Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2016-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
Using Immersive Virtual Reality for Electrical Substation Training
ERIC Educational Resources Information Center
Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana
2015-01-01
Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…
Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.
Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor
2008-03-01
To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.
ViRPET--combination of virtual reality and PET brain imaging
Majewski, Stanislaw; Brefczynski-Lewis, Julie
2017-05-23
Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.
LVC interaction within a mixed-reality training system
NASA Astrophysics Data System (ADS)
Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio
2012-03-01
The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.
Probabilistic motor sequence learning in a virtual reality serial reaction time task.
Sense, Florian; van Rijn, Hedderik
2018-01-01
The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.
Modeling of luminance distribution in CAVE-type virtual reality systems
NASA Astrophysics Data System (ADS)
Meironke, Michał; Mazikowski, Adam
2017-08-01
At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.
Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool
2017-10-01
AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low- Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public ...DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Research on distributed virtual reality system in electronic commerce
NASA Astrophysics Data System (ADS)
Xue, Qiang; Wang, Jiening; Sun, Jizhou
2004-03-01
In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.
ERIC Educational Resources Information Center
Auld, Lawrence W. S.; Pantelidis, Veronica S.
1994-01-01
Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…
Virtual reality applied to teletesting
NASA Astrophysics Data System (ADS)
van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon
2003-05-01
The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.
Embodying self-compassion within virtual reality and its effects on patients with depression.
Falconer, Caroline J; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel; Brewin, Chris R
2016-01-01
Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. None. © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
Research on Collaborative Technology in Distributed Virtual Reality System
NASA Astrophysics Data System (ADS)
Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi
2018-01-01
Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.
Song, Gui bin; Park, Eun cho
2015-01-01
[Purpose] The purpose of the study was to determine the effects of training using virtual reality games on balance and gait ability, as well as the psychological characteristics of stroke patients, such as depression and interpersonal relationships, by comparing them with the effects of ergometer training. [Subjects] Forty stroke patients were randomly divided into a virtual reality group (VRG, N = 20) and an ergometer training group (ETG, N = 20). [Methods] VRG performed training using the Xbox Kinect. ETG performed training using an ergometer bicycle. Both groups received training 30 min per day, five times per week, for eight weeks. [Results] Both the VRG and ETG subjects exhibited a significant difference in weight distribution ratio on the paralyzed side and balance ability. Both the VRG and ETG patients showed significant improvement in psychological measures BDI and RCS, after the intervention, and the VRG sowed a more significant increase in BDI than the ETG. [Conclusion] According to the result of this study, virtual reality training and ergometer training were both effective at improving balance, gait abilities, depression, and interpersonal relationships among stroke patients. PMID:26311925
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Anthonius; Muchtar, M. A.; Hizriadi, A.; Syahputra, M. F.
2018-03-01
Universitas Sumatera Utara is one of the public universities that have over 100 buildings with total area of more than 133.141 square meters. Information delivery on the location of the institutional buildings becomes challenging since the university land reaches 93.4 Ha. The information usually delivers orally, in video presentation and in the form of two-dimensional such as maps, posters, and brochures. These three techniques of information delivery have their advantages and disadvantages. Thus, we know that virtual reality has come to existence, touching every domain of knowledge. In this paper we study and implement virtual reality as a new approach to distribute the information to cover all of the deficiencies. The utilization of virtual reality technology combined with 3D modeling is aims to introduce and inform the location of USU institutional buildings in interactive and innovative ways. With the application existence, the campus introduction is expected to be more convenient so that all the USU students will be able to find the exact location of the building they are headed for.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
2009-01-01
Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M
2016-07-01
Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.
Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.
2016-01-01
Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071
Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.
Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K
2007-12-01
Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.
The Evolution of Constructivist Learning Environments: Immersion in Distributed, Virtual Worlds.
ERIC Educational Resources Information Center
Dede, Chris
1995-01-01
Discusses the evolution of constructivist learning environments and examines the collaboration of simulated software models, virtual environments, and evolving mental models via immersion in artificial realities. A sidebar gives a realistic example of a student navigating through cyberspace. (JMV)
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Learning Rationales and Virtual Reality Technology in Education.
ERIC Educational Resources Information Center
Chiou, Guey-Fa
1995-01-01
Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…
Virtual reality for emergency training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altinkemer, K.
1995-12-31
Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less
Virtual Reality and the Virtual Library.
ERIC Educational Resources Information Center
Oppenheim, Charles
1993-01-01
Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…
1993-04-01
until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail
Embodying self-compassion within virtual reality and its effects on patients with depression
Falconer, Caroline J.; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Fearon, Pasco; Ralph, Neil; Slater, Mel
2016-01-01
Background Self-criticism is a ubiquitous feature of psychopathology and can be combatted by increasing levels of self-compassion. However, some patients are resistant to self-compassion. Aims To investigate whether the effects of self-identification with virtual bodies within immersive virtual reality could be exploited to increase self-compassion in patients with depression. Method We developed an 8-minute scenario in which 15 patients practised delivering compassion in one virtual body and then experienced receiving it from themselves in another virtual body. Results In an open trial, three repetitions of this scenario led to significant reductions in depression severity and self-criticism, as well as to a significant increase in self-compassion, from baseline to 4-week follow-up. Four patients showed clinically significant improvement. Conclusions The results indicate that interventions using immersive virtual reality may have considerable clinical potential and that further development of these methods preparatory to a controlled trial is now warranted. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence. PMID:27703757
Virtual Reality and Its Potential Application in Education and Training.
ERIC Educational Resources Information Center
Milheim, William D.
1995-01-01
An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
ERIC Educational Resources Information Center
Fialho, Francisco Antonio Pereira; Catapan, Araci Hack
1999-01-01
Argues that the creation of distributed environments for constructivist learning is a challenge which requires a multidisciplinary development and support team. Outlines recommended strategies for the collective creation of virtual worlds which can improve learning. Contains 11 references. (Author/WRM)
Virtual Reality as Innovative Approach to the Interior Designing
NASA Astrophysics Data System (ADS)
Kaleja, Pavol; Kozlovská, Mária
2017-06-01
We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies
The virtues of virtual reality in exposure therapy.
Gega, Lina
2017-04-01
Virtual reality can be more effective and less burdensome than real-life exposure. Optimal virtual reality delivery should incorporate in situ direct dialogues with a therapist, discourage safety behaviours, allow for a mismatch between virtual and real exposure tasks, and encourage self-directed real-life practice between and beyond virtual reality sessions. © The Royal College of Psychiatrists 2017.
Virtual Reality in the Classroom.
ERIC Educational Resources Information Center
Pantelidis, Veronica S.
1993-01-01
Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Virtual reality: past, present and future.
Gobbetti, E; Scateni, R
1998-01-01
This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.
Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.
ERIC Educational Resources Information Center
Thurman, Richard A.; Mattoon, Joseph S.
1994-01-01
Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…
Virtual Reality in Schools: The Ultimate Educational Technology.
ERIC Educational Resources Information Center
Reid, Robert D.; Sykes, Wylmarie
1999-01-01
Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
Therapists' perception of benefits and costs of using virtual reality treatments.
Segal, Robert; Bhatia, Maneet; Drapeau, Martin
2011-01-01
Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Simulators and virtual reality in surgical education.
Chou, Betty; Handa, Victoria L
2006-06-01
This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
The Potential of Using Virtual Reality Technology in Physical Activity Settings
ERIC Educational Resources Information Center
Pasco, Denis
2013-01-01
In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
Virtual reality measures in neuropsychological assessment: a meta-analytic review.
Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel
2016-02-01
Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.
Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.
Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis
Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.
2015-01-01
Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.
Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J
2011-11-01
To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.
Virtual Realities and the Future of Text.
ERIC Educational Resources Information Center
Marcus, Stephen
1992-01-01
Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)
ERIC Educational Resources Information Center
Cheng, Yufang; Huang, Ruowen
2012-01-01
The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…
Naval Applications of Virtual Reality,
1993-01-01
Expert Virtual Reality Special Report , pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I
Magical Stories: Blending Virtual Reality and Artificial Intelligence.
ERIC Educational Resources Information Center
McLellan, Hilary
Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…
ERIC Educational Resources Information Center
Franchi, Jorge
1994-01-01
Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.
Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-02-09
Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation
Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-01-01
Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520
ERIC Educational Resources Information Center
Allison, John
2008-01-01
This paper will undertake a critical review of the impact of virtual reality tools on the teaching of history. Virtual reality is useful in several different ways. History educators, elementary and secondary school teachers and professors, can all profit from the digital environment. Challenges arise quickly however. Virtual reality technologies…
Immersive virtual reality simulations in nursing education.
Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur
2010-01-01
This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
Virtual Reality at the PC Level
NASA Technical Reports Server (NTRS)
Dean, John
1998-01-01
The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.
Interpretations of virtual reality.
Voiskounsky, Alexander
2011-01-01
University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.
Nesaratnam, N; Thomas, P; Vivian, A
2017-10-01
IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.
A standardized set of 3-D objects for virtual reality research and applications.
Peeters, David
2018-06-01
The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Hybrid Reality Lab Capabilities - Video 2
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
Virtual Reality Exploration and Planning for Precision Colorectal Surgery.
Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco
2018-06-01
Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could contribute to improve safety in colorectal surgery.
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Transduction between worlds: using virtual and mixed reality for earth and planetary science
NASA Astrophysics Data System (ADS)
Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.
2017-12-01
Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.
The Virtual Reality Roving Vehicle Project.
ERIC Educational Resources Information Center
Winn, William
1995-01-01
Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…
World Reaction to Virtual Space
NASA Technical Reports Server (NTRS)
1999-01-01
DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.
Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.
ERIC Educational Resources Information Center
Regian, J. Wesley; And Others
1992-01-01
Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)
Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.
Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S
2017-11-01
Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2018-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128
Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz
2016-03-01
Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.
Virtual Reality: Emerging Applications and Future Directions
ERIC Educational Resources Information Center
Ludlow, Barbara L.
2015-01-01
Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.
2005-01-01
Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
[What do virtual reality tools bring to child and adolescent psychiatry?
Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P
2018-06-01
Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers the opportunity to administer controlled tasks such as the typical neuropsychological tools, but in an environment much more like a standard classroom. The virtual reality classroom offers several advantages compared to classical tools such as more realistic and lifelike environment but also records various measures in standardized conditions. Most of the studies using a virtual classroom have found that children with Attention Deficit/Hyperactivity Disorder make significantly fewer correct hits and more commission errors compared with controls. The virtual classroom has proven to be a good clinical tool for evaluation of attention in ADHD. For eating disorders, cognitive behavioural therapy (CBT) program enhanced by a body image specific component using virtual reality techniques was shown to be more efficient than cognitive behavioural therapy alone. The body image-specific component using virtual reality techniques boots efficiency and accelerates the CBT change process for eating disorders. Virtual reality is a relatively new technology and its application in child and adolescent psychiatry is recent. However, this technique is still in its infancy and much work is needed including controlled trials before it can be introduced in routine clinical use. Virtual reality interventions should also investigate how newly acquired skills are transferred to the real world. At present virtual reality can be considered a useful tool in evaluation and treatment for child and adolescent disorders. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Review of virtual reality treatment for mental health.
Gourlay, D; Lun, K C; Liya, G
2001-01-01
This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.
Virtual reality for dermatologic surgery: virtually a reality in the 21st century.
Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M
2000-01-01
In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.
An Intelligent Virtual Human System For Providing Healthcare Information And Support
2011-01-01
for clinical purposes. Shifts in the social and scientific landscape have now set the stage for the next major movement in Clinical Virtual Reality ...College; dMadigan Army Medical Center Army Abstract. Over the last 15 years, a virtual revolution has taken place in the use of Virtual Reality ... Virtual Reality with the “birth” of intelligent virtual humans. Seminal research and development has appeared in the creation of highly interactive
Reality Check: Basics of Augmented, Virtual, and Mixed Reality.
Brigham, Tara J
2017-01-01
Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars
2015-10-01
The aims of this study were to develop virtual reality simulation software for video-assisted thoracic surgery (VATS) lobectomy, to explore the opinions of thoracic surgeons concerning the VATS lobectomy simulator and to test the validity of the simulator metrics. Experienced VATS surgeons worked with computer specialists to develop a VATS lobectomy software for a virtual reality simulator. Thoracic surgeons with different degrees of experience in VATS were enrolled at the 22nd meeting of the European Society of Thoracic Surgeons (ESTS) held in Copenhagen in June 2014. The surgeons were divided according to the number of performed VATS lobectomies: novices (0 VATS lobectomies), intermediates (1-49 VATS lobectomies) and experienced (>50 VATS lobectomies). The participants all performed a lobectomy of a right upper lobe on the simulator and answered a questionnaire regarding content validity. Metrics were compared between the three groups. We succeeded in developing the first version of a virtual reality VATS lobectomy simulator. A total of 103 thoracic surgeons completed the simulated lobectomy and were distributed as follows: novices n = 32, intermediates n = 45 and experienced n = 26. All groups rated the overall user realism of the VATS lobectomy scenario to a median of 5 on a scale 1-7, with 7 being the best score. The experienced surgeons found the graphics and movements realistic and rated the scenario high in terms of usefulness as a training tool for novice and intermediate experienced thoracic surgeons, but not very useful as a training tool for experienced surgeons. The metric scores were not statistically significant between groups. This is the first study to describe a commercially available virtual reality simulator for a VATS lobectomy. More than 100 thoracic surgeons found the simulator realistic, and hence it showed good content validity. However, none of the built-in simulator metrics could significantly distinguish between novice, intermediate experienced and experienced surgeons, and further development of the simulator software is necessary to develop valid metrics. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R
2011-02-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Schmitt, Yuko S.; Hoffman, Hunter G.; Blough, David K.; Patterson, David R.; Jensen, Mark P.; Soltani, Maryam; Carrougher, Gretchen J.; Nakamura, Dana; Sharar, Sam R.
2010-01-01
This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6–19 years old) performed range-of-motion exercises under a therapist’s direction for one to five days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects’ perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27–44%) in pain ratings during virtual reality. They also reported improved affect (“fun”) during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. PMID:20692769
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
[Virtual reality in neurosurgery].
Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S
2000-03-01
Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.
Proof-of-Concept Part Task Trainer for Close Air Support Procedures
2016-06-01
TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training
Virtual reality and 3D visualizations in heart surgery education.
Friedl, Reinhard; Preisack, Melitta B; Klas, Wolfgang; Rose, Thomas; Stracke, Sylvia; Quast, Klaus J; Hannekum, Andreas; Gödje, Oliver
2002-01-01
Computer assisted teaching plays an increasing role in surgical education. The presented paper describes the development of virtual reality (VR) and 3D visualizations for educational purposes concerning aortocoronary bypass grafting and their prototypical implementation into a database-driven and internet-based educational system in heart surgery. A multimedia storyboard has been written and digital video has been encoded. Understanding of these videos was not always satisfying; therefore, additional 3D and VR visualizations have been modelled as VRML, QuickTime, QuickTime Virtual Reality and MPEG-1 applications. An authoring process in terms of integration and orchestration of different multimedia components to educational units has been started. A virtual model of the heart has been designed. It is highly interactive and the user is able to rotate it, move it, zoom in for details or even fly through. It can be explored during the cardiac cycle and a transparency mode demonstrates coronary arteries, movement of the heart valves, and simultaneous blood-flow. Myocardial ischemia and the effect of an IMA-Graft on myocardial perfusion is simulated. Coronary artery stenoses and bypass-grafts can be interactively added. 3D models of anastomotique techniques and closed thrombendarterectomy have been developed. Different visualizations have been prototypically implemented into a teaching application about operative techniques. Interactive virtual reality and 3D teaching applications can be used and distributed via the World Wide Web and have the power to describe surgical anatomy and principles of surgical techniques, where temporal and spatial events play an important role, in a way superior to traditional teaching methods.
Virtual reality training for surgical trainees in laparoscopic surgery.
Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R
2013-08-27
Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.
2017-08-01
ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory
Assessment of individual hand performance in box trainers compared to virtual reality trainers.
Madan, Atul K; Frantzides, Constantine T; Shervin, Nina; Tebbit, Christopher L
2003-12-01
Training residents in laparoscopic skills is ideally initiated in an inanimate laboratory with both box trainers and virtual reality trainers. Virtual reality trainers have the ability to score individual hand performance although they are expensive. Here we compared the ability to assess dominant and nondominant hand performance in box trainers with virtual reality trainers. Medical students without laparoscopic experience were utilized in this study (n = 16). Each student performed tasks on the LTS 2000, an inanimate box trainer (placing pegs with both hands and transferring pegs from one hand to another), as well as a task on the MIST-VR, a virtual reality trainer (grasping a virtual object and placing it in a virtual receptable with alternating hands). A surgeon scored students for the inanimate box trainer exercises (time and errors) while the MIST-VR scored students (time, economy of movements, and errors for each hand). Statistical analysis included Pearson correlations. Errors and time for the one-handed tasks on the box trainer did not correlate with errors, time, or economy measured for each hand by the MIST-VR (r = 0.01 to 0.30; P = NS). Total errors on the virtual reality trainer did correlate with errors on transferring pege (r = 0.61; P < 0.05). Economy and time of both dominant and nondominant hand from the MIST-VR correlated with time of transferring pegs in the box trainer (r = 0.53 to 0.77; P < 0.05). While individual hand assessment by the box trainer during 2-handed tasks was related to assessment by the virtual reality trainer, individual hand assessment during 1-handed tasks did not correlate with the virtual reality trainer. Virtual reality trainers, such as the MIST-VR, allow assessment of individual hand skills which may lead to improved laparoscopic skill acquisition. It is difficult to assess individual hand performance with box trainers alone.
The Reality of Virtual Reality Product Development
NASA Astrophysics Data System (ADS)
Dever, Clark
Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.
NASA Technical Reports Server (NTRS)
1994-01-01
This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.
Virtual Reality: A Strategy for Training in Cross-Cultural Communication.
ERIC Educational Resources Information Center
Meyer, Catherine; Dunn-Roberts, Richard
1992-01-01
Defines virtual reality and explains terminology, theoretical concepts, and enabling technologies. Research and applications are described; limitations of current technology are considered; and future possibilities are discussed, including the use of virtual reality in training for cross-cultural communication. (22 references) (LRW)
1998-03-01
Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.
[Virtual reality in medical education].
Edvardsen, O; Steensrud, T
1998-02-28
Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.
