Ray; Schmidt, Peter N; Simone, Richard; Willis, Allison W; Galifianakis, Nicholas B; Katz, Maya; Tanner, Caroline M; Dodenhoff, Kristen; Aldred, Jason; Carter, Julie; Fraser, Andrew; Jimenez-Shahed, Joohi; Hunter, Christine; Spindler, Meredith; Reichwein, Suzanne; Mari, Zoltan; Dunlop, Becky; Morgan, John C; McLane, Dedi; Hickey, Patrick; Gauger, Lisa; Richard, Irene Hegeman; Mejia, Nicte I; Bwala, Grace; Nance, Martha; Shih, Ludy C; Singer, Carlos; Vargas-Parra, Silvia; Zadikoff, Cindy; Okon, Natalia; Feigin, Andrew; Ayan, Jean; Vaughan, Christina; Pahwa, Rajesh; Dhall, Rohit; Hassan, Anhar; DeMello, Steven; Riggare, Sara S; Wicks, Paul; Achey, Meredith A; Elson, Molly J; Goldenthal, Steven; Keenan, H Tait; Korn, Ryan; Schwarz, Heidi; Sharma, Saloni; Stevenson, E Anna; Zhu, William
2017-09-12
To determine whether providing remote neurologic care into the homes of people with Parkinson disease (PD) is feasible, beneficial, and valuable. In a 1-year randomized controlled trial, we compared usual care to usual care supplemented by 4 virtual visits via video conferencing from a remote specialist into patients' homes. Primary outcome measures were feasibility, as measured by the proportion who completed at least one virtual visit and the proportion of virtual visits completed on time; and efficacy, as measured by the change in the Parkinson's Disease Questionnaire-39, a quality of life scale. Secondary outcomes included quality of care, caregiver burden, and time and travel savings. A total of 927 individuals indicated interest, 210 were enrolled, and 195 were randomized. Participants had recently seen a specialist (73%) and were largely college-educated (73%) and white (96%). Ninety-five (98% of the intervention group) completed at least one virtual visit, and 91% of 388 virtual visits were completed. Quality of life did not improve in those receiving virtual house calls (0.3 points worse on a 100-point scale; 95% confidence interval [CI] -2.0 to 2.7 points; p = 0.78) nor did quality of care or caregiver burden. Each virtual house call saved patients a median of 88 minutes (95% CI 70-120; p < 0.0001) and 38 miles per visit (95% CI 36-56; p < 0.0001). Providing remote neurologic care directly into the homes of people with PD was feasible and was neither more nor less efficacious than usual in-person care. Virtual house calls generated great interest and provided substantial convenience. NCT02038959. This study provides Class III evidence that for patients with PD, virtual house calls from a neurologist are feasible and do not significantly change quality of life compared to in-person visits. The study is rated Class III because it was not possible to mask patients to visit type. © 2017 American Academy of Neurology.
Virtual Patients in Geriatric Education
ERIC Educational Resources Information Center
Tan, Zaldy S.; Mulhausen, Paul L.; Smith, Stephen R.; Ruiz, Jorge G.
2010-01-01
The virtual patient is a case-based computer program that combines textual information with multimedia elements such as audio, graphics, and animation. It is increasingly being utilized as a teaching modality by medical educators in various fields of instruction. The inherent complexity of older patients and the shortage of geriatrics educators…
Deeply Virtual Exclusive Processes and Generalized Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
,
2011-06-01
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep {yields} ep{gamma} in Hall A support the QCD factorization of the scattering amplitude for Q^2 {>=} 2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e,more » e'p{gamma} ) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The {rho} and {omega} channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the {phi}-production channel is dominated by the gluon distribution.« less
[Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].
Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O
2000-11-01
We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.
Tesoriero, Ricardo; Gallud Lazaro, Jose A; Altalhi, Abdulrahman H
2017-02-01
Improve the quantity and quality of information obtained from traditional Loewenstein Occupational Therapy Cognitive Assessment Battery systems to monitor the evolution of patients' rehabilitation process as well as to compare different rehabilitation therapies. The system replaces traditional artefacts with virtual versions of them to take advantage of cutting edge interaction technology. The system is defined as a Distributed User Interface (DUI) supported by a display ecosystem, including mobile devices as well as multi-touch surfaces. Due to the heterogeneity of the devices involved in the system, the software technology is based on a client-server architecture using the Web as the software platform. The system provides therapists with information that is not available (or it is very difficult to gather) using traditional technologies (i.e. response time measurements, object tracking, information storage and retrieval facilities, etc.). The use of DUIs allows therapists to gather information that is unavailable using traditional assessment methods as well as adapt the system to patients' profile to increase the range of patients that are able to take this assessment. Implications for Rehabilitation Using a Distributed User Interface environment to carry out LOTCAs improves the quality of the information gathered during the rehabilitation assessment. This system captures physical data regarding patient's interaction during the assessment to improve the rehabilitation process analysis. Allows professionals to adapt the assessment procedure to create different versions according to patients' profile. Improves the availability of patients' profile information to therapists to adapt the assessment procedure.
The use of strain gauge platform and virtual reality tool for patient stability examination
NASA Astrophysics Data System (ADS)
Walendziuk, Wojciech; Wysk, Lukasz; Skoczylas, Marcin
2016-09-01
Virtual reality is one of the fastest growing information technologies. This paper is only a prelude to a larger study on the use of virtual reality tools in analysing bony labyrinth and sense of balance. Problems with the functioning of these areas of the body are a controversial topic in debate among specialists. The result of still unresolved imbalance treatments is a constant number of people reporting this type of ailment. Considering above, authors created a system and application that contains a model of virtual environment, and a tool for the modification of the obstacles in 3D space. Preliminary studies of patients from a test group aged 22-49 years were also carried out, in which behaviour and sense of balance in relation to the horizontal curvature of the virtual world around patient has been analysed. Experiments carried out on a test group showed that the shape of the curve and the virtual world space and age of patient has a major impact on a sense of balance. The data obtained can be linked with actual disorders of bony labyrinth and human behaviour at the time of their occurrence. Another important achievement that will be the subject of further work is possible use a modified version of the software for rehabilitation purposes.
Effectiveness of educational technology to improve patient care in pharmacy curricula.
Smith, Michael A; Benedict, Neal
2015-02-17
A review of the literature on the effectiveness of educational technologies to teach patient care skills to pharmacy students was conducted. Nineteen articles met inclusion criteria for the review. Seven of the articles included computer-aided instruction, 4 utilized human-patient simulation, 1 used both computer-aided instruction and human-patient simulation, and 7 utilized virtual patients. Educational technology was employed with more than 2700 students at 12 colleges and schools of pharmacy in courses including pharmacotherapeutics, skills and patient care laboratories, drug diversion, and advanced pharmacy practice experience (APPE) orientation. Students who learned by means of human-patient simulation and virtual patients reported enjoying the learning activity, whereas the results with computer-aided instruction were mixed. Moreover, the effect on learning was significant in the human-patient simulation and virtual patient studies, while conflicting data emerged on the effectiveness of computer-aided instruction.
Wandner, Laura D.; Heft, Marc W.; Lok, Benjamin C.; Hirsh, Adam T.; George, Steven Z.; Horgas, Anne L.; Atchison, James W.; Torres, Calia A.; Robinson, Michael E.
2013-01-01
Background Previous literature indicates that biases exist in pain ratings. Healthcare professionals have been found to use patient demographic cues such as sex, race, and age when making decisions about pain treatment. However, there has been little research comparing healthcare professionals’ (i.e., physicians and nurses) pain decision policies based on patient demographic cues. Methods The current study used virtual human technology to examine the impact of patients’ sex, race, and age on healthcare professionals’ pain ratings. One hundred and ninety-three healthcare professionals (nurses and physicians) participated in this online study. Results Healthcare professionals assessed virtual human patients who were male and African American to be experiencing greater pain intensity and were more willing to administer opioid analgesics to them than to their demographic counterparts. Similarly, nurses were more willing to administer opioids make treatment decisions than physicians. There was also a significant virtual human-sex by healthcare professional interaction for pain assessment and treatment decisions. The sex difference (male > female) was greater for nurses than physicians. Conclusions Results replicated findings of previous studies using virtual human patients to assess the effect of sex, race, and age in pain decision-making. In addition, healthcare professionals” pain ratings differed depending on healthcare profession. Nurses were more likely to rate pain higher and be more willing to administer opioid analgesics than were physicians. Healthcare professionals rated male and African American virtual human patients as having higher pain in most pain assessment and treatment domains compared to their demographic counterparts. Similarly the virtual human-sex difference ratings were more pronounced for nurses than physicians. Given the large number of patients seen throughout the healthcare professionals’ careers, these pain practice biases have important public health implications. This study suggests attention to the influence of patient demographic cues in pain management education is needed. PMID:24128374
Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim
2017-06-01
Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanism and may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social stressors was examined in participants with different liability to psychosis. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra-high risk for psychosis, 42 siblings of patients with psychosis and 53 controls were exposed to social stressors (crowdedness, ethnic minority status and hostility) in a Virtual Reality environment. Heart rate variability parameters and skin conductance levels were measured at baseline and during Virtual Reality experiments. High psychosis liability groups had significantly increased heart rate and decreased heart rate variability compared to low liability groups both at baseline and during Virtual Reality experiments. Both low frequency (LF) and high frequency (HF) power were reduced, while the LF/HF ratio was similar between groups. The number of virtual social stressors significantly affected heart rate, HF, LF/HF and skin conductance level. There was no interaction between psychosis liability and amount of virtual social stress. High liability to psychosis is associated with decreased parasympathetic activity in virtual social environments, which reflects generally high levels of arousal, rather than increased autonomic reactivity to social stressors. Copyright © 2016 Elsevier B.V. All rights reserved.
Virtual Collaboration Readiness Measurement a Case Study in the Automobile Industry
NASA Astrophysics Data System (ADS)
Ziarati, Koorush; Khayami, Raouf; Parvinnia, Elham; Afroozi Milani, Ghazal
In end of the last century information and communication technology caused a veritable evolution in the world of business and commerce. Globalization has changed all the commerce equations and business plans. Old companies have to change their strategies if they want to survive after this technological revolution. A new form of collaboration between the distributed and networked organizations has emerged as the "Virtual Organization" paradigm. A company can not join a virtual organization before obtaining a virtual maturity. This maturity shows the readiness of the company to begin a virtual collaboration. In this paper, based on the coherent and formal definition of virtual organizations, the criteria for measuring the readiness of companies are proposed. Our criteria are confirmed, modified or combined by using the factor analysis method on a sufficient number of virtual companies in the automobile manufacturing industry.
A Virtual Rat for Simulating Environmental and Exertional Heat Stress
2014-10-02
unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22
Chambers, Gloria T.; Meyer, Walter J.; Arceneaux, Lisa L.; Russell, William J.; Seibel, Eric J.; Richards, Todd L.; Sharar, Sam R.; Patterson, David R.
2015-01-01
Introduction Excessive pain during medical procedures is a widespread problem but is especially problematic during daily wound care of patients with severe burn injuries. Methods Burn patients report 35–50% reductions in procedural pain while in a distracting immersive virtual reality, and fMRI brain scans show associated reductions in pain-related brain activity during VR. VR distraction appears to be most effective for patients with the highest pain intensity levels. VR is thought to reduce pain by directing patients’ attention into the virtual world, leaving less attention available to process incoming neural signals from pain receptors. Conclusions We review evidence from clinical and laboratory research studies exploring Virtual Reality analgesia, concentrating primarily on the work ongoing within our group. We briefly describe how VR pain distraction systems have been tailored to the unique needs of burn patients to date, and speculate about how VR systems could be tailored to the needs of other patient populations in the future. PMID:21264690
Lam, Walter Y H; Hsung, Richard T C; Choi, Winnie W S; Luk, Henry W K; Cheng, Leo Y Y; Pow, Edmond H N
2017-09-29
Accurate articulator-mounted casts are essential for occlusion analysis and for fabrication of dental prostheses. Although the axis orbital plane has been commonly used as the reference horizontal plane, some clinicians prefer to register the horizontal plane with a spirit level when the patient is in the natural head position (NHP) to avoid anatomic landmark variations. This article presents a digital workflow for registering the patient's horizontal plane in NHP on a virtual articulator. An orientation reference board is used to calibrate a stereophotogrammetry device and a 3-dimensional facial photograph with the patient in NHP. The horizontal plane can then be automatically registered to the patient's virtual model and aligned to the virtual articulator at the transverse horizontal axis level. This technique showed good repeatability with positional differences of less than 1 degree and 1 mm in 5 repeated measurements in 1 patient. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Shoemaker, Michael J; Platko, Christina M; Cleghorn, Susan M; Booth, Andrew
2014-07-01
The purpose of this retrospective qualitative case report is to describe how a case-based, virtual patient interprofessional education (IPE) simulation activity was utilized to achieve physician assistant (PA), physical therapy (PT) and occupational therapy (OT) student IPE learning outcomes. Following completion of a virtual patient case, 30 PA, 46 PT and 24 OT students were required to develop a comprehensive, written treatment plan and respond to reflective questions. A qualitative analysis of the submitted written assignment was used to determine whether IPE learning objectives were met. Student responses revealed three themes that supported the learning objectives of the IPE experience: benefits of collaborative care, role clarification and relevance of the IPE experience for future practice. A case-based, IPE simulation activity for physician assistant and rehabilitation students using a computerized virtual patient software program effectively facilitated achievement of the IPE learning objectives, including development of greater student awareness of other professions and ways in which collaborative patient care can be provided.
Experiences with developing and implementing a virtual clinic for glaucoma care in an NHS setting
Kotecha, Aachal; Baldwin, Alex; Brookes, John; Foster, Paul J
2015-01-01
Background This article describes the development of a virtual glaucoma clinic, whereby technicians collect information for remote review by a consultant specialist. Design and Methods This was a hospital-based service evaluation study. Patients suitable for the stable monitoring service (SMS) were low-risk patients with “suspect”, “early”-to-“moderate” glaucoma who were deemed stable by their consultant care team. Three technicians and one health care assistant ran the service. Patients underwent tests in a streamlined manner in a dedicated clinical facility, with virtual review of data by a consultant specialist through an electronic patient record. Main outcome measure Feasibility of developing a novel service within a UK National Health Service setting and improvement of patient journey time within the service were studied. Results Challenges to implementation of virtual clinic include staffing issues and use of information technology. Patient journey time within the SMS averaged 51 minutes, compared with 92 minutes in the glaucoma outpatient department. Patient satisfaction with the new service was high. Conclusion Implementing innovation into existing services of the National Health Service is challenging. However, the virtual clinic showed an improved patient journey time compared with that experienced within the general glaucoma outpatient department. There exists a discrepancy between patient management decisions of reviewers, suggesting that some may be more risk averse than others when managing patients seen within this model. Future work will assess the ability to detect progression of disease in this model compared with the general outpatient model of care. PMID:26508830
Distributed Virtual System (DIVIRS) Project
NASA Technical Reports Server (NTRS)
Schorr, Herbert; Neuman, B. Clifford
1993-01-01
As outlined in our continuation proposal 92-ISI-50R (revised) on contract NCC 2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to program parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the virtual system model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.
DIstributed VIRtual System (DIVIRS) project
NASA Technical Reports Server (NTRS)
Schorr, Herbert; Neuman, B. Clifford
1994-01-01
As outlined in our continuation proposal 92-ISI-. OR (revised) on NASA cooperative agreement NCC2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the Virtual System Model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.
DIstributed VIRtual System (DIVIRS) project
NASA Technical Reports Server (NTRS)
Schorr, Herbert; Neuman, Clifford B.
1995-01-01
As outlined in our continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement NCC2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the Virtual System Model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.
Distributed Virtual System (DIVIRS) project
NASA Technical Reports Server (NTRS)
Schorr, Herbert; Neuman, B. Clifford
1993-01-01
As outlined in the continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement NCC 2-539, the investigators are developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to develop and execute parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; developing communications routines that support the abstractions implemented; continuing the development of file and information systems based on the Virtual System Model; and incorporating appropriate security measures to allow the mechanisms developed to be used on an open network. The goal throughout the work is to provide a uniform model that can be applied to both parallel and distributed systems. The authors believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. The work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed.
A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.
Shankaranarayanan, Avinas; Amaldas, Christine
2010-11-01
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.
Immersive virtual reality for visualization of abdominal CT
NASA Astrophysics Data System (ADS)
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.
2013-03-01
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
Immersive Virtual Reality for Visualization of Abdominal CT.
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A; Bodenheimer, Robert E
2013-03-28
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two-dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
[Virtual CT-pneumocystoscopy: indications, advantages and limitations. Our experience].
Regine, Giovanni; Atzori, Maurizio; Buffa, Vitaliano; Miele, Vittorio; Ialongo, Pasquale; Adami, Loredana
2003-09-01
The use of CT volume-rendering techniques allows the evaluation of visceral organs without the need for endoscopy. Conventional endoscopic evaluation of the bladder is limited by the invasiveness of the technique and the difficulty exploring the entire bladder. Virtual evaluation of the bladder by three-dimensional CT reconstruction offers potential advantages and can be used in place of endoscopy. This study investigates the sensitivity of virtual CT in assessing lesion of the bladder wall to compare it with that of conventional endoscopy, and outlines the indications, advantages and disadvantages of virtual CT-pneumocystography. Between September 2001 and May 2002, 21 patients with haematuria and positive cystoscopic findings were studied. After an initial assessment by ultrasound, the patients underwent pelvic CT as a single volumetric scan after preliminary air distension of the bladder by means of 12 F Foley catheter. The images were processed on an independent workstation (Advantage 3.0 GE) running dedicated software for endoluminal navigation. The lesions detected by endoscopy were classified as sessile or pedunculated, and according to size (more or less than 5 mm). Finally, the results obtained at virtual cystoscopy were evaluated by two radiologists blinded to the conventional cystoscopy results. Thirty lesions (24 pedunculated, 6 sessile) were detected at conventional cystoscopy in 16 patients (multiple polyposis in 3 cases). Virtual cystoscopy identified 23 lesions (19 pedunculated and 4 sessile). The undetected lesions were pedunculated <5 mm (5 cases) and sessile (2 cases). One correctly identified pedunculated lesion was associated with a bladder stone. Good quality virtual images were obtained in all of the patients. In only one patient with multiple polyposis the quality of the virtual endoscopic evaluation was limited by the patient's intolerance to bladder distension, although identification of the lesions was not compromised. The overall sensitivity was 77%; this was higher for pedunculated lesions (79%) than for sessile lesions (50%). The virtual technique is less invasive and tends to be associated with fewer complications than is conventional cystoscopy. It also demonstrated a good sensitivity for evaluating pedunculated lesions, allowing evaluation of the bladder base and anterior wall, sites that are commonly poorly accessible at conventional cystoscopy. Further advantages of the virtual technique include the possibility of accurately measuring the extent of the lesion and obtaining virtual images even in patients with severe urethral obstruction and active bleeding. The limitations include the inability to obtain tissue for histologic examination or to perform endoscopic resection of pedunculated lesions. The technique is less sensitive than conventional cystoscopy in the detection of sessile lesions or very small polyps (<5 mm). Furthermore, diffuse wall thickening reduces bladder distension thereby preventing optimal evaluation. The most valuable indication appears to be the follow-up of treated wall lesions. Virtual CT-pneumocystoscopy can replace conventional cystoscopy in cases with pedunculated lesions when there is no need for biopsy, when the lesions are located at the bladder base or when cystoscopic instrumentation cannot be introduced into the bladder due to stenosis. Virtual pneumocystoscopy can also be used in the follow-up of treated polypoid lesions in association with pelvic CT-angiography.
de Kleijn, Bertram J; Kraeima, Joep; Wachters, Jasper E; van der Laan, Bernard F A M; Wedman, Jan; Witjes, M J H; Halmos, Gyorgy B
2018-02-01
We aimed to investigate the potential of 3D virtual planning of tracheostomy tube placement and 3D cannula design to prevent tracheostomy complications due to inadequate cannula position. 3D models of commercially available cannula were positioned in 3D models of the airway. In study (1), a cohort that underwent tracheostomy between 2013 and 2015 was selected (n = 26). The cannula was virtually placed in the airway in the pre-operative CT scan and its position was compared to the cannula position on post-operative CT scans. In study (2), a cohort with neuromuscular disease (n = 14) was analyzed. Virtual cannula placing was performed in CT scans and tested if problems could be anticipated. Finally (3), for a patient with Duchenne muscular dystrophy and complications of conventional tracheostomy cannula, a patient-specific cannula was 3D designed, fabricated, and placed. (1) The 3D planned and post-operative tracheostomy position differed significantly. (2) Three groups of patients were identified: (A) normal anatomy; (B) abnormal anatomy, commercially available cannula fits; and (C) abnormal anatomy, custom-made cannula, may be necessary. (3) The position of the custom-designed cannula was optimal and the trachea healed. Virtual planning of the tracheostomy did not correlate with actual cannula position. Identifying patients with abnormal airway anatomy in whom commercially available cannula cannot be optimally positioned is advantageous. Patient-specific cannula design based on 3D virtualization of the airway was beneficial in a patient with abnormal airway anatomy.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-04-15
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.
The Evolution of Constructivist Learning Environments: Immersion in Distributed, Virtual Worlds.