Tal, Aner; Wansink, Brian
2011-01-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088
Tal, Aner; Wansink, Brian
2011-03-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
French Military Applications of Virtual Reality
2000-11-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10631 TITLE: French Military Applications of Virtual Reality...numbers comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 23-1 FRENCH MILITARY APPLICATIONS OF VIRTUAL REALITY Jean Paul Papin* and...Pascal Hue DGA/DCE/ETC4/ETAS Etablissement Technique d’ Angers BP 36 49460 MONTREUIL JUIGNE, France INTRODUCTION France is now applying virtual
Perpiñá, Conxa; Roncero, María
2016-05-01
Virtual reality has demonstrated promising results in the treatment of eating disorders (ED); however, few studies have examined its usefulness in treating obesity. The aim of this study was to compare ED and obese patients on their reality judgment of a virtual environment (VE) designed to normalize their eating pattern. A second objective was to study which variables predicted the reality of the experience of eating a virtual forbidden-fattening food. ED patients, obese patients, and a non-clinical group (N=62) experienced a non-immersive VE, and then completed reality judgment and presence measures. All participants rated the VE with similar scores for quality, interaction, engagement, and ecological validity; however, ED patients obtained the highest scores on emotional involvement, attention, reality judgment/presence, and negative effects. The obese group gave the lowest scores to reality judgment/presence, satisfaction and sense of physical space, and they held an intermediate position in the attribution of reality to virtually eating a "fattening" food. The palatability of a virtual food was predicted by attention capturing and belonging to the obese group, while the attribution of reality to the virtual eating was predicted by engagement and belonging to the ED group. This study offers preliminary results about the differential impact on ED and obese patients of the exposure to virtual food, and about the need to implement a VE that can be useful as a virtual lab for studying eating behavior and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals.
Fertleman, Caroline; Aubugeau-Williams, Phoebe; Sher, Carmel; Lim, Ai-Nee; Lumley, Sophie; Delacroix, Sylvie; Pan, Xueni
2018-01-01
Virtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, "The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics--A Study of Medical Ethics Using Immersive Virtual Reality" (1). In Pan et al.'s study, 21 general practitioners (GPs) and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy. Virtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for "difficult to simulate" scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.
Stereoscopic virtual reality models for planning tumor resection in the sellar region.
Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie
2012-11-28
It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Andersen, Steven Arild Wuyts; Konge, Lars; Sørensen, Mads Sølvsten
2018-05-07
Complex tasks such as surgical procedures can induce excessive cognitive load (CL), which can have a negative effect on learning, especially for novices. To investigate if repeated and distributed virtual reality (VR) simulation practice induces a lower CL and higher performance in subsequent cadaveric dissection training. In a prospective, controlled cohort study, 37 residents in otorhinolaryngology received VR simulation training either as additional distributed practice prior to course participation (intervention) (9 participants) or as standard practice during the course (control) (28 participants). Cognitive load was estimated as the relative change in secondary-task reaction time during VR simulation and cadaveric procedures. Structured distributed VR simulation practice resulted in lower mean reaction times (32% vs. 47% for the intervention and control group, respectively, p < 0.01) as well as a superior final-product performance during subsequent cadaveric dissection training. Repeated and distributed VR simulation causes a lower CL to be induced when the learning situation is increased in complexity. A suggested mechanism is the formation of mental schemas and reduction of the intrinsic CL. This has potential implications for surgical skills training and suggests that structured, distributed training be systematically implemented in surgical training curricula.
Virtual Reality, Combat, and Communication.
ERIC Educational Resources Information Center
Thrush, Emily Austin; Bodary, Michael
2000-01-01
Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…
New database for improving virtual system “body-dress”
NASA Astrophysics Data System (ADS)
Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.
2017-10-01
The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
[Virtual reality therapy in anxiety disorders].
Mitrousia, V; Giotakos, O
2016-01-01
During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.
Augmenting breath regulation using a mobile driven virtual reality therapy framework.
Abushakra, Ahmad; Faezipour, Miad
2014-05-01
This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.
Intelligent virtual reality in the setting of fuzzy sets
NASA Technical Reports Server (NTRS)
Dockery, John; Littman, David
1992-01-01
The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Virtual Reality Tumor Resection: The Force Pyramid Approach.
Sawaya, Robin; Bugdadi, Abdulgadir; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Alotaibi, Fahad E; Bajunaid, Khalid; AlZhrani, Gmaan A; Alsideiri, Ghusn; Sabbagh, Abdulrahman J; Del Maestro, Rolando F
2018-06-01
The force pyramid is a novel visual representation allowing spatial delineation of instrument force application during surgical procedures. In this study, the force pyramid concept is employed to create and quantify dominant hand, nondominant hand, and bimanual force pyramids during resection of virtual reality brain tumors. To address 4 questions: Do ergonomics and handedness influence force pyramid structure? What are the differences between dominant and nondominant force pyramids? What is the spatial distribution of forces applied in specific tumor quadrants? What differentiates "expert" and "novice" groups regarding their force pyramids? Using a simulated aspirator in the dominant hand and a simulated sucker in the nondominant hand, 6 neurosurgeons and 14 residents resected 8 different tumors using the CAE NeuroVR virtual reality neurosurgical simulation platform (CAE Healthcare, Montréal, Québec and the National Research Council Canada, Boucherville, Québec). Position and force data were used to create force pyramids and quantify tumor quadrant force distribution. Force distribution quantification demonstrates the critical role that handedness and ergonomics play on psychomotor performance during simulated brain tumor resections. Neurosurgeons concentrate their dominant hand forces in a defined crescent in the lower right tumor quadrant. Nondominant force pyramids showed a central peak force application in all groups. Bimanual force pyramids outlined the combined impact of each hand. Distinct force pyramid patterns were seen when tumor stiffness, border complexity, and color were altered. Force pyramids allow delineation of specific tumor regions requiring greater psychomotor ability to resect. This information can focus and improve resident technical skills training.
The Impact of Virtual Reality Programs in Career and Technical Education
ERIC Educational Resources Information Center
Catterson, Anna J.
2013-01-01
Instructional technology has evolved from blackboards with chalk to in some cases three-dimensional virtual reality environments in which students are interacting and engaging with other students worldwide. The use of this new instructional methodology, known as "virtual reality," has experienced substantial growth in higher education…
When Rural Reality Goes Virtual.
ERIC Educational Resources Information Center
Husain, Dilshad D.
1998-01-01
In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)
Designing a Virtual-Reality-Based, Gamelike Math Learning Environment
ERIC Educational Resources Information Center
Xu, Xinhao; Ke, Fengfeng
2016-01-01
This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…
Sweaty Palms! Virtual Reality Applied to Training.
ERIC Educational Resources Information Center
Treiber, Karin
A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…
ERIC Educational Resources Information Center
Miller, Erez Cedric
This paper discusses some of the potential benefits and hazards that virtual reality holds for exceptional children in the special education system. Topics addressed include (1) applications of virtual reality, including developing academic skills via cyberspace, vocational training, and social learning in cyberspace; (2) telepresence and distance…
Assessment method of digital Chinese dance movements based on virtual reality technology
NASA Astrophysics Data System (ADS)
Feng, Wei; Shao, Shuyuan; Wang, Shumin
2008-03-01
Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.
Virtual reality in ophthalmology training.
Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian
2006-01-01
Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
E-virtual reality exposure therapy in acrophobia: A pilot study.
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland
2016-06-01
Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.
The effect of virtual reality during dental treatment on child anxiety and behavior.
Sullivan, C; Schneider, P E; Musselman, R J; Dummett, C O; Gardiner, D
2000-01-01
Virtual reality, a three-dimensional computer generated world, has been shown to relax adults during dental treatment. The purpose of this study was to investigate the effect of virtual reality on the behavior and anxiety of children during dental treatment. The behavior, anxiety and heart rate of twenty-six children, ages five to seven years were evaluated for the first five minutes of two restorative treatment visits. Thirteen children viewed virtual reality at their first restorative visit and not the second, and thirteen children viewed virtual reality at the second restorative visit and not the first. Before and immediately following the restorative visits, each child was instructed to draw a human figure. The restorative appointments were video recorded and heart rate monitored. The drawings and videotapes were rated independently by two examiners. The Koppitz method of evaluating drawings was used to measure anxiety. The Frankl behavior rating scale was used to evaluate behavior. Differences (ANOVA) in behavior (p < or = 0.50) and anxiety (p < or = 0.65) were not significant. The overall pulse rate was significantly lower (ANOVA p < or = 0.001) when the child was wearing glasses and viewing virtual reality. In conclusion, virtual reality during dental treatment had no significant effect on the behavior or anxiety but significantly reduced the pulse.
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
van Herpen, Erica; van den Broek, Eva; van Trijp, Hans C M; Yu, Tian
2016-12-01
Immersive virtual reality techniques present new opportunities for research into consumer behavior. The current study examines whether the increased realism of a virtual store compared to pictorial (2D) stimuli elicits consumer behavior that is more in line with behavior in a physical store. We examine the number, variety, and type of products selected, amount of money spent, and responses to price promotions and shelf display, in three product categories (fruit & vegetables, milk, and biscuits). We find that virtual reality elicits behavior that is more similar to behavior in the physical store compared to the picture condition for the number of products selected (Milk: M store = 1.19, M virtual = 1.53, M pictures = 2.58) and amount of money spent (Milk: M store = 1.27, M virtual = 1.53, M pictures = 2.60 Euro), and for the selection of products from different areas of the shelf, both vertically (purchases from top shelves, milk and biscuits: P store = 21.6%, P virtual = 33.4%, P pictures = 50.0%) and horizontally (purchase from left shelf, biscuits: P store = 35.5%, P virtual = 53.3%, P pictures = 66.7%). This indicates that virtual reality can improve realism in responses to shelf allocation. Virtual reality was not able to diminish other differences between lab and physical store: participants bought more products and spent more money (for biscuits and fruit & vegetables), bought more national brands, and responded more strongly to price promotions in both virtual reality and pictorial representations than in the physical store. Implications for the use of virtual reality in studies of consumer food choice behavior as well as for future improvement of virtual reality techniques are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi
Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.
Studies of the field-of-view resolution tradeoff in virtual-reality systems
NASA Technical Reports Server (NTRS)
Piantanida, Thomas P.; Boman, Duane; Larimer, James; Gille, Jennifer; Reed, Charles
1992-01-01
Most virtual-reality systems use LCD-based displays that achieve a large field-of-view at the expense of resolution. A typical display will consist of approximately 86,000 pixels uniformly distributed over an 80-degree by 60-degree image. Thus, each pixel subtends about 13 minutes of arc at the retina; about the same as the resolvable features of the 20/200 line of a Snellen Eye Chart. The low resolution of LCD-based systems limits task performance in some applications. We have examined target-detection performance in a low-resolution virtual world. Our synthesized three-dimensional virtual worlds consisted of target objects that could be positioned at a fixed distance from the viewer, but at random azimuth and constrained elevation. A virtual world could be bounded by chromatic walls or by wire-frame, or it could be unbounded. Viewers scanned these worlds and indicated by appropriate gestures when they had detected the target object. By manipulating the viewer's field size and the chromatic and luminance contrast of annuli surrounding the field-of-view, we were able to assess the effect of field size on the detection of virtual objects in low-resolution synthetic worlds.
De Leo, Gianluca; Diggs, Leigh A; Radici, Elena; Mastaglio, Thomas W
2014-02-01
Virtual-reality solutions have successfully been used to train distributed teams. This study aimed to investigate the correlation between user characteristics and sense of presence in an online virtual-reality environment where distributed teams are trained. A greater sense of presence has the potential to make training in the virtual environment more effective, leading to the formation of teams that perform better in a real environment. Being able to identify, before starting online training, those user characteristics that are predictors of a greater sense of presence can lead to the selection of trainees who would benefit most from the online simulated training. This is an observational study with a retrospective postsurvey of participants' user characteristics and degree of sense of presence. Twenty-nine members from 3 Air Force National Guard Medical Service expeditionary medical support teams participated in an online virtual environment training exercise and completed the Independent Television Commission-Sense of Presence Inventory survey, which measures sense of presence and user characteristics. Nonparametric statistics were applied to determine the statistical significance of user characteristics to sense of presence. Comparing user characteristics to the 4 scales of the Independent Television Commission-Sense of Presence Inventory using Kendall τ test gave the following results: the user characteristics "how often you play video games" (τ(26)=-0.458, P<0.01) and "television/film production knowledge" (τ(27)=-0.516, P<0.01) were significantly related to negative effects. Negative effects refer to adverse physiologic reactions owing to the virtual environment experience such as dizziness, nausea, headache, and eyestrain. The user characteristic "knowledge of virtual reality" was significantly related to engagement (τ(26)=0.463, P<0.01) and negative effects (τ(26)=-0.404, P<0.05). Individuals who have knowledge about virtual environments and experience with gaming environments report a higher sense of presence that indicates that they will likely benefit more from online virtual training. Future research studies could include a larger population of expeditionary medical support, and the results obtained could be used to create a model that predicts the level of presence based on the user characteristics. To maximize results and minimize costs, only those individuals who, based on their characteristics, are supposed to have a higher sense of presence and less negative effects could be selected for online simulated virtual environment training.
Cybersickness and Anxiety During Simulated Motion: Implications for VRET.
Bruck, Susan; Watters, Paul
2009-01-01
Some clinicians have suggested using virtual reality environments to deliver psychological interventions to treat anxiety disorders. However, given a significant body of work on cybersickness symptoms which may arise in virtual environments - especially those involving simulated motion - we tested (a) whether being exposed to a virtual reality environment alone causes anxiety to increase, and (b) whether exposure to simulated motion in a virtual reality environment increases anxiety. Using a repeated measures design, we used Kim's Anxiety Scale questionnaire to compare baseline anxiety, anxiety after virtual environment exposure, and anxiety after simulated motion. While there was no significant effect on anxiety for being in a virtual environment with no simulated motion, the introduction of simulated motion caused anxiety to significantly increase, but not to a severe or extreme level. The implications of this work for virtual reality exposure therapy (VRET) are discussed.
Virtual Reality as an Educational and Training Tool for Medicine.
Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo
2018-02-01
Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.
Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert
2016-07-01
The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P < 0.001), knee angle at peak vGRF (P = 0.01) and knee flexion excursion (P = 0.03). There was larger effect of virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.
Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.
Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan
2016-05-01
Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Telemanipulation, telepresence, and virtual reality for surgery in the year 2000
NASA Astrophysics Data System (ADS)
Satava, Richard M.
1995-12-01
The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts
NASA Astrophysics Data System (ADS)
hong, Zhou; Wenhua, Lu
2017-01-01
Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.
Virtual Reality as Treatment for Fear of Flying: A Review of Recent Research
ERIC Educational Resources Information Center
Price, Matthew; Anderson, Page; Rothbaum, Barbara O.
2008-01-01
Virtual reality exposure has recently emerged as an important tool for exposure therapy in the treatment of fear of flying. There have been numerous empirical studies that have evaluated the effectiveness of virtual reality exposure as compared to other treatments including in vivo exposure, progressive muscle relaxation, cognitive therapy,…
Integrating Music into Math in a Virtual Reality Game: Learning Fractions
ERIC Educational Resources Information Center
Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng
2016-01-01
The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…
Visualizing Compound Rotations with Virtual Reality
ERIC Educational Resources Information Center
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
PTSD in Limb Trauma and Recovery
2011-10-01
Virtual reality and Motion Analysis to Characterize Disabilities in Lower...Program 4: “ Virtual reality and Motion Analysis to Characterize Disabilities in Lower Limb Injury” (Christopher Rhea, Ph.D., lead investigator). This...ANSI Std. Z39.18 ANNUAL REPORT 10/16/2011 VIRTUAL REALITY AND MOTION ANALYSIS TO CHARACTERIZE DISABILITIES IN LOWER LIMB INJURY PI: SUSAN
Treatment of Complicated Grief Using Virtual Reality: A Case Report
ERIC Educational Resources Information Center
Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.
2008-01-01
This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…
ERIC Educational Resources Information Center
Patera, Marianne; Draper, Steve; Naef, Martin
2008-01-01
This paper presents an exploratory study that created a virtual reality environment (VRE) to stimulate motivation and creativity in imaginative writing at primary school level. The main aim of the study was to investigate if an interactive, semi-immersive virtual reality world could increase motivation and stimulate pupils' imagination in the…
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517
Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming
2018-04-03
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.
Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.
Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai
2017-01-01
Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.
Lin, Cheng-Shih; Jeng, Mei-Yuan
2018-01-01
This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012
Shin, Ji-Won; Song, Gui-Bin; Hwangbo, Gak
2015-07-01
[Purpose] The purpose of the study was to evaluate the effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. [Subjects] Sixteen children (9 males, 7 females) with spastic diplegic cerebral palsy were recruited and randomly assigned to the conventional neurological physical therapy group (CG) and virtual reality training group (VRG). [Methods] Eight children in the control group performed 45 minutes of therapeutic exercise twice a week for eight weeks. In the experimental group, the other eight children performed 30 minutes of therapeutic exercise and 15 minutes of a training program using virtual reality twice a week during the experimental period. [Results] After eight weeks of the training program, there were significant differences in eye-hand coordination and visual motor speed in the comparison of the virtual reality training group with the conventional neurological physical therapy group. [Conclusion] We conclude that a well-designed training program using virtual reality can improve eye-hand coordination in children with cerebral palsy.
Virtual rehabilitation: What are the practical barriers for home-based research?
Threapleton, Kate; Drummond, Avril; Standen, Penny
2016-01-01
Virtual reality technologies are becoming increasingly accessible and affordable to deliver, and consequently the interest in applying virtual reality within rehabilitation is growing. This has resulted in the emergence of research exploring the utility of virtual reality and interactive video gaming interventions for home use by patients. The aim of this paper is to highlight the practical factors and difficulties that may be encountered in research in this area, and to make recommendations for addressing these. Whilst this paper focuses on examples drawn mainly from stroke rehabilitation research, many of the issues raised are relevant to other conditions where virtual reality approaches have the potential to be applied to home-based rehabilitation. PMID:29942551
The role of virtual articulator in prosthetic and restorative dentistry.
Koralakunte, Pavankumar Ravi; Aljanakh, Mohammad
2014-07-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator.
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott
2015-01-01
Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.