ERIC Educational Resources Information Center
Dede, Chris
1995-01-01
Discusses the evolution of constructivist learning environments and examines the collaboration of simulated software models, virtual environments, and evolving mental models via immersion in artificial realities. A sidebar gives a realistic example of a student navigating through cyberspace. (JMV)
The Use of Virtual Patients in Medical School Curricula
ERIC Educational Resources Information Center
Cendan, Juan; Lok, Benjamin
2012-01-01
The demonstration of patient-based cases using automated technology [virtual patients (VPs)] has been available to health science educators for a number of decades. Despite the promise of VPs as an easily accessible and moldable platform, their widespread acceptance and integration into medical curricula have been slow. Here, the authors review…
ERIC Educational Resources Information Center
Kiegaldie, Debra; White, Geoff
2006-01-01
The Virtual Patient, an interactive multimedia learning resource using a critical care clinical scenario for postgraduate nursing students, was developed to enhance flexible access to learning experiences and improve learning outcomes in the management of critically ill patients. Using real-time physiological animations, authentic content design…
Gomez, Jocelyn; Hoffman, Hunter G; Bistricky, Steven L; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J; Linehan, Marsha M
2017-01-01
Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed.
Gomez, Jocelyn; Hoffman, Hunter G.; Bistricky, Steven L.; Gonzalez, Miriam; Rosenberg, Laura; Sampaio, Mariana; Garcia-Palacios, Azucena; Navarro-Haro, Maria V.; Alhalabi, Wadee; Rosenberg, Marta; Meyer, Walter J.; Linehan, Marsha M.
2017-01-01
Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury. Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session. Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home. Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed. PMID:28993747
Cybercare 2.0: meeting the challenge of the global burden of disease in 2030.
Rosen, Joseph M; Kun, Luis; Mosher, Robyn E; Grigg, Elliott; Merrell, Ronald C; Macedonia, Christian; Klaudt-Moreau, Julien; Price-Smith, Andrew; Geiling, James
In this paper, we propose to advance and transform today's healthcare system using a model of networked health care called Cybercare. Cybercare means "health care in cyberspace" - for example, doctors consulting with patients via videoconferencing across a distributed network; or patients receiving care locally - in neighborhoods, "minute clinics," and homes - using information technologies such as telemedicine, smartphones, and wearable sensors to link to tertiary medical specialists. This model contrasts with traditional health care, in which patients travel (often a great distance) to receive care from providers in a central hospital. The Cybercare model shifts health care provision from hospital to home; from specialist to generalist; and from treatment to prevention. Cybercare employs advanced technology to deliver services efficiently across the distributed network - for example, using telemedicine, wearable sensors and cell phones to link patients to specialists and upload their medical data in near-real time; using information technology (IT) to rapidly detect, track, and contain the spread of a global pandemic; or using cell phones to manage medical care in a disaster situation. Cybercare uses seven "pillars" of technology to provide medical care: genomics; telemedicine; robotics; simulation, including virtual and augmented reality; artificial intelligence (AI), including intelligent agents; the electronic medical record (EMR); and smartphones. All these technologies are evolving and blending. The technologies are integrated functionally because they underlie the Cybercare network, and/or form part of the care for patients using that distributed network. Moving health care provision to a networked, distributed model will save money, improve outcomes, facilitate access, improve security, increase patient and provider satisfaction, and may mitigate the international global burden of disease. In this paper we discuss how Cybercare is being implemented now, and envision its growth by 2030.
Sik Lányi, Cecília; Laky, Viktória; Tilinger, Adám; Pataky, Ilona; Simon, Lajos; Kiss, Bernadett; Simon, Viktória; Szabó, Júlianna; Páll, Attila
2004-01-01
The multimedia and virtual reality projects performed at our laboratory during the last ten years can be grouped into the following groups: 1) tutorial and entertainment programs for handicapped children, 2) rehabilitation programs for stroke patients and patients with phobias. We have developed multimedia software for handicapped children with various impairments: partial vision, hearing difficulties, locomotive difficulties, mental retardation, dyslexia etc. In the present paper we show the advantages of using multimedia software to develop mental skills in handicapped people and deal with the special needs of handicapped children. For the rehabilitation of stroke patients we have developed a computer-controlled method, which enables - contrary to methods used internationally - not only the establishment of a diagnosis, but also measurement of therapy effectiveness: 1) it enables us to produce a database of patients, which contains not only their personal data but also test results, their drawings and audio recordings, 2) it is in itself an intensive therapeutic test and contains tutorial programs. We are currently collecting test results. We have also developed some virtual worlds for treating phobias: a virtual balcony and a ten-story building with an external glass elevator as well as an internal glass elevator in the virtual Atrium Hyatt hotel. We have developed a virtual environment for treating claustrophobia too: a closed lift and a room where the walls can move. For specific phobias (fear of travelling) we have modelled the underground railway system in Budapest. For autistic children, we have developed virtual shopping software too. In this paper we present the advantages of virtual reality in the investigation, evaluation and treatment of perception, behaviour and neuropsychological disorders.
NASA Astrophysics Data System (ADS)
Shi, J.; Liu, J.; Pinter, L.
2014-04-01
China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.
NASA Astrophysics Data System (ADS)
Guidal, M.
2010-09-01
We have analyzed the longitudinally polarized proton target asymmetry data of the Deep Virtual Compton process recently published by the HERMES Collaboration in terms of Generalized Parton Distributions. We have fitted these new data in a largely model-independent fashion and the procedure results in numerical constraints on the accent="true">H˜Im Compton Form Factor. We present its t- and ξ-dependencies. We also find improvement on the determination of two other Compton Form Factors, HRe and HIm.
The Organization and Management of the Virtual Astronomical Observatory
NASA Technical Reports Server (NTRS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina
2012-01-01
The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.
The organization and management of the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giuseppina
2012-09-01
The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.
Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I
2013-01-01
Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Courteille, Olivier; Fahlstedt, Madelen; Ho, Johnson; Hedman, Leif; Fors, Uno; von Holst, Hans; Felländer-Tsai, Li; Möller, Hans
2018-03-28
To compare medical students' and residents' knowledge retention of assessment, diagnosis and treatment procedures, as well as a learning experience, of patients with spinal trauma after training with either a Virtual Patient case or a video-recorded traditional lecture. A total of 170 volunteers (85 medical students and 85 residents in orthopedic surgery) were randomly allocated (stratified for student/resident and gender) to either a video-recorded standard lecture or a Virtual Patient-based training session where they interactively assessed a clinical case portraying a motorcycle accident. The knowledge retention was assessed by a test immediately following the educational intervention and repeated after a minimum of 2 months. Participants' learning experiences were evaluated with exit questionnaires. A repeated-measures analysis of variance was applied on knowledge scores. A total of 81% (n = 138) of the participants completed both tests. There was a small but significant decline in first and second test results for both groups (F (1, 135) = 18.154, p = 0.00). However, no significant differences in short-term and long-term knowledge retention were observed between the two teaching methods. The Virtual Patient group reported higher learning experience levels in engagement, stimulation, general perception, and expectations. Participants' levels engagement were reported in favor of the VP format. Similar knowledge retention was achieved through either a Virtual Patient or a recorded lecture.
NASA Astrophysics Data System (ADS)
Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz
2018-03-01
Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.
Scolozzi, Paolo; Herzog, Georges
2017-07-01
We are reporting the treatment of severe maxillary hypoplasia in two patients with unilateral cleft lip and palate by using a specific approach combining the Le Fort I distraction osteogenesis technique coupled with computer-aided design/computer-aided manufacturing customized surgical guides and internal distractors based on virtual computational planning. This technology allows for the transfer of the virtual planned reconstruction to the operating room by using custom patient-specific implants, surgical splints, surgical cutting guides, and surgical guides to plate or distractor adaptation.
Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho
2016-07-01
[Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.
Koizumi, Yohei; Hirooka, Masashi; Ochi, Hironori; Tokumoto, Yoshio; Takechi, Megumi; Hiraoka, Atsushi; Ikeda, Yoshio; Kumagi, Teru; Matsuura, Bunzo; Abe, Masanori; Hiasa, Yoichi
2015-04-01
This study aimed at prospectively evaluating bile duct anatomy on ultrasonography and evaluating the safety and utility of radiofrequency ablation (RFA) assisted by virtual ultrasonography from gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). The institutional review board approved this study, and patients provided written informed consent prior to entry into the study. Bile duct anatomy was assessed in 201 patients who underwent Gd-EOB-DTPA-enhanced MRI for the evaluation of hepatic tumor. Eighty-one of these patients subsequently underwent RFA assisted by ultrasound imaging. In 23 patients, the tumor was located within 5 mm of the central bile duct, as demonstrated by MRI. Virtual ultrasonography constructed by Gd-EOB-enhanced MRI was able to visualize the common bile duct, left hepatic duct, and right hepatic duct in 96.5, 94.0, and 89.6 % of cases, respectively. The target hepatic tumor nodule and biliary duct could be detected with virtual ultrasonography in all patients, and no severe complications occurred. The running pattern of the bile ducts could be recognized on conventional ultrasound by referencing virtual ultrasonography constructed by Gd-EOB-DTPA-enhanced MRI. RFA assisted by this imaging strategy did not result in bile duct injury.
Virtual Patients for Virtual Sick Call Medical Training
2010-11-01
2007). A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard...traditional approaches rely upon a combination of classroom learning and role-playing lnterservice/Jndusrry Training, Simularion, and Education
Multi-Agent Framework for Virtual Learning Spaces.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Nunez, Gustavo
1999-01-01
Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…
DWTP: a basis for networked VR on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang; Schick, Daniel
1998-04-01
Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.
2018-01-01
Objective To evaluate the impact of using a ‘virtual clinic’ on patient experience and cost in the care of women with urinary incontinence. Materials and methods Women, aged > 18 years referred to a urogynaecology unit were randomised to either (1) A Standard Clinic or (2) A Virtual Clinic. Both groups completed a validated, web-based interactive, patient-reported outome measure (ePAQ-Pelvic Floor), in advance of their appointment followed by either a telephone consultation (Virtual Clinic) or face-to-face consultation (Standard Care). The primary outcome was the mean ‘short-term outcome scale’ score on the Patient Experience Questionnaire (PEQ). Secondary Outcome Measures included the other domains of the PEQ (Communications, Emotions and Barriers), Client Satisfaction Questionnaire (CSQ), Short-Form 12 (SF-12), personal, societal and NHS costs. Results 195 women were randomised: 98 received the intervention and 97 received standard care. The primary outcome showed a non-significant difference between the two study arms. No significant differences were also observed on the CSQ and SF-12. However, the intervention group showed significantly higher PEQ domain scores for Communications, Emotions and Barriers (including following adjustment for age and parity). Whilst standard care was overall more cost-effective, this was minimal (£38.04). The virtual clinic also significantly reduced consultation time (10.94 minutes, compared with a mean duration of 25.9 minutes respectively) and consultation costs compared to usual care (£31.75 versus £72.17 respectively), thus presenting potential cost-savings in out-patient management. Conclusions The virtual clinical had no impact on the short-term dimension of the PEQ and overall was not as cost-effective as standard care, due to greater clinic re-attendances in this group. In the virtual clinic group, consultation times were briefer, communication experience was enhanced and personal costs lower. For medical conditions of a sensitive or intimate nature, a virtual clinic has potential to support patients to communicate with health professionals about their condition. PMID:29346378
Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis.
Koenig, Alexander; Wellner, Mathias; Köneke, Susan; Meyer-Heim, Andreas; Lünenburger, Lars; Riener, Robert
2008-01-01
The Lokomat gait orthosis was developed in the Spinal Cord Injury Center at the University Hospital Balgrist Zurich and provides automatic gait training for patients with neurological gait impairments, such as Cerebral Palsy (CP). Each patient undergoes a task-oriented Lokomat rehabilitation training program via a virtual reality setup. In four virtual scenarios, the patient is able to exercise tasks such as wading through water, playing soccer, overstepping obstacles or training in a street scenario, each task offering varying levels of difficulty. Patients provided positive feedback in reference to the utilized haptic method, specifically addressing the sufficient degree of realism. In a single case study, we verified the task difficulty.
Distributed attitude synchronization of formation flying via consensus-based virtual structure
NASA Astrophysics Data System (ADS)
Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen
2011-06-01
This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.
Agreements in Virtual Organizations
NASA Astrophysics Data System (ADS)
Pankowska, Malgorzata
This chapter is an attempt to explain the important impact that contract theory delivers with respect to the concept of virtual organization. The author believes that not enough research has been conducted in order to transfer theoretical foundations for networking to the phenomena of virtual organizations and open autonomic computing environment to ensure the controllability and management of them. The main research problem of this chapter is to explain the significance of agreements for virtual organizations governance. The first part of this chapter comprises explanations of differences among virtual machines and virtual organizations for further descriptions of the significance of the first ones to the development of the second. Next, the virtual organization development tendencies are presented and problems of IT governance in highly distributed organizational environment are discussed. The last part of this chapter covers analysis of contracts and agreements management for governance in open computing environments.
A novel virtual motor rehabilitation system for Guillain-Barré syndrome. Two single case studies.
Albiol-Pérez, S; Forcano-García, M; Muñoz-Tomás, M T; Manzano-Fernández, P; Solsona-Hernández, S; Mashat, M A; Gil-Gómez, J A
2015-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "New Methodologies for Patients Rehabilitation". For Guillain-Barré patients, motor rehabilitation programs are helpful at the onset to prevent the complications of paralysis and in cases of persistent motor impairment. Traditional motor rehabilitation programs may be tedious and monotonous, resulting in low adherence to the treatments. A Virtual Motor Rehabilitation system has been tested in Guillain-Barré patients to increase patient adherence and to improve clinical results. Two people with Guillain-Barré performed 20 rehabilitation sessions. We tested a novel system based on Motor Virtual Rehabilitation in three periods of time (baseline evaluation, final evaluation, and follow-up. In the training program, the participants carried out a specific treatment using the Active Balance Rehabilitation system (ABAR). The system is composed of customizable virtual games to perform static and dynamic balance rehabilitation. Significant improvements in clinical results were obtained by both participants, with significant results in the static balance clinical test of the Anterior Reach test in the standing position and unipedal stance time. Other significant results were found in dynamic balance clinical tests in the Berg Balance Scale test and the 30-second Sit-to-Stand test. With regard to acceptance of the system, both patients enjoyed the experience, and both patients thought that this system was helpful for their rehabilitation. The results show that Virtual Motor Rehabilitation for Guillain-Barré patients provides clinical improvements in an entertaining way.
Effects of optokinetic stimulation induced by virtual reality on locomotion: a preliminary study.
Ohyama, Seizo; Nishiike, Suetaka; Watanabe, Hiroshi; Matsuoka, Katsunori; Takeda, Noriaki
2008-11-01
Exposure to a virtual environment for 20 min was sufficient to cause adaptive changes in locomotion in healthy subjects, suggesting that virtual environments might improve locomotor deviation in patients with unilateral labyrinthine defects. Postural and locomotor control in patients with unilateral labyrinthine defects deviates towards the lesion side. The aim of this study was to examine whether active locomotion within a virtual environment can increase the functionality of rehabilitation. We examined the effects of optokinetic stimulation produced by a virtual reality environment on ocular movement and locomotor tracks in 10 healthy subjects. During the 20 min experiment, the mean locomotor deviation and the mean frequency and mean amplitude of optokinetic nystagmus during the last period of the experiment were significantly higher than those during the initial period.
Krebs, Paul; Burkhalter, Jack; Lewis, Shireen; Hendrickson, Tinesha; Chiu, Ophelia; Fearn, Paul; Perchick, Wendy; Ostroff, Jamie
2009-08-01
Many hospitalized smokers return to smoking after hospital discharge even though continued smoking can compromise treatment effectiveness, reduce survival, increase risk of disease recurrence, and impair quality of life. After leaving a smoke-free hospital, patients encounter smoking cues at home, such as family members who smoke or emotional triggers such as stress, which can elicit powerful urges to smoke and lead to smoking relapse. Enabling smokers to experience such urges in a controlled setting while providing the ability to practice coping skills may be a useful strategy for building quitting self-efficacy. We are developing a virtual reality coping skills (VRCS) game to help hospitalized smokers practice coping strategies to manage these triggers in preparation for returning home after hospitalization. Our multidisciplinary team developed a prototype VRCS game using Second Life, a platform that allowed rapid construction of a virtual reality environment. The prototype contains virtual home spaces (e.g., living room, kitchen) populated with common triggers to smoke and a "toolkit" with scripted actions that enable the avatar to rehearse various coping strategies. Since eliciting and managing urges to smoke is essential to the game's utility as an intervention, we assessed the ability of the prototype virtual environment to engage former smokers in these scenarios. We recruited eight former smokers with a recent history of hospitalization and guided each through a VRCS scenario during which we asked the patient to evaluate the strength of smoking urges and usefulness of coping strategies. Initial data indicate that patients report high urges to smoke (mean = 8.8 on a 10 point scale) when their avatar confronted virtual triggers such as drinking coffee. Patients rated virtual practice of coping strategies, such as drinking water or watching TV, as very helpful (mean = 8.4 on a 10 point scale) in reducing these urges. With further development, this VRCS game may have potential to provide low-cost, effective behavioral rehearsal to prevent relapse to smoking in hospitalized patients.
Using PVM to host CLIPS in distributed environments
NASA Technical Reports Server (NTRS)
Myers, Leonard; Pohl, Kym
1994-01-01
It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.
Zary, Nabil; Johnson, Gunilla; Boberg, Jonas; Fors, Uno GH
2006-01-01
Background The Web-based Simulation of Patients (Web-SP) project was initiated in order to facilitate the use of realistic and interactive virtual patients (VP) in medicine and healthcare education. Web-SP focuses on moving beyond the technology savvy teachers, when integrating simulation-based education into health sciences curricula, by making the creation and use of virtual patients easier. The project strives to provide a common generic platform for design/creation, management, evaluation and sharing of web-based virtual patients. The aim of this study was to evaluate if it was possible to develop a web-based virtual patient case simulation environment where the entire case authoring process might be handled by teachers and which would be flexible enough to be used in different healthcare disciplines. Results The Web-SP system was constructed to support easy authoring, management and presentation of virtual patient cases. The case authoring environment was found to facilitate for teachers to create full-fledged patient cases without the assistance of computer specialists. Web-SP was successfully implemented at several universities by taking into account key factors such as cost, access, security, scalability and flexibility. Pilot evaluations in medical, dentistry and pharmacy courses shows that students regarded Web-SP as easy to use, engaging and to be of educational value. Cases adapted for all three disciplines were judged to be of significant educational value by the course leaders. Conclusion The Web-SP system seems to fulfil the aim of providing a common generic platform for creation, management and evaluation of web-based virtual patient cases. The responses regarding the authoring environment indicated that the system might be user-friendly enough to appeal to a majority of the academic staff. In terms of implementation strengths, Web-SP seems to fulfil most needs from course directors and teachers from various educational institutions and disciplines. The system is currently in use or under implementation in several healthcare disciplines at more than ten universities worldwide. Future aims include structuring the exchange of cases between teachers and academic institutions by building a VP library function. We intend to follow up the positive results presented in this paper with other studies looking at the learning outcomes, critical thinking and patient management. Studying the potential of Web-SP as an assessment tool will also be performed. More information about Web-SP: PMID:16504041
Zary, Nabil; Johnson, Gunilla; Boberg, Jonas; Fors, Uno G H
2006-02-21
The Web-based Simulation of Patients (Web-SP) project was initiated in order to facilitate the use of realistic and interactive virtual patients (VP) in medicine and healthcare education. Web-SP focuses on moving beyond the technology savvy teachers, when integrating simulation-based education into health sciences curricula, by making the creation and use of virtual patients easier. The project strives to provide a common generic platform for design/creation, management, evaluation and sharing of web-based virtual patients. The aim of this study was to evaluate if it was possible to develop a web-based virtual patient case simulation environment where the entire case authoring process might be handled by teachers and which would be flexible enough to be used in different healthcare disciplines. The Web-SP system was constructed to support easy authoring, management and presentation of virtual patient cases. The case authoring environment was found to facilitate for teachers to create full-fledged patient cases without the assistance of computer specialists. Web-SP was successfully implemented at several universities by taking into account key factors such as cost, access, security, scalability and flexibility. Pilot evaluations in medical, dentistry and pharmacy courses shows that students regarded Web-SP as easy to use, engaging and to be of educational value. Cases adapted for all three disciplines were judged to be of significant educational value by the course leaders. The Web-SP system seems to fulfil the aim of providing a common generic platform for creation, management and evaluation of web-based virtual patient cases. The responses regarding the authoring environment indicated that the system might be user-friendly enough to appeal to a majority of the academic staff. In terms of implementation strengths, Web-SP seems to fulfil most needs from course directors and teachers from various educational institutions and disciplines. The system is currently in use or under implementation in several healthcare disciplines at more than ten universities worldwide. Future aims include structuring the exchange of cases between teachers and academic institutions by building a VP library function. We intend to follow up the positive results presented in this paper with other studies looking at the learning outcomes, critical thinking and patient management. Studying the potential of Web-SP as an assessment tool will also be performed. More information about Web-SP: http://websp.lime.ki.se.
NASA Astrophysics Data System (ADS)
De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco
2013-03-01
Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.
Stereoscopic virtual reality models for planning tumor resection in the sellar region.
Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie
2012-11-28
It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.
Riva, Giuseppe; Raspelli, Simona; Algeri, Davide; Pallavicini, Federica; Gorini, Alessandra; Wiederhold, Brenda K; Gaggioli, Andrea
2010-02-01
The use of new technologies, particularly virtual reality, is not new in the treatment of posttraumatic stress disorders (PTSD): VR is used to facilitate the activation of the traumatic event during exposure therapy. However, during the therapy, VR is a new and distinct realm, separate from the emotions and behaviors experienced by the patient in the real world: the behavior of the patient in VR has no direct effects on the real-life experience; the emotions and problems experienced by the patient in the real world are not directly addressed in the VR exposure. In this article, we suggest that the use of a new technological paradigm, Interreality, may improve the clinical outcome of PTSD. The main feature of Interreality is a twofold link between the virtual and real worlds: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through 3D shared virtual worlds; biosensors and activity sensors (from the real to the virtual world); and personal digital assistants and/or mobile phones (from the virtual world to the real one). We describe different technologies that are involved in the Interreality vision and its clinical rationale. To illustrate the concept of Interreality in practice, a clinical scenario is also presented and discussed: Rosa, a 55-year-old nurse, involved in a major car accident.
Effects of sensory cueing in virtual motor rehabilitation. A review.
Palacios-Navarro, Guillermo; Albiol-Pérez, Sergio; García-Magariño García, Iván
2016-04-01
To critically identify studies that evaluate the effects of cueing in virtual motor rehabilitation in patients having different neurological disorders and to make recommendations for future studies. Data from MEDLINE®, IEEExplore, Science Direct, Cochrane library and Web of Science was searched until February 2015. We included studies that investigate the effects of cueing in virtual motor rehabilitation related to interventions for upper or lower extremities using auditory, visual, and tactile cues on motor performance in non-immersive, semi-immersive, or fully immersive virtual environments. These studies compared virtual cueing with an alternative or no intervention. Ten studies with a total number of 153 patients were included in the review. All of them refer to the impact of cueing in virtual motor rehabilitation, regardless of the pathological condition. After selecting the articles, the following variables were extracted: year of publication, sample size, study design, type of cueing, intervention procedures, outcome measures, and main findings. The outcome evaluation was done at baseline and end of the treatment in most of the studies. All of studies except one showed improvements in some or all outcomes after intervention, or, in some cases, in favor of the virtual rehabilitation group compared to the control group. Virtual cueing seems to be a promising approach to improve motor learning, providing a channel for non-pharmacological therapeutic intervention in different neurological disorders. However, further studies using larger and more homogeneous groups of patients are required to confirm these findings. Copyright © 2016 Elsevier Inc. All rights reserved.
Performance Studies on Distributed Virtual Screening
Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.
2014-01-01
Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219
NASA Astrophysics Data System (ADS)
Potter, Lucas; Arikatla, Sreekanth; Bray, Aaron; Webb, Jeff; Enquobahrie, Andinet
2017-03-01
Stenosis of the upper airway affects approximately 1 in 200,000 adults per year1 , and occurs in neonates as well2 . Its treatment is often dictated by institutional factors and clinicians' experience or preferences 3 . Objective and quantitative methods of evaluating treatment options hold the potential to improve care in stenosis patients. Virtual surgical planning software tools are critically important for this. The Virtual Pediatric Airway Workbench (VPAW) is a software platform designed and evaluated for upper airway stenosis treatment planning. It incorporates CFD simulation and geometric authoring with objective metrics from both that help in informed evaluation and planning. However, this planner currently lacks physiological information which could impact the surgical planning outcomes. In this work, we integrated a lumped parameter, model based human physiological engine called BioGears with VPAW. We demonstrated the use of physiology informed virtual surgical planning platform for patient-specific stenosis treatment planning. The preliminary results show that incorporating patient-specific physiology in the pretreatment plan would play important role in patient-specific surgical trainers and planners in airway surgery and other types of surgery that are significantly impacted by physiological conditions during surgery.
Celesti, Antonio; Fazio, Maria; Romano, Agata; Bramanti, Alessia; Bramanti, Placido; Villari, Massimo
2018-05-01
The Open Archive Information System (OAIS) is a reference model for organizing people and resources in a system, and it is already adopted in care centers and medical systems to efficiently manage clinical data, medical personnel, and patients. Archival storage systems are typically implemented using traditional relational database systems, but the relation-oriented technology strongly limits the efficiency in the management of huge amount of patients' clinical data, especially in emerging cloud-based, that are distributed. In this paper, we present an OAIS healthcare architecture useful to manage a huge amount of HL7 clinical documents in a scalable way. Specifically, it is based on a NoSQL column-oriented Data Base Management System deployed in the cloud, thus to benefit from a big tables and wide rows available over a virtual distributed infrastructure. We developed a prototype of the proposed architecture at the IRCCS, and we evaluated its efficiency in a real case of study.
Persoon, Lucas C G G; Podesta, Mark; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Verhaegen, Frank
2011-07-01
A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.
NASA Astrophysics Data System (ADS)
Adlisia Puspa Harani, Sandhika
2018-05-01
The study is conducted by gathering data from interviews an in-home experiment, to examine the impacts of both virtual and physical SED toward user engagement. Business opportunity and benefits of virtual SED for stake holders are also discussed in this study. The research was conducted by interviewing method to respondens in Nottingham, UK. By comparing consumers’ energy saving behaviour from physical and virtual SED users, virtual SED shows similar level of effectiveness as physical SED, but there is no evidence that the virtual versions are better than the physical ones in terms of reducing energy consumption. Nevertheless, virtual SED can be more beneficial for consumers who can get easier access. They also help educating users to be more concern about energy issue. Energy suppliers get benefits by having virtual versions of SED, in which they can reduce production and distribution costs, as well as diminishing waste from physical SED.
Shared virtual environments for aerospace training
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Voss, Mark
1994-01-01
Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.
NASA Astrophysics Data System (ADS)
van Lew, Baldur; Botha, Charl P.; Milles, Julien R.; Vrooman, Henri A.; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.
2015-03-01
The cohort size required in epidemiological imaging genetics studies often mandates the pooling of data from multiple hospitals. Patient data, however, is subject to strict privacy protection regimes, and physical data storage may be legally restricted to a hospital network. To enable biomarker discovery, fast data access and interactive data exploration must be combined with high-performance computing resources, while respecting privacy regulations. We present a system using fast and inherently secure light-paths to access distributed data, thereby obviating the need for a central data repository. A secure private cloud computing framework facilitates interactive, computationally intensive exploration of this geographically distributed, privacy sensitive data. As a proof of concept, MRI brain imaging data hosted at two remote sites were processed in response to a user command at a third site. The system was able to automatically start virtual machines, run a selected processing pipeline and write results to a user accessible database, while keeping data locally stored in the hospitals. Individual tasks took approximately 50% longer compared to a locally hosted blade server but the cloud infrastructure reduced the total elapsed time by a factor of 40 using 70 virtual machines in the cloud. We demonstrated that the combination light-path and private cloud is a viable means of building an analysis infrastructure for secure data analysis. The system requires further work in the areas of error handling, load balancing and secure support of multiple users.
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
Games as Distributed Teaching and Learning Systems
ERIC Educational Resources Information Center
Gee, Elisabeth; Gee, James Paul
2017-01-01
Background: Videogames and virtual worlds have frequently been studied as learning environments in isolation; that is, scholars have focused on understanding the features of games or virtual worlds as separate from or different than "real world" environments for learning. Although more recently, scholars have explored the teaching and…
Virtual Teaming: Faculty Collaboration in Online Spaces
ERIC Educational Resources Information Center
Almjeld, Jen; Rybas, Natalia; Rybas, Sergey
2013-01-01
This collaborative article chronicles the experiences of three faculty at three universities utilizing wiki technology to transform themselves and their students into a virtual team. Rooted in workplace approaches to distributed teaming, the project expands notions of classroom collaboration to include planning, administration, and assessment of a…
Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing
NASA Astrophysics Data System (ADS)
Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.
2006-05-01
Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.
Mludek, V; Wolff, A C; Drings, P; van der Haak, M; Haux, R; Wannenmacher, M; Zierhut, D
2001-01-01
With the rising efforts to guarantee a high quality treatment in medicine and to reduce the costs in the health care system, Clinical Practice Guidelines (CPG) have developed into a very important reference in medicine. CPGs are especially useful for the standardization of multi-professional treatment processes like the care for patients with malignant diseases. The Tumour-Centre Heidelberg/Mannheim (Germany) leads a project to build up a regional, virtual distributed Electronic Patient Record (EPR) for patients with malignant diseases in the Rhein-Neckar-Area. Aims of the first stages of the project are the introduction of the distributed EPR to two co-operating pilot-clinics. In this context we intend to provide access for medical professionals not only to the data of the jointly treated patients, but also to relevant existing CPGs and other medical knowledge sources like Medline and Cochrane-Library. Knowledge and Patient data should be interlinked to offer patient-specific views on the CPG-information. As all professions have different information needs, this views should be presented individualized according to the demands of the users. We analysed three relevant CPGs and defined a meta-structure that will be refined to a common meta-structure for CPGs in Oncology. CPGs as well as structured patient-documents will be implemented in the Extensible Markup Language (XML), as this platform-independent technology seems to suit our needs for data exchange and presentation purposes best. The implementation process will be accompanied tightly with evaluations to gain experience for further expansions of the EPR. The vision of the project is, that by integrating CPGs in a shared distributed EPR, the way towards standardized treatment processes in a local, but multi-professional setting, and the efforts to guarantee a high quality treatment in Oncology can sufficiently be supported.
Parallel-distributed mobile robot simulator
NASA Astrophysics Data System (ADS)
Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo
1996-06-01
The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.
Virtual patient simulator for distributed collaborative medical education.
Caudell, Thomas P; Summers, Kenneth L; Holten, Jim; Hakamata, Takeshi; Mowafi, Moad; Jacobs, Joshua; Lozanoff, Beth K; Lozanoff, Scott; Wilks, David; Keep, Marcus F; Saiki, Stanley; Alverson, Dale
2003-01-01
Project TOUCH (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) investigates the feasibility of using advanced technologies to enhance education in an innovative problem-based learning format currently being used in medical school curricula, applying specific clinical case models, and deploying to remote sites/workstations. The University of New Mexico's School of Medicine and the John A. Burns School of Medicine at the University of Hawai'i face similar health care challenges in providing and delivering services and training to remote and rural areas. Recognizing that health care needs are local and require local solutions, both states are committed to improving health care delivery to their unique populations by sharing information and experiences through emerging telehealth technologies by using high-performance computing and communications resources. The purpose of this study is to describe the deployment of a problem-based learning case distributed over the National Computational Science Alliance's Access Grid. Emphasis is placed on the underlying technical components of the TOUCH project, including the virtual reality development tool Flatland, the artificial intelligence-based simulation engine, the Access Grid, high-performance computing platforms, and the software that connects them all. In addition, educational and technical challenges for Project TOUCH are identified. Copyright 2003 Wiley-Liss, Inc.
National randomized controlled trial of virtual house calls for Parkinson disease
Beck, Christopher A.; Beran, Denise B.; Biglan, Kevin M.; Boyd, Cynthia M.; Schmidt, Peter N.; Simone, Richard; Willis, Allison W.; Galifianakis, Nicholas B.; Katz, Maya; Tanner, Caroline M.; Dodenhoff, Kristen; Aldred, Jason; Carter, Julie; Fraser, Andrew; Jimenez-Shahed, Joohi; Hunter, Christine; Spindler, Meredith; Reichwein, Suzanne; Mari, Zoltan; Dunlop, Becky; Morgan, John C.; McLane, Dedi; Hickey, Patrick; Gauger, Lisa; Richard, Irene Hegeman; Mejia, Nicte I.; Bwala, Grace; Nance, Martha; Shih, Ludy C.; Singer, Carlos; Vargas-Parra, Silvia; Zadikoff, Cindy; Okon, Natalia; Feigin, Andrew; Ayan, Jean; Vaughan, Christina; Pahwa, Rajesh; Dhall, Rohit; Hassan, Anhar; DeMello, Steven; Riggare, Sara S.; Wicks, Paul; Achey, Meredith A.; Elson, Molly J.; Goldenthal, Steven; Keenan, H. Tait; Korn, Ryan; Schwarz, Heidi; Sharma, Saloni; Stevenson, E. Anna; Zhu, William
2017-01-01
Objective: To determine whether providing remote neurologic care into the homes of people with Parkinson disease (PD) is feasible, beneficial, and valuable. Methods: In a 1-year randomized controlled trial, we compared usual care to usual care supplemented by 4 virtual visits via video conferencing from a remote specialist into patients' homes. Primary outcome measures were feasibility, as measured by the proportion who completed at least one virtual visit and the proportion of virtual visits completed on time; and efficacy, as measured by the change in the Parkinson's Disease Questionnaire–39, a quality of life scale. Secondary outcomes included quality of care, caregiver burden, and time and travel savings. Results: A total of 927 individuals indicated interest, 210 were enrolled, and 195 were randomized. Participants had recently seen a specialist (73%) and were largely college-educated (73%) and white (96%). Ninety-five (98% of the intervention group) completed at least one virtual visit, and 91% of 388 virtual visits were completed. Quality of life did not improve in those receiving virtual house calls (0.3 points worse on a 100-point scale; 95% confidence interval [CI] −2.0 to 2.7 points; p = 0.78) nor did quality of care or caregiver burden. Each virtual house call saved patients a median of 88 minutes (95% CI 70–120; p < 0.0001) and 38 miles per visit (95% CI 36–56; p < 0.0001). Conclusions: Providing remote neurologic care directly into the homes of people with PD was feasible and was neither more nor less efficacious than usual in-person care. Virtual house calls generated great interest and provided substantial convenience. ClinicalTrials.gov identifier: NCT02038959. Classification of evidence: This study provides Class III evidence that for patients with PD, virtual house calls from a neurologist are feasible and do not significantly change quality of life compared to in-person visits. The study is rated Class III because it was not possible to mask patients to visit type. PMID:28814455
Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio
2018-05-21
The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.
Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis
Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
Claessen, Michiel H G; van der Ham, Ineke J M; Jagersma, Elbrich; Visser-Meily, Johanna M A
2016-10-01
Recent studies have shown that navigation impairment is a common complaint after brain injury. Effective training programmes aiming to improve navigation ability in neurological patients are, however, scarce. The few reported programmes are merely focused on recalling specific routes rather than encouraging brain-damaged patients to use an alternative navigation strategy, applicable to any route. Our aim was therefore to investigate the feasibility of a (virtual reality) navigation training as a tool to instruct chronic stroke patients to adopt an alternative navigation strategy. Navigation ability was systematically assessed before the training. The training approach was then determined based on the individual pattern of navigation deficits of each patient. The use of virtual reality in the navigation strategy training in six middle-aged stroke patients was found to be highly feasible. Furthermore, five patients learned to (partially) apply an alternative navigation strategy in the virtual environment, suggesting that navigation strategies are mouldable rather than static. In the evaluation of their training experiences, the patients judged the training as valuable and proposed some suggestions for further improvement. The notion that the navigation strategy people use can be influenced after a short training procedure is a novel finding and initiates a direction for future studies.
Li, Yunfeng; Jiang, Yangmei; Zhang, Nan; Xu, Rui; Hu, Jing; Zhu, Songsong
2015-03-01
Computer-aided jaw surgery has been extensively studied recently. The purpose of this study was to determine the clinical feasibility of performing bimaxillary orthognathic surgery without intermediate splint using virtual surgical planning and rapid prototyping technology. Twelve consecutive patients who underwent bimaxillary orthognathic surgery were included. The presented treatment plan here mainly consists of 6 procedures: (1) data acquisition from computed tomography (CT) of the skull and laser scanning of the dentition; (2) reconstruction and fusion of a virtual skull model with accurate dentition; (3) virtual surgery simulation including osteotomy and movement and repositioning of bony segments; (4) final surgical splint fabrication (no intermediate splint) using computer-aided design and rapid prototyping technology; (5) transfer of the virtual surgical plan to the operating room; and (6) comparison of the actual surgical outcome to the virtual surgical plan. All procedures of the treatment were successfully performed on all 12 patients. In quantification of differences between simulated and actual postoperative outcome, we found that the mean linear difference was less than 1.8 mm, and the mean angular difference was less than 2.5 degrees in all evaluated patients. Results from this study suggested that it was feasible to perform bimaxillary orthognathic surgery without intermediate splint. Virtual surgical planning and the guiding splints facilitated the diagnosis, treatment planning, accurate osteotomy, and bony segments repositioning in orthognathic surgery.
The diffusion of virtual communities in health care: concepts and challenges.
Demiris, George
2006-08-01
This paper providers an overview and discussion of virtual communities in health care. Furthermore, we aim to discuss in this context ethical, legal and technical considerations and the current status of research in this domain. We searched medical and social science literature including survey studies, randomized and non-randomized controlled interventions and reviews. The literature indicates that a virtual community in health care as a group of people using telecommunication with the purposes of delivering health care and education, and/or providing support, covers a wide range of clinical specialties, technologies and stakeholders. Examples include peer-to-peer networks, virtual health care delivery and research teams. Ethical challenges including the concepts of identity and deception, privacy and confidentiality and technical issues, such as sociability and usability are discussed. Virtual communities may empower patients and enhance coordination of care services; however, there is not sufficient systematic evidence of the effectiveness of virtual communities on clinical outcomes or patient empowerment. Researchers need to address issues, such as sample sizes and experimental design to further the research field in this domain. When practitioners utilize virtual community tools to communicate with patients or colleagues they have to maximize sociability and usability of this mode of communication, while addressing concerns for privacy and the fear of de-humanizing practice, and the lack of clarity or relevance of current legislative frameworks.
Distributed Pervasive Worlds: The Case of Exergames
ERIC Educational Resources Information Center
Laine, Teemu H.; Sedano, Carolina Islas
2015-01-01
Pervasive worlds are computing environments where a virtual world converges with the physical world through context-aware technologies such as sensors. In pervasive worlds, technology is distributed among entities that may be distributed geographically. We explore the concept, possibilities, and challenges of distributed pervasive worlds in a case…
Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y
2009-05-01
To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.
Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.
Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi
2017-05-01
Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George
2015-07-21
This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
Murbach, Manuel; Neufeld, Esra; Cabot, Eugenia; Zastrow, Earl; Córcoles, Juan; Kainz, Wolfgang; Kuster, Niels
2016-09-01
To assess the effect of radiofrequency (RF) shimming of a 3 Tesla (T) two-port body coil on B1 + uniformity, the local specific absorption rate (SAR), and the local temperature increase as a function of the thermoregulatory response. RF shimming alters induced current distribution, which may result in large changes in the level and location of absorbed RF energy. We investigated this effect with six anatomical human models from the Virtual Population in 10 imaging landmarks and four RF coils. Three thermoregulation models were applied to estimate potential local temperature increases, including a newly proposed model for impaired thermoregulation. Two-port RF shimming, compared to circular polarization mode, can increase the B1 + uniformity on average by +32%. Worst-case SAR excitations increase the local RF power deposition on average by +39%. In the first level controlled operating mode, induced peak temperatures reach 42.5°C and 45.6°C in patients with normal and impaired thermoregulation, respectively. Image quality with 3T body coils can be significantly increased by RF shimming. Exposure in realistic scan scenarios within guideline limits can be considered safe for a broad patient population with normal thermoregulation. Patients with impaired thermoregulation should not be scanned outside of the normal operating mode. Magn Reson Med 76:986-997, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Cutrì, Elena; Meoli, Alessio; Dubini, Gabriele; Migliavacca, Francesco; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model. Secondly, a 3D standalone FEA model is build up to obtain active and passive ventricular characteristics and unloaded reference state. Lastly, the 3D model of the single ventricle is coupled to the lumped parameter model of the circulation obtaining a multiscale closed-loop pre-operative model. Lacking any information on the fibre orientation, two cases were simulated: (i) fibre distributed as in the physiological right ventricle and (ii) fibre as in the physiological left ventricle. Once the pre-operative condition is satisfactorily simulated for the two cases, virtual surgery is performed. The post-operative results in the two cases highlighted similar hemodynamic behaviour but different local mechanics. This finding suggests that the knowledge of the patient-specific fibre arrangement is important to correctly estimate the single ventricle's working condition and consequently can be valuable to support clinical decision. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living
Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.
2015-01-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612
Assessing upper extremity motor function in practice of virtual activities of daily living.
Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T
2015-03-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.
Augmented virtuality for arthroscopic knee surgery.
Li, John M; Bardana, Davide D; Stewart, A James
2011-01-01
This paper describes a computer system to visualize the location and alignment of an arthroscope using augmented virtuality. A 3D computer model of the patient's joint (from CT) is shown, along with a model of the tracked arthroscopic probe and the projection of the camera image onto the virtual joint. A user study, using plastic bones instead of live patients, was made to determine the effectiveness of this navigated display; the study showed that the navigated display improves target localization in novice residents.
ERIC Educational Resources Information Center
Fialho, Francisco Antonio Pereira; Catapan, Araci Hack
1999-01-01
Argues that the creation of distributed environments for constructivist learning is a challenge which requires a multidisciplinary development and support team. Outlines recommended strategies for the collective creation of virtual worlds which can improve learning. Contains 11 references. (Author/WRM)
Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces
ERIC Educational Resources Information Center
Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian
2007-01-01
Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…
Using a Virtual Population to Authentically Teach Epidemiology and Biostatistics
ERIC Educational Resources Information Center
Dunn, Peter K.; Donnison, Sharn; Cole, Rachel; Bulmer, Michael
2017-01-01
Epidemiology is the study of the distribution of disease in human populations. This means that authentically teaching primary data collection in epidemiology is difficult as students cannot easily access suitable human populations. Using an action research methodology, this paper studied the use of a virtual human population (called "The…
Distributed Cognition in a Virtual World
ERIC Educational Resources Information Center
Gillen, Julia; Ferguson, Rebecca; Peachey, Anna; Twining, Peter
2012-01-01
Over a 13-month period, the Schome Park Programme operated the first "closed" (i.e. protected) Teen Second Life project in Europe. The project organised diverse educational events that centred on use of a virtual world and an associated asynchronous forum and wiki. Students and staff together exploited the affordances of the environment…
Phases and Patterns of Group Development in Virtual Learning Teams
ERIC Educational Resources Information Center
Yoon, Seung Won; Johnson, Scott D.
2008-01-01
With the advancement of Internet communication technologies, distributed work groups have great potential for remote collaboration and use of collective knowledge. Adopting the Complex Adaptive System (CAS) perspective (McGrath, Arrow, & Berdhal, "Personal Soc Psychol Rev" 4 (2000) 95), which views virtual learning teams as an adaptive and…
Clinically Normal Stereopsis Does Not Ensure Performance Benefit from Stereoscopic 3D Depth Cues
2014-10-28
Stereopsis, Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 16...Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 1 Distribution A: Approved
[Virtual bronchoscopy in the child using multi-slice CT: initial clinical experiences].
Kirchner, J; Laufer, U; Jendreck, M; Kickuth, R; Schilling, E M; Liermann, D
2000-01-01
Virtual bronchoscopy of the pediatric patient has been reported to be more difficult because of artifacts due to breathing or motion. We demonstrate the benefit of the accelerated examination based on multislice spiral CT (MSCT) in the pediatric patient which has not been reported so far. MSCT (tube voltage 120 kV, tube current 110 mA, 4 x 1 mm Slice thickness, 500 ms rotation time, Pitch 6) was performed on a CT scanner of the latest generation (Volume Zoom, Siemens Corp. Forchheim, Germany). In totally we examined 11 patients (median age 48 months, range 2-122 months) suspected of having tracheoesophageal fistula (n = 2), tracheobronchial narrowing (n = 8) due to intrinsic or extrinsic factors or injury of the bronchial system (n = 1). In all patients we obtained sufficient data for 3D reconstruction avoiding general anesthesia. 6/11 examinations were described to be without pathological finding. A definite diagnosis was obtained in 10 patients. Virtual bronchoscopy could avoid other invasive diagnostic examination in 8/11 patients (73%). Helical CT provides 3D-reconstruction and virtual bronchoscopy in the newborn as well as the infant. It avoids additional diagnostic bronchoscopy in a high percentage of all cases.
Haddad, Tarek; Himes, Adam; Thompson, Laura; Irony, Telba; Nair, Rajesh
2017-01-01
Evaluation of medical devices via clinical trial is often a necessary step in the process of bringing a new product to market. In recent years, device manufacturers are increasingly using stochastic engineering models during the product development process. These models have the capability to simulate virtual patient outcomes. This article presents a novel method based on the power prior for augmenting a clinical trial using virtual patient data. To properly inform clinical evaluation, the virtual patient model must simulate the clinical outcome of interest, incorporating patient variability, as well as the uncertainty in the engineering model and in its input parameters. The number of virtual patients is controlled by a discount function which uses the similarity between modeled and observed data. This method is illustrated by a case study of cardiac lead fracture. Different discount functions are used to cover a wide range of scenarios in which the type I error rates and power vary for the same number of enrolled patients. Incorporation of engineering models as prior knowledge in a Bayesian clinical trial design can provide benefits of decreased sample size and trial length while still controlling type I error rate and power.
Douglass, Mark A; Casale, Jillian P; Skirvin, J Andrew; DiVall, Margarita V
2013-10-14
To implement and assess the impact of a virtual patient pilot program on pharmacy students' clinical competence skills. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students' posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes.
The role of virtual articulator in prosthetic and restorative dentistry.
Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad
2014-07-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.
Macmillan, Alexandra; Lopez, Joseph; Mundinger, Gerhard S; Major, Melanie; Medina, Miguel A; Dorafshar, Amir H
2018-02-23
Late treatment of scaphocephaly presents challenges including need for more complex surgery to achieve desired head shape. Virtual surgical planning for total vault reconstruction may mitigate some of these challenges, but has not been studied in this unique and complex clinical setting. A retrospective chart review was conducted for patients with scaphocephaly who presented to our institution between 2000 and 2014. Patients presenting aged 12 months or older who underwent virtual surgical planning-assisted cranial vault reconstruction were included. Patient demographic, intraoperative data, and postoperative outcomes were recorded. Pre- and postoperative anthropometric measurements were obtained to document the fronto-occipital (FO) and biparietal (BP) distance and calculate cephalic index (CI). Virtual surgical planning predicted, and actual postoperative anthropometric measurements were compared. Five patients were identified who fulfilled inclusion criteria. The mean age was 50.6 months. One patient demonstrated signs of elevated intracranial pressure preoperatively. Postoperatively, all but one needed no revisional surgery (Whitaker score of 1). No patient demonstrated postoperative evidence of bony defects, bossing, or suture restenosis. The mean preoperative, simulated, and actual postoperative FO length was 190.3, 182, and 184.3 mm, respectively. The mean preoperative, simulated, and actual postoperative BP length was 129, 130.7, and 131 mm, respectively. The mean preoperative, simulated, and actual postoperative CI was 66, 72, and 71.3, respectively. Based on our early experience, virtual surgical planning using a modified Melbourne technique for total vault remodeling achieves good results in the management of late presenting scaphocephaly.
Hege, Inga; Kononowicz, Andrzej A; Berman, Norman B; Lenzer, Benedikt; Kiesewetter, Jan
2018-01-01
Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty.
Hege, Inga; Kononowicz, Andrzej A.; Berman, Norman B.; Lenzer, Benedikt; Kiesewetter, Jan
2018-01-01
Background: Clinical reasoning is a complex skill students have to acquire during their education. For educators it is difficult to explain their reasoning to students, because it is partly an automatic and unconscious process. Virtual Patients (VPs) are used to support the acquisition of clinical reasoning skills in healthcare education. However, until now it remains unclear which features or settings of VPs optimally foster clinical reasoning. Therefore, our aims were to identify key concepts of the clinical reasoning process in a qualitative approach and draw conclusions on how each concept can be enhanced to advance the learning of clinical reasoning with virtual patients. Methods: We chose a grounded theory approach to identify key categories and concepts of learning clinical reasoning and develop a framework. Throughout this process, the emerging codes were discussed with a panel of interdisciplinary experts. In a second step we applied the framework to virtual patients. Results: Based on the data we identified the core category as the "multifactorial nature of learning clinical reasoning". This category is reflected in the following five main categories: Psychological Theories, Patient-centeredness, Context, Learner-centeredness, and Teaching/Assessment. Each category encompasses between four and six related concepts. Conclusions: With our approach we were able to elaborate how key categories and concepts of clinical reasoning can be applied to virtual patients. This includes aspects such as allowing learners to access a large number of VPs with adaptable levels of complexity and feedback or emphasizing dual processing, errors, and uncertainty. PMID:29497697
Nataraja, R M; Webb, N; Lopez, P J
2018-04-01
Surgical training has changed radically in the last few decades. The traditional Halstedian model of time-bound apprenticeship has been replaced with competency-based training. In our previous article, we presented an overview of learning theory relevant to clinical teaching; a summary for the busy paediatric surgeon and urologist. We introduced the concepts underpinning current changes in surgical education and training. In this next article, we give an overview of the various modalities of surgical simulation, the educational principles that underlie them, and potential applications in clinical practice. These modalities include; open surgical models and trainers, laparoscopic bench trainers, virtual reality trainers, simulated patients and role-play, hybrid simulation, scenario-based simulation, distributed simulation, virtual reality, and online simulation. Specific examples of technology that may be used for these modalities are included but this is not a comprehensive review of all available products. Copyright © 2018 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
SPR online: creating, maintaining, and distributing a virtual professional society on the Internet.
D'Alessandro, M P; Galvin, J R
1998-01-01
SPR Online (http:@www.pedrad.org) is a recently developed digital representation of the Society for Pediatric Radiology (SPR) that enables physicians to access pertinent information and services on the Internet. SPR Online was organized on the basis of the five main services of the SPR, which include Administration, Patient Care, Education, Research, and Meetings. For each service, related content from the SPR was digitized and placed onto SPR Online. Usage over a 12-month period was evaluated with server log file analysis. A total of 3,209 users accessed SPR Online, viewing 11,246 pages of information. A wide variety of information was accessed, with that from the Education, Administration, and Meetings services being the most popular. Fifteen percent of users came from foreign countries. As a virtual professional society, SPR Online greatly enhances the power and scope of the SPR and has proved to be a popular resource, meeting the diverse information needs of an international community of pediatric radiologists.
Sinitsky, Daniel M; Fernando, Bimbi; Berlingieri, Pasquale
2012-09-01
The unique psychomotor skills required in laparoscopy result in reduced patient safety during the early part of the learning curve. Evidence suggests that these may be safely acquired in the virtual reality (VR) environment. Several VR simulators are available, each preloaded with several psychomotor skills tasks that provide users with computer-generated performance metrics. This review aimed to evaluate the usefulness of specific psychomotor skills tasks and metrics, and how trainers might build an effective training curriculum. We performed a comprehensive literature search. The vast majority of VR psychomotor skills tasks show construct validity for one or more metrics. These are commonly for time and motion parameters. Regarding training schedules, distributed practice is preferred over massed practice. However, a degree of supervision may be needed to counter the limitations of VR training. In the future, standardized proficiency scores should facilitate local institutions in establishing VR laparoscopic psychomotor skills curricula. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of virtual reality in Parkinson's disease: a prospective observational study.
Severiano, Maria Izabel Rodrigues; Zeigelboim, Bianca Simone; Teive, Hélio Afonso Ghizoni; Santos, Geslaine Janaína Barbosa; Fonseca, Vinícius Ribas
2018-02-01
To assess the effectiveness of balance exercises by means of virtual reality games in Parkinson's disease. Sixteen patients were submitted to anamnesis, otorhinolaryngological and vestibular examinations, as well as the Dizziness Handicap Inventory, Berg Balance Scale, SF-36 questionnaire, and the SRT, applied before and after rehabilitation with virtual reality games. Final scoring for the Dizziness Handicap Inventory and Berg Balance Scale was better after rehabilitation. The SRT showed a significant result after rehabilitation. The SF-36 showed a significant change in the functional capacity for the Tightrope Walk and Ski Slalom virtual reality games (p < 0.05), as well as in the mental health aspect of the Ski Slalom game (p < 0.05). The Dizziness Handicap Inventory and Berg Balance Scale showed significant changes in the Ski Slalom game (p < 0.05). There was evidence of clinical improvement in patients in the final assessment after virtual rehabilitation. The Tightrope Walk and Ski Slalom virtual games were shown to be the most effective for this population.
Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.
Mattioli, Fernando E R; Lamounier, Edgard A; Cardoso, Alexandre; Soares, Alcimar B; Andrade, Adriano O
2011-01-01
Computer-based training systems have been widely studied in the field of human rehabilitation. In health applications, Virtual Reality presents itself as an appropriate tool to simulate training environments without exposing the patients to risks. In particular, virtual prosthetic devices have been used to reduce the great mental effort needed by patients fitted with myoelectric prosthesis, during the training stage. In this paper, the application of Virtual Reality in a hand prosthesis training system is presented. To achieve this, the possibility of exploring Neural Networks in a real-time classification system is discussed. The classification technique used in this work resulted in a 95% success rate when discriminating 4 different hand movements.
A Theoretical Framework for a Virtual Diabetes Self-Management Community Intervention
Vorderstrasse, Allison; Shaw, Ryan J.; Blascovich, Jim; Johnson, Constance M.
2015-01-01
Due to its high prevalence, chronic nature, potential complications, and self-management challenges for patients, diabetes presents significant health education and support issues. We developed and pilot-tested a virtual community for adults with type 2 diabetes to promote self-management education and provide social support. Although digital-based programs such as virtual environments can address significant barriers to reaching patients (i.e., child care, transportation, location), they must be strongly grounded in a theoretical basis to be well-developed and effective. In this article, we discuss how we synthesized behavioral and virtual environment theoretical frameworks to guide the development of SLIDES (Second Life Impacts Diabetes Education and Support). PMID:24451083
A theoretical framework for a virtual diabetes self-management community intervention.
Vorderstrasse, Allison; Shaw, Ryan J; Blascovich, Jim; Johnson, Constance M
2014-10-01
Due to its high prevalence, chronic nature, potential complications, and self-management challenges for patients, diabetes presents significant health education and support issues. We developed and pilot-tested a virtual community for adults with type 2 diabetes to promote self-management education and provide social support. Although digital-based programs such as virtual environments can address significant barriers to reaching patients (i.e., child care, transportation, location), they must be strongly grounded in a theoretical basis to be well-developed and effective. In this article, we discuss how we synthesized behavioral and virtual environment theoretical frameworks to guide the development of SLIDES (Second Life Impacts Diabetes Education and Support). © The Author(s) 2014.
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less
Shavazi, Masoumeh Abbasi; Morowatisharifabad, Mohammad Ali; Shavazi, Mohammad Taghi Abbasi; Mirzaei, Masoud; Ardekani, Ali Mellat
2016-07-01
Currently with the emergence of the Internet, patients have an opportunity to exchange social support online. However, little attention has been devoted to different dimensions of online social support exchanged in virtual support communities for patients with multiple sclerosis (MS). To provide a rich insight, the aim of this qualitative study was to explore and categorize different dimensions of online social support in messages exchanged in a virtual support community for patients with MS. A total of 548 posted messages created during one year period were selected using purposive sampling to consider the maximum variation sampling. Prior-research-driven thematic analysis was then conducted. In this regard, we used the Cutruna and Suhr's coding system. The messages that could not be categorized with the used coding system were thematically analyzed to explore new additional social support themes. The results showed that various forms of social support including informational, emotional, network, esteem and tangible support were exchanged. Moreover, new additional social support themes including sharing personal experiences, sharing coping strategies and spiritual support emerged in this virtual support community. The wide range of online social support exchanged in the virtual support community can be regarded as a supplementary source of social support for patients with MS. Future researches can examine online social support more comprehensively considering additional social support themes emerging in the present study.
Fernandez Montenegro, Juan Manuel; Argyriou, Vasileios
2017-05-01
Alzheimer's screening tests are commonly used by doctors to diagnose the patient's condition and stage as early as possible. Most of these tests are based on pen-paper interaction and do not embrace the advantages provided by new technologies. This paper proposes novel Alzheimer's screening tests based on virtual environments and game principles using new immersive technologies combined with advanced Human Computer Interaction (HCI) systems. These new tests are focused on the immersion of the patient in a virtual room, in order to mislead and deceive the patient's mind. In addition, we propose two novel variations of Turing Test proposed by Alan Turing as a method to detect dementia. As a result, four tests are introduced demonstrating the wide range of screening mechanisms that could be designed using virtual environments and game concepts. The proposed tests are focused on the evaluation of memory loss related to common objects, recent conversations and events; the diagnosis of problems in expressing and understanding language; the ability to recognize abnormalities; and to differentiate between virtual worlds and reality, or humans and machines. The proposed screening tests were evaluated and tested using both patients and healthy adults in a comparative study with state-of-the-art Alzheimer's screening tests. The results show the capacity of the new tests to distinguish healthy people from Alzheimer's patients. Copyright © 2017. Published by Elsevier Inc.
Edelbring, Samuel; Wahlström, Rolf
2016-04-23
Students' self-regulated learning becomes essential with increased use of exploratory web-based activities such as virtual patients (VPs). The purpose was to investigate the interplay between students' self-regulated learning strategies and perceived benefit in VP learning activities. A cross-sectional study (n = 150) comparing students' study strategies and perceived benefit of a virtual patient learning activity in a clinical clerkship preparatory course. Teacher regulation varied among three settings and was classified from shared to strong. These settings were compared regarding their respective relations between regulation strategies and perceived benefit of the virtual patient activity. Self-regulation learning strategy was generally associated with perceived benefit of the VP activities (rho 0.27, p < 0.001), but was not true in all settings. The association was higher in the two strongly regulated settings. The external regulation strategy did generally associate weakly with perceived benefit (rho 0.17, p < 0.05) with large variations between settings. The flexible student-autonomous appeal of virtual patients should not lead to the dismissal of guidance and related course activities. External teacher and peer regulation seem to be productive for increasing learners' perceived benefit. Awareness of the interplay among teacher regulation (external) and various study strategies can increase the value of flexible web-based learning resources to students.
A new vision for distance learning and continuing medical education.
Harden, Ronald M
2005-01-01
Increasing demands on continuing medical education (CME) are taking place at a time of significant developments in educational thinking and new learning technologies. Such developments allow today's CME providers to better meet the CRISIS criteria for effective continuing education: convenience, relevance, individualization, self-assessment, independent learning, and a systematic approach. The International Virtual Medical School (IVIMEDS) provides a case study that illustrates how rapid growth of the Internet and e-learning can alter undergraduate education and has the potential to alter the nature of CME. Key components are a bank of reusable learning objects, a virtual practice with virtual patients, a learning-outcomes framework, and self-assessment instruments. Learning is facilitated by a curriculum map, guided-learning resources, "ask-the-expert" opportunities, and collaborative or peer-to-peer learning. The educational philosophy is "just-for-you" learning (learning customized to the content, educational strategy, and distribution needs of the individual physician) and "just-in-time" learning (learning resources available to physicians when they are required). Implications of the new learning technologies are profound. E-learning provides a bridge between the cutting edge of education and training and outdated procedures embedded in institutions and professional organizations. There are important implications, too, for globalization in medical education, for multiprofessional education, and for the continuum of education from undergraduate to postgraduate and continuing education.
Virtual reality in mental health : a review of the literature.
Gregg, Lynsey; Tarrier, Nicholas
2007-05-01
Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.
Neglect assessment as an application of virtual reality.
Broeren, J; Samuelsson, H; Stibrant-Sunnerhagen, K; Blomstrand, C; Rydmark, M
2007-09-01
In this study a cancellation task in a virtual environment was applied to describe the pattern of search and the kinematics of hand movements in eight patients with right hemisphere stroke. Four of these patients had visual neglect and four had recovered clinically from initial symptoms of neglect. The performance of the patients was compared with that of a control group consisting of eight subjects with no history of neurological deficits. Patients with neglect as well as patients clinically recovered from neglect showed aberrant search performance in the virtual reality (VR) task, such as mixed search pattern, repeated target pressures and deviating hand movements. The results indicate that in patients with a right hemispheric stroke, this VR application can provide an additional tool for assessment that can identify small variations otherwise not detectable with standard paper-and-pencil tests. VR technology seems to be well suited for the assessment of visually guided manual exploration in space.
Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.
Harrop, V M
2001-01-01
Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery.
Virtual healthcare delivery: defined, modeled, and predictive barriers to implementation identified.
Harrop, V. M.
2001-01-01
Provider organizations lack: 1. a definition of "virtual" healthcare delivery relative to the products, services, and processes offered by dot.coms, web-compact disk healthcare content providers, telemedicine, and telecommunications companies, and 2. a model for integrating real and virtual healthcare delivery. This paper defines virtual healthcare delivery as asynchronous, outsourced, and anonymous, then proposes a 2x2 Real-Virtual Healthcare Delivery model focused on real and virtual patients and real and virtual provider organizations. Using this model, provider organizations can systematically deconstruct healthcare delivery in the real world and reconstruct appropriate pieces in the virtual world. Observed barriers to virtual healthcare delivery are: resistance to telecommunication integrated delivery networks and outsourcing; confusion over virtual infrastructure requirements for telemedicine and full-service web portals, and the impact of integrated delivery networks and outsourcing on extant cultural norms and revenue generating practices. To remain competitive provider organizations must integrate real and virtual healthcare delivery. PMID:11825189
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
Lee, Jung Suk; Namkoong, Kee; Ku, Jeonghun; Cho, Sangwoo; Park, Ji Yeon; Choi, You Kyong; Kim, Jae-Jin; Kim, In Young; Kim, Sun I; Jung, Young-Chul
2008-12-01
This study was conducted to assess the interaction between alcohol cues and social pressure in the induction of alcohol craving. Fourteen male patients with alcohol dependence and 14 age-matched social drinkers completed a virtual reality coping skill training program composed of four blocks according to the presence of alcohol cues (x2) and social pressure (x2). Before and after each block, the craving levels were measured using a visual analogue scale. Patients with alcohol dependence reported extremely high levels of craving immediately upon exposure to a virtual environment with alcohol cues, regardless of social pressure. In contrast, the craving levels of social drinkers were influenced by social pressure from virtual avatars. Our findings imply that an alcohol cue-laden environment should interfere with the ability to use coping skills against social pressure in real-life situations.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-01-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-09-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Virtual Collaborative Simulation Environment for Integrated Product and Process Development
NASA Technical Reports Server (NTRS)
Gulli, Michael A.