Zenner, Andre; Kruger, Antonio
2017-04-01
We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia
ERIC Educational Resources Information Center
Tichon, Jennifer; Loh, Jennifer; King, Robert
2004-01-01
Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…
The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development
ERIC Educational Resources Information Center
Chen, Yu-Li
2016-01-01
Virtual reality (VR) has brought about numerous alternative learning opportunities in the last decade, and with modern products such as Oculus Rift and other wearable Virtual Reality technologies being introduced into society, VR will promisingly continue to provide yet unseen opportunities in the next few decades and therefore is a technology…
Naval Science and Technology Future Force Magazine
Issues Contact Us Links RSS Feed Facebook IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING THE [...] Not Just a Fad: Virtual Reality Really Does Benefit the Military IT'S EASY TO SEE THE COST SAVINGS OF VIRTUAL REALITY TRAINING-BUT IS IT AS EFFECTIVE AS, OR EVEN BETTER THAN, OTHER TYPES OF
ERIC Educational Resources Information Center
Yeh, Shih-Ching; Hwang, Wu-Yuin; Wang, Jin-Liang; Zhan, Shi-Yi
2013-01-01
This study intends to investigate how multi-symbolic representations (text, digits, and colors) could effectively enhance the completion of co-located/distant collaborative work in a virtual reality context. Participants' perceptions and behaviors were also studied. A haptics-enhanced virtual reality task was developed to conduct…
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng
2018-01-01
Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…
A Desktop Virtual Reality Earth Motion System in Astronomy Education
ERIC Educational Resources Information Center
Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang
2007-01-01
In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…
The Use of Virtual Reality Tools in the Reading-Language Arts Classroom
ERIC Educational Resources Information Center
Pilgrim, J. Michael; Pilgrim, Jodi
2016-01-01
This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…
Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B
2012-07-01
Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel
2014-08-01
This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.
A virtual tour of virtual reality
NASA Astrophysics Data System (ADS)
Harris, Margaret
2018-03-01
Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco
The effects of virtual reality game exercise on balance and gait of the elderly
Park, Eun-Cho; Kim, Seong-Gil; Lee, Chae-Woo
2015-01-01
[Purpose] The aim of this study was to examine the effects of ball exercise as a general exercise on the balance abilities of elderly individuals by comparing ball exercise with virtual reality exercise. [Subjects and Methods] Thirty elderly individuals residing in communities were randomly divided into a virtual reality game group and a ball exercise group and conducted exercise for 30 min 3 times a week for 8 weeks. [Results] Step length increased significantly, and the average sway speed and Timed Up and Go time significantly decreased in both groups. A comparison of sway length after the intervention between the two groups revealed that the virtual reality game exercise resulted in a reduction than the ball exercise. [Conclusion] The results of this study indicated that the virtual reality game exercise may improve balance and gait of elderly individuals in communities. PMID:25995578
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
NASA Astrophysics Data System (ADS)
Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.
2018-01-01
Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.
Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.
Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios
2017-01-01
To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.
[Real patients in virtual reality: the link between phantom heads and clinical dentistry].
Serrano, C M; Wesselink, P R; Vervoorn, J M
2018-05-01
Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.
Virtual reality, augmented reality…I call it i-Reality.
Grossmann, Rafael J
2015-01-01
The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.
Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence
NASA Astrophysics Data System (ADS)
Cohen, Michael; Newton Fernando, Owen Noel
The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
Multisensory Integration in the Virtual Hand Illusion with Active Movement
Satoh, Satoru; Hachimura, Kozaburo
2016-01-01
Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality. PMID:27847822
The Role of Virtual Articulator in Prosthetic and Restorative Dentistry
Aljanakh, Mohammad
2014-01-01
Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664
Ambient clumsiness in virtual environments
NASA Astrophysics Data System (ADS)
Ruzanka, Silvia; Behar, Katherine
2010-01-01
A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.
Virtual reality exposure therapy for combat-related posttraumatic stress disorder.
Rothbaum, Barbara O; Rizzo, Albert Skip; Difede, JoAnn
2010-10-01
Posttraumatic stress disorder (PTSD) is a chronic, debilitating, psychological condition that occurs in a subset of individuals who experience or witness life-threatening traumatic events. PTSD is highly prevalent in those who served in the military. In this paper, we present the underlying theoretical foundations and existing research on virtual reality exposure therapy, a recently emerging treatment for PTSD. Three virtual reality scenarios used to treat PTSD in active duty military and combat veterans and survivors of terrorism are presented: Virtual Vietnam, Virtual Iraq, and Virtual World Trade Center. Preliminary results of ongoing trials are presented. © 2010 Association for Research in Nervous and Mental Disease.
Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens
ERIC Educational Resources Information Center
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-01-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…
Physical Models and Virtual Reality Simulators in Otolaryngology.
Javia, Luv; Sardesai, Maya G
2017-10-01
The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco
2013-03-01
Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.
Alleviating travel anxiety through virtual reality and narrated video technology.
Ahn, J C; Lee, O
2013-01-01
This study presents an empirical evidence of benefit of narrative video clips in embedded virtual reality websites of hotels for relieving travel anxiety. Even though it was proven that virtual reality functions do provide some relief in travel anxiety, a stronger virtual reality website can be built when narrative video clips that show video clips with narration about important aspects of the hotel. We posit that these important aspects are 1. Escape route and 2. Surrounding neighborhood information, which are derived from the existing research on anxiety disorder as well as travel anxiety. Thus we created a video clip that showed and narrated about the escape route from the hotel room, another video clip that showed and narrated about surrounding neighborhood. We then conducted experiments with this enhanced virtual reality website of a hotel by having human subjects play with the website and fill out a questionnaire. The result confirms our hypothesis that there is a statistically significant relationship between the degree of travel anxiety and psychological relief caused by the use of embedded virtual reality functions with narrative video clips of a hotel website (Tab. 2, Fig. 3, Ref. 26).
AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole
2017-11-01
Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.
The 'mad scientists': psychoanalysis, dream and virtual reality.
Leclaire, Marie
2003-04-01
The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.
Inertial Motion-Tracking Technology for Virtual 3-D
NASA Technical Reports Server (NTRS)
2005-01-01
In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.
Rus-Calafell, M; Garety, P; Sason, E; Craig, T J K; Valmaggia, L R
2018-02-01
Over the last two decades, there has been a rapid increase of studies testing the efficacy and acceptability of virtual reality in the assessment and treatment of mental health problems. This systematic review was carried out to investigate the use of virtual reality in the assessment and the treatment of psychosis. Web of Science, PsychInfo, EMBASE, Scopus, ProQuest and PubMed databases were searched, resulting in the identification of 638 articles potentially eligible for inclusion; of these, 50 studies were included in the review. The main fields of research in virtual reality and psychosis are: safety and acceptability of the technology; neurocognitive evaluation; functional capacity and performance evaluation; assessment of paranoid ideation and auditory hallucinations; and interventions. The studies reviewed indicate that virtual reality offers a valuable method of assessing the presence of symptoms in ecologically valid environments, with the potential to facilitate learning new emotional and behavioural responses. Virtual reality is a promising method to be used in the assessment of neurocognitive deficits and the study of relevant clinical symptoms. Furthermore, preliminary findings suggest that it can be applied to the delivery of cognitive rehabilitation, social skills training interventions and virtual reality-assisted therapies for psychosis. The potential benefits for enhancing treatment are highlighted. Recommendations for future research include demonstrating generalisability to real-life settings, examining potential negative effects, larger sample sizes and long-term follow-up studies. The present review has been registered in the PROSPERO register: CDR 4201507776.
Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching
2014-02-01
Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.
Cochrane review: virtual reality for stroke rehabilitation.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2012-09-01
Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.
Validation of virtual reality as a tool to understand and prevent child pedestrian injury.
Schwebel, David C; Gaines, Joanna; Severson, Joan
2008-07-01
In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.
ERIC Educational Resources Information Center
O'Connor, Eileen A.; Domingo, Jelia
2017-01-01
With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…
So Wide a Web, So Little Time.
ERIC Educational Resources Information Center
McConville, David; And Others
1996-01-01
Discusses new trends in the World Wide Web. Highlights include multimedia; digitized audio-visual files; compression technology; telephony; virtual reality modeling language (VRML); open architecture; and advantages of Java, an object-oriented programming language, including platform independence, distributed development, and pay-per-use software.…
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.
Falconer, Caroline J; Slater, Mel; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Brewin, Chris R
2014-01-01
Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.
Embodying Compassion: A Virtual Reality Paradigm for Overcoming Excessive Self-Criticism
Falconer, Caroline J.; Slater, Mel; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Brewin, Chris R.
2014-01-01
Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions. PMID:25389766
Role of virtual reality for cerebral palsy management.
Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy
2014-08-01
Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.
Kiryu, Tohru; So, Richard H Y
2007-09-25
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.
Kiryu, Tohru; So, Richard HY
2007-01-01
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
ERIC Educational Resources Information Center
Orman, Evelyn K.
2016-01-01
This study examined the effects of virtual reality immersion with audio on eye contact, directional focus and focus of attention for novice wind band conductors. Participants (N = 34) included a control group (n = 12) and two virtual reality groups with (n = 10) and without (n = 12) head tracking. Participants completed conducting/score study…
ERIC Educational Resources Information Center
Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.
2012-01-01
We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…
Future Cyborgs: Human-Machine Interface for Virtual Reality Applications
2007-04-01
FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford
ERIC Educational Resources Information Center
Woodward, John
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the possible contributions of virtual reality technology to educational services for students with disabilities. An example of the use of virtual reality in medical imaging introduces the paper and leads to a brief review of…
ERIC Educational Resources Information Center
Bricken, Meredith; Byrne, Chris M.
The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2015-04-01
virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task
Virtual reality and hallucination: a technoetic perspective
NASA Astrophysics Data System (ADS)
Slattery, Diana R.
2008-02-01
Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.
HTC Vive MeVisLab integration via OpenVR for medical applications
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840
HTC Vive MeVisLab integration via OpenVR for medical applications.
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.
Investigation of virtual reality concept based on system analysis of conceptual series
NASA Astrophysics Data System (ADS)
Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.
2018-05-01
The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.
Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan
2017-06-01
The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Virtual Reality: Real Promises and False Expectations.
ERIC Educational Resources Information Center
Homan, Willem J.
1994-01-01
Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)
Jones, Jake S.
1999-01-01
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.
ERIC Educational Resources Information Center
Jiman, Juhanita
This paper discusses the use of Virtual Reality (VR) in e-learning environments where an intelligent three-dimensional (3D) virtual person plays the role of an instructor. With the existence of this virtual instructor, it is hoped that the teaching and learning in the e-environment will be more effective and productive. This virtual 3D animated…
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe
2018-01-01
Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. PMID:29703715
Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.
NASA Astrophysics Data System (ADS)
Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.
2016-12-01
Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.
Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles
2013-01-01
This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.
Music Audiences 3.0: Concert-Goers' Psychological Motivations at the Dawn of Virtual Reality.
Charron, Jean-Philippe
2017-01-01
Reviewing consumers' motivations to attend performances in a continuously evolving social and technological context is essential because live concerts generate an important and growing share of revenues for the music industry. Evolving fans' preferences and technological innovations constantly alter the way music is distributed and consumed. In a marketing 3.0 era, what consumers do with music is becoming more significant than simply owning or listening to a song. These changes are not only blurring the lines between production and consumption (i.e., co-creation), but also distorting the concept of live attendance altogether. Although mediated performances typically lack presence and authenticity, recent advances in immersive technologies, such as spherical videos and virtual reality goggles, could represent a new form of experiencing live music.
Music Audiences 3.0: Concert-Goers’ Psychological Motivations at the Dawn of Virtual Reality
Charron, Jean-Philippe
2017-01-01
Reviewing consumers’ motivations to attend performances in a continuously evolving social and technological context is essential because live concerts generate an important and growing share of revenues for the music industry. Evolving fans’ preferences and technological innovations constantly alter the way music is distributed and consumed. In a marketing 3.0 era, what consumers do with music is becoming more significant than simply owning or listening to a song. These changes are not only blurring the lines between production and consumption (i.e., co-creation), but also distorting the concept of live attendance altogether. Although mediated performances typically lack presence and authenticity, recent advances in immersive technologies, such as spherical videos and virtual reality goggles, could represent a new form of experiencing live music. PMID:28588528
Virtual Reality Therapy: case study of fear of public speaking.
North, Max M; Schoeneman, Curt M; Mathis, James R
2002-01-01
The major goal of this research case study was to investigate the effectiveness of Virtual Reality Therapy (VRT) in the treatment of the fear of public speaking. A twenty-eight-year-old Caucasian male was selected from questionnaires distributed to a class of undergraduate students enrolled at Kennesaw State University. Two assessment measures were used in this study. The first measure used was the Attitude Towards Public Speaking (ATPS) Questionnaire. The second measure used was the eleven-point Subjective Units of Disturbance (SUD) scale. These measurements assessed the anxiety, avoidance, attitudes and disturbance associated with the subject's fear of public speaking before and after each VRT treatment session. This case study of public speaking fear indicates that VRT may be used as an effective treatment method for reducing self-reported anxiety.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
ERIC Educational Resources Information Center
Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco
2015-01-01
The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Virtual reality and planetary exploration
NASA Astrophysics Data System (ADS)
McGreevy, Michael W.
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Clinician perceptions of virtual reality to assess and treat returning veterans.
Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M
2010-11-01
Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.
Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel
2014-09-06
In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).
Virtual Reality and Simulation in Neurosurgical Training.
Bernardo, Antonio
2017-10-01
Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Laparoscopic baseline ability assessment by virtual reality.
Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M
2005-02-01
Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-11-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-01-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis. PMID:27942130
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Retention of Mastoidectomy Skills After Virtual Reality Simulation Training.
Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-07-01
The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants' cognitive load during retention procedures. A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice. Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed). Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task. Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level. Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.
Use of virtual reality gaming systems for children who are critically ill.
Salem, Yasser; Elokda, Ahmed
2014-01-01
Children who are critically ill are frequently viewed as "too sick" to tolerate physical activity. As a result, these children often fail to develop strength or cardiovascular endurance as compared to typically developing children. Previous reports have shown that early participation in physical activity in is safe and feasible for patients who are critically ill and may result in a shorter length of stay and improved functional outcomes. The use of the virtual reality gaming systems has become a popular form of therapy for children with disabilities and has been supported by a growing body of evidence substantiating its effectiveness with this population. The use of the virtual reality gaming systems in pediatric rehabilitation provides the children with opportunity to participate in an exercise program that is fun, enjoyable, playful, and at the same time beneficial. The integration of those systems in rehabilitation of children who are critically ill is appealing and has the potential to offer the possibility of enhancing physical activities. The lack of training studies involving children who are critically ill makes it difficult to set guidelines on the recommended physical activities and virtual reality gaming systems that is needed to confer health benefits. Several considerations should be taken into account before recommended virtual reality gaming systems as a training program for children who are critically ill. This article highlighted guidelines, limitations and challenges that need to be considered when designing exercise program using virtual reality gaming systems for critically ill children. This information is helpful given the popular use of virtual reality gaming systems in rehabilitation, particularly in children who are critically ill.
Improving flexible thinking in deaf and hard of hearing children with virtual reality technology.
Passig, D; Eden, S
2000-07-01
The study investigated whether rotating three-dimensional (3-D) objects using virtual reality (VR) will affect flexible thinking in deaf and hard of hearing children. Deaf and hard of hearing subjects were distributed into experimental and control groups. The experimental group played virtual 3-D Tetris (a game using VR technology) individually, 15 minutes once weekly over 3 months. The control group played conventional two-dimensional (2-D) Tetris over the same period. Children with normal hearing participated as a second control group in order to establish whether deaf and hard of hearing children really are disadvantaged in flexible thinking. Before-and-after testing showed significantly improved flexible thinking in the experimental group; the deaf and hard of hearing control group showed no significant improvement. Also, before the experiment, the deaf and hard of hearing children scored lower in flexible thinking than the children with normal hearing. After the experiment, the difference between the experimental group and the control group of children with normal hearing was smaller.
Controlled interaction: strategies for using virtual reality to study perception.
Durgin, Frank H; Li, Zhi
2010-05-01
Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.
Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.
Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A
2013-01-01
Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.
Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.
Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M
2015-08-01
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it is beneficial in terms of improving lower limb function and gait and cognitive function.
Jones, J.S.
1999-01-12
An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.
Virtual reality for treatment compliance for people with serious mental illness.
Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E
2014-10-08
Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or adverse effects. Satisfaction with treatment - measured using an un-referenced scale - and reported as "interest in training" was better for the virtual reality group (1 RCT, n = 64, MD 6.00 CI 1.39 to 10.61,low quality evidence). There is no clear good quality evidence for or against using virtual reality for treatment compliance among people with serious mental illness. If virtual reality is used, the experimental nature of the intervention should be clearly explained. High-quality studies should be undertaken in this area to explore any effects of this novel intervention and variations of approach.
Adamovich, S.V.; August, K.; Merians, A.; Tunik, E.
2017-01-01
Purpose Emerging evidence shows that interactive virtual environments (VEs) may be a promising tool for studying sensorimotor processes and for rehabilitation. However, the potential of VEs to recruit action observation-execution neural networks is largely unknown. For the first time, a functional MRI-compatible virtual reality system (VR) has been developed to provide a window into studying brain-behavior interactions. This system is capable of measuring the complex span of hand-finger movements and simultaneously streaming this kinematic data to control the motion of representations of human hands in virtual reality. Methods In a blocked fMRI design, thirteen healthy subjects observed, with the intent to imitate (OTI), finger sequences performed by the virtual hand avatar seen in 1st person perspective and animated by pre-recorded kinematic data. Following this, subjects imitated the observed sequence while viewing the virtual hand avatar animated by their own movement in real-time. These blocks were interleaved with rest periods during which subjects viewed static virtual hand avatars and control trials in which the avatars were replaced with moving non-anthropomorphic objects. Results We show three main findings. First, both observation with intent to imitate and imitation with real-time virtual avatar feedback, were associated with activation in a distributed frontoparietal network typically recruited for observation and execution of real-world actions. Second, we noted a time-variant increase in activation in the left insular cortex for observation with intent to imitate actions performed by the virtual avatar. Third, imitation with virtual avatar feedback (relative to the control condition) was associated with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area, regions which are (along with insular cortex) associated with the sense of agency. Conclusions Our data suggest that the virtual hand avatars may have served as disembodied training tools in the observation condition and as embodied “extensions” of the subject’s own body (pseudo-tools) in the imitation. These data advance our understanding of the brain-behavior interactions when performing actions in VE and have implications in the development of observation- and imitation-based VR rehabilitation paradigms. PMID:19531876
NASA Astrophysics Data System (ADS)
Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.
2015-06-01
This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.