1997-01-01
Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.
NASA Astrophysics Data System (ADS)
Rauch, T.; Reindl, N.
2014-04-01
In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.
Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA
NASA Astrophysics Data System (ADS)
Ringat, E.
2012-03-01
In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.
Forumclínic: the shaping of virtual communities to assist patients with chronic diseases.
Grau, Immaculada; Grajales Iii, Francisco J; Gene-Badia, Joan; Siso, Antoni; de Semir, Marc
2013-01-01
Information and communication technologies (ICTs) provide new opportunities to complement traditional care while enhancing patient autonomy. With the objective to supplement patient care, a group of health professionals at the Hospital Clínic de Barcelona created Forumclínic, an online networking website in Spanish and Catalan. In 2008, seven web- and DVD-based chronic disease portals (Diabetes, Schizophrenia, Cardiac Ischemia, COPD, Depression, Breast Cancer and cardiovascular risk) were created with the following resources: multimedia patient education material; physician-specialist transcribed research (articles) news; an open question forum (for clinician-user and user-to-user interaction); and patient and specialist interview videos on the progress of disease, common diagnosis and treatment procedures; and information on the best or worst prognoses. Using data from Google Analytics, server logs were used to observe online behaviour patterns and user postings. This data combined with a mixed methods approach were used to evaluate the development of a virtual community (VC). A virtual community was developed when the number of forum visits was greater than those in the disease portal (definition). While nearly half of the visitors were from the Americas, the Schizophrenia, Breast Cancer, Depression and COPD forums met the criteria for and developed a virtual community. However, the Diabetes and Cardiac Ischemia forums did not reach VC status. It is also interesting to note that users in their late thirties and early forties were primarily women. The development of four virtual communities in Forumclínic seems to support the self-care needs of virtual patients. Users also reported appreciating the increased interaction with experts online and commonly collaborated with the forum moderator to guide and support other users with similar conditions in managing their health. Thence, we believe that Forumclínic is a good model to complement traditional patient care. A formal evaluation of this adjuvant form of care, from both the users' and moderators' perspective, is currently in its final stages.
Borg Sapiano, Alexis; Sammut, Roberta; Trapani, Josef
2018-03-01
Preparing nursing students to perform competently in complex emergency situations, such as during rapid patient deterioration, is challenging. Students' active engagement in such scenarios cannot be ensured, due to the unexpected nature of such infrequent events. Many students may consequently not experience and integrate the management of patient deterioration into their knowledge and practical competency by the end of their studies, making them unprepared to manage such situations as practicing nurses. This study investigated the effectiveness of virtual simulation in improving performance during rapid patient deterioration. To investigate the effectiveness of virtual simulation in improving student nurses' knowledge and performance during rapid patient deterioration. A pre- and post-test design was used. Nursing students at a university in Malta were invited to participate in a virtual simulation program named FIRST 2 ACTWeb™, using their own computer devices. A total of 166 (response rate=50%) second and third year diploma and degree nursing students participated in the study. The simulation included three scenarios (Cardiac-Shock-Respiratory) portraying deteriorating patients. Performance feedback was provided at the end of each scenario. Students completed pre- and post-scenario knowledge tests and performance during each scenario was recorded automatically on a database. Findings showed a significant improvement in the students' post-scenario knowledge (z=-6.506, p<0.001). Highest mean performance scores were obtained in the last scenario (M=19.7, median: 20.0, s.d. 3.41) indicating a learning effect. Knowledge was not a predictor of students' performance in the scenarios. This study supports virtual simulation as an effective learning tool for pre-registration nursing students in different programs. Simulation improves both knowledge about and performance during patient deterioration. Virtual simulation of rare events should be a key component of undergraduate nurse education, to prepare students to manage complex situations as practicing nurses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pla-Sanjuanelo, Joana; Ferrer-García, Marta; Vilalta-Abella, Ferran; Riva, Giuseppe; Dakanalis, Antonios; Ribas-Sabaté, Joan; Andreu-Gracia, Alexis; Fernandez-Aranda, Fernando; Sanchez-Diaz, Isabel; Escandón-Nagel, Neli; Gomez-Tricio, Osane; Tena, Virgínia; Gutiérrez-Maldonado, José
2017-07-27
Virtual reality (VR) technologies have been proposed as a new tool able to improve on in vivo exposure in patients with eating disorders. This study assessed the validity of a VR-based software for cue exposure therapy (CET) in people with bulimia nervosa (BN) and binge eating disorder (BED). Fifty eight outpatients (33 BN and 25 BED) and 135 healthy participants were exposed to 10 craved virtual foods and a neutral cue in four experimental virtual environments (kitchen, dining room, bedroom, and cafeteria). After exposure to each VR scenario, food craving and anxiety were assessed. The frequency/severity of episodes of uncontrollable overeating was also assessed and body mass index was measured prior to the exposure. In both groups, craving and anxiety responses when exposed to the food-related virtual environments were significantly higher than in the neutral-cue virtual environment. However, craving and anxiety levels were higher in the clinical group. Furthermore, cue-elicited anxiety was better at discriminating between clinical and healthy groups than cue-elicited craving. This study provides evidence of the ability of food-related VR environments to provoke food craving and anxiety responses in BN and BED patients and highlights the need to consider both responses during treatment. The results support the use of VR-CET in the treatment of eating disorder patients characterized by binge-eating and people with high bulimic symptoms.
Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality.
Cushman, Laura A; Stein, Karen; Duffy, Charles J
2008-09-16
Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community.
Lee, Whal; Kim, Ho Sung; Kim, Seok Jung; Kim, Hyung Ho; Chung, Jin Wook; Kang, Heung Sik; Choi, Ja-Young
2004-01-01
Objective To determine the diagnostic accuracy of CT arthrography and virtual arthroscopy in the diagnosis of anterior cruciate ligament and meniscus pathology. Materials and Methods Thirty-eight consecutive patients who underwent CT arthrography and arthroscopy of the knee were included in this study. The ages of the patients ranged from 19 to 52 years and all of the patients were male. Sagittal, coronal, transverse and oblique coronal multiplanar reconstruction images were reformatted from CT arthrography. Virtual arthroscopy was performed from 6 standard views using a volume rendering technique. Three radiologists analyzed the MPR images and two orthopedic surgeons analyzed the virtual arthroscopic images. Results The sensitivity and specificity of CT arthrography for the diagnosis of anterior cruciate ligament abnormalities were 87.5%-100% and 93.3-96.7%, respectively, and those for meniscus abnormalities were 91.7%-100% and 98.1%, respectively. The sensitivity and specificity of virtual arthroscopy for the diagnosis of anterior cruciate ligament abnormalities were 87.5% and 83.3-90%, respectively, and those for meniscus abnormalities were 83.3%-87.5% and 96.1-98.1%, respectively. Conclusion CT arthrography and virtual arthroscopy showed good diagnostic accuracy for anterior cruciate ligament and meniscal abnormalities. PMID:15064559
Solaberrieta, Eneko; Garmendia, Asier; Minguez, Rikardo; Brizuela, Aritza; Pradies, Guillermo
2015-12-01
This article describes a virtual technique for transferring the location of a digitized cast from the patient to a virtual articulator (virtual facebow transfer). Using a virtual procedure, the maxillary digital cast is transferred to a virtual articulator by means of reverse engineering devices. The following devices necessary to carry out this protocol are available in many contemporary practices: an intraoral scanner, a digital camera, and specific software. Results prove the viability of integrating different tools and software and of completely integrating this procedure into a dental digital workflow. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Giacomelli, Irai Luis; Schuhmacher Neto, Roberto; Marchiori, Edson; Pereira, Marisa; Hochhegger, Bruno
2018-04-01
The objective of this systematic review was to select articles including chest X-ray or chest CT findings in patients who developed pulmonary tuberculosis following solid organ transplantation (lung, kidney, or liver). The following search terms were used: "tuberculosis"; "transplants"; "transplantation"; "mycobacterium"; and "lung". The databases used in this review were PubMed and the Brazilian Biblioteca Virtual em Saúde (Virtual Health Library). We selected articles in English, Portuguese, or Spanish, regardless of the year of publication, that met the selection criteria in their title, abstract, or body of text. Articles with no data on chest CT or chest X-ray findings were excluded, as were those not related to solid organ transplantation or pulmonary tuberculosis. We selected 29 articles involving a collective total of 219 patients. The largest samples were in studies conducted in Brazil and South Korea (78 and 35 patients, respectively). The imaging findings were subdivided into five common patterns. The imaging findings varied depending on the transplanted organ in these patients. In liver and lung transplant recipients, the most common pattern was the classic one for pulmonary tuberculosis (cavitation and "tree-in-bud" nodules), which is similar to the findings for pulmonary tuberculosis in the general population. The proportion of cases showing a miliary pattern and lymph node enlargement, which is most similar to the pattern seen in patients coinfected with tuberculosis and HIV, was highest among the kidney transplant recipients. Further studies evaluating clinical data, such as immunosuppression regimens, are needed in order to improve understanding of the distribution of these imaging patterns in this population.
Solar-Terrestrial Ontology Development
NASA Astrophysics Data System (ADS)
McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.
2005-12-01
The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).
Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality
Cushman, Laura A.; Stein, Karen; Duffy, Charles J.
2008-01-01
Background: Older adults get lost, in many cases because of recognized or incipient Alzheimer disease (AD). In either case, getting lost can be a threat to individual and public safety, as well as to personal autonomy and quality of life. Here we compare our previously described real-world navigation test with a virtual reality (VR) version simulating the same navigational environment. Methods: Quantifying real-world navigational performance is difficult and time-consuming. VR testing is a promising alternative, but it has not been compared with closely corresponding real-world testing in aging and AD. We have studied navigation using both real-world and virtual environments in the same subjects: young normal controls (YNCs, n = 35), older normal controls (ONCs, n = 26), patients with mild cognitive impairment (MCI, n = 12), and patients with early AD (EAD, n = 14). Results: We found close correlations between real-world and virtual navigational deficits that increased across groups from YNC to ONC, to MCI, and to EAD. Analyses of subtest performance showed similar profiles of impairment in real-world and virtual testing in all four subject groups. The ONC, MCI, and EAD subjects all showed greatest difficulty in self-orientation and scene localization tests. MCI and EAD patients also showed impaired verbal recall about both test environments. Conclusions: Virtual environment testing provides a valid assessment of navigational skills. Aging and Alzheimer disease (AD) share the same patterns of difficulty in associating visual scenes and locations, which is complicated in AD by the accompanying loss of verbally mediated navigational capacities. We conclude that virtual navigation testing reveals deficits in aging and AD that are associated with potentially grave risks to our patients and the community. GLOSSARY AD = Alzheimer disease; EAD = early Alzheimer disease; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; ONC = older normal control; std. wt. = standardized weight; THSD = Tukey honestly significant difference; VR = virtual reality; YNC = young normal control. PMID:18794491
NASA Technical Reports Server (NTRS)
Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave
1994-01-01
This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.
A virtual water network of the Roman world
NASA Astrophysics Data System (ADS)
Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.
2014-12-01
The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.
A virtual water network of the Roman world
NASA Astrophysics Data System (ADS)
Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.
2014-06-01
The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.
The virtual fracture clinic: Reducing unnecessary review of clavicle fractures.
Bhattacharyya, Rahul; Jayaram, Prem Ruben; Holliday, Robin; Jenkins, Paul; Anthony, Iain; Rymaszewski, Lech
2017-03-01
We re-designed the outpatient management of trauma at our institution to eliminate appointments if there would be no change in management or information provision. All cases referred by the Emergency Department (ED) were reviewed at a Virtual Fracture Clinic (VFC) by an orthopaedic consultant and telephoned afterwards by a senior nurse. If face-to-face review was required, it was arranged at a specialist shoulder clinic. The primary aim of this study was to evaluate the proportion of clavicle fractures that could be discharged without physical review. The secondary aim was to assess the patient reported functional outcome and satisfaction among patients who were discharged without further review. A retrospective review was performed of patients who attended the ED with a clavicle fracture between October 2011 and September 2012. 138 patients were included. The number of patients who were discharged without a physical review was analysed. All radiographs were classified according to the Robinson classification. We recorded the number of undisplaced/minimally-displaced fractures that were discharged virtually. The number of patients with a displaced midshaft fracture who were seen at a specialist clinic was also recorded. A questionnaire was sent to all patients at one year post-injury to evaluate their outcome (QuickDASH and EQ-5D) and satisfaction with the new service. 62/138 (45%) were directly discharged from the VFC. The majority of virtual discharges occurred in the undisplaced fracture types (84% versus 13%, RR 6.4, 95% CI 3.5-11.5). 78% patients responded to the questionnaires. 91% of patients were satisfied with their recovery from the injury. 86.4% patients were satisfied with the information provided regarding their treatment. In the virtually discharged group the mean EQ-5D VAS was 78.1 (EQ5D range 0.06-1, SD 0.248). The mean Quick DASH score was 16.1(SD 25.2). Virtual discharge of undisplaced clavicle fractures is appropriate and results in acceptable clinical outcomes and patient satisfaction. This redesigned process has significant benefits for patients as there were far fewer hospital visits by avoiding unnecessary appointments. The orthopaedic service also benefited by having more time available for the management of complex cases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
A virtual photon energy fluence model for Monte Carlo dose calculation.
Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan
2003-03-01
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.
Kim, Dae-Seung; Woo, Sang-Yoon; Yang, Hoon Joo; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon Jung; Yi, Won-Jin
2014-12-01
Accurate surgical planning and transfer of the planning in orthognathic surgery are very important in achieving a successful surgical outcome with appropriate improvement. Conventionally, the paper surgery is performed based on a 2D cephalometric radiograph, and the results are expressed using cast models and an articulator. We developed an integrated orthognathic surgery system with 3D virtual planning and image-guided transfer. The maxillary surgery of orthognathic patients was planned virtually, and the planning results were transferred to the cast model by image guidance. During virtual planning, the displacement of the reference points was confirmed by the displacement from conventional paper surgery at each procedure. The results of virtual surgery were transferred to the physical cast models directly through image guidance. The root mean square (RMS) difference between virtual surgery and conventional model surgery was 0.75 ± 0.51 mm for 12 patients. The RMS difference between virtual surgery and image-guidance results was 0.78 ± 0.52 mm, which showed no significant difference from the difference of conventional model surgery. The image-guided orthognathic surgery system integrated with virtual planning will replace physical model surgical planning and enable transfer of the virtual planning directly without the need for an intermediate splint. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.
Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios
2017-01-01
To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.
The Integration of CloudStack and OCCI/OpenNebula with DIRAC
NASA Astrophysics Data System (ADS)
Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan
2012-12-01
The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Sanathkhani, Soroosh; Shroff, Sanjeev G.; Menon, Prahlad G.
2017-02-01
Endovascular aneurysm repair (EVAR) of juxtarenal aortic aneurysms (JAA) is particularly challenging owing to the requirement of suprarenal EVAR graft fixation, which has been associated with significant declines in long term renal function. Therefore, the ability to design fenestrated EVAR grafts on a personalized basis in order to ensure visceral and renal perfusion, is highly desirable. The objectives of this study are: a) To demonstrate novel 3D geometric methods to virtually design and deploy EVAR grafts into a virtually designed JAA, by applying a custom surface mesh deformation tool to a patient-specific descending aortic model reconstructed from computed tomographic (CT) images; and b) To virtually evaluate patient-specific renal flow and wall stresses in these patient-specific virtually EVAR geometries, using computational fluid dynamics (CFD). The presented framework may provide the modern cardiovascular surgeon the ability to leverage non-invasive, pre-operative imaging equipment to personalize and guide EVAR therapeutic strategy. Our CFD studies revealed that virtual EVAR grafting of a patient-specific JAA, with optimal fenestration sites and renal stenting, led to a 179.67±15.95% and 1051.43±18.34% improvement in right and left renal flow rates, respectively, when compared with the baseline patient-specific aortic geometry with renal stenoses, whereas a right and left renal flow improved by 36.44±2.24% and 885.93±12.41%, respectively, relative to the equivalently modeled JAA with renal stenoses, considering averages across the three simulated inflow rate cases. The proposed framework have utility to iteratively optimize suprarenal EVAR fixation length and achieve normal renal wall shear stresses and streamlined juxtarenal hemodynamics.
Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna
2017-08-01
One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients
NASA Astrophysics Data System (ADS)
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George
2015-07-01
This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
Architectural Principles and Experimentation of Distributed High Performance Virtual Clusters
ERIC Educational Resources Information Center
Younge, Andrew J.
2016-01-01
With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader scientific computing community is considering the use of clouds for their scientific computing needs. This is due to the relative scalability, ease of use, advanced user environment customization abilities, and the many novel computing paradigms available for…
PROVIDE: A Pedagogical Reference Oracle for Virtual IntegrateD E-ducation
ERIC Educational Resources Information Center
Narasimhan, V. Lakshmi; Zhao, Shuxin; Liang, Hailong; Zhang, Shuangyi
2006-01-01
This paper presents an interactive educational environment for use over both "in situ" and distance-based modalities of teaching. Several technological issues relating to the design and development of the distributed virtual learning environment have also been raised. The PROVIDE framework proposed in this paper is a seamless distributed…
ERIC Educational Resources Information Center
Corbi, Alberto; Burgos, Daniel
2017-01-01
This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…
The Tale of Two Virtual Teacher Professional Development Modules
ERIC Educational Resources Information Center
Keown, Paul
2009-01-01
Virtual communities of practice (VCoP) have been advocated for some time as a promising means of taking professional development to teachers in widely distributed locations. However, geography, and indeed education literature as a whole, contains very few examples where this has been achieved. This paper reports on two VCoP professional…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Respondent is improperly allocating physical transmission line losses to virtual transactions and also distributing over-collected transmission line losses in a manner that discriminates against virtual Market... , using the ``eLibrary'' link and is available for review in the Commission's Public Reference Room in...
Pursuing the Panderer: An Analysis of "United States v. Williams"
ERIC Educational Resources Information Center
McGrain, Patrick N.; Moore, Jennifer L.
2010-01-01
In May 2008, the Supreme Court addressed whether the government can regulate the ownership and distribution of virtual child pornography. "U.S. v. Williams" marked the first time the Court directly addressed the concept of pandering virtual child pornography. This article examines the Court's decision in "U.S. v. Williams" and…
Virtual reality exposure in the treatment of social phobia.
Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre
2004-01-01
Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.
Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin B.; Shoman, Nathan
The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less
The Role of Virtual Articulator in Prosthetic and Restorative Dentistry
Aljanakh, Mohammad
2014-01-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664
Kuric, Katelyn M; Harris, Bryan T; Morton, Dean; Azevedo, Bruno; Lin, Wei-Shao
2017-09-29
This clinical report describes a digital workflow using extraoral digital photographs and volumetric datasets from cone beam computed tomography (CBCT) imaging to create a 3-dimensional (3D), virtual patient with photorealistic appearance. In a patient with microstomia, hinge axis approximation, diagnostic casts simulating postextraction alveolar ridge profile, and facial simulation of prosthetic treatment outcome were completed in a 3D, virtual environment. The approach facilitated the diagnosis, communication, and patient acceptance of the treatment of maxillary and mandibular computer-aided design and computer-aided manufacturing (CAD-CAM) of immediate dentures at increased occlusal vertical dimension. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Virtual reality based experiential cognitive treatment of anorexia nervosa.
Riva, G; Bacchetta, M; Baruffi, M; Rinaldi, S; Molinari, E
1999-09-01
The treatment of a 22-year old female university student diagnosed with Anorexia Nervosa is described. In the study the Experiential Cognitive Therapy (ECT) was used: a relatively short-term, integrated, patient oriented approach that focuses on individual discovery. Main characteristic of this approach is the use of Virtual Reality, a new technology that allows the user to be immersed in a computer-generated virtual world. At the end of the in-patient treatment, the subject increased her bodily awareness joined to a reduction in her level of body dissatisfaction. Moreover, the patient presented a high degree of motivation to change. The results are discussed with regard to Vitousek, Watson and Wilson (1998, Clinical Psychology Review, 18(4), 391-420) proposal of using the Socratic Method to face denial and resistance of anorectic patients.
Casale, Jillian P.; Skirvin, J. Andrew; DiVall, Margarita V.