ERIC Educational Resources Information Center
Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken
2010-01-01
As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…
ERIC Educational Resources Information Center
Honebein, Peter C.; Goldsworthy, Richard
2012-01-01
Virtual classrooms and virtual activities have waxed and waned, with most focusing on fostering learning in the cognitive domain and, realistically, most becoming rapidly discontinued. But social virtual realities (SVR) are uniquely "social," so what about interpersonal skills? This article describes the authors' experiences exploring SVR as a…
ERIC Educational Resources Information Center
O'Connor, Eileen A.
2015-01-01
Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…
Lopez Maïté, C; Gaétane, D; Axel, C
2016-01-01
The ability to perform two tasks simultaneously has become increasingly important as attention-demanding technologies have become more common in daily life. This type of attentional resources allocation is commonly called "divided attention". Because of the importance of divided attention in natural world settings, substantial efforts have been made recently so as to promote an integrated, realistic assessment of functional abilities in dual-task paradigms. In this context, virtual reality methods appear to be a good solution. However to date, there has been little discussion on validity of such methods. Here, we offer a comparative review of conventional tools used to assess divided attention and of the first virtual reality studies (mostly from the field of road and pedestrian safety). The ecological character of virtual environments leads to a better understanding of the influence of dual-task settings and also makes it possible to clarify issues such as the utility of hands-free phones. After discussing the theoretical and clinical contributions of these studies, we discuss the limits of virtual reality assessment, focusing in particular: (i) on the challenges associated with lack of familiarity with new technological devices; (ii) on the validity of the ecological character of virtual environments; and (iii) on the question of whether the results obtained in a specific context can be generalized to all dual-task situations typical of daily life. To overcome the limitations associated with virtual reality, we propose: (i) to include a standardized familiarization phase in assessment protocols so as to limit the interference caused by the use of new technologies; (ii) to systematically compare virtual reality performance with conventional tests or real-life tests; and (iii) to design dual-task scenarios that are independent from the patient's expertise on one of the two tasks. We conclude that virtual reality appears to constitute a useful tool when used in combination with more conventional tests. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
2009-09-01
Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to
NASA Technical Reports Server (NTRS)
Saha, Hrishikesh; Palmer, Timothy A.
1996-01-01
Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.
ERIC Educational Resources Information Center
Miller, Carmen
1992-01-01
The first of two articles discusses virtual reality (VR) and online databases; the second one reports on an interview with Thomas A. Furness III, who defines VR and explains work at the Human Interface Technology Laboratory (HIT). Sidebars contain a glossary of VR terms and a conversation with Toni Emerson, the HIT lab's librarian. (LRW)
[Parallel virtual reality visualization of extreme large medical datasets].
Tang, Min
2010-04-01
On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.
Could virtual reality be effective in treating children with phobias?
Bouchard, Stéphane
2011-02-01
The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by numerous outcome studies. Similar research for children is lagging behind. The outcome studies on the use of virtual reality to treat anxiety disorders in children currently address only specific phobias, and all of the available trials are reviewed in this article. Despite the limited number of studies, results are very encouraging for the treatment of school and spider phobias. A study with adolescents suggests that, at least for social anxiety, exposure stimuli would be more effective if they were developed specifically for younger populations. Virtual reality may not increase children's motivation towards therapy unless their fearful apprehension is addressed before initiating the treatment.
Silva, Mauro Rubens
2002-10-01
Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.
Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim
2017-06-01
Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanism and may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social stressors was examined in participants with different liability to psychosis. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra-high risk for psychosis, 42 siblings of patients with psychosis and 53 controls were exposed to social stressors (crowdedness, ethnic minority status and hostility) in a Virtual Reality environment. Heart rate variability parameters and skin conductance levels were measured at baseline and during Virtual Reality experiments. High psychosis liability groups had significantly increased heart rate and decreased heart rate variability compared to low liability groups both at baseline and during Virtual Reality experiments. Both low frequency (LF) and high frequency (HF) power were reduced, while the LF/HF ratio was similar between groups. The number of virtual social stressors significantly affected heart rate, HF, LF/HF and skin conductance level. There was no interaction between psychosis liability and amount of virtual social stress. High liability to psychosis is associated with decreased parasympathetic activity in virtual social environments, which reflects generally high levels of arousal, rather than increased autonomic reactivity to social stressors. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality
NASA Astrophysics Data System (ADS)
Parmar, Dhaval
Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational concepts as a future direction, and presents the challenges faced in implementing the IEIVR metaphor due to extended periods of immersion. Results from the conducted studies help in formulating guidelines for virtual reality and education researchers working in STEM education and training, and for educators and curriculum developers seeking to improve student engagement in the STEM fields.
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
a Methodology to Adapt Photogrammetric Models to Virtual Reality for Oculus Gear VR
NASA Astrophysics Data System (ADS)
Colmenero Fdez, A.
2017-11-01
In this paper, we will expose the process of adapting a high resolution model (laser and photogrammetry) into a virtual reality application for mobile phones. It is a virtual archeology project carried out on the site of Lugo's Mitreo, Spain.
Virtual Reality Calibration for Telerobotic Servicing
NASA Technical Reports Server (NTRS)
Kim, W.
1994-01-01
A virtual reality calibration technique of matching a virtual environment of simulated graphics models in 3-D geometry and perspective with actual camera views of the remote site task environment has been developed to enable high-fidelity preview/predictive displays with calibrated graphics overlay on live video.
Virtual Reality: A New Learning Environment.
ERIC Educational Resources Information Center
Ferrington, Gary; Loge, Kenneth
1992-01-01
Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…
ERIC Educational Resources Information Center
Schwienhorst, Klaus
2002-01-01
Discussion of computer-assisted language learning focuses on the benefits of virtual reality environments, particularly for foreign language contexts. Topics include three approaches to learner autonomy; supporting reflection, including self-awareness; supporting interaction, including collaboration; and supporting experimentation, including…
Effect of virtual reality in Parkinson's disease: a prospective observational study.
Severiano, Maria Izabel Rodrigues; Zeigelboim, Bianca Simone; Teive, Hélio Afonso Ghizoni; Santos, Geslaine Janaína Barbosa; Fonseca, Vinícius Ribas
2018-02-01
To assess the effectiveness of balance exercises by means of virtual reality games in Parkinson's disease. Sixteen patients were submitted to anamnesis, otorhinolaryngological and vestibular examinations, as well as the Dizziness Handicap Inventory, Berg Balance Scale, SF-36 questionnaire, and the SRT, applied before and after rehabilitation with virtual reality games. Final scoring for the Dizziness Handicap Inventory and Berg Balance Scale was better after rehabilitation. The SRT showed a significant result after rehabilitation. The SF-36 showed a significant change in the functional capacity for the Tightrope Walk and Ski Slalom virtual reality games (p < 0.05), as well as in the mental health aspect of the Ski Slalom game (p < 0.05). The Dizziness Handicap Inventory and Berg Balance Scale showed significant changes in the Ski Slalom game (p < 0.05). There was evidence of clinical improvement in patients in the final assessment after virtual rehabilitation. The Tightrope Walk and Ski Slalom virtual games were shown to be the most effective for this population.
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
[Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E
2002-05-01
In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the accuracy and efficacy of 4 dimensional imaging compared to conventional evaluations.
Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning
Vorstenbosch, Marc; Kooloos, Jan
2017-01-01
A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items. PMID:28656109
Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.
Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo
2016-06-28
Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.
Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.
Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan
2017-01-01
A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.
Cai, Jian-liang; Zhang, Yi; Sun, Guo-feng; Li, Ning-chen; Zhang, Xiang-hua; Na, Yan-qun
2012-12-01
To investigate the value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen. After finishing the virtual reality training of basic laparoscopic skills, 26 catechumen were divided randomly into 2 groups, one group undertook advanced laparoscopic skill (suture technique) training with laparoscopic virtual reality simulator (virtual group), another used laparoscopic box trainer (box group). Using our homemade simulations, before grouping and after training, every trainee performed nephropyeloureterostomy under laparoscopy, the running time, anastomosis quality and proficiency were recorded and assessed. For virtual group, the running time, anastomosis quality and proficiency scores before grouping were (98 ± 11) minutes, 3.20 ± 0.41, 3.47 ± 0.64, respectively, after training were (53 ± 8) minutes, 6.87 ± 0.74, 6.33 ± 0.82, respectively, all the differences were statistically significant (all P < 0.01). In box group, before grouping were (98 ± 10) minutes, 3.17 ± 0.39, 3.42 ± 0.67, respectively, after training were (52 ± 9) minutes, 6.08 ± 0.90, 6.33 ± 0.78, respectively, all the differences also were statistically significant (all P < 0.01). After training, the running time and proficiency scores of virtual group were similar to box group (all P > 0.05), however, anstomosis quality scores in virtual group were higher than in box group (P = 0.02). The laparoscopic virtual reality simulator is better than traditional box trainer in advanced laparoscopic suture ability training of catechumen.
Immersive Earth Science: Data Visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Skolnik, S.; Ramirez-Linan, R.
2017-12-01
Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.
Molecular Rift: Virtual Reality for Drug Designers.
Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas
2015-11-23
Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.
The impact of virtual reality on implicit racial bias and mock legal decisions.
Salmanowitz, Natalie
2018-05-01
Implicit racial biases are one of the most vexing problems facing current society. These split-second judgments are not only widely prevalent, but also are notoriously difficult to overcome. Perhaps most concerning, implicit racial biases can have consequential impacts on decisions in the courtroom, where scholars have been unable to provide a viable mitigation strategy. This article examines the influence of a short virtual reality paradigm on implicit racial biases and evaluations of legal scenarios. After embodying a black avatar in the virtual world, participants produced significantly lower implicit racial bias scores than those who experienced a sham version of the virtual reality paradigm. Additionally, these participants more conservatively evaluated an ambiguous legal case, rating vague evidence as less indicative of guilt and rendering more Not Guilty verdicts. As the first experiment of its kind, this study demonstrates the potential of virtual reality to address implicit racial bias in the courtroom setting.
Intercepting real and simulated falling objects: what is the difference?
Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko
2009-10-30
The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.
A haptic interface for virtual simulation of endoscopic surgery.
Rosenberg, L B; Stredney, D
1996-01-01
Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.
Two-photon calcium imaging in mice navigating a virtual reality environment.
Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B
2014-02-20
In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.
Konstantatos, A H; Angliss, M; Costello, V; Cleland, H; Stafrace, S
2009-06-01
Pain arising in burns sufferers is often severe and protracted. The prospect of a dressing change can heighten existing pain by impacting both physically and psychologically. In this trial we examined whether pre-procedural virtual reality guided relaxation added to patient controlled analgesia with morphine reduced pain severity during awake dressings changes in burns patients. We conducted a prospective randomized clinical trial in all patients with burns necessitating admission to a tertiary burns referral centre. Eligible patients requiring awake dressings changes were randomly allocated to single use virtual reality relaxation plus intravenous morphine patient controlled analgesia (PCA) infusion or to intravenous morphine patient controlled analgesia infusion alone. Patients rated their worst pain intensity during the dressing change using a visual analogue scale. The primary outcome measure was presence of 30% or greater difference in pain intensity ratings between the groups in estimation of worst pain during the dressing change. Of 88 eligible and consenting patients having awake dressings changes, 43 were assigned to virtual reality relaxation plus intravenous morphine PCA infusion and 43 to morphine PCA infusion alone. The group receiving virtual reality relaxation plus morphine PCA infusion reported significantly higher pain intensities during the dressing change (mean=7.3) compared with patients receiving morphine PCA alone (mean=5.3) (p=0.003) (95% CI 0.6-2.8). The addition of virtual reality guided relaxation to morphine PCA infusion in burns patients resulted in a significant increase in pain experienced during awake dressings changes. In the absence of a validated predictor for responsiveness to virtual reality relaxation such a therapy cannot be recommended for general use in burns patients having awake dressings changes.
Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.
Semeraro, Federico; Frisoli, Antonio; Bergamasco, Massimo; Cerchiari, Erga L
2009-04-01
The objective of this study was to test acceptance of, and interest in, a newly developed prototype of virtual reality enhanced mannequin (VREM) on a sample of congress attendees who volunteered to participate in the evaluation session and to respond to a specifically designed questionnaire. A commercial Laerdal HeartSim 4000 mannequin was developed to integrate virtual reality (VR) technologies with specially developed virtual reality software to increase the immersive perception of emergency scenarios. To evaluate the acceptance of a virtual reality enhanced mannequin (VREM), we presented it to a sample of 39 possible users. Each evaluation session involved one trainee and two instructors with a standardized procedure and scenario: the operator was invited by the instructor to wear the data-gloves and the head mounted display and was briefly introduced to the scope of the simulation. The instructor helped the operator familiarize himself with the environment. After the patient's collapse, the operator was asked to check the patient's clinical conditions and start CPR. Finally, the patient started to recover signs of circulation and the evaluation session was concluded. Each participant was then asked to respond to a questionnaire designed to explore the trainee's perception in the areas of user-friendliness, realism, and interaction/immersion. Overall, the evaluation of the system was very positive, as was the feeling of immersion and realism of the environment and simulation. Overall, 84.6% of the participants judged the virtual reality experience as interesting and believed that its development could be very useful for healthcare training. The prototype of the virtual reality enhanced mannequin was well-liked, without interfence by interaction devices, and deserves full technological development and validation in emergency medical training.
Rothbaum, Barbara Olasov; Price, Matthew; Jovanovic, Tanja; Norrholm, Seth D; Gerardi, Maryrose; Dunlop, Boadie; Davis, Michael; Bradley, Bekh; Duncan, Erica J; Rizzo, Albert; Ressler, Kerry J
2014-06-01
The authors examined the effectiveness of virtual reality exposure augmented with D-cycloserine or alprazolam, compared with placebo, in reducing posttraumatic stress disorder (PTSD) due to military trauma. After an introductory session, five sessions of virtual reality exposure were augmented with D-cycloserine (50 mg) or alprazolam (0.25 mg) in a double-blind, placebo-controlled randomized clinical trial for 156 Iraq and Afghanistan war veterans with PTSD. PTSD symptoms significantly improved from pre- to posttreatment across all conditions and were maintained at 3, 6, and 12 months. There were no overall differences in symptoms between D-cycloserine and placebo at any time. Alprazolam and placebo differed significantly on the Clinician-Administered PTSD Scale score at posttreatment and PTSD diagnosis at 3 months posttreatment; the alprazolam group showed a higher rate of PTSD (82.8%) than the placebo group (47.8%). Between-session extinction learning was a treatment-specific enhancer of outcome for the D-cycloserine group only. At posttreatment, the D-cycloserine group had the lowest cortisol reactivity and smallest startle response during virtual reality scenes. A six-session virtual reality treatment was associated with reduction in PTSD diagnoses and symptoms in Iraq and Afghanistan veterans, although there was no control condition for the virtual reality exposure. There was no advantage of D-cycloserine for PTSD symptoms in primary analyses. In secondary analyses, alprazolam impaired recovery and D-cycloserine enhanced virtual reality outcome in patients who demonstrated within-session learning. D-cycloserine augmentation reduced cortisol and startle reactivity more than did alprazolam or placebo, findings that are consistent with those in the animal literature.
Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong
2017-11-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Benbouriche, M; Renaud, P; Pelletier, J-F; De Loor, P
2016-12-01
Forensic psychiatry is the field whose expertise is the assessment and treatment of offending behaviours, in particular when offenses are related to mental illness. An underlying question for all etiological models concerns the manner in which an individual's behaviours are organized. Specifically, it becomes crucial to understand how certain individuals come to display maladaptive behaviours in a given environment, especially when considering issues such as offenders' responsibility and their ability to change their behaviours. Thanks to its ability to generate specific environments, associated with a high experimental control on generated simulations, virtual reality is gaining recognition in forensic psychiatry. Virtual reality has generated promising research data and may turn out to be a remarkable clinical tool in the near future. While research has increased, a conceptual work about its theoretical underpinnings is still lacking. However, no important benefit should be expected from the introduction of a new tool (as innovative as virtual reality) without an explicit and heuristic theoretical framework capable of clarifying its benefits in forensic psychiatry. Our paper introduces self-regulation perspective as the most suitable theoretical framework for virtual reality in forensic psychiatry. It will be argued that virtual reality does not solely help to increase ecological validity. However, it does allow one to grant access to an improved understanding of violent offending behaviours by probing into the underlying mechanisms involved in the self-regulation of behaviours in a dynamical environment. Illustrations are given as well as a discussion regarding perspectives in the use of virtual reality in forensic psychiatry. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong
2017-01-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
Virtual Technologies Trends in Education
ERIC Educational Resources Information Center
Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio
2017-01-01
Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.
The Use of Virtual Reality in the Study of People's Responses to Violent Incidents
Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel
2009-01-01
This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762
Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de los Reyes-Guzmán, A; Trincado-Alonso, F; Piazza, S; Polonio-López, B
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra(®) virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.
Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.
2016-01-01
The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η 2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511
ERIC Educational Resources Information Center
Lau, Kung Wong
2015-01-01
Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…
Ergonomic aspects of a virtual environment.
Ahasan, M R; Väyrynen, S
1999-01-01
A virtual environment is an interactive graphic system mediated through computer technology that allows a certain level of reality or a sense of presence to access virtual information. To create reality in a virtual environment, ergonomics issues are explored in this paper, aiming to develop the design of presentation formats with related information, that is possible to attain and to maintain user-friendly application.
ERIC Educational Resources Information Center
Harrington, M. C. R.
2011-01-01
Over the past 20 years, there has been a debate on the effectiveness of virtual reality used for learning with young children, producing many ideas but little empirical proof. This empirical study compared learning activity in situ of a real environment (Real) and a desktop virtual reality (Virtual) environment, built with video game technology,…
Productive confusions: learning from simulations of pandemic virus outbreaks in Second Life
NASA Astrophysics Data System (ADS)
Cárdenas, Micha; Greci, Laura S.; Hurst, Samantha; Garman, Karen; Hoffman, Helene; Huang, Ricky; Gates, Michael; Kho, Kristen; Mehrmand, Elle; Porteous, Todd; Calvitti, Alan; Higginbotham, Erin; Agha, Zia
2011-03-01
Users of immersive virtual reality environments have reported a wide variety of side and after effects including the confusion of characteristics of the real and virtual worlds. Perhaps this side effect of confusing the virtual and real can be turned around to explore the possibilities for immersion with minimal technological support in virtual world group training simulations. This paper will describe observations from my time working as an artist/researcher with the UCSD School of Medicine (SoM) and Veterans Administration San Diego Healthcare System (VASDHS) to develop trainings for nurses, doctors and Hospital Incident Command staff that simulate pandemic virus outbreaks. By examining moments of slippage between realities, both into and out of the virtual environment, moments of the confusion of boundaries between real and virtual, we can better understand methods for creating immersion. I will use the mixing of realities as a transversal line of inquiry, borrowing from virtual reality studies, game studies, and anthropological studies to better understand the mechanisms of immersion in virtual worlds. Focusing on drills conducted in Second Life, I will examine moments of training to learn the software interface, moments within the drill and interviews after the drill.
Lee, Kyoung-Hee
2015-01-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287
Testing the continuum of delusional beliefs: an experimental study using virtual reality.
Freeman, Daniel; Pugh, Katherine; Vorontsova, Natasha; Antley, Angus; Slater, Mel
2010-02-01
A key problem in studying a hypothesized spectrum of severity of delusional ideation is determining that ideas are unfounded. The first objective was to use virtual reality to validate groups of individuals with low, moderate, and high levels of unfounded persecutory ideation. The second objective was to investigate, drawing upon a cognitive model of persecutory delusions, whether clinical and nonclinical paranoia are associated with similar causal factors. Three groups (low paranoia, high nonclinical paranoia, persecutory delusions) of 30 participants were recruited. Levels of paranoia were tested using virtual reality. The groups were compared on assessments of anxiety, worry, interpersonal sensitivity, depression, anomalous perceptual experiences, reasoning, and history of traumatic events. Virtual reality was found to cause no side effects. Persecutory ideation in virtual reality significantly differed across the groups. For the clear majority of the theoretical factors there were dose-response relationships with levels of paranoia. This is consistent with the idea of a spectrum of paranoia in the general population. Persecutory ideation is clearly present outside of clinical groups and there is consistency across the paranoia spectrum in associations with important theoretical variables.
E-Learning Application of Tarsier with Virtual Reality using Android Platform
NASA Astrophysics Data System (ADS)
Oroh, H. N.; Munir, R.; Paseru, D.
2017-01-01
Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.
Lee, Kyoung-Hee
2015-06-01
This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.
NASA Astrophysics Data System (ADS)
Simonetto, E.; Froment, C.; Labergerie, E.; Ferré, G.; Séchet, B.; Chédorge, H.; Cali, J.; Polidori, L.
2013-07-01
Terrestrial Laser Scanning (TLS), 3-D modeling and its Web visualization are the three key steps needed to perform storage and grant-free and wide access to cultural heritage, as highlighted in many recent examples. The goal of this study is to set up 3-D Web resources for "virtually" visiting the exterior of the Abbaye de l'Epau, an old French abbey which has both a rich history and delicate architecture. The virtuality is considered in two ways: the flowing navigation in a virtual reality environment around the abbey and a game activity using augmented reality. First of all, the data acquisition consists in GPS and tacheometry survey, terrestrial laser scanning and photography acquisition. After data pre-processing, the meshed and textured 3-D model is generated using 3-D Reshaper commercial software. The virtual reality visit and augmented reality animation are then created using Unity software. This work shows the interest of such tools in bringing out the regional cultural heritage and making it attractive to the public.
Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.
Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian
2017-01-01
Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.
Subjective visual vertical assessment with mobile virtual reality system.
Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus
2017-01-01
The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.
Dynamic shared state maintenance in distributed virtual environments
NASA Astrophysics Data System (ADS)
Hamza-Lup, Felix George
Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for sensor-based distributed VE that has the potential to improve the system real-time behavior and scalability. (Abstract shortened by UMI.)
The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.
Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian
2018-04-27
Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus, Mark Erik Larsen, Christophe Lemey, Sofian Berrouiguet. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.04.2018.
Kamel Boulos, Maged N; Lu, Zhihan; Guerrero, Paul; Jennett, Charlene; Steed, Anthony
2017-02-20
The latest generation of virtual and mixed reality hardware has rekindled interest in virtual reality GIS (VRGIS) and augmented reality GIS (ARGIS) applications in health, and opened up new and exciting opportunities and possibilities for using these technologies in the personal and public health arenas. From smart urban planning and emergency training to Pokémon Go, this article offers a snapshot of some of the most remarkable VRGIS and ARGIS solutions for tackling public and environmental health problems, and bringing about safer and healthier living options to individuals and communities. The article also covers the main technical foundations and issues underpinning these solutions.
Seamless 3D interaction for virtual tables, projection planes, and CAVEs
NASA Astrophysics Data System (ADS)
Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III
2000-08-01
The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.
The Use of Haptic Display Technology in Education
ERIC Educational Resources Information Center
Barfield, Woodrow
2009-01-01
The experience of "virtual reality" can consist of head-tracked and stereoscopic virtual worlds, spatialized sound, haptic feedback, and to a lesser extent olfactory cues. Although virtual reality systems have been proposed for numerous applications, the field of education is one particular application that seems well-suited for virtual…
Theoretical Bases for Using Virtual Reality in Education
ERIC Educational Resources Information Center
Chen, Chwen Jen
2009-01-01
This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…
Telemedicine, virtual reality, and surgery
NASA Technical Reports Server (NTRS)
Mccormack, Percival D.; Charles, Steve
1994-01-01
Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.
Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P
2004-01-01
Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.
Nomad devices for interactions in immersive virtual environments
NASA Astrophysics Data System (ADS)
George, Paul; Kemeny, Andras; Merienne, Frédéric; Chardonnet, Jean-Rémy; Thouvenin, Indira Mouttapa; Posselt, Javier; Icart, Emmanuel
2013-03-01
Renault is currently setting up a new CAVE™, a 5 rear-projected wall virtual reality room with a combined 3D resolution of 100 Mpixels, distributed over sixteen 4k projectors and two 2k projector as well as an additional 3D HD collaborative powerwall. Renault's CAVE™ aims at answering needs of the various vehicle conception steps [1]. Starting from vehicle Design, through the subsequent Engineering steps, Ergonomic evaluation and perceived quality control, Renault has built up a list of use-cases and carried out an early software evaluation in the four sided CAVE™ of Institute Image, called MOVE. One goal of the project is to study interactions in a CAVE™, especially with nomad devices such as IPhone or IPad to manipulate virtual objects and to develop visualization possibilities. Inspired by nomad devices current uses (multi-touch gestures, IPhone UI look'n'feel and AR applications), we have implemented an early feature set taking advantage of these popular input devices. In this paper, we present its performance through measurement data collected in our test platform, a 4-sided homemade low-cost virtual reality room, powered by ultra-short-range and standard HD home projectors.
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073
Baus, Oliver; Bouchard, Stéphane
2014-01-01
This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware
NASA Technical Reports Server (NTRS)
2007-01-01
STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.
Bashir, Gareth
2010-01-01
Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.
Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.
Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc
2017-01-01
Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149
Teel, Elizabeth; Gay, Michael; Johnson, Brian; Slobounov, Semyon
2016-05-01
Computer-based neuropsychological (NP) evaluation is an effective clinical tool used to assess cognitive function which complements the clinical diagnosis of a concussion. However, some researchers and clinicians argue its lack of ecological validity places limitations on externalizing results to a sensory rich athletic environment. Virtual reality-based NP assessment offers clinical advantages using an immersive environment and evaluating domains not typically assessed by traditional NP assessments. The sensitivity and specificity of detecting lingering cognitive abnormalities was examined on components of a virtual reality-based NP assessment battery to cohort affiliation (concussed vs. controls). Data were retrospectively gathered on 128 controls (no concussion) and 24 concussed college-age athletes on measures of spatial navigation, whole body reaction, attention, and balance in a virtual environment. Concussed athletes were tested within 10 days (M = 8.33, SD = 1.06) of concussion and were clinically asymptomatic at the time of testing. A priori alpha level was set at 0.05 for all tests. Spatial navigation (sensitivity 95.8%/specificity 91.4%, d = 1.89), whole body reaction time (sensitivity 95.2%/specificity 89.1%, d = 1.50) and combined virtual reality modules (sensitivity 95.8%,/specificity 96.1%, d = 3.59) produced high sensitivity/specificity values when determining performance-based variability between groups. Use of a virtual reality-based NP platform can detect lingering cognitive abnormalities resulting from concussion in clinically asymptomatic participants. Virtual reality NP platforms may compliment the traditional concussion assessment battery by providing novel information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito
2017-10-15
Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.
Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C
2011-01-01
Virtual reality (VR), a system of human–computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life–like situations. PMID:21527092
Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta
2015-01-12
Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Hui-Ing; Hwang, Wen-Juh; Fang, Jing-Jing; Kuo, Jui-Kun; Wang, Ching-Yi; Leong, Iat-Fai; Wang, Tsui-Ying
2011-10-01
To investigate whether practising reaching for virtual moving targets would improve motor performance in people with Parkinson's disease. Randomized pretest-posttest control group design. A virtual reality laboratory in a university setting. Thirty-three adults with Parkinson's disease. The virtual reality training required 60 trials of reaching for fast-moving virtual balls with the dominant hand. The control group had 60 practice trials turning pegs with their non-dominant hand. Pretest and posttest required reaching with the dominant hand to grasp real stationary balls and balls moving at different speeds down a ramp. Success rates and kinematic data (movement time, peak velocity and percentage of movement time for acceleration phase) from pretest and posttest were recorded to determine the immediate transfer effects. Compared with the control group, the virtual reality training group became faster (F = 9.08, P = 0.005) and more forceful (F = 9.36, P = 0.005) when reaching for real stationary balls. However, there was no significant difference in success rate or movement kinematics between the two groups when reaching for real moving balls. A short virtual reality training programme improved the movement speed of discrete aiming tasks when participants reached for real stationary objects. However, the transfer effect was minimal when reaching for real moving objects.
Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.
2008-01-01
Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-01-01
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-02-15
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.
Hsu, Su-Yi; Fang, Te-Yung; Yeh, Shih-Ching; Su, Mu-Chun; Wang, Pa-Chun; Wang, Victoria Y
2017-08-01
The purpose of this study was to evaluate a three-dimensional, virtual reality system for vestibular rehabilitation in patients with intractable Ménière's disease and chronic vestibular dysfunction. We included 70 patients (36 for study, 34 as control) with a chronic imbalance problem caused by uncompensated Ménière's disease. The virtual reality vestibular rehabilitation comprised four training tasks (modified Cawthorne-Cooksey exercises: eye, head, extension, and coordination exercises) performed in six training sessions (in 4 weeks). Measurements of the task scores and balance parameters obtained at the baseline and after final training sessions were compared. A significant improvement was observed in extension and coordination scores. Patients in the early stages of Ménière's disease had a significantly greater improvement in the center of gravity sway and trajectory excursion in the mediolateral direction than did patients in the late stages of Ménière's disease. Mild functional disability attributable to Ménière's disease was a predictor of improvement in the statokinesigram and maximum trajectory excursion in the anteroposterior direction after rehabilitation. The control group showed no significant improvement in almost all parameters. Virtual reality vestibular rehabilitation may be useful in patients with Ménière's disease, particular those in the early stages or having mild functional disability. Implication for rehabilitation Chronic imbalance caused by uncompensated Ménière's disease is an indication for vestibular rehabilitation. The interactive virtual reality video game, when integrated into vestibular rehabilitation exercise protocol, may assist patients who have mild disability Ménière's disease and who cannot benefit from treatment with drugs or surgery. The initial data from this study support the applicability of three-dimensional virtual reality technology in vestibular rehabilitation programs. The technology gives professionals a new tool to guide patients for vestibular rehabilitation exercises through three-dimensional virtual reality video game playing. The virtual reality vestibular exercise game can provide patients a step-wise, interactive, dynamic, three-dimensional, and interesting rehabilitation environment.
Performance index for virtual reality phacoemulsification surgery
NASA Astrophysics Data System (ADS)
Söderberg, Per; Laurell, Carl-Gustaf; Simawi, Wamidh; Skarman, Eva; Nordqvist, Per; Nordh, Leif
2007-02-01
We have developed a virtual reality (VR) simulator for phacoemulsification (phaco) surgery. The current work aimed at developing a performance index that characterizes the performance of an individual trainee. We recorded measurements of 28 response variables during three iterated surgical sessions in 9 subjects naive to cataract surgery and 6 experienced cataract surgeons, separately for the sculpting phase and the evacuation phase of phacoemulsification surgery. We further defined a specific performance index for a specific measurement variable and a total performance index for a specific trainee. The distribution function for the total performance index was relatively evenly distributed both for the sculpting and the evacuation phase indicating that parametric statistics can be used for comparison of total average performance indices for different groups in the future. The current total performance index for an individual considers all measurement variables included with the same weight. It is possible that a future development of the system will indicate that a better characterization of a trainee can be obtained if the various measurements variables are given specific weights. The currently developed total performance index for a trainee is statistically an independent observation of that particular trainee.
Manipulation of volumetric patient data in a distributed virtual reality environment.
Dech, F; Ai, Z; Silverstein, J C
2001-01-01
Due to increases in network speed and bandwidth, distributed exploration of medical data in immersive Virtual Reality (VR) environments is becoming increasingly feasible. The volumetric display of radiological data in such environments presents a unique set of challenges. The shear size and complexity of the datasets involved not only make them difficult to transmit to remote sites, but these datasets also require extensive user interaction in order to make them understandable to the investigator and manageable to the rendering hardware. A sophisticated VR user interface is required in order for the clinician to focus on the aspects of the data that will provide educational and/or diagnostic insight. We will describe a software system of data acquisition, data display, Tele-Immersion, and data manipulation that supports interactive, collaborative investigation of large radiological datasets. The hardware required in this strategy is still at the high-end of the graphics workstation market. Future software ports to Linux and NT, along with the rapid development of PC graphics cards, open the possibility for later work with Linux or NT PCs and PC clusters.
ERIC Educational Resources Information Center
Quero, Soledad; Pérez-Ara, M. Ángeles; Bretón-López, Juana; García-Palacios, Azucena; Baños, Rosa M.; Botella, Cristina
2014-01-01
Interoceptive exposure (IE) is a standard component of cognitive-behavioural therapy (CBT) for panic disorder and agoraphobia. The virtual reality (VR) program "Panic-Agoraphobia" has several virtual scenarios designed for applying exposure to agoraphobic situations; it can also simulate physical sensations. This work examines patients'…
Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.
ERIC Educational Resources Information Center
Bell, John T.; Fogler, H. Scott
1996-01-01
A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…
Full Immersive Virtual Environment Cave[TM] in Chemistry Education
ERIC Educational Resources Information Center
Limniou, M.; Roberts, D.; Papadopoulos, N.
2008-01-01
By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…
ERIC Educational Resources Information Center
Ritz, Leah T.; Buss, Alan R.
2016-01-01
Increasing availability of immersive virtual reality (IVR) systems, such as the Cave Automatic Virtual Environment (CAVE) and head-mounted displays, for use in education contexts is providing new opportunities and challenges for instructional designers. By highlighting the affordances of IVR specific to the CAVE, the authors emphasize the…
Using Virtual Reality to Help Students with Social Interaction Skills
ERIC Educational Resources Information Center
Beach, Jason; Wendt, Jeremy
2015-01-01
The purpose of this study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity to…
Innovation Education Enabled through a Collaborative Virtual Reality Learning Environment
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom; Lehtonen, Miika; Ha, Joong Gyu
2006-01-01
This article provides a descriptive account of the development of an approach to the support of design and technology education with 3D Virtual Reality (VR) technologies on an open and distance learning basis. This work promotes an understanding of the implications and possibilities of advanced virtual learning technologies in education for…
NASA Astrophysics Data System (ADS)
Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.
2017-08-01
In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.
Comparing two types of navigational interfaces for Virtual Reality.
Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira
2012-01-01
Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.
Leveraging Virtual Reality for the Benefit of Lunar Exploration
NASA Astrophysics Data System (ADS)
McCandless, R. S.; Burke, E. D.; McGinley, V. T.
2017-10-01
Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.
Immersion and the illusion of presence in virtual reality.
Slater, Mel
2018-05-21
This commentary briefly reviews the history of virtual reality and its use for psychology research, and clarifies the concepts of immersion and the illusion of presence. © 2018 The British Psychological Society.
The combined use of virtual reality exposure in the treatment of agoraphobia.
Pitti, Carmen T; Peñate, Wenceslao; de la Fuente, Juan; Bethencourt, Juan M; Roca-Sánchez, María J; Acosta, Leopoldo; Villaverde, María L; Gracia, Ramón
2015-01-01
This study compares the differential efficacy of three groups of treatments for agoraphobia: paroxetine combined with cognitive-behavioral therapy, paroxetine combined with cognitive-behavioral therapy and virtual reality exposure, and a group with only paroxetine. 99 patients with agoraphobia were finally selected. Both combined treatment groups received 11 sessions of cognitive-behavioral therapy, and one of the groups was also exposed to 4 sessions of virtual reality treatment. Treatments were applied in individual sessions once a week for 3 months. The three treatment groups showed statistically significant improvements. In some measures, combined treatment groups showed greater improvements. The virtual reality exposure group showed greater improvement confronting phobic stimuli. Treatments combining psychopharmacological and psychological therapy showed greater efficacy. Although the use of new technologies led to greater improvement, treatment adherence problems still remain.
Virtual reality exposure therapy for social anxiety disorder: a randomized controlled trial.
Anderson, Page L; Price, Matthew; Edwards, Shannan M; Obasaju, Mayowa A; Schmertz, Stefan K; Zimand, Elana; Calamaras, Martha R
2013-10-01
This is the first randomized trial comparing virtual reality exposure therapy to in vivo exposure for social anxiety disorder. Participants with a principal diagnosis of social anxiety disorder who identified public speaking as their primary fear (N = 97) were recruited from the community, resulting in an ethnically diverse sample (M age = 39 years) of mostly women (62%). Participants were randomly assigned to and completed 8 sessions of manualized virtual reality exposure therapy, exposure group therapy, or wait list. Standardized self-report measures were collected at pretreatment, posttreatment, and 12-month follow-up, and process measures were collected during treatment. A standardized speech task was delivered at pre- and posttreatment, and diagnostic status was reassessed at 3-month follow-up. Analysis of covariance showed that, relative to wait list, people completing either active treatment significantly improved on all but one measure (length of speech for exposure group therapy and self-reported fear of negative evaluation for virtual reality exposure therapy). At 12-month follow-up, people showed significant improvement from pretreatment on all measures. There were no differences between the active treatments on any process or outcome measure at any time, nor differences on achieving partial or full remission. Virtual reality exposure therapy is effective for treating social fears, and improvement is maintained for 1 year. Virtual reality exposure therapy is equally effective as exposure group therapy; further research with a larger sample is needed, however, to better control and statistically test differences between the treatments.
Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen; Petersen, René Horsleben; Konge, Lars
2014-06-01
Video-assisted thoracic surgery is gradually replacing conventional open thoracotomy as the method of choice for the treatment of early-stage non-small cell lung cancers, and thoracic surgical trainees must learn and master this technique. Simulation-based training could help trainees overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. Twenty-eight surgical residents were randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. The groups did not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when comparing bleeding and anatomical and non-anatomical errors. Simulation-based training and targeted instructions enabled the trainees to perform a simulated thoracoscopic lobectomy. Traditional black-box training was more effective than virtual-reality laparoscopy training. Thus, a dedicated simulator for thoracoscopy should be available before establishing systematic virtual-reality training programs for trainees in thoracic surgery.
The Impact of Virtual Reality on Chronic Pain.
Jones, Ted; Moore, Todd; Choo, James
2016-01-01
The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.
A novel augmented reality system of image projection for image-guided neurosurgery.
Mahvash, Mehran; Besharati Tabrizi, Leila
2013-05-01
Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.
ERIC Educational Resources Information Center
Hadipriono, Fabian C.; And Others
An interactive training model called SAVR (Safety in Construction Using Virtual Reality) was developed to train construction students, novice engineers, and construction workers to prevent falls from scaffolding. The model was implemented in a graphics supercomputer, the ONYX Reality Engine2. The SAVR model provides trainees with an immersive,…
The impact of virtual reality on implicit racial bias and mock legal decisions
Salmanowitz, Natalie
2018-01-01
Abstract Implicit racial biases are one of the most vexing problems facing current society. These split-second judgments are not only widely prevalent, but also are notoriously difficult to overcome. Perhaps most concerning, implicit racial biases can have consequential impacts on decisions in the courtroom, where scholars have been unable to provide a viable mitigation strategy. This article examines the influence of a short virtual reality paradigm on implicit racial biases and evaluations of legal scenarios. After embodying a black avatar in the virtual world, participants produced significantly lower implicit racial bias scores than those who experienced a sham version of the virtual reality paradigm. Additionally, these participants more conservatively evaluated an ambiguous legal case, rating vague evidence as less indicative of guilt and rendering more Not Guilty verdicts. As the first experiment of its kind, this study demonstrates the potential of virtual reality to address implicit racial bias in the courtroom setting. PMID:29707220
Ferrer-García, Marta; Gutiérrez-Maldonado, José
2012-01-01
This article reviews research into the use of virtual reality in the study, assessment, and treatment of body image disturbances in eating disorders and nonclinical samples. During the last decade, virtual reality has emerged as a technology that is especially suitable not only for the assessment of body image disturbances but also for its treatment. Indeed, several virtual environment-based software systems have been developed for this purpose. Furthermore, virtual reality seems to be a good alternative to guided imagery and in vivo exposure, and is therefore very useful for studies that require exposure to life-like situations but which are difficult to conduct in the real world. Nevertheless, review highlights the lack of published controlled studies and the presence of methodological drawbacks that should be considered in future studies. This article also discusses the implications of the results obtained and proposes directions for future research. Copyright © 2011 Elsevier Ltd. All rights reserved.
Virtual reality simulation in neurosurgery: technologies and evolution.
Chan, Sonny; Conti, François; Salisbury, Kenneth; Blevins, Nikolas H
2013-01-01
Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.
The effectiveness of virtual reality distraction for pain reduction: a systematic review.
Malloy, Kevin M; Milling, Leonard S
2010-12-01
Virtual reality technology enables people to become immersed in a computer-simulated, three-dimensional environment. This article provides a comprehensive review of controlled research on the effectiveness of virtual reality (VR) distraction for reducing pain. To be included in the review, studies were required to use a between-subjects or mixed model design in which VR distraction was compared with a control condition or an alternative intervention in relieving pain. An exhaustive search identified 11 studies satisfying these criteria. VR distraction was shown to be effective for reducing experimental pain, as well as the discomfort associated with burn injury care. Studies of needle-related pain provided less consistent findings. Use of more sophisticated virtual reality technology capable of fully immersing the individual in a virtual environment was associated with greater relief. Overall, controlled research suggests that VR distraction may be a useful tool for clinicians who work with a variety of pain problems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Simulation Of Assembly Processes With Technical Of Virtual Reality
NASA Astrophysics Data System (ADS)
García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel
2009-11-01
Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.
Agarwal, Nitin; Schmitt, Paul J; Sukul, Vishad; Prestigiacomo, Charles J
2012-08-01
Virtual reality training for complex tasks has been shown to be of benefit in fields involving highly technical and demanding skill sets. The use of a stereoscopic three-dimensional (3D) virtual reality environment to teach a patient-specific analysis of the microsurgical treatment modalities of a complex basilar aneurysm is presented. Three different surgical approaches were evaluated in a virtual environment and then compared to elucidate the best surgical approach. These approaches were assessed with regard to the line-of-sight, skull base anatomy and visualisation of the relevant anatomy at the level of the basilar artery and surrounding structures. Overall, the stereoscopic 3D virtual reality environment with fusion of multimodality imaging affords an excellent teaching tool for residents and medical students to learn surgical approaches to vascular lesions. Future studies will assess the educational benefits of this modality and develop a series of metrics for student assessments.
Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.
O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I
2013-01-01
Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2017-11-07
Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is suggested to be implemented to support the clinical integration of a virtual reality-based assessment for post-stroke hemineglect. To amplify application and usefulness of a virtual-reality based tool in the assessment of post-stroke hemineglect, optimal features identified in the present study should be incorporated in the design of such technology.
NASA Technical Reports Server (NTRS)
Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave
1994-01-01
This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.
DWTP: a basis for networked VR on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang; Schick, Daniel
1998-04-01
Shared virtual worlds are one of today's major research topics. While limited to particular application areas and high speed networks in the past, they become more and more available to a large number of users. One reason for this development was the introduction of VRML (the Virtual Reality Modeling Language), which has been established as a standard of the exchange of 3D worlds on the Internet. Although a number of prototype systems have been developed to realize shared multi-user worlds based on VRML, no suitable network protocol to support the demands of such environments has yet been established. In this paper we will introduce our approach of a network protocol for shared virtual environments: DWTP--the Distributed Worlds Transfer and communication Protocol. We will show how DWTP meets the demands of shared virtual environments on the Internet. We will further present SmallView, our prototype of a distributed multi-user VR system, to show how DWTP can be used to realize shared worlds.
Zhang, Melvyn W B; Ho, Roger C M
2017-01-01
There have been rapid advances in technologies over the past decade and virtual reality technology is an area which is increasingly utilized as a healthcare intervention in many disciplines including that of Medicine, Surgery and Psychiatry. In Psychiatry, most of the current interventions involving the usage of virtual reality technology is limited to its application for anxiety disorders. With the advances in technology, Internet addiction and Internet gaming disorders are increasingly prevalent. To date, these disorders are still being treated using conventional psychotherapy methods such as cognitive behavioural therapy. However, there is an increasing number of research combining various other therapies alongside with cognitive behavioural therapy, as an attempt possibly to reduce the drop-out rates and to make such interventions more relevant to the targeted group of addicts, who are mostly adolescents. To date, there has been a prior study done in Korea that has demonstrated the comparable efficacy of virtual reality therapy with that of cognitive behavioural therapy. However, the intervention requires the usage of specialized screens and devices. It is thus the objective of the current article to highlight how smartphone applications could be designed and be utilized for immersive virtual reality treatment, alongside low cost wearables.
Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.
Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel
2012-02-01
Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.
Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.
Seo, Na Jin; Arun Kumar, Jayashree; Hur, Pilwon; Crocher, Vincent; Motawar, Binal; Lakshminarayanan, Kishor
2016-01-01
The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients' expectations for virtual reality rehabilitation is available. This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lower-cost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements. Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user's changing functional ability, and improving usability of the motion-tracking devices. This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.
Effects of virtual reality programs on balance in functional ankle instability
Kim, Ki-Jong; Heo, Myoung
2015-01-01
[Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle’s static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist. PMID:26644652
Effects of virtual reality programs on balance in functional ankle instability.
Kim, Ki-Jong; Heo, Myoung
2015-10-01
[Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle's static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist.
Fear of falling: efficacy of virtual reality associated with serious games in elderly people.
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Komano, Odile; Millet, Bruno; Jouvent, Roland
2016-01-01
Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants' scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism.
[Virtual reality and dementia].
Diaz-Perez, E; Florez-Lozano, J A
2018-05-16
Virtual reality technology was first used in the treatment of psychological disorders in 1994. Since then, its application has aroused the interest of clinicians and researchers, and it has become a potential tool for use in psychological evaluation and neurorehabilitation. To review the different studies that have been published on the treatment of dementias in which virtual reality has been used, with the aim of evaluating its efficacy. A search was conducted over the last 10 years (2007-2017) in different databases (PubMed, PsycINFO and Dialnet), as well as in Google Scholar. Few studies were found and, judging by the results that were obtained, they cannot be said to be conclusive, although they do offer certain evidence suggesting that virtual reality is a promising field for intervention in persons with dementia. Virtual reality is a growing and very promising area for psychological intervention in general, and more particularly for the treatment of dementia. It seems to enjoy a very favourable acceptance among persons suffering from dementia. Nevertheless, it is important to understand the new technologies as a tool rather than as a substitute for the therapist. Likewise, there is a need for more rigorous and systematic research that determines the efficacy of this kind of intervention.
Challenges to the development of complex virtual reality surgical simulations.
Seymour, N E; Røtnes, J S
2006-11-01
Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
76 FR 64360 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... Institute Special Emphasis Panel, Virtual Reality Technologies for Research and Education in Obesity and..., Virtual Reality Technologies for Research and Education in Obesity and Diabetes. Date: November 7, 2011...
NASA Astrophysics Data System (ADS)
Tong, Xin; Gromala, Diane; Shaw, Chris D.; Williamson, Owen; Iscen, Ozgun E.
2015-03-01
Body image/body schema (BIBS) is within the larger realm of embodied cognition. Its interdisciplinary literature can inspire Virtual Reality (VR) researchers and designers to develop novel ideas and provide them with approaches to human perception and experience. In this paper, we introduced six fundamental ideas in designing interactions in VR, derived from BIBS literature that demonstrates how the mind is embodied. We discuss our own research, ranging from two mature works to a prototype, to support explorations VR interaction design from a BIBS approach. Based on our experiences, we argue that incorporating ideas of embodiment into design practices requires a shift in the perspective or understanding of the human body, perception and experiences, all of which affect interaction design in unique ways. The dynamic, interactive and distributed understanding of cognition guides our approach to interaction design, where the interrelatedness and plasticity of BIBS play a crucial role.
NASA Astrophysics Data System (ADS)
Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu
2000-07-01
This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121045 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (right), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. David Homan assisted Feustel. Photo credit: NASA or National Aeronautics and Space Administration
Virtual reality and telepresence for military medicine.
Satava, R M
1995-03-01
The profound changes brought about by technology in the past few decades are leading to a total revolution in medicine. The advanced technologies of telepresence and virtual reality are but two of the manifestations emerging from our new information age; now all of medicine can be empowered because of this digital technology. The leading edge is on the digital battlefield, where an entire new concept in military medicine is evolving. Using remote sensors, intelligent systems, telepresence surgery and virtual reality surgical simulations, combat casualty care is prepared for the 21st century.
Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.
Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge
2014-05-01
Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.
Thermal feedback in virtual reality and telerobotic systems
NASA Technical Reports Server (NTRS)
Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars
1994-01-01
A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.
A computer-based training system combining virtual reality and multimedia
NASA Technical Reports Server (NTRS)
Stansfield, Sharon A.
1993-01-01
Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.
Pericot-Valverde, Irene; Germeroth, Lisa J; Tiffany, Stephen T
2016-05-01
The cue-reactivity procedure has demonstrated that smokers respond with increases in subjective craving in the presence of smoking-related cues. Virtual reality is an emerging mode of cue presentation for cue-reactivity research. Despite the successful implementation of virtual reality during the last decade, no systematic review has investigated the magnitude of effects across studies. This research systematically reviewed findings from studies using virtual reality in cigarette craving assessment. Eligible studies assessed subjective craving for cigarettes in smokers exposed to smoking-related and neutral environments. Cohen's d was used to assess differences in craving between smoking-related and nonsmoking-related virtual environments. A random effects approach was used to combine effect sizes. A total of 18 studies involving 541 smokers was included in the final analyses. Environments with smoking-related cues produced significant increases in craving relative to environments without smoking-related cues. The mean overall effect size (Cohen's d) was 1.041 (SE = 0.12, 95% CI = 0.81 to 1.28, Z = 8.68, P < .001). The meta-analysis suggested that presentations of smoking cues through virtual reality can produce strong increases in craving among cigarette smokers. This strong cue-reactivity effect, which was comparable in magnitude to the craving effect sizes found with more conventional modes of cue presentation, supports the use of virtual reality for the generation of robust cue-specific craving in cue-reactivity research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Virtual Reality Applications for Stress Management Training in the Military.
Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia
2016-12-01
Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.
Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C
2011-03-01
Virtual reality (VR), a system of human-computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life-like situations. © 2011 Diabetes Technology Society.
Guo, Chunlan; Deng, Hongyan; Yang, Jian
2015-01-01
To assess the effect of virtual reality distraction on pain among patients with a hand injury undergoing a dressing change. Virtual reality distraction can effectively alleviate pain among patients undergoing a dressing change. Clinical research has not addressed pain control during a dressing change. A randomised controlled trial was performed. In the first dressing change sequence, 98 patients were randomly divided into an experimental group and a control group, with 49 cases in each group. Pain levels were compared between the two groups before and after the dressing change using a visual analog scale. The sense of involvement in virtual environments was measured using the Pearson correlation coefficient analysis, which determined the relationship between the sense of involvement and pain level. The difference in visual analog scale scores between the two groups before the dressing change was not statistically significant (t = 0·196, p > 0·05), but the scores became statistically significant after the dressing change (t = -30·792, p < 0·01). The correlation between the sense of involvement in a virtual environment and pain level during the dressing was statistically significant (R(2) = 0·5538, p < 0·05). Virtual reality distraction can effectively alleviate pain among patients with a hand injury undergoing a dressing change. Better results can be obtained by increasing the sense of involvement in a virtual environment. Virtual reality distraction can effectively relieve pain without side effects and is not reliant on a doctor's prescription. This tool is convenient for nurses to use, especially when analgesics are unavailable. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2011-01-01
This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…
Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Smith, Matthew J.; Ginger, Emily J.; Wright, Katherine; Wright, Michael A.; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E.; Bell, Morris D.; Fleming, Michael F.
2014-01-01
The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic…
Introduction to Virtual Reality in Education
ERIC Educational Resources Information Center
Dede, Chris
2009-01-01
As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…
Virtual Reality as a Tool in the Education
ERIC Educational Resources Information Center
Piovesan, Sandra Dutra; Passerino, Liliana Maria; Pereira, Adriana Soares
2012-01-01
The virtual reality is being more and more used in the education, enabling the student to find out, to explore and to build his own knowledge. This paper presents an Educational Software for presence or distance education, for subjects of Formal Language, where the student can manipulate virtually the target that must be explored, analyzed and…
ERIC Educational Resources Information Center
Lau, Kung Wong; Lee, Pui Yuen
2015-01-01
This paper discusses the roles of simulation in creativity education and how to apply immersive virtual environments to enhance students' learning experiences in university, through the provision of interactive simulations. An empirical study of a simulated virtual reality was carried out in order to investigate the effectiveness of providing…
ERIC Educational Resources Information Center
Muhlberger, Andreas; Bulthoff, Heinrich H.; Wiedemann, Georg; Pauli, Paul
2007-01-01
An overall assessment of phobic fear requires not only a verbal self-report of fear but also an assessment of behavioral and physiological responses. Virtual reality can be used to simulate realistic (phobic) situations and therefore should be useful for inducing emotions in a controlled, standardized way. Verbal and physiological fear reactions…
Virtual Worlds vs Books and Videos in History Education
ERIC Educational Resources Information Center
Ijaz, Kiran; Bogdanovych, Anton; Trescak, Tomas
2017-01-01
In this paper, we investigate an application of virtual reality and artificial intelligence (AI) as a technological combination that has a potential to improve the learning experience and engage with the modern generation of students. To address this need, we have created a virtual reality replica of one of humanity's first cities, the city of…
Sensor supervision and multiagent commanding by means of projective virtual reality
NASA Astrophysics Data System (ADS)
Rossmann, Juergen
1998-10-01
When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.
Virtual reality exposure in the treatment of social phobia.
Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre
2004-01-01
Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.
The virtual environment display system
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1991-01-01
Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.
Virtual reality in a children's hospital.
Nihei, K; Shirakawa, K; Isshiki, N; Hirose, M; Iwata, H; Kobayashi, N
1999-01-01
We used virtual reality technology to improve the quality of life and amenity of in-patients in a children's hospital. Children in the hospital could enjoy a zoo, amusement park, and aquarium, in virtual. They played soccer, skiing and horse riding in virtual. They could communicate with persons who were out of the hospital and attend the school which they had gone to before entering hospital. They played music with children who had been admitted to other children's hospitals. By using this virtual technology, the quality of life of children who suffered from psychological and physiological stress in the hospital greatly improved. It is not only useful for their QOL but also for the healing of illness. However, these methods are very rare. Our systemic in our children's hospital is the first to be reported in Japan both software and hardware of virtual reality technology to increase the QOL of sick children need further development.
The challenge of using virtual reality in telerehabilitation.