2013-01-01
Objective. To implement and assess the impact of a virtual patient pilot program on pharmacy students’ clinical competence skills. Design. Pharmacy students completed interactive software-based patient case scenarios embedded with drug-therapy problems as part of a course requirement at the end of their third year. Assessment. Assessments included drug-therapy problem competency achievement, performance on a pretest and posttest, and pilot evaluation survey instrument. Significant improvements in students’ posttest scores demonstrated advancement of clinical skills involving drug-therapy problem solving. Students agreed that completing the pilot program improved their chronic disease management skills and the program summarized the course series well. Conclusion. Using virtual patient technology allowed for assessment of student competencies and improved learning outcomes. PMID:24159213
Wang, You-Yuan; Fan, Song; Zhang, Han-Qing; Lin, Zhao-Yu; Ye, Jian-Tao; Li, Jin-Song
2016-06-01
Reconstruction of maxillary and midfacial defects due to tumor ablation is challenging to conventional operation. The purposes of this study are to evaluate the precise 3-dimensional position of the fibular flap in reconstruction of maxillary defects assisted by virtual surgical planning and to assess the postoperative outcomes compared with conventional surgery. We retrospectively reviewed 18 consecutive patients who underwent maxillary reconstruction with a vascularized fibular flap assisted by virtual surgical planning after maxillary or midfacial tumor ablation. Conventional surgery was performed in another 15 patients. Proplan CMF surgical planning (Materialise, Leuven, Belgium) was performed preoperatively in the virtual planning group. Fibular flaps were harvested and underwent osteotomy assisted by prefabricated cutting guides, and the maxilla and midface were resected and reconstructed assisted by the prefabricated cutting guides and templates in the virtual planning group. The operative time and fibular flap positions were evaluated in the 2 groups. Postoperative fibular positions of the maxillary reconstruction were compared with virtual plans in the virtual planning group. The postoperative facial appearance and occlusal function were assessed. The operations were performed successfully without complications. The ischemia time and total operative time were shorter in the virtual planning group than those in the conventional surgery group (P < .05). High precision of the cutting guides and templates was found on both the fibula and maxilla in the virtual planning group. The positions of the fibular flaps, including the vertical and horizontal positions, were more accurate in the virtual planning group than those in the conventional surgery group (P < .05). Bone-to-bone contact between the maxilla and fibular segments was more precise in the virtual planning group (P < .05). Postoperative computed tomography scans showed excellent contour of the fibular flap segments in accordance with the virtual plans in the virtual planning group. All patients were alive with no evidence of disease. Functional mandibular range of motion, good occlusion, and an ideal facial appearance were observed in the virtual planning group. Virtual surgical planning appears to achieve precise maxillary reconstruction with a vascularized fibular flap after tumor ablation, as well as an ideal facial appearance and function after dental rehabilitation. The use of prefabricated cutting guides and plates eases fibular flap molding and placement, minimizes operating time, and improves clinical outcomes. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute
NASA Astrophysics Data System (ADS)
Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.
2017-05-01
EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.
Monte Carlo calculations for reporting patient organ doses from interventional radiology
NASA Astrophysics Data System (ADS)
Huo, Wanli; Feng, Mang; Pi, Yifei; Chen, Zhi; Gao, Yiming; Xu, X. George
2017-09-01
This paper describes a project to generate organ dose data for the purposes of extending VirtualDose software from CT imaging to interventional radiology (IR) applications. A library of 23 mesh-based anthropometric patient phantoms were involved in Monte Carlo simulations for database calculations. Organ doses and effective doses of IR procedures with specific beam projection, filed of view (FOV) and beam quality for all parts of body were obtained. Comparing organ doses for different beam qualities, beam projections, patients' ages and patient's body mass indexes (BMIs) which generated by VirtualDose-IR, significant discrepancies were observed. For relatively long time exposure, IR doses depend on beam quality, beam direction and patient size. Therefore, VirtualDose-IR, which is based on the latest anatomically realistic patient phantoms, can generate accurate doses for IR treatment. It is suitable to apply this software in clinical IR dose management as an effective tool to estimate patient doses and optimize IR treatment plans.
Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection.
Novak, Domen; Riener, Robert
2013-06-01
Several design strategies for rehabilitation robotics have aimed to improve patients' experiences using motivating and engaging virtual environments. This paper presents a new design strategy: enhancing patient freedom with a complex virtual environment that intelligently detects patients' intentions and supports the intended actions. A 'virtual kitchen' scenario has been developed in which many possible actions can be performed at any time, allowing patients to experiment and giving them more freedom. Remote eye tracking is used to detect the intended action and trigger appropriate support by a rehabilitation robot. This approach requires no additional equipment attached to the patient and has a calibration time of less than a minute. The system was tested on healthy subjects using the ARMin III arm rehabilitation robot. It was found to be technically feasible and usable by healthy subjects. However, the intention detection algorithm should be improved using better sensor fusion, and clinical tests with patients are needed to evaluate the system's usability and potential therapeutic benefits.
Virtual reality environments for post-stroke arm rehabilitation.
Subramanian, Sandeep; Knaut, Luiz A; Beaudoin, Christian; McFadyen, Bradford J; Feldman, Anatol G; Levin, Mindy F
2007-06-22
Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions. A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback. The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments. We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.
Virtual Simulations: A Creative, Evidence-Based Approach to Develop and Educate Nurses.
Leibold, Nancyruth; Schwarz, Laura
2017-02-01
The use of virtual simulations in nursing is an innovative strategy that is increasing in application. There are several terms related to virtual simulation; although some are used interchangeably, the meanings are not the same. This article presents examples of virtual simulation, virtual worlds, and virtual patients in continuing education, staff development, and academic nursing education. Virtual simulations in nursing use technology to provide safe, as realistic as possible clinical practice for nurses and nursing students. Virtual simulations are useful for learning new skills; practicing a skill that puts content, high-order thinking, and psychomotor elements together; skill competency learning; and assessment for low-volume, high-risk skills. The purpose of this article is to describe the related terms, examples, uses, theoretical frameworks, challenges, and evidence related to virtual simulations in nursing.
Analytical approach of laser beam propagation in the hollow polygonal light pipe.
Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong
2013-08-10
An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.
Plagianakos, V P; Magoulas, G D; Vrahatis, M N
2006-03-01
Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.
Large-scale P2P network based distributed virtual geographic environment (DVGE)
NASA Astrophysics Data System (ADS)
Tan, Xicheng; Yu, Liang; Bian, Fuling
2007-06-01
Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.
NASA Technical Reports Server (NTRS)
Murphy, James R.; Otto, Neil M.
2017-01-01
NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.
NASA Technical Reports Server (NTRS)
Murphy, Jim; Otto, Neil
2017-01-01
NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The projects integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.
Development of virtual environment for treating acrophobia.
Ku, J; Jang, D; Shin, M; Jo, H; Ahn, H; Lee, J; Cho, B; Kim, S I
2001-01-01
Virtual Reality (VR) is a new technology that makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. Virtual Reality Therapy (VRT), based on this sophisticated technology, has been recently used in the treatment of subjects diagnosed with acrophobia, a disorder that is characterized by marked anxiety upon exposure to heights, avoidance of heights, and a resulting interference in functioning. Conventional virtual reality system for the treatment of acrophobia has a limitation in scope that it is based on over-costly devices or somewhat unrealistic graphic scene. The goal of this study was to develop a inexpensive and more realistic virtual environment for the exposure therapy of acrophobia. We constructed two types virtual environment. One is constituted a bungee-jump tower in the middle of a city. It includes the open lift surrounded by props beside tower that allowed the patient to feel sense of heights. Another is composed of diving boards which have various heights. It provides a view of a lower diving board and people swimming in the pool to serve the patient stimuli upon exposure to heights.
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.
ERIC Educational Resources Information Center
Hirumi, Atsusi; Kleinsmith, Andrea; Johnsen, Kyle; Kubovec, Stacey; Eakins, Michael; Bogert, Kenneth; Rivera-Gutierrez, Diego J.; Reyes, Ramsamooj Javier; Lok, Benjamin; Cendan, Juan
2016-01-01
Systematic reviews and meta-analyses of randomized controlled studies conclude that virtual patient simulations are consistently associated with higher learning outcomes compared to other educational methods. However, we cannot assume that students will learn from simply exposing students to the simulations. The instructional features that are…
Weaving the tapestry of learning: simulation, standardized patients, and virtual communities.
Holland, Brian; Landry, Karen; Mountain, Angela; Middlebrooks, Mary Alice; Heim, Deborah; Missildine, Kathy
2013-01-01
Using situated cognition learning theory, nursing faculty developed simulated clinical learning experiences integrating virtual communities and standardized patients. These learning experiences provide authenticity and realism not easily achieved using the individual techniques in isolation. The authors describe the process of weaving these strategies into a rich learning experience for students.
Medical Students' Attitudes towards the Use of Virtual Patients
ERIC Educational Resources Information Center
Sobocan, M.; Klemenc-Ketis, Z.
2017-01-01
An increasing number of virtual patients (VPs) are being used in the classroom, which raises questions about how to implement VPs to improve students' satisfaction and enhance their learning. This study developed and validated a scale that measures acceptability and attitudes of medical students towards the use of the VP education tool in the…
E-Learning Virtual Patients for Geriatric Education
ERIC Educational Resources Information Center
Orton, Eric; Mulhausen, Paul
2008-01-01
Computer-based virtual patients (VPs) are an emerging medium for medical education that addresses barriers faced by geriatrics educators. Research has shown VPs to be as effective in changing knowledge and behavior as more traditional forms of teaching. This paper presents a descriptive study of the development of the University of Iowa's…
What can virtual patient simulation offer mental health nursing education?
Guise, V; Chambers, M; Välimäki, M
2012-06-01
This paper discusses the use of simulation in nursing education and training, including potential benefits and barriers associated with its use. In particular, it addresses the hitherto scant application of diverse simulation devices and dedicated simulation scenarios in psychiatric and mental health nursing. It goes on to describe a low-cost, narrative-based virtual patient simulation technique which has the potential for wide application within health and social care education. An example of the implementation of this technology in a web-based pilot course for acute mental health nurses is given. This particular virtual patient technique is a simulation type ideally suited to promoting essential mental health nursing skills such as critical thinking, communication and decision making. Furthermore, it is argued that it is particularly amenable to e-learning and blended learning environments, as well as being an apt tool where multilingual simulations are required. The continued development, implementation and evaluation of narrative virtual patient simulations across a variety of health and social care programmes would help ascertain their success as an educational tool. © 2011 Blackwell Publishing.
Tielman, Myrthe L; Neerincx, Mark A; Bidarra, Rafael; Kybartas, Ben; Brinkman, Willem-Paul
2017-08-01
Although post-traumatic stress disorder (PTSD) is well treatable, many people do not get the desired treatment due to barriers to care (such as stigma and cost). This paper presents a system that bridges this gap by enabling patients to follow therapy at home. A therapist is only involved remotely, to monitor progress and serve as a safety net. With this system, patients can recollect their memories in a digital diary and recreate them in a 3D WorldBuilder. Throughout the therapy, a virtual agent is present to inform and guide patients through the sessions, employing an ontology-based question module for recollecting traumatic memories to further elicit a detailed memory recollection. In a usability study with former PTSD patients (n = 4), these questions were found useful for memory recollection. Moreover, the usability of the whole system was rated positively. This system has the potential to be a valuable addition to the spectrum of PTSD treatments, offering a novel type of home therapy assisted by a virtual agent.
An intersubject variable regional anesthesia simulator with a virtual patient architecture.
Ullrich, Sebastian; Grottke, Oliver; Fried, Eduard; Frommen, Thorsten; Liao, Wei; Rossaint, Rolf; Kuhlen, Torsten; Deserno, Thomas M
2009-11-01
The main purpose is to provide an intuitive VR-based training environment for regional anesthesia (RA). The research question is how to process subject-specific datasets, organize them in a meaningful way and how to perform the simulation for peripheral regions. We propose a flexible virtual patient architecture and methods to process datasets. Image acquisition, image processing (especially segmentation), interactive nerve modeling and permutations (nerve instantiation) are described in detail. The simulation of electric impulse stimulation and according responses are essential for the training of peripheral RA and solved by an approach based on the electric distance. We have created an XML-based virtual patient database with several subjects. Prototypes of the simulation are implemented and run on multimodal VR hardware (e.g., stereoscopic display and haptic device). A first user pilot study has confirmed our approach. The virtual patient architecture enables support for arbitrary scenarios on different subjects. This concept can also be used for other simulators. In future work, we plan to extend the simulation and conduct further evaluations in order to provide a tool for routine training for RA.
The use of the virtual reality as intervention tool in the postoperative of cardiac surgery.
Cacau, Lucas de Assis Pereira; Oliveira, Géssica Uruga; Maynard, Luana Godinho; Araújo Filho, Amaro Afrânio de; Silva, Walderi Monteiro da; Cerqueria Neto, Manoel Luiz; Antoniolli, Angelo Roberto; Santana-Filho, Valter J
2013-06-01
Cardiac surgery has been the intervention of choice in many cases of cardiovascular diseases. Susceptibility to postoperative complications, cardiac rehabilitation is indicated. Therapeutic resources, such as virtual reality has been helping the rehabilitational process. The aim of the study was to evaluate the use of virtual reality in the functional rehabilitation of patients in the postoperative period. Patients were randomized into two groups, Virtual Reality (VRG, n = 30) and Control (CG, n = 30). The response to treatment was assessed through the functional independence measure (FIM), by the 6-minute walk test (6MWT) and the Nottingham Health Profile (NHP). Evaluations were performed preoperatively and postoperatively. On the first day after surgery, patients in both groups showed decreased functional performance. However, the VRG showed lower reduction (45.712.3) when compared to CG (35.0612.09, P<0.05) in first postoperative day, and no significant difference in performance on discharge day (P>0.05). In evaluating the NHP field, we observed a significant decrease in pain score at third assessment (P<0.05). These patients also had a higher energy level in the first evaluation (P<0.05). There were no differences with statistical significance for emotional reactions, physical ability, and social interaction. The length of stay was significantly shorter in patients of VRG (9.410.5 days vs. 12.2 1 0.9 days, P<0.05), which also had a higher 6MWD (319.9119.3 meters vs. 263.5115.4 meters, P<0.02). Adjunctive treatment with virtual reality demonstrated benefits, with better functional performance in patients undergoing cardiac surgery.
Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients.
Cho, Ki Hun; Kim, Min Kyu; Lee, Hwang-Jae; Lee, Wan Hee
2015-08-01
Virtual reality training is considered as an effective intervention method of stroke patients, and the virtual reality system for therapeutic rehabilitation has emphasized the cognitive factors to improve walking function. The purpose of current study was to investigate the effect of virtual reality training with cognitive load (VRTCL) on walking function of chronic stroke. Chronic stroke patients were randomly assigned to the VRTCL group (11 patients, including 5 men; mean age, 60.0 years; post-stroke duration, 273.9 days) or control group (11 patients, including 2 men; mean age, 58.6 years; post-stroke duration, 263.9 days). All subjects participated in the standard rehabilitation program that consisted of physical and occupational therapies. In addition, VRTCL group participated in the VRTCL for 4 weeks (30 min per day and five times a week), while those in the control group participated in virtual reality treadmill training. Walking function under single (walking alone) and dual task (walking with cognitive tasks) conditions was assessed using an electrical walkway system. After the 4-week intervention, under both single and dual task conditions, significant improvement on walking function was observed in VRTCL and control groups (P < 0.05). In addition, in the dual task condition, greater improvement on walking function was observed in the VRTCL group, compared with the control group (P < 0.05). These findings demonstrated the efficacy of VRTCL on the walking function under the dual task condition. Therefore, we suggest that VRTCL may be an effective method for the achievement of independent walking in chronic stroke patients.
Joda, Tim; Brägger, Urs; Gallucci, German
2015-01-01
Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.
NASA Astrophysics Data System (ADS)
Soler, Luc; Marescaux, Jacques
2006-04-01
Technological innovations of the 20 th century provided medicine and surgery with new tools, among which virtual reality and robotics belong to the most revolutionary ones. Our work aims at setting up new techniques for detection, 3D delineation and 4D time follow-up of small abdominal lesions from standard mecial images (CT scsan, MRI). It also aims at developing innovative systems making tumor resection or treatment easier with the use of augmented reality and robotized systems, increasing gesture precision. It also permits a realtime great distance connection between practitioners so they can share a same 3D reconstructed patient and interact on a same patient, virtually before the intervention and for real during the surgical procedure thanks to a telesurgical robot. In preclinical studies, our first results obtained from a micro-CT scanner show that these technologies provide an efficient and precise 3D modeling of anatomical and pathological structures of rats and mice. In clinical studies, our first results show the possibility to improve the therapeutic choice thanks to a better detection and and representation of the patient before performing the surgical gesture. They also show the efficiency of augmented reality that provides virtual transparency of the patient in real time during the operative procedure. In the near future, through the exploitation of these systems, surgeons will program and check on the virtual patient clone an optimal procedure without errors, which will be replayed on the real patient by the robot under surgeon control. This medical dream is today about to become reality.
Effect of virtual reality on cognition in stroke patients.
Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young
2011-08-01
To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.
Virtual Baby Used as a Virtual Environment for Patients with Severe Dementia
2001-10-25
successfully. In the care of moderate to severe dementia , occupational therapy commonly uses pet- assistive and diversional therapies [2]. Pet- assistive ... therapy allows dementia patients to play with live animals . In previous studies, blood pressure and heart rate decreased as a result of animal ...In diversional therapy , an occupational therapist (OTR) uses doll therapy , in which the dementia patients are given baby-like dolls; this reminds
A technician-delivered 'virtual clinic' for triaging low-risk glaucoma referrals.
Kotecha, A; Brookes, J; Foster, P J
2017-06-01
PurposeThe purpose of this study is to describe the outcomes of a technician-delivered glaucoma referral triaging service with 'virtual review' of resultant data by a consultant ophthalmologist.Patients and methodsThe Glaucoma Screening Clinic reviewed new optometrist or GP-initiated glaucoma suspect referrals into a specialist ophthalmic hospital. Patients underwent testing by three ophthalmic technicians in a dedicated clinical facility. Data were reviewed at a different time and date by a consultant glaucoma ophthalmologist. Approximately 10% of discharged patients were reviewed in a face-to-face consultant-led clinic to examine the false-negative rate of the service.ResultsBetween 1 March 2014 and 31 March 2016, 1380 patients were seen in the clinic. The number of patients discharged following consultant virtual review was 855 (62%). The positive predictive value of onward referrals was 84%. Three of the 82 patients brought back for face-to-face review were deemed to require treatment, equating to negative predictive value of 96%.ConclusionsOur technician-delivered glaucoma referral triaging clinic incorporates consultant 'virtual review' to provide a service model that significantly reduces the number of onward referrals into the glaucoma outpatient department. This model may be an alternative to departments where there are difficulties in implementing optometrist-led community-based referral refinement schemes.
Gagnon, Cynthia; Lavoie, Caroline; Lessard, Isabelle; Mathieu, Jean; Brais, Bernard; Bouchard, Jean-Pierre; Fluet, Marie-Christine; Gassert, Roger; Lambercy, Olivier
2014-12-15
This paper introduces a novel assessment tool to provide clinicians with quantitative and more objective measures of upper limb coordination in patients suffering from Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). The Virtual Peg Insertion Test (VPIT) involves manipulating an instrumented handle in order to move nine pegs into nine holes displayed in a virtual environment. The main outcome measures were the number of zero-crossings of the hand acceleration vector, as a measure of movement coordination and the total time required to complete the insertion of the nine pegs, as a measure of overall upper limb performance. 8\\9 patients with ARSACS were able to complete five repetitions with the VPIT. Patients were found to be significantly less coordinated and slower than age-matched healthy subjects (p<0.01). Performance of ARSACS patients was positively correlated with the Nine-Hole Peg Test (r=0.85, p<0.01) and with age (r=0.93, p<0.01), indicative of the degenerative nature of the disease. This study presents preliminary results on the use of a robotics and virtual reality assessment tool with ARSACS patients. Results highlight its potential to assess impaired coordination and monitor its progression over time. Copyright © 2014 Elsevier B.V. All rights reserved.
Design and evaluation of a simulation for pediatric dentistry in virtual worlds.
Papadopoulos, Lazaros; Pentzou, Afroditi-Evaggelia; Louloudiadis, Konstantinos; Tsiatsos, Thrasyvoulos-Konstantinos
2013-10-29
Three-dimensional virtual worlds are becoming very popular among educators in the medical field. Virtual clinics and patients are already used for case study and role play in both undergraduate and continuing education levels. Dental education can also take advantage of the virtual world's pedagogical features in order to give students the opportunity to interact with virtual patients (VPs) and practice in treatment planning. The objective of this study was to design and evaluate a virtual patient as a supplemental teaching tool for pediatric dentistry. A child VP, called Erietta, was created by utilizing the programming and building tools that online virtual worlds offer. The case is about an eight-year old girl visiting the dentist with her mother for the first time. Communication techniques such as Tell-Show-Do and parents' interference management were the basic elements of the educational scenario on which the VP was based. An evaluation of the simulation was made by 103 dental students in their fourth year of study. Two groups were formed: an experimental group which was exposed to the simulation (n=52) and a control group which did not receive the simulation (n=51). At the end, both groups were asked to complete a knowledge questionnaire and the results were compared. A statistically significant difference between the two groups was found by applying a t test for independent samples (P<.001), showing a positive learning effect from the VP. The majority of the participants evaluated the aspects of the simulation very positively while 69% (36/52) of the simulation group expressed their preference for using this module as an additional teaching tool. This study demonstrated that a pediatric dentistry VP built in a virtual world offers significant learning potential when used as a supplement to the traditional teaching techniques.
Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun
2015-06-01
The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.