Rizzo, Albert A; Strickland, Dorothy; Bouchard, Stéphane
2004-01-01
Continuing advances in virtual reality (VR) technology along with concomitant system cost reductions have supported the development of more useful and accessible VR systems that can uniquely target a wide range of physical, psychological, and cognitive rehabilitation concerns and research questions. VR offers the potential to deliver systematic human testing, training, and treatment environments that allow for the precise control of complex dynamic three-dimensional stimulus presentations, within which sophisticated interaction, behavioral tracking, and performance recording is possible. The next step in this evolution will allow for Internet accessibility to libraries of VR scenarios as a likely form of distribution and use. VR applications that are Internet deliverable could open up new possibilities for home-based therapy and rehabilitation. If executed thoughtfully, they could increase client involvement, enhance outcomes and reduce costs. However, before this vision can be achieved, a number of significant challenges will need to be addressed and solved. This article will first present three fictional case vignettes that illustrate the ways that VR telerehabilitation might be implemented with varying degrees of success in the future. We then describe a system that is currently being used to deliver virtual worlds over the Internet for training safety skills to children with learning disabilities. From these illustrative fictional and reality-based applications, we will then briefly discuss the technical, practical, and user-based challenges for implementing VR telerehabilitation, along with views regarding the future of this emerging clinical application.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao
2013-01-01
virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…
Virtual Reality: Therapeutic Tool or Time Bomb?
ERIC Educational Resources Information Center
Cornell, Richard; And Others
1994-01-01
Examines the connection between symptoms commonly related to severe mental illness in individuals, and compares it to the presence of potential "psychic triggers" identified as attributes found in the design and use of virtual reality. (Author/AEF)
Li, Zhen; Han, Xiu-Guo; Sheng, Jing; Ma, Shao-Jun
2016-05-01
To evaluate the effectiveness of virtual reality interventions for improving balance in people after stroke. Systematic review and meta-analysis of randomized controlled trials. Studies were obtained by searching the following databases: MEDLINE, CINAHL, EMBASE, Web of Science and CENTRAL. Two reviewers assessed studies for inclusion, extracted data and assessed trial quality. Sixteen studies involving 428 participants were included. People who received virtual reality interventions showed marked improvements in Berg Balance Scale (mean difference: 1.46, 95% confidence interval: 0.09-2.83, P<0.05, I²=0%) and Timed Up and Go Test (mean difference: -1.62, 95% confidence interval: -3.07- -0.16, P<0.05, I²=24%) compared with controls. This meta-analysis of randomized controlled trials supports the use of virtual reality to improve balance after stroke. © The Author(s) 2015.
Virtual reality gaming in the rehabilitation of the upper extremities post-stroke.
Yates, Michael; Kelemen, Arpad; Sik Lanyi, Cecilia
2016-01-01
Occurrences of strokes often result in unilateral upper limb dysfunction. Dysfunctions of this nature frequently persist and can present chronic limitations to activities of daily living. Research into applying virtual reality gaming systems to provide rehabilitation therapy have seen resurgence. Themes explored in stroke rehab for paretic limbs are action observation and imitation, versatility, intensity and repetition and preservation of gains. Fifteen articles were ultimately selected for review. The purpose of this literature review is to compare the various virtual reality gaming modalities in the current literature and ascertain their efficacy. The literature supports the use of virtual reality gaming rehab therapy as equivalent to traditional therapies or as successful augmentation to those therapies. While some degree of rigor was displayed in the literature, small sample sizes, variation in study lengths and therapy durations and unequal controls reduce generalizability and comparability. Future studies should incorporate larger sample sizes and post-intervention follow-up measures.
Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.
Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno
2015-12-15
The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
Effects of virtual reality training on mobility and physical function in stroke.
Malik, Arshad Nawaz; Masood, Tahir
2017-10-01
Stroke is a common disabling condition which declines the functional and mobility level. The purpose of the case series was to determine the effect of virtual reality training on sensorimotor function and mobility level in stroke patients. Ten male (40-60 year) patients of stroke (08 Infarction, 02 Haemorrhagic) were selected from Physiotherapy department of Pakistan Railway Hospital, Rawalpindi. The additional virtual reality training (15-20 minutes) was provided 03 days per week for 06weeks along with task oriented training. All patients were assessed through Fugl-Meyer Assessment-Lower Extremity (FMA-LE) and Timed Get Up and Go Test (TUG) at baseline and after 06 weeks of training. The results showed that there was significant improvement in mobility level of stroke patients. It is concluded that combination of task oriented and virtual reality training considerably improves the physical performance and mobility level in stroke patients.
Virtual reality as a screening tool for sports concussion in adolescents.
Nolin, Pierre; Stipanicic, Annie; Henry, Mylène; Joyal, Christian C; Allain, Philippe
2012-01-01
There is controversy surrounding the cognitive effects of sports concussion. This study aimed to verify whether the technique of virtual reality could aid in the identification of attention and inhibition deficits in adolescents. A prospective design was used to assess 25 sports-concussed and 25 non-sports-concussed adolescents enrolled in a sport and education programme. Participants were evaluated in immersive virtual reality via ClinicaVR: Classroom-CPT and in real life via the traditional VIGIL-CPT. The neuropsychological assessment using virtual reality showed greater sensitivity to the subtle effects of sports concussion compared to the traditional test, which showed no difference between groups. The results also demonstrated that the sports concussion group reported more symptoms of cybersickness and more intense cybersickness than the control group. Sports concussion was associated with subtle deficits in attention and inhibition. However, further studies are needed to support these results.
Sustained efficacy of virtual reality distraction.
Rutter, Charles E; Dahlquist, Lynnda M; Weiss, Karen E
2009-04-01
The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of 8 weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent 1 baseline cold pressor trial and 1 VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a nonpharmacological analgesic are discussed. This article addresses the concern that the efficacy of virtual reality-assisted distraction from pain could potentially decrease with repeated exposure. The current finding that efficacy did not diminish over several repeated exposures provides support for the use of virtual reality as an adjuvant treatment of pain.
Virtual reality goes to war: a brief review of the future of military behavioral healthcare.
Rizzo, Albert; Parsons, Thomas D; Lange, Belinda; Kenny, Patrick; Buckwalter, John G; Rothbaum, Barbara; Difede, JoAnn; Frazier, John; Newman, Brad; Williams, Josh; Reger, Greg
2011-06-01
Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in returning OEF/OIF military personnel is creating a significant healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. Virtual Reality delivered exposure therapy for PTSD has been previously used with reports of positive outcomes. This article details how virtual reality applications are being designed and implemented across various points in the military deployment cycle to prevent, identify and treat combat-related PTSD in OIF/OEF Service Members and Veterans. The summarized projects in these areas have been developed at the University of Southern California Institute for Creative Technologies, a U.S. Army University Affiliated Research Center, and this paper will detail efforts to use virtual reality to deliver exposure therapy, assess PTSD and cognitive function and provide stress resilience training prior to deployment.
Achieving Presence through Evoked Reality
Pillai, Jayesh S.; Schmidt, Colin; Richir, Simon
2013-01-01
The sense of “Presence” (evolving from “telepresence”) has always been associated with virtual reality research and is still an exceptionally mystifying constituent. Now the study of presence clearly spans over various disciplines associated with cognition. This paper attempts to put forth a concept that argues that it’s an experience of an “Evoked Reality (ER)” (illusion of reality) that triggers an “Evoked Presence (EP)” (sense of presence) in our minds. A Three Pole Reality Model is proposed to explain this phenomenon. The poles range from Dream Reality to Simulated Reality with Primary (Physical) Reality at the center. To demonstrate the relationship between ER and EP, a Reality-Presence Map is developed. We believe that this concept of ER and the proposed model may have significant applications in the study of presence, and in exploring the possibilities of not just virtual reality but also what we call “reality.” PMID:23550234
Needs analysis for developing a virtual-reality NOTES simulator.
Sankaranarayanan, Ganesh; Matthes, Kai; Nemani, Arun; Ahn, Woojin; Kato, Masayuki; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu
2013-05-01
INTRODUCTION AND STUDY AIM: Natural orifice translumenal endoscopic surgery (NOTES) is an emerging surgical technique that requires a cautious adoption approach to ensure patient safety. High-fidelity virtual-reality-based simulators allow development of new surgical procedures and tools and train medical personnel without risk to human patients. As part of a project funded by the National Institutes of Health, we are developing the virtual transluminal endoscopic surgery trainer (VTEST) for this purpose. The objective of this study is to conduct a structured needs analysis to identify the design parameters for such a virtual-reality-based simulator for NOTES. A 30-point questionnaire was distributed at the 2011 National Orifice Surgery Consortium for Assessment and Research meeting to obtain responses from experts. Ordinal logistic regression and the Wilcoxon rank-sum test were used for analysis. A total of 22 NOTES experts participated in the study. Cholecystectomy (CE, 68 %) followed by appendectomy (AE, 63 %) (CE vs AE, p = 0.0521) was selected as the first choice for simulation. Flexible (FL, 47 %) and hybrid (HY, 47 %) approaches were equally favorable compared with rigid (RI, 6 %) with p < 0.001 for both FL versus RI and HY versus RI. The transvaginal approach was preferred 3 to 1 to the transgastric. Most participants preferred two-channel (2C) scopes (65 %) compared with single (1C) or three (3C) or more channels with p < 0.001 for both 2C versus 1C and 2C versus 3C. The importance of force feedback and the utility of a virtual NOTES simulator in training and testing new tools for NOTES were rated very high by the participants. Our study reinforces the importance of developing a virtual NOTES simulator and clearly presents expert preferences. The results of this analysis will direct our initial development of the VTEST platform.
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen
2002-02-01
In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.
The University as a Fully Integrated and Distributed Platform: A Vision
ERIC Educational Resources Information Center
Drucker, Johanna
2014-01-01
The author describes her view on the possibilities of what academic libraries might become or cease to be in a speculative future. Her description seems more like a virtual world than reality. The author writes with the intention of providing insights that might fuel the creation of vital futures for academic libraries and librarians.
Brundage, Shelley B; Brinton, James M; Hancock, Adrienne B
2016-12-01
Virtual reality environments (VREs) allow for immersion in speaking environments that mimic real-life interactions while maintaining researcher control. VREs have been used successfully to engender arousal in other disorders. The purpose of this study was to investigate the utility of virtual reality environments to examine physiological reactivity and subjective ratings of distress in persons who stutter (PWS). Subjective and objective measures of arousal were collected from 10PWS during four-minute speeches to a virtual audience and to a virtual empty room. Stuttering frequency and physiological measures (skin conductance level and heart rate) did not differ across speaking conditions, but subjective ratings of distress were significantly higher in the virtual audience condition compared to the virtual empty room. VREs have utility in elevating subjective ratings of distress in PWS. VREs have the potential to be useful tools for practicing treatment targets in a safe, controlled, and systematic manner. Copyright © 2016 Elsevier Inc. All rights reserved.
de Bruin, E D; Schoene, D; Pichierri, G; Smith, S T
2010-08-01
Virtual augmented exercise, an emerging technology that can help to promote physical activity and combine the strengths of indoor and outdoor exercise, has recently been proposed as having the potential to increase exercise behavior in older adults. By creating a strong presence in a virtual, interactive environment, distraction can be taken to greater levels while maintaining the benefits of indoor exercises which may result in a shift from negative to positive thoughts about exercise. Recent findings on young participants show that virtual reality training enhances mood, thus, increasing enjoyment and energy. For older adults virtual, interactive environments can influence postural control and fall events by stimulating the sensory cues that are responsible in maintaining balance and orientation. However, the potential of virtual reality training has yet to be explored for older adults. This manuscript describes the potential of dance pad training protocols in the elderly and reports on the theoretical rationale of combining physical game-like exercises with sensory and cognitive challenges in a virtual environment.
Neri, Silvia Gr; Cardoso, Jefferson R; Cruz, Lorena; Lima, Ricardo M; de Oliveira, Ricardo J; Iversen, Maura D; Carregaro, Rodrigo L
2017-10-01
To summarize evidence on the effectiveness of virtual reality games and conventional therapy or no-intervention for fall prevention in the elderly. An electronic data search (last searched December 2016) was performed on 10 databases (Web of Science, EMBASE, PUBMED, CINAHL, LILACS, SPORTDiscus, Cochrane Library, Scopus, SciELO, PEDro) and retained only randomized controlled trials. Sample characteristics and intervention parameters were compared, focusing on clinical homogeneity of demographic characteristics, type/duration of interventions, outcomes (balance, reaction time, mobility, lower limb strength and fear of falling) and low risk of bias. Based on homogeneity, a meta-analysis was considered. Two independent reviewers assessed the risk of bias. A total of 28 studies met the inclusion criteria and were appraised ( n: 1121 elderly participants). We found that virtual reality games presented positive effects on balance and fear of falling compared with no-intervention. Virtual reality games were also superior to conventional interventions for balance improvements and fear of falling. The six studies included in the meta-analysis demonstrated that virtual reality games significantly improved mobility and balance after 3-6 and 8-12 weeks of intervention when compared with no-intervention. The risk of bias revealed that less than one-third of the studies correctly described the random sequence generation and allocation concealment procedures. Our review suggests positive clinical effects of virtual reality games for balance and mobility improvements compared with no-treatment and conventional interventions. However, owing to the high risk of bias and large variability of intervention protocols, the evidence remains inconclusive and further research is warranted.
The Impact of Virtual Reality on Chronic Pain
Jones, Ted; Moore, Todd; Choo, James
2016-01-01
The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0–10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted. PMID:27997539
Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat
2017-07-01
In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p < 0.05). Between-group comparisons revealed that the experimental group improved significantly more than control group in hip range of motion and hip generated power at terminal stance at post-training. Our results support the perceived benefits of training programs that incorporate virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.
Luigi Ingrassia, Pier; Ragazzoni, Luca; Carenzo, Luca; Colombo, Davide; Ripoll Gallardo, Alba; Della Corte, Francesco
2015-04-01
This study tested the hypothesis that virtual reality simulation is equivalent to live simulation for testing naive medical students' abilities to perform mass casualty triage using the Simple Triage and Rapid Treatment (START) algorithm in a simulated disaster scenario and to detect the improvement in these skills after a teaching session. Fifty-six students in their last year of medical school were randomized into two groups (A and B). The same scenario, a car accident, was developed identically on the two simulation methodologies: virtual reality and live simulation. On day 1, group A was exposed to the live scenario and group B was exposed to the virtual reality scenario, aiming to triage 10 victims. On day 2, all students attended a 2-h lecture on mass casualty triage, specifically the START triage method. On day 3, groups A and B were crossed over. The groups' abilities to perform mass casualty triage in terms of triage accuracy, intervention correctness, and speed in the scenarios were assessed. Triage and lifesaving treatment scores were assessed equally by virtual reality and live simulation on day 1 and on day 3. Both simulation methodologies detected an improvement in triage accuracy and treatment correctness from day 1 to day 3 (P<0.001). The time to complete each scenario and its decrease from day 1 to day 3 were detected equally in the two groups (P<0.05). Virtual reality simulation proved to be a valuable tool, equivalent to live simulation, to test medical students' abilities to perform mass casualty triage and to detect improvement in such skills.
Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y
2009-05-01
To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.
Verdaasdonk, E G G; Stassen, L P S; van Wijk, R P J; Dankelman, J
2007-02-01
Psychomotor skills for endoscopic surgery can be trained with virtual reality simulators. Distributed training is more effective than massed training, but it is unclear whether distributed training over several days is more effective than distributed training within 1 day. This study aimed to determine which of these two options is the most effective for training endoscopic psychomotor skills. Students with no endoscopic experience were randomly assigned either to distributed training on 3 consecutive days (group A, n = 10) or distributed training within 1 day (group B, n = 10). For this study the SIMENDO virtual reality simulator for endoscopic skills was used. The training involved 12 repetitions of three different exercises (drop balls, needle manipulation, 30 degree endoscope) in differently distributed training schedules. All the participants performed a posttraining test (posttest) for the trained tasks 7 days after the training. The parameters measured were time, nontarget environment collisions, and instrument path length. There were no significant differences between the groups in the first training session for all the parameters. In the posttest, group A (training over several days) performed 18.7% faster than group B (training on 1 day) (p = 0.013). The collision and path length scores for group A did not differ significantly from the scores for group B. The distributed group trained over several days was faster, with the same number of errors and the same instrument path length used. Psychomotor skill training for endoscopic surgery distributed over several days is superior to training on 1 day.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-04-15
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.
Virtual reality therapy in aid of senior citizens' psychological disorders.
North, Max M; Rives, Jason
2003-01-01
The treatment for senior citizens suffering from psychological disorders seems to be different from therapeutic procedures used for other populations. This pilot study is the first known in-depth case study of the effectiveness of virtual reality therapy (VRT) as a treatment for senior citizens. The fear of flying treatment was chosen for this study. The subject of the study was a 62-year-old married female, whose anxiety and avoidance behavior was interfering with her normal activities. For treatment, she was placed in the cabin of a virtual commercial aircraft environment accompanied by a virtual therapist. After a few sessions in which she spent time in a virtual airport scene, she spent four sessions in which she was flown over a simulated city. While under the virtual reality treatment, the subject experienced a number of physical and emotional anxiety-related symptoms. These symptoms included sweaty palms, loss of balance, weakness in the knees, etc. In this study, the virtual reality treatment caused a significant reduction in the anxiety symptoms in the subject and enhanced her ability to face phobic situations in the real world. Since termination of the treatment, she has taken several flights to professional conferences and reported feeling more comfortable and has fewer symptoms than those experienced prior to the VRT treatment.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-01-01
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
Virtual Reality Enhanced Instructional Learning
ERIC Educational Resources Information Center
Nachimuthu, K.; Vijayakumari, G.
2009-01-01
Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…
3D Virtual Reality Check: Learner Engagement and Constructivist Theory
ERIC Educational Resources Information Center
Bair, Richard A.
2013-01-01
The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…
ERIC Educational Resources Information Center
Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.
2013-01-01
This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…
Social interactions in virtual reality exposure therapy: A proof-of-concept pilot study.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Kampmann, Isabel L; Emmelkamp, Paul M G
2015-01-01
Research on virtual reality exposure therapy (VRET) has demonstrated good treatment efficacy with regards to several anxiety disorders. Yet, there is lack of knowledge about the value of integrating interaction between clients and virtual humans in VRET. Such interaction might prove effective in treating psychological complaints that involve social interactions, such as social anxiety. A VRET system specifically designed to expose clients with social anxiety disorder to anxiety provoking social situations was applied to 16 and 18 individuals with high and low levels of social anxiety, respectively. Participants engaged in two exposure sessions in several free speech dialogues with virtual humans while being monitored by a therapist. Participants with high levels of social anxiety reported significantly lower levels of social anxiety three months after exposure to two virtual reality interaction sessions than before treatment (p < 0.01). In the group with low levels of social anxiety, no significant change of social anxiety was reported between pre-treatment and follow-up. Additionally, participants in both groups reported higher self-efficacy three months after treatment than before treatment (ps ≤ 0.001). These findings indicate that virtual reality technology that incorporates social interactions may be successfully applied for therapeutic purposes.
Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe
2018-07-01
Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.
Rehabilitation of Visual and Perceptual Dysfunction After Severe Traumatic Brain Injury
2012-03-26
about this amount. 10 C. Collision judgments in virtual mall walking simulator The virtual mall is a virtual reality model of a real shopping...expanded vision from the prisms (Figure 5b). Figure 4. Illustration of the virtual reality mall set-up and collision judgment task. Participants...1 AD_________________ Award Number: W81XWH-11-2-0082 TITLE: Rehabilitation of Visual and Perceptual Dysfunction after Severe
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
Virtual reality for stroke rehabilitation.
Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria
2017-11-20
Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large number of randomised controlled trials, the evidence remains mostly low quality when rated using the GRADE system. Control groups usually received no intervention or therapy based on a standard-care approach. results were not statistically significant for upper limb function (standardised mean difference (SMD) 0.07, 95% confidence intervals (CI) -0.05 to 0.20, 22 studies, 1038 participants, low-quality evidence) when comparing virtual reality to conventional therapy. However, when virtual reality was used in addition to usual care (providing a higher dose of therapy for those in the intervention group) there was a statistically significant difference between groups (SMD 0.49, 0.21 to 0.77, 10 studies, 210 participants, low-quality evidence). when compared to conventional therapy approaches there were no statistically significant effects for gait speed or balance. Results were statistically significant for the activities of daily living (ADL) outcome (SMD 0.25, 95% CI 0.06 to 0.43, 10 studies, 466 participants, moderate-quality evidence); however, we were unable to pool results for cognitive function, participation restriction, or quality of life. Twenty-three studies reported that they monitored for adverse events; across these studies there were few adverse events and those reported were relatively mild. We found evidence that the use of virtual reality and interactive video gaming was not more beneficial than conventional therapy approaches in improving upper limb function. Virtual reality may be beneficial in improving upper limb function and activities of daily living function when used as an adjunct to usual care (to increase overall therapy time). There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on gait speed, balance, participation, or quality of life. This review found that time since onset of stroke, severity of impairment, and the type of device (commercial or customised) were not strong influencers of outcome. There was a trend suggesting that higher dose (more than 15 hours of total intervention) was preferable as were customised virtual reality programs; however, these findings were not statistically significant.
Zibrek, Katja; Kokkinara, Elena; Mcdonnell, Rachel
2018-04-01
Virtual characters that appear almost photo-realistic have been shown to induce negative responses from viewers in traditional media, such as film and video games. This effect, described as the uncanny valley, is the reason why realism is often avoided when the aim is to create an appealing virtual character. In Virtual Reality, there have been few attempts to investigate this phenomenon and the implications of rendering virtual characters with high levels of realism on user enjoyment. In this paper, we conducted a large-scale experiment on over one thousand members of the public in order to gather information on how virtual characters are perceived in interactive virtual reality games. We were particularly interested in whether different render styles (realistic, cartoon, etc.) would directly influence appeal, or if a character's personality was the most important indicator of appeal. We used a number of perceptual metrics such as subjective ratings, proximity, and attribution bias in order to test our hypothesis. Our main result shows that affinity towards virtual characters is a complex interaction between the character's appearance and personality, and that realism is in fact a positive choice for virtual characters in virtual reality.
Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Tschirschwitz, F.; Deggim, S.
2017-02-01
In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Virtual Reality: Ready or Not!
ERIC Educational Resources Information Center
Lewis, Joan E.
1994-01-01
Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)
Community-based pedestrian safety training in virtual reality : a pragmatic trial.
DOT National Transportation Integrated Search
2015-06-01
Child pedestrian injuries are a leading cause of mortality and morbidity across the United States : and the world. Repeated practice at the cognitive-perceptual task of crossing a street may lead to : safer pedestrian behavior. Virtual reality offers...
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight
NASA Technical Reports Server (NTRS)
2002-01-01
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames
Truck driver fatigue assessment using a virtual reality system.
DOT National Transportation Integrated Search
2016-10-17
In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...
ERIC Educational Resources Information Center
Newby, Gregory B.
1993-01-01
Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…
NASA Astrophysics Data System (ADS)
Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.
2017-11-01
In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170885 (1 Oct. 2010) --- NASA astronauts Alvin Drew (left) and Tim Kopra, both STS-133 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170892 (1 Oct. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170871 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170897 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170873 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121053 (27 Aug. 2010) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
Virtual reality stimuli for force platform posturography.
Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko
2002-01-01
People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.
Encarnação, L Miguel; Bimber, Oliver
2002-01-01
Collaborative virtual environments for diagnosis and treatment planning are increasingly gaining importance in our global society. Virtual and Augmented Reality approaches promised to provide valuable means for the involved interactive data analysis, but the underlying technologies still create a cumbersome work environment that is inadequate for clinical employment. This paper addresses two of the shortcomings of such technology: Intuitive interaction with multi-dimensional data in immersive and semi-immersive environments as well as stereoscopic multi-user displays combining the advantages of Virtual and Augmented Reality technology.
Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali
2018-01-01
Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.
Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho
2016-07-01
[Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng
2013-11-05
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.
Fear of falling: efficacy of virtual reality associated with serious games in elderly people
Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Komano, Odile; Millet, Bruno; Jouvent, Roland
2016-01-01
Objective Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. Methods Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. Results Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants’ scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. Conclusion Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism. PMID:27143889
Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng
2013-01-01
The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611
Optoelectronics technologies for Virtual Reality systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-08-01
Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.
Designing 3 Dimensional Virtual Reality Using Panoramic Image
NASA Astrophysics Data System (ADS)
Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna
The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.
Levy
1996-08-01
New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.
Virtual reality for mobility devices: training applications and clinical results: a review.
Erren-Wolters, Catelijne Victorien; van Dijk, Henk; de Kort, Alexander C; Ijzerman, Maarten J; Jannink, Michiel J
2007-06-01
Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for patients with mobility problems. Computerized literature searches were performed using the MEDLINE, Cochrane, CIRRIE and REHABDATA databases. This resulted in eight peer reviewed journal articles. The included studies could be divided into three categories, on the basis of their study objective. Five studies were related to training driving skills, two to physical exercise training and one to leisure activity. This review suggests that virtual reality is a potentially useful means to improve the use of a mobility device, in training one's driving skills, for keeping up the physical condition and also in a way of leisure time activity. Although this field of research appears to be in its early stages, the included studies pointed out a promising transfer of training in a virtual environment to the real-life use of mobility devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez Anez, Francisco
This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up themore » procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual world thanks to a voice recognition system and a virtual pointing device. The maintenance work is guided with audio instructions, 2D and 3D information are directly displayed into the user's goggles: There is a position-tracking system that allows 3D virtual models to be displayed in the real counterpart positions independently of the user allocation. The user can create his own virtual environment, placing the information required wherever he wants. The STARMATE system is applicable to a large variety of real work situations. (author)« less
Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation
NASA Astrophysics Data System (ADS)
Benko, Attila; Cecilia, Sik Lanyi
This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the possible future research field.
Ruppert, Barb
2011-03-01
Virtual reality is used in marketing research to shape food selection and purchase decisions. Could it be used to counteract the marketing of less-nutritious foods and teach healthier food selection? This article presents interviews with Raymond Burke, Ph.D., of Indiana University Bloomington, and Rachel Jones, M.P.H., of the University of Utah College of Health. Topics covered include new marketing research technologies, including virtual reality simulations; retailing and shopper behavior; and the use of virtual grocery stores to help students explore quality of diet and food/nutrient relationships. The interviewees discuss how the technologies they have developed fit into research and behavior change related to obesity and diabetes. © 2011 Diabetes Technology Society.
New Directions in the Use of Virtual Reality for Food Shopping: Marketing and Education Perspectives
Ruppert, Barb
2011-01-01
Virtual reality is used in marketing research to shape food selection and purchase decisions. Could it be used to counteract the marketing of less-nutritious foods and teach healthier food selection? This article presents interviews with Raymond Burke, Ph.D., of Indiana University Bloomington, and Rachel Jones, M.P.H., of the University of Utah College of Health. Topics covered include new marketing research technologies, including virtual reality simulations; retailing and shopper behavior; and the use of virtual grocery stores to help students explore quality of diet and food/nutrient relationships. The interviewees discuss how the technologies they have developed fit into research and behavior change related to obesity and diabetes. PMID:21527099
Virtual surgical telesimulations in otolaryngology.
Navarro Newball, Andrés A; Hernández, Carlos J; Velez, Jorge A; Munera, Luis E; García, Gregorio B; Gamboa, Carlos A; Reyes, Antonio J
2005-01-01
Distance learning can be enhanced with the use of virtual reality; this paper describes the design and initial validation of a Web Environment for Surgery Skills Training on Otolaryngology (WESST-OT). WESST-OT was created aimed to help trainees to gain the skills required in order to perform the Functional Endoscopic Sinus Surgery procedure (FESS), since training centers and specialist in this knowledge are scarce in Colombia; also, it is part of a web based educational cycle which simulates the stages of a real procedure. WESST-OT is one from the WESST family of telesimulators which started to be developed from an architecture proposed at the Medicine Meets Virtual Reality conference 2002; also, it is a step towards the use of virtual reality technologies in Latin America.
Nifakos, Sokratis; Zary, Nabil
2014-01-01
The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.
Consistency of performance of robot-assisted surgical tasks in virtual reality.
Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N
2009-01-01
The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.
Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T
2007-07-01
Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.
Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.
Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L
2011-03-01
Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.
ERIC Educational Resources Information Center
Reid, Denise
2005-01-01
The Pediatric Volitional Questionnaire (PVQ) was used along with the Test of Playfulness (TOP) to assess 16 children with cerebral palsy who took part in a study of virtual reality play intervention. Both observational measures are designed to assess children as they are engaged in occupations in one or more environments. Virtual reality offers an…
ERIC Educational Resources Information Center
Schatz, Curt; Schaefer, Susan
1997-01-01
A finding that environmental educators are eager to accept Virtual Reality (VR) as a teaching tool prompts two responses: one claims that students cannot critically analyze VR information to determine what is relevant because the VR programmer has already done that; the other points out that corporate propaganda taints the technology and that…
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
Using Virtual Reality To Teach Disability Awareness.
ERIC Educational Resources Information Center
Pivik, Jayne; McComas, Joan; Macfarlane, Ian; Laflamme, Marc
2002-01-01
Describes the design and evaluation of a desktop virtual reality program that was developed to teach children about the accessibility and attitudinal barriers encountered by their peers with mobility impairments. Investigated attitudes, grade levels, familiarity with individuals with a disability, and gender. (Author/LRW)
Sounds of silence: How to animate virtual worlds with sound
NASA Technical Reports Server (NTRS)
Astheimer, Peter
1993-01-01
Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sense of presence and anxiety during virtual social interactions between a human and virtual humans.
Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M G
2014-01-01
Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in social virtual environments. The outcome can prove helpful in using low-cost projection-based virtual reality environments for treating individuals with social phobia.
The electronic-commerce-oriented virtual merchandise model
NASA Astrophysics Data System (ADS)
Fang, Xiaocui; Lu, Dongming
2004-03-01
Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.
Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila
2017-05-01
This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar
2018-02-23
Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. Copyright 2018, Joule Inc. or its licensors.
Ekstrand, Chelsea; Jamal, Ali; Nguyen, Ron; Kudryk, Annalise; Mann, Jennifer; Mendez, Ivar
2018-01-01
Background: Spatial 3-dimensional understanding of the brain is essential to learning neuroanatomy, and 3-dimensional learning techniques have been proposed as tools to enhance neuroanatomy training. The aim of this study was to examine the impact of immersive virtual-reality neuroanatomy training and compare it to traditional paper-based methods. Methods: In this randomized controlled study, participants consisted of first- or second-year medical students from the University of Saskatchewan recruited via email and posters displayed throughout the medical school. Participants were randomly assigned to the virtual-reality group or the paper-based group and studied the spatial relations between neural structures for 12 minutes after performing a neuroanatomy baseline test, with both test and control questions. A postintervention test was administered immediately after the study period and 5-9 days later. Satisfaction measures were obtained. Results: Of the 66 participants randomly assigned to the study groups, 64 were included in the final analysis, 31 in the virtual-reality group and 33 in the paper-based group. The 2 groups performed comparably on the baseline questions and showed significant performance improvement on the test questions following study. There were no significant differences between groups for the control questions, the postintervention test questions or the 7-day postintervention test questions. Satisfaction survey results indicated that neurophobia was decreased. Interpretation: Results from this study provide evidence that training in neuroanatomy in an immersive and interactive virtual-reality environment may be an effective neuroanatomy learning tool that warrants further study. They also suggest that integration of virtual-reality into neuroanatomy training may improve knowledge retention, increase study motivation and decrease neurophobia. PMID:29510979
Tsuda, Kenji; Sudo, Kazuaki; Goto, Goro; Takai, Makiko; Itokawa, Tatsuo; Isshiki, Takahiro; Takei, Naoko; Tanimoto, Tetsuya; Komatsu, Tsunehiko
2016-01-01
Adherence to rehabilitation exercise is much lower in patients with hematologic malignancies (22.5-45.8%) than in patients with solid tumors (60-85%) due to the administration of more intensive chemotherapeutic regimens in the former. Virtual reality exercise can be performed even in a biological clean room and it may improve the adherence rates in elderly patients with hematologic malignancies. Thus, in this pilot study, we aimed to investigate the feasibility and safety of virtual reality exercise intervention using Nintendo Wii Fit in patients with hematologic malignancies receiving chemotherapy. In this feasibility study, 16 hospitalized patients with hematologic malignancies aged ≥60 years performed virtual reality exercise for 20 minutes using the Nintendo Wii Fit once a day, five times a week, from the start of chemotherapy until hospital discharge. The adherence rate, safety, and physical and psychological performances were assessed. The adherence rate for all 16 patients was 66.5%. Nine patients completed the virtual reality exercise intervention with 88 sessions, and the adherence rate was 62.0%. No intervention-related adverse effects >Grade 2, according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0, were observed. We noted maintenance of the physical performance (e.g., Barthel index, handgrip strength, knee extension strength, one-leg standing time, and the scores of timed up and go test and Instrumental Activities of Daily Living) and psychosocial performance (e.g., score of hospital anxiety and depression scale). Virtual reality exercise using the Wii Fit may be feasible, safe and efficacious, as demonstrated in our preliminary results, for patients with hematologic malignancies receiving chemotherapy.
Augmented reality on poster presentations, in the field and in the classroom
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Kolawole, Folarin
2017-04-01
Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.
Optical augmented reality assisted navigation system for neurosurgery teaching and planning
NASA Astrophysics Data System (ADS)
Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng
2013-07-01
This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
2006-01-01
The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.
Ruppert, Barb
2011-03-01
Virtual reality is increasingly used for education and treatment in the fields of health and medicine. What is the health potential of virtual reality technology from the software development industry perspective? This article presents interviews with Ben Sawyer of Games for Health, Dr. Walter Greenleaf of InWorld Solutions, and Dr. Ernie Medina of MedPlay Technologies. Games for Health brings together researchers, medical professionals, and game developers to share information on the impact that game technologies can have on health, health care, and policy. InWorld is an Internet-based virtual environment designed specifically for behavioral health care. MedPlay Technologies develops wellness training programs that include exergaming technology. The interviewees share their views on software development and other issues that must be addressed to advance the field of virtual reality for health applications. © 2011 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.
2017-01-01
Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.
NASA employee utilizes Virtual Reality (VR) equipment
NASA Technical Reports Server (NTRS)
1991-01-01
Bebe Ly of the Information Systems Directorate's Software Technology Branch at JSC gives virtual reality a try. The stero video goggles and headphones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41640 (25 Sept. 2006) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41641 (25 Sept. 2006) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
Collaboration and Dialogue in Virtual Reality
ERIC Educational Resources Information Center
Jensen, Camilla Gyldendahl
2017-01-01
"Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…
Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience
NASA Technical Reports Server (NTRS)
1995-01-01
Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience Research Biocomputation. To study human disorders of balance and space motion sickness. Shown here is a 3D reconstruction of a nerve ending in inner ear, nature's wiring of balance organs.
Mixed reality virtual pets to reduce childhood obesity.
Johnsen, Kyle; Ahn, Sun Joo; Moore, James; Brown, Scott; Robertson, Thomas P; Marable, Amanda; Basu, Aryabrata
2014-04-01
Novel approaches are needed to reduce the high rates of childhood obesity in the developed world. While multifactorial in cause, a major factor is an increasingly sedentary lifestyle of children. Our research shows that a mixed reality system that is of interest to children can be a powerful motivator of healthy activity. We designed and constructed a mixed reality system that allowed children to exercise, play with, and train a virtual pet using their own physical activity as input. The health, happiness, and intelligence of each virtual pet grew as its associated child owner exercised more, reached goals, and interacted with their pet. We report results of a research study involving 61 children from a local summer camp that shows a large increase in recorded and observed activity, alongside observational evidence that the virtual pet was responsible for that change. These results, and the ease at which the system integrated into the camp environment, demonstrate the practical potential to impact the exercise behaviors of children with mixed reality.
VIRTUAL REALITY HYPNOSIS FOR PAIN CONTROL IN A PATIENT WITH GLUTEAL HIDRADENITIS:A CASE REPORT1
SOLTANI, MARYAM; TEELEY, AUBRIANA M.; WIECHMAN, SHELLEY A.; JENSEN, MARK P.; SHARAR, SAM R.; PATTERSON, DAVID R.
2012-01-01
This case report describes the use of hypnotic analgesia induced through immersive three-dimensional computer-generated virtual reality, better known as virtual reality hypnosis (VRH), in the treatment of a patient with ongoing pain associated with gluteal hidradenitis, The patient participated in the study for two consecutive days white hospitalized at a regional trauma centre. At pretreatment, she reported severe pain intensity and unpleasantness as well as high levels of anxiety and nervousness. She was then administered two sessions of virtual reality hypnotic treatment for decreased pain and anxiety. The patient’s ratings of ‘time spent thinking about pain’, pain intensity, ‘unpleasantness of pain’, and anxiety decreased from before to after each daily VRH session, as well as from Day One to Day Two. The findings indicate that VRH may benefit individuals with severe, ongoing pain from a chronic condition, and that a controlled clinical trial examining its efficacy is warranted. PMID:23205274
Virtual reality and robotics for stroke rehabilitation: where do we go from here?
Wade, Eric; Winstein, Carolee J
2011-01-01
Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.