Shavazi, Masoumeh Abbasi; Morowatisharifabad, Mohammad Ali; Shavazi, Mohammad Taghi Abbasi; Mirzaei, Masoud; Ardekani, Ali Mellat
2016-01-01
Background: Currently with the emergence of the Internet, patients have an opportunity to exchange social support online. However, little attention has been devoted to different dimensions of online social support exchanged in virtual support communities for patients with multiple sclerosis (MS). Methods: To provide a rich insight, the aim of this qualitative study was to explore and categorize different dimensions of online social support in messages exchanged in a virtual support community for patients with MS. A total of 548 posted messages created during one year period were selected using purposive sampling to consider the maximum variation sampling. Prior-research-driven thematic analysis was then conducted. In this regard, we used the Cutruna and Suhr’s coding system. The messages that could not be categorized with the used coding system were thematically analyzed to explore new additional social support themes. Results: The results showed that various forms of social support including informational, emotional, network, esteem and tangible support were exchanged. Moreover, new additional social support themes including sharing personal experiences, sharing coping strategies and spiritual support emerged in this virtual support community. Conclusion: The wide range of online social support exchanged in the virtual support community can be regarded as a supplementary source of social support for patients with MS. Future researches can examine online social support more comprehensively considering additional social support themes emerging in the present study. PMID:27382585
Barrett, Jeffrey S; Jayaraman, Bhuvana; Patel, Dimple; Skolnik, Jeffrey M
2008-06-01
Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.
Review of virtual reality treatment for mental health.
Gourlay, D; Lun, K C; Liya, G
2001-01-01
This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.
Factors to keep in mind when introducing virtual microscopy.
Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter
2006-03-01
Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.
Feasibility of virtual 3-Fr percutaneous coronary intervention using standard guiding catheters
Fujimoto, Kazuteru; Miyao, Yuji
2014-01-01
Introduction Recent studies have reported the efficacy of sheathless percutaneous coronary intervention (PCI) using hydrophilic-coated 5-Fr guiding catheters that are one to two Fr sizes smaller in diameter than the corresponding introducer sheath (virtual 3-Fr PCI). However, the limited number of shapes of hydrophilic-coated guiding catheters occasionally makes them difficult to engage and control. Aim To evaluate the efficacy and feasibility of virtual 3-Fr PCI using standard guiding catheters of various shapes. Material and methods We identified 35 consecutive patients with stable angina, who underwent virtual 3-Fr PCI using either hydrophilic-coated guiding catheters (Works™, Medikit, Japan) or standard guiding catheters (Heartrail™, Terumo, Japan). Results Thirty-five patients were identified (63% men; mean age 70 ±13 years). In 2 cases, hydrophilic-coated guiding catheters were exchanged to standard guiding catheters because of difficulty in engaging the target coronary arteries. Ultimately, standard guiding catheters were used in 20 patients (57%) and hydrophilic-coated catheters were used in 15 (43%). One of 20 patients treated with standard guiding catheters and 1 of 15 treated with hydrophilic-coated guiding catheters underwent the 4-in-3 “slender mother and child” PCI technique due to difficulty of stent deployment. There were no differences between the two groups in PCI procedural variables such as procedural time, fluoroscopy time, radiation dose, or contrast dye volume. There were no access site-related complications in this study. Conclusions These findings indicate that virtual 3-Fr PCI using standard guiding catheters is as efficient and safe as virtual 3-Fr PCI using hydrophilic-coated guiding catheters. PMID:25489315
Woodham, Luke A; Ellaway, Rachel H; Round, Jonathan; Vaughan, Sophie; Poulton, Terry; Zary, Nabil
2015-06-18
The impact of the use of video resources in primarily paper-based problem-based learning (PBL) settings has been widely explored. Although it can provide many benefits, the use of video can also hamper the critical thinking of learners in contexts where learners are developing clinical reasoning. However, the use of video has not been explored in the context of interactive virtual patients for PBL. A pilot study was conducted to explore how undergraduate medical students interpreted and evaluated information from video- and text-based materials presented in the context of a branched interactive online virtual patient designed for PBL. The goal was to inform the development and use of virtual patients for PBL and to inform future research in this area. An existing virtual patient for PBL was adapted for use in video and provided as an intervention to students in the transition year of the undergraduate medicine course at St George's, University of London. Survey instruments were used to capture student and PBL tutor experiences and perceptions of the intervention, and a formative review meeting was run with PBL tutors. Descriptive statistics were generated for the structured responses and a thematic analysis was used to identify emergent themes in the unstructured responses. Analysis of student responses (n=119) and tutor comments (n=18) yielded 8 distinct themes relating to the perceived educational efficacy of information presented in video and text formats in a PBL context. Although some students found some characteristics of the videos beneficial, when asked to express a preference for video or text the majority of those that responded to the question (65%, 65/100) expressed a preference for text. Student responses indicated that the use of video slowed the pace of PBL and impeded students' ability to review and critically appraise the presented information. Our findings suggest that text was perceived to be a better source of information than video in virtual patients for PBL. More specifically, the use of video was perceived as beneficial for providing details, visual information, and context where text was unable to do so. However, learner acceptance of text was higher in the context of PBL, particularly when targeting clinical reasoning skills. This pilot study has provided the foundation for further research into the effectiveness of different virtual patient designs for PBL.
Research on distributed virtual reality system in electronic commerce
NASA Astrophysics Data System (ADS)
Xue, Qiang; Wang, Jiening; Sun, Jizhou
2004-03-01
In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.
Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence
NASA Astrophysics Data System (ADS)
Cohen, Michael; Newton Fernando, Owen Noel
The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.
Airport Simulations Using Distributed Computational Resources
NASA Technical Reports Server (NTRS)
McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)
2002-01-01
The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.
ERIC Educational Resources Information Center
Quero, Soledad; Pérez-Ara, M. Ángeles; Bretón-López, Juana; García-Palacios, Azucena; Baños, Rosa M.; Botella, Cristina
2014-01-01
Interoceptive exposure (IE) is a standard component of cognitive-behavioural therapy (CBT) for panic disorder and agoraphobia. The virtual reality (VR) program "Panic-Agoraphobia" has several virtual scenarios designed for applying exposure to agoraphobic situations; it can also simulate physical sensations. This work examines patients'…
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.
Virtual planning for craniomaxillofacial surgery--7 years of experience.
Adolphs, Nicolai; Haberl, Ernst-Johannes; Liu, Weichen; Keeve, Erwin; Menneking, Horst; Hoffmeister, Bodo
2014-07-01
Contemporary computer-assisted surgery systems more and more allow for virtual simulation of even complex surgical procedures with increasingly realistic predictions. Preoperative workflows are established and different commercially software solutions are available. Potential and feasibility of virtual craniomaxillofacial surgery as an additional planning tool was assessed retrospectively by comparing predictions and surgical results. Since 2006 virtual simulation has been performed in selected patient cases affected by complex craniomaxillofacial disorders (n = 8) in addition to standard surgical planning based on patient specific 3d-models. Virtual planning could be performed for all levels of the craniomaxillofacial framework within a reasonable preoperative workflow. Simulation of even complex skeletal displacements corresponded well with the real surgical result and soft tissue simulation proved to be helpful. In combination with classic 3d-models showing the underlying skeletal pathology virtual simulation improved planning and transfer of craniomaxillofacial corrections. Additional work and expenses may be justified by increased possibilities of visualisation, information, instruction and documentation in selected craniomaxillofacial procedures. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Martinez, R; Cole, C; Rozenblit, J; Cook, J F; Chacko, A K
2000-05-01
The US Army Great Plains Regional Medical Command (GPRMC) has a requirement to conform to Department of Defense (DoD) and Army security policies for the Virtual Radiology Environment (VRE) Project. Within the DoD, security policy is defined as the set of laws, rules, and practices that regulate how an organization manages, protects, and distributes sensitive information. Security policy in the DoD is described by the Trusted Computer System Evaluation Criteria (TCSEC), Army Regulation (AR) 380-19, Defense Information Infrastructure Common Operating Environment (DII COE), Military Health Services System Automated Information Systems Security Policy Manual, and National Computer Security Center-TG-005, "Trusted Network Interpretation." These documents were used to develop a security policy that defines information protection requirements that are made with respect to those laws, rules, and practices that are required to protect the information stored and processed in the VRE Project. The goal of the security policy is to provide for a C2-level of information protection while also satisfying the functional needs of the GPRMC's user community. This report summarizes the security policy for the VRE and defines the CORBA security services that satisfy the policy. In the VRE, the information to be protected is embedded into three major information components: (1) Patient information consists of Digital Imaging and Communications in Medicine (DICOM)-formatted fields. The patient information resides in the digital imaging network picture archiving and communication system (DIN-PACS) networks in the database archive systems and includes (a) patient demographics; (b) patient images from x-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US); and (c) prior patient images and related patient history. (2) Meta-Manager information to be protected consists of several data objects. This information is distributed to the Meta-Manager nodes and includes (a) radiologist schedules; (b) modality worklists; (c) routed case information; (d) DIN-PACS and Composite Health Care system (CHCS) messages, and Meta-Manager administrative and security information; and (e) patient case information. (3) Access control and communications security is required in the VRE to control who uses the VRE and Meta-Manager facilities and to secure the messages between VRE components. The CORBA Security Service Specification version 1.5 is designed to allow up to TCSEC's B2-level security for distributed objects. The CORBA Security Service Specification defines the functionality of several security features: identification and authentication, authorization and access control, security auditing, communication security, nonrepudiation, and security administration. This report describes the enhanced security features for the VRE and their implementation using commercial CORBA Security Service software products.
Gutiérrez-Maldonado, José; Ferrer-García, Marta; Caqueo-Urízar, Alejandra; Letosa-Porta, Alex
2006-10-01
The aim of this study was to assess the usefulness of virtual environments representing situations that are emotionally significant to subjects with eating disorders (ED). These environments may be applied with both evaluative and therapeutic aims and in simulation procedures to carry out a range of experimental studies. This paper is part of a wider research project analyzing the influence of the situation to which subjects are exposed on their performance on body image estimation tasks. Thirty female patients with eating disorders were exposed to six virtual environments: a living-room (neutral situation), a kitchen with high-calorie food, a kitchen with low-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool. After exposure to each environment the STAI-S (a measurement of state anxiety) and the CDB (a measurement of depression) were administered to all subjects. The results show that virtual reality instruments are particularly useful for simulating everyday situations that may provoke emotional reactions such as anxiety and depression, in patients with ED. Virtual environments in which subjects are obliged to ingest high-calorie food provoke the highest levels of state anxiety and depression.
Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de los Reyes-Guzmán, A; Trincado-Alonso, F; Piazza, S; Polonio-López, B
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra(®) virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.
Environmental Social Stress, Paranoia and Psychosis Liability: A Virtual Reality Study
Veling, Wim; Pot-Kolder, Roos; Counotte, Jacqueline; van Os, Jim; van der Gaag, Mark
2016-01-01
The impact of social environments on mental states is difficult to assess, limiting the understanding of which aspects of the social environment contribute to the onset of psychotic symptoms and how individual characteristics moderate this outcome. This study aimed to test sensitivity to environmental social stress as a mechanism of psychosis using Virtual Reality (VR) experiments. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra high risk for psychosis, 42 siblings of patients with psychosis, and 53 controls walked 5 times in a virtual bar with different levels of environmental social stress. Virtual social stressors were population density, ethnic density and hostility. Paranoia about virtual humans and subjective distress in response to virtual social stress exposures were measured with State Social Paranoia Scale (SSPS) and self-rated momentary subjective distress (SUD), respectively. Pre-existing (subclinical) symptoms were assessed with the Community Assessment of Psychic Experiences (CAPE), Green Paranoid Thoughts Scale (GPTS) and the Social Interaction Anxiety Scale (SIAS). Paranoia and subjective distress increased with degree of social stress in the environment. Psychosis liability and pre-existing symptoms, in particular negative affect, positively impacted the level of paranoia and distress in response to social stress. These results provide experimental evidence that heightened sensitivity to environmental social stress may play an important role in the onset and course of psychosis. PMID:27038469
Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η 2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511
Tracing Success: Graphical Methods for Analysing Successful Collaborative Problem Solving
ERIC Educational Resources Information Center
Joiner, Richard; Issroff, Kim
2003-01-01
The aim of this paper is to evaluate the use of trace diagrams for analysing collaborative problem solving. The paper describes a study where trace diagrams were used to analyse joint navigation in a virtual environment. Ten pairs of undergraduates worked together on a distributed virtual task to collect five flowers using two bees with each…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, A. A.; Savelova, E. P., E-mail: ka98@mail.ru
The problem of free-particle scattering on virtual wormholes is considered. It is shown that, for all types of relativistic fields, this scattering leads to the appearance of additional very heavy particles, which play the role of auxiliary fields in the invariant scheme of Pauli–Villars regularization. A nonlinear correction that describes the back reaction of particles to the vacuum distribution of virtual wormholes is also obtained.
Radiological tele-immersion for next generation networks.
Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C
2000-01-01
Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on east campus, and a CT scan machine in UIC Hospital. CT data was pulled directly from the scan machine to the Tele-Immersion server in our Laboratory, and then the data was synchronously distributed by our Onyx2 Rack server to all the VR setups. Instead of permitting medical volume visualization at one VR device, by combining teleconferencing, tele-presence, and virtual reality, the Tele-Immersive environment will enable geographically distributed clinicians to intuitively interact with the same medical volumetric models, point, gesture, converse, and see each other. This environment will bring together clinicians at different geographic locations to participate in Tele-Immersive consultation and collaboration.
Digital monitoring and care: Virtual medicine.
Shinbane, Jerold S; Saxon, Leslie A
2016-11-01
Remote digital health monitoring technologies can be synergistically organized to create a virtual medical system providing more continuous care centered on the patient rather than the bricks and mortar medical complex. Utilization of the digitalized patient health monitoring can facilitate diagnosis, treatment plans, physician-patient interaction, and accelerate the progress of medical research, education, and training. The field of cardiac electrophysiology has been an early adopter of this shift in care and serves as a paradigm applicable to all areas of medicine. The overall impact of this remote virtual care model on the quality of medical care and patient experience requires greater study, as well as vigilance as to the differences between technology and care in order to preserve the intangible and immeasurable factors that bring humanity to the art and science of medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Virtual Environments Using Video Capture for Social Phobia with Psychosis
White, Richard; Clarke, Timothy; Turner, Ruth; Fowler, David
2013-01-01
Abstract A novel virtual environment (VE) system was developed and used as an adjunct to cognitive behavior therapy (CBT) with six socially anxious patients recovering from psychosis. The novel aspect of the VE system is that it uses video capture so the patients can see a life-size projection of themselves interacting with a specially scripted and digitally edited filmed environment played in real time on a screen in front of them. Within-session process outcomes (subjective units of distress and belief ratings on individual behavioral experiments), as well as patient feedback, generated the hypothesis that this type of virtual environment can potentially add value to CBT by helping patients understand the role of avoidance and safety behaviors in the maintenance of social anxiety and paranoia and by boosting their confidence to carry out “real-life” behavioral experiments. PMID:23659722
Intelligent web agents for a 3D virtual community
NASA Astrophysics Data System (ADS)
Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar
2003-08-01
In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.
Utilization of virtual reality for endotracheal intubation training.
Mayrose, James; Kesavadas, T; Chugh, Kevin; Joshi, Dhananjay; Ellis, David G
2003-10-01
Tracheal intubation is performed for urgent airway control in injured patients. Current methods of training include working on cadavers and manikins, which lack the realism of a living human being. Work in this field has been limited due to the complex nature of simulating in real-time, the interactive forces and deformations which occur during an actual patient intubation. This study addressed the issue of intubation training in an attempt to bridge the gap between actual and virtual patient scenarios. The haptic device along with the real-time performance of the simulator give it both visual and physical realism. The three-dimensional viewing and interaction available through virtual reality make it possible for physicians, pre-hospital personnel and students to practice many endotracheal intubations without ever touching a patient. The ability for a medical professional to practice a procedure multiple times prior to performing it on a patient will both enhance the skill of the individual while reducing the risk to the patient.
[A virtual patient to improve doctor-patient communication : reality or fiction ?
Bragard, I; Guillaume, M; Ghuysen, A; Servotte, J C; Ortiz, I; Pétré, B
2018-02-01
The transformations of the health system and the preferences of the patients themselves have led healthcare professionals to rethink the place and role of the patient in the healthcare system, putting the caregivercare relationship and communication at the heart of public health issues. The literature shows that empathic communication is associated with better adherence to treatment, better patient satisfaction and less litigation. However, the initial training programs of health professionals are little oriented towards this field. Moreover, they are mainly based on a direct transition from theory to clinical practice with all the risks that this entails for patients. Some recent studies suggest an interest in virtual reality simulation for the development of these communication skills. This article offers an overview of the potential of virtual clinical simulation as a complementary or even alternative method to traditional teaching methods. Different studies will illustrate these innovations in the training of physicians in clinical reasoning, empathic communication, and in a highly emotional situation such as breaking bad news.
Gallagher, Joseph; James, Stephanie; Keane, Ciara; Fitzgerald, Annie; Travers, Bronagh; Quigley, Etain; Hecht, Christina; Zhou, Shuaiwei; Watson, Chris; Ledwidge, Mark; McDonald, Kenneth
2017-08-01
We undertook a mixed-methods evaluation of a Web-based conferencing service (virtual consult) between general practitioners (GPs) and cardiologists in managing patients with heart failure in the community to determine its effect on use of specialist heart failure services and acceptability to GPs. All cases from June 2015 to October 2016 were recorded using a standardized recording template, which recorded patient demographics, medical history, medications, and outcome of the virtual consult for each case. Quantitative surveys and qualitative interviewing of 17 participating GPs were also undertaken. During this time, 142 cases were discussed-68 relating to a new diagnosis of heart failure, 53 relating to emerging deterioration in a known heart failure patient, and 21 relating to therapeutic issues. Only 17% required review in outpatient department following the virtual consultation. GPs reported increased confidence in heart failure management, a broadening of their knowledge base, and a perception of overall better patient outcomes. These data from an initial experience with Heart Failure Virtual Consultation present a very positive impact of this strategy on the provision of heart failure care in the community and acceptability to users. Further research on the implementation and expansion of this strategy is warranted. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
VIRTUAL REALITY HYPNOSIS FOR PAIN CONTROL IN A PATIENT WITH GLUTEAL HIDRADENITIS:A CASE REPORT1
SOLTANI, MARYAM; TEELEY, AUBRIANA M.; WIECHMAN, SHELLEY A.; JENSEN, MARK P.; SHARAR, SAM R.; PATTERSON, DAVID R.
2012-01-01
This case report describes the use of hypnotic analgesia induced through immersive three-dimensional computer-generated virtual reality, better known as virtual reality hypnosis (VRH), in the treatment of a patient with ongoing pain associated with gluteal hidradenitis, The patient participated in the study for two consecutive days white hospitalized at a regional trauma centre. At pretreatment, she reported severe pain intensity and unpleasantness as well as high levels of anxiety and nervousness. She was then administered two sessions of virtual reality hypnotic treatment for decreased pain and anxiety. The patient’s ratings of ‘time spent thinking about pain’, pain intensity, ‘unpleasantness of pain’, and anxiety decreased from before to after each daily VRH session, as well as from Day One to Day Two. The findings indicate that VRH may benefit individuals with severe, ongoing pain from a chronic condition, and that a controlled clinical trial examining its efficacy is warranted. PMID:23205274
Burgos, Manuel A; Sevilla García, Maria Agustina; Sanmiguel Rojas, Enrique; Del Pino, Carlos; Fernández Velez, Carlos; Piqueras, Francisco; Esteban Ortega, Francisco
Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. We present a novel CFD software package to improve results following nasal surgery for obstruction. A group of engineers in collaboration with otolaryngologists have developed a very intuitive CFD software package called MeComLand®, which uses the patient's cross-sectional (tomographic) images, thus showing in detail results originated by CFD such as airflow distributions, velocity profiles, pressure, or wall shear stress. NOSELAND® helps medical evaluation with dynamic reports by using a 3D endoscopic view. Using this CFD-based software a patient underwent virtual surgery (septoplasty, turbinoplasty, spreader grafts, lateral crural J-flap and combinations) to choose the best improvement in nasal flow. To present a novel software package to improve nasal surgery results. To apply the software on CT slices from a patient affected by septal deviation. To evaluate several surgical procedures (septoplasty, turbinectomy, spreader-grafts, J-flap and combination among them) to find the best alternative with less morbidity. The combination of all the procedures does not provide the best nasal flow improvement. Septoplasty plus turbinoplasty obtained the best results. Turbinoplasty alone rendered almost similar results to septoplasty in our simulation. CFD provides useful complementary information to cover diagnosis, prognosis, and follow-up of nasal pathologies based on quantitative magnitudes linked to fluid flow. MeComLand®, DigBody® and NoseLand® represent a non-invasive, low-cost alternative for the functional study of patients with nasal obstruction. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Efficacy of Virtual Patients in Medical Education: A Meta-Analysis of Randomized Studies
ERIC Educational Resources Information Center
Consorti, Fabrizio; Mancuso, Rosaria; Nocioni, Martina; Piccolo, Annalisa
2012-01-01
A meta-analysis was performed to assess the Effect Size (ES) from randomized studies comparing the effect of educational interventions in which Virtual patients (VPs) were used either as an alternative method or additive to usual curriculum versus interventions based on more traditional methods. Meta-analysis was designed, conducted and reported…
Lean on Wii: physical rehabilitation with virtual reality Wii peripherals.
Anderson, Fraser; Annett, Michelle; Bischof, Walter F
2010-01-01
In recent years, a growing number of occupational therapists have integrated video game technologies, such as the Nintendo Wii, into rehabilitation programs. 'Wiihabilitation', or the use of the Wii in rehabilitation, has been successful in increasing patients' motivation and encouraging full body movement. The non-rehabilitative focus of Wii applications, however, presents a number of problems: games are too difficult for patients, they mainly target upper-body gross motor functions, and they lack support for task customization, grading, and quantitative measurements. To overcome these problems, we have designed a low-cost, virtual-reality based system. Our system, Virtual Wiihab, records performance and behavioral measurements, allows for activity customization, and uses auditory, visual, and haptic elements to provide extrinsic feedback and motivation to patients.
Virtual planning in orthognathic surgery.
Stokbro, K; Aagaard, E; Torkov, P; Bell, R B; Thygesen, T
2014-08-01
Numerous publications regarding virtual surgical planning protocols have been published, most reporting only one or two case reports to emphasize the hands-on planning. None have systematically reviewed the data published from clinical trials. This systematic review analyzes the precision and accuracy of three-dimensional (3D) virtual surgical planning of orthognathic procedures compared with the actual surgical outcome following orthognathic surgery reported in clinical trials. A systematic search of the current literature was conducted to identify clinical trials with a sample size of more than five patients, comparing the virtual surgical plan with the actual surgical outcome. Search terms revealed a total of 428 titles, out of which only seven articles were included, with a combined sample size of 149 patients. Data were presented in three different ways: intra-class correlation coefficient, 3D surface area with a difference <2mm, and linear and angular differences in three dimensions. Success criteria were set at 2mm mean difference in six articles; 125 of the 133 patients included in these articles were regarded as having had a successful outcome. Due to differences in the presentation of data, meta-analysis was not possible. Virtual planning appears to be an accurate and reproducible method for orthognathic treatment planning. A more uniform presentation of the data is necessary to allow the performance of a meta-analysis. Currently, the software system most often used for 3D virtual planning in clinical trials is SimPlant (Materialise). More independent clinical trials are needed to further validate the precision of virtual planning. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. All rights reserved.
2002-09-01
Management .........................15 5. Time Management ..............................16 6. Data Distribution Management .................16 D...50 b. Ownership Management .....................51 c. Data Distribution Management .............51 2. Additional Objects and Interactions...16 Figure 6. Data Distribution Management . (From: ref. 2) ...16 Figure 7. RTI and Federate Code Responsibilities. (From: ref. 2
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2009-01-01
Smart Homes offer potential solutions for various forms of independent living for the elderly. The assistive and protective environment afforded by smart homes offer a safe, relatively inexpensive, dependable and viable alternative to vulnerable inhabitants. Nevertheless, the success of a smart home rests upon the quality of information its decision support system receives and this in turn places great importance on the issue of correct sensor deployment. In this article we present a software tool that has been developed to address the elusive issue of sensor distribution within smart homes. Details of the tool will be presented and it will be shown how it can be used to emulate any real world environment whereby virtual sensor distributions can be rapidly implemented and assessed without the requirement for physical deployment for evaluation. As such, this approach offers the potential of tailoring sensor distributions to the specific needs of a patient in a non-evasive manner. The heuristics based tool presented here has been developed as the first part of a three stage project.
Beamforming applied to surface EEG improves ripple visibility.
van Klink, Nicole; Mol, Arjen; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike
2018-01-01
Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Telemedicine with mobile devices and augmented reality for early postoperative care.
Ponce, Brent A; Brabston, Eugene W; Shin Zu; Watson, Shawna L; Baker, Dustin; Winn, Dennis; Guthrie, Barton L; Shenai, Mahesh B
2016-08-01
Advanced features are being added to telemedicine paradigms to enhance usability and usefulness. Virtual Interactive Presence (VIP) is a technology that allows a surgeon and patient to interact in a "merged reality" space, to facilitate both verbal, visual, and manual interaction. In this clinical study, a mobile VIP iOS application was introduced into routine post-operative orthopedic and neurosurgical care. Survey responses endorse the usefulness of this tool, as it relates to The virtual interaction provides needed virtual follow-up in instances where in-person follow-up may be limited, and enhances the subjective patient experience.
A virtual surgical environment for rehearsal of tympanomastoidectomy.
Chan, Sonny; Li, Peter; Lee, Dong Hoon; Salisbury, J Kenneth; Blevins, Nikolas H
2011-01-01
This article presents a virtual surgical environment whose purpose is to assist the surgeon in preparation for individual cases. The system constructs interactive anatomical models from patient-specific, multi-modal preoperative image data, and incorporates new methods for visually and haptically rendering the volumetric data. Evaluation of the system's ability to replicate temporal bone dissections for tympanomastoidectomy, using intraoperative video of the same patients as guides, showed strong correlations between virtual and intraoperative anatomy. The result is a portable and cost-effective tool that may prove highly beneficial for the purposes of surgical planning and rehearsal.
NASA Astrophysics Data System (ADS)
Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter
Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.
Maintaining consistency in distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1991-01-01
In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.
Virtual Sensor Web Architecture
NASA Astrophysics Data System (ADS)
Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.
2006-12-01
NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.
Brewer, LaPrincess C; Kaihoi, Brian; Zarling, Kathleen K; Squires, Ray W; Thomas, Randal; Kopecky, Stephen
2015-04-08
Despite proven benefits through the secondary prevention of cardiovascular disease (CVD) and reduction of mortality, cardiac rehabilitation (CR) remains underutilized in cardiac patients. Underserved populations most affected by CVD including rural residents, low socioeconomic status patients, and racial/ethnic minorities have the lowest participation rates due to access barriers. Internet-and mobile-based lifestyle interventions have emerged as potential modalities to complement and increase accessibility to CR. An outpatient CR program using virtual world technology may provide an effective alternative to conventional CR by overcoming patient access limitations such as geographics, work schedule constraints, and transportation. The objective of this paper is to describe the research protocol of a two-phased, pilot study that will assess the feasibility (Phase 1) and comparative effectiveness (Phase 2) of a virtual world-based (Second Life) CR program as an extension of a conventional CR program in achieving healthy behavioral change among post-acute coronary syndrome (ACS) and post-percutaneous coronary intervention (PCI) patients. We hypothesize that virtual world CR users will improve behaviors (physical activity, diet, and smoking) to a greater degree than conventional CR participants. In Phase 1, we will recruit at least 10 patients enrolled in outpatient CR who were recently hospitalized for an ACS (unstable angina, ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction) or who recently underwent elective PCI at Mayo Clinic Hospital, Rochester Campus in Rochester, MN with at least one modifiable, lifestyle risk factor target (sedentary lifestyle, unhealthy diet, and current smoking). Recruited patients will participate in a 12-week, virtual world health education program which will provide feedback on the feasibility, usability, and design of the intervention. During Phase 2, we will conduct a 2-arm, parallel group, single-center, randomized controlled trial (RCT). Patients will be randomized at a 1:1 ratio to adjunct virtual world-based CR with conventional CR or conventional CR only. The primary outcome is a composite including at least one of the following (1) at least 150 minutes of physical activity per week, (2) daily consumption of five or more fruits and vegetables, and (3) smoking cessation. Patients will be assessed at 3, 6, and 12 months. The Phase 1 feasibility study is currently open for recruitment which will be followed by the Phase 2 RCT. The anticipated completion date for the study is May 2016. While research on the use of virtual world technology in health programs is in its infancy, it offers unique advantages over current Web-based health interventions including social interactivity and active learning. It also increases accessibility to vulnerable populations who have higher burdens of CVD. This study will yield results on the effectiveness of a virtual world-based CR program as an innovative platform to influence healthy lifestyle behavior and self-efficacy.
2010-01-01
Background Many researchers and clinicians have proposed using virtual reality (VR) in adjunct to in vivo exposure therapy to provide an innovative form of exposure to patients suffering from different psychological disorders. The rationale behind the 'virtual approach' is that real and virtual exposures elicit a comparable emotional reaction in subjects, even if, to date, there are no experimental data that directly compare these two conditions. To test whether virtual stimuli are as effective as real stimuli, and more effective than photographs in the anxiety induction process, we tested the emotional reactions to real food (RF), virtual reality (VR) food and photographs (PH) of food in two samples of patients affected, respectively, by anorexia (AN) and bulimia nervosa (BN) compared to a group of healthy subjects. The two main hypotheses were the following: (a) the virtual exposure elicits emotional responses comparable to those produced by the real exposure; (b) the sense of presence induced by the VR immersion makes the virtual experience more ecological, and consequently more effective than static pictures in producing emotional responses in humans. Methods In total, 10 AN, 10 BN and 10 healthy control subjects (CTR) were randomly exposed to three experimental conditions: RF, PH, and VR while their psychological (Stait Anxiety Inventory (STAI-S) and visual analogue scale for anxiety (VAS-A)) and physiological (heart rate, respiration rate, and skin conductance) responses were recorded. Results RF and VR induced a comparable emotional reaction in patients higher than the one elicited by the PH condition. We also found a significant effect in the subjects' degree of presence experienced in the VR condition about their level of perceived anxiety (STAI-S and VAS-A): the higher the sense of presence, the stronger the level of anxiety. Conclusions Even though preliminary, the present data show that VR is more effective than PH in eliciting emotional responses similar to those expected in real life situations. More generally, the present study suggests the potential of VR in a variety of experimental, training and clinical contexts, being its range of possibilities extremely wide and customizable. In particular, in a psychological perspective based on a cognitive behavioral approach, the use of VR enables the provision of specific contexts to help patients to cope with their diseases thanks to an easily controlled stimulation. PMID:20602749
LHCb experience with running jobs in virtual machines
NASA Astrophysics Data System (ADS)
McNab, A.; Stagni, F.; Luzzi, C.
2015-12-01
The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.
Peperkorn, Henrik M.; Diemer, Julia E.; Alpers, Georg W.; Mühlberger, Andreas
2016-01-01
Embodiment (i.e., the involvement of a bodily representation) is thought to be relevant in emotional experiences. Virtual reality (VR) is a capable means of activating phobic fear in patients. The representation of the patient’s body (e.g., the right hand) in VR enhances immersion and increases presence, but its effect on phobic fear is still unknown. We analyzed the influence of the presentation of the participant’s hand in VR on presence and fear responses in 32 women with spider phobia and 32 matched controls. Participants sat in front of a table with an acrylic glass container within reaching distance. During the experiment this setup was concealed by a head-mounted display (HMD). The VR scenario presented via HMD showed the same setup, i.e., a table with an acrylic glass container. Participants were randomly assigned to one of two experimental groups. In one group, fear responses were triggered by fear-relevant visual input in VR (virtual spider in the virtual acrylic glass container), while information about a real but unseen neutral control animal (living snake in the acrylic glass container) was given. The second group received fear-relevant information of the real but unseen situation (living spider in the acrylic glass container), but visual input was kept neutral VR (virtual snake in the virtual acrylic glass container). Participants were instructed to touch the acrylic glass container with their right hand in 20 consecutive trials. Visibility of the hand was varied randomly in a within-subjects design. We found for all participants that visibility of the participant’s hand increased presence independently of the fear trigger. However, in patients, the influence of the virtual hand on fear depended on the fear trigger. When fear was triggered perceptually, i.e., by a virtual spider, the virtual hand increased fear. When fear was triggered by information about a real spider, the virtual hand had no effect on fear. Our results shed light on the significance of different fear triggers (visual, conceptual) in interaction with body representations. PMID:26973566
Vanhille, Derek L; Garcia, Guilherme J M; Asan, Onur; Borojeni, Azadeh A T; Frank-Ito, Dennis O; Kimbell, Julia S; Pawar, Sachin S; Rhee, John S
2018-01-01
Nasal airway obstruction (NAO) is a common problem that affects patient quality of life. Surgical success for NAO correction is variable. Virtual surgery planning via computational fluid dynamics (CFD) has the potential to improve the success rates of NAO surgery. To elicit surgeon feedback of a virtual surgery planning tool for NAO and to determine if this tool affects surgeon decision making. For this cross-sectional study, 60-minute face-to-face interviews with board-certified otolaryngologists were conducted at a single academic otolaryngology department from September 16, 2016, through October 7, 2016. Virtual surgery methods were introduced, and surgeons were able to interact with the virtual surgery planning tool interface. Surgeons were provided with a patient case of NAO, and open feedback of the platform was obtained, with emphasis on surgical decision making. Likert scale responses and qualitative feedback were collected for the virtual surgery planning tool and its influence on surgeon decision making. Our 9 study participants were all male, board-certified otolaryngologists with a mean (range) 15 (4-28) number of years in practice and a mean (range) number of nasal surgeries per month at 2.2 (0.0-6.0). When examined on a scale of 1 (not at all) to 5 (completely), surgeon mean (SD) score was 3.4 (0.5) for how realistic the virtual models were compared with actual surgery. On the same scale, when asked how much the virtual surgery planning tool changed surgeon decision making, mean (SD) score was 2.6 (1.6). On a scale of 1 (strongly disagree) to 7 (strongly agree), surgeon scores for perceived usefulness of the technology and attitude toward using it were 5.1 (1.1) and 5.7 (0.9), respectively. Our study shows positive surgeon experience with a virtual surgery planning tool for NAO based on CFD simulations. Surgeons felt that future applications and areas of study of the virtual surgery planning tool include its potential role for patient counseling, selecting appropriate surgical candidates, and identifying which anatomical structures should be targeted for surgical correction. NA.
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-01-01
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907
Lewis, Geraint; Vaithianathan, Rhema; Wright, Lorraine; Brice, Mary R; Lovell, Paul; Rankin, Seth; Bardsley, Martin
2013-01-01
Background Patients at high risk of emergency hospitalisation are particularly likely to experience fragmentation in care. The virtual ward model attempts to integrate health and social care by offering multidisciplinary case management to people at high predicted risk of unplanned hospitalisation. Objective To describe the care practice in three virtual ward sites in England and to explore how well each site had achieved meaningful integration. Method Case studies conducted in Croydon, Devon and Wandsworth during 2011–2012, consisting of semi-structured interviews, workshops, and site visits. Results Different versions of the virtual wards intervention had been implemented in each site. In Croydon, multidisciplinary care had reverted back to one-to-one case management. Conclusions To integrate successfully, virtual ward projects should safeguard the multidisciplinary nature of the intervention, ensure the active involvement of General Practitioners, and establish feedback processes to monitor performance such as the number of professions represented at each team meeting. PMID:24250284
The art and science of data curation: Lessons learned from constructing a virtual collection
NASA Astrophysics Data System (ADS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick
2018-03-01
A digital, or virtual, collection is a value added service developed by libraries that curates information and resources around a topic, theme or organization. Adoption of the virtual collection concept as an Earth science data service improves the discoverability, accessibility and usability of data both within individual data centers but also across data centers and disciplines. In this paper, we introduce a methodology for systematically and rigorously curating Earth science data and information into a cohesive virtual collection. This methodology builds on the geocuration model of searching, selecting and synthesizing Earth science data, metadata and other information into a single and useful collection. We present our experiences curating a virtual collection for one of NASA's twelve Distributed Active Archive Centers (DAACs), the Global Hydrology Resource Center (GHRC), and describe lessons learned as a result of this curation effort. We also provide recommendations and best practices for data centers and data providers who wish to curate virtual collections for the Earth sciences.
Ferrer-García, Marta; Gutiérrez-Maldonado, José; Caqueo-Urízar, Alejandra; Moreno, Elena
2009-11-01
This article explores the efficacy of virtual environments representing situations that are emotionally significant to patients with eating disorders (ED) to modify depression and anxiety levels both in these patients and in controls. Eighty-five ED patients and 108 students were randomly exposed to five experimental virtual environments (a kitchen with low-calorie food, a kitchen with high-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool) and to one neutral environment. In the interval between the presentation of each situation, anxiety and depressed mood were assessed. Results of several repeated measures analyses demonstrated that patients show higher levels of anxiety and a more depressed mood after eating, especially high-calorie food, and after visiting the swimming pool than in the neutral room. In contrast, controls only show higher levels of anxiety in the swimming pool. In the rest of the situations they presented a similar mood state as in the neutral room. We concluded that virtual reality is a useful vehicle for eliciting similar emotional reactions to those one would expect in real life situations. Thus, this technology seems well suited for use in experimental studies as well as in evaluative and therapeutic contexts.
Sunnqvist, Charlotta; Karlsson, Karin; Lindell, Lisbeth; Fors, Uno
2016-03-01
Psychiatric and mental health nursing is built on a trusted nurse and patient relationship. Therefore communication and clinical reasoning are two important issues. Our experiences as teachers in psychiatric educational programmes are that the students feel anxiety and fear before they start their clinical practices in psychiatry. Therefore there is a need for bridging over the fear. Technology enhanced learning might support such activities so we used Virtual patients (VPs), an interactive computer simulations of real-life clinical scenarios. The aim of this study was to investigate 4th term nursing students' opinions on the use of Virtual Patients for assessment in a Mental Health and Ill-health course module. We asked 24 volunteering students to practise with five different VP cases during almost 10 weeks before the exam. The participants were gathered together for participating in a written and an oral evaluation. The students were positive to the use of VPs in psychiatry and were very positive to use VPs in their continued nursing education. It seems that Virtual Patients can be an activity producing pedagogic model promoting students' independent knowledge development, critical thinking, reflection and problem solving ability for nurse students in psychiatric care. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of virtual reality training on unilateral spatial neglect in stroke patients.
Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-06-01
To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients.
Demers, Marika; Chan Chun Kong, Daniel; Levin, Mindy F
2018-03-11
To determine user satisfaction and safety of incorporating a low-cost virtual rehabilitation intervention as an adjunctive therapeutic option for cognitive-motor upper limb rehabilitation in individuals with sub-acute stroke. A low-cost upper limb virtual rehabilitation application incorporating realistic functionally-relevant unimanual and bimanual tasks, specifically designed for cognitive-motor rehabilitation was developed for patients with sub-acute stroke. Clinicians and individuals with stroke interacted with the intervention for 15-20 or 20-45 minutes, respectively. The study had a mixed-methods convergent parallel design that included a focus group interview with clinicians working in a stroke program and semi-structured interviews and standardized assessments (Borg Perceived Exertion Scale, Short Feedback Questionnaire) for participants with sub-acute stroke undergoing rehabilitation. The occurrence of adverse events was also noted. Three main themes emerged from the clinician focus group and patient interviews: Perceived usefulness in rehabilitation, satisfaction with the virtual reality intervention and aspects to improve. All clinicians and the majority of participants with stroke were highly satisfied with the intervention and perceived its usefulness to decrease arm motor impairment during functional tasks. No participants experienced major adverse events. Incorporation of this type of functional activity game-based virtual reality intervention in the sub-acute phase of rehabilitation represents a way to transfer skills learned early in the clinical setting to real world situations. This type of intervention may lead to better integration of the upper limb into everyday activities. Implications for Rehabilitation • Use of a cognitive-motor low-cost virtual reality intervention designed to remediate arm motor impairments in sub-acute stroke is feasible, safe and perceived as useful by therapists and patients for stroke rehabilitation. • Input from end-users (therapists and individuals with stroke) is critical for the development and implementation of a virtual reality intervention.
Kellock, Trenton T; Nicolaou, Savvas; Kim, Sandra S Y; Al-Busaidi, Sultan; Louis, Luck J; O'Connell, Tim W; Ouellette, Hugue A; McLaughlin, Patrick D
2017-09-01
Purpose To quantify the sensitivity and specificity of dual-energy computed tomographic (CT) virtual noncalcium images in the detection of nondisplaced hip fractures and to assess whether obtaining these images as a complement to bone reconstructions alters sensitivity, specificity, or diagnostic confidence. Materials and Methods The clinical research ethics board approved chart review, and the requirement to obtain informed consent was waived. The authors retrospectively identified 118 patients who presented to a level 1 trauma center emergency department and who underwent dual-energy CT for suspicion of a nondisplaced traumatic hip fracture. Clinical follow-up was the standard of reference. Three radiologists interpreted virtual noncalcium images for traumatic bone marrow edema. Bone reconstructions for the same cases were interpreted alone and then with virtual noncalcium images. Diagnostic confidence was rated on a scale of 1 to 10. McNemar, Fleiss κ, and Wilcoxon signed-rank tests were used for statistical analysis. Results Twenty-two patients had nondisplaced hip fractures and 96 did not have hip fractures. Sensitivity with virtual noncalcium images was 77% and 91% (17 and 20 of 22 patients), and specificity was 92%-99% (89-95 of 96 patients). Sensitivity increased by 4%-5% over that with bone reconstruction images alone for two of the three readers when both bone reconstruction and virtual noncalcium images were used. Specificity remained unchanged (99% and 100%). Diagnostic confidence in the exclusion of fracture was improved with combined bone reconstruction and virtual noncalcium images (median score: 10, 9, and 10 for readers 1, 2, and 3, respectively) compared with bone reconstruction images alone (median score: 9, 8, and 9). Conclusion When used as a supplement to standard bone reconstructions, dual-energy CT virtual noncalcium images increased sensitivity for the detection of nondisplaced traumatic hip fractures and improved diagnostic confidence in the exclusion of these fractures. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on March 17, 2017.
Dynamic shared state maintenance in distributed virtual environments
NASA Astrophysics Data System (ADS)
Hamza-Lup, Felix George
Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for sensor-based distributed VE that has the potential to improve the system real-time behavior and scalability. (Abstract shortened by UMI.)
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.