#### Sample records for distributedgeneration system solution

1. Solution of Nonlinear Systems

NASA Technical Reports Server (NTRS)

Turner, L. R.

1960-01-01

The problem of solving systems of nonlinear equations has been relatively neglected in the mathematical literature, especially in the textbooks, in comparison to the corresponding linear problem. Moreover, treatments that have an appearance of generality fail to discuss the nature of the solutions and the possible pitfalls of the methods suggested. Probably it is unrealistic to expect that a unified and comprehensive treatment of the subject will evolve, owing to the great variety of situations possible, especially in the applied field where some requirement of human or mechanical efficiency is always present. Therefore we attempt here simply to pose the problem and to describe and partially appraise the methods of solution currently in favor.

2. Finite solutions of fully fuzzy linear system

Malkawi, Ghassan; Ahmad, Nazihah; Ibrahim, Haslinda

2014-12-01

The solution of Fully Fuzzy Linear System (FFLS) is normally categorized as unique, finite and infinitely many solutions. However, in the case of more than one solution, the finite or alternative solution is not detected when linear programming is considered. Therefore this paper aims to provide a method of using min-max system and absolute system to append new concept for the consistency of FFLS, which is called finite solution of FFLS, where the FFLS have more than two solutions, and not only an infinite solution.

3. Knee System Utilizing Personalized Solutions Instrumentation

MedlinePlus

4. Knee System Utilizing Personalized Solutions Instrumentation

MedlinePlus

5. Solution of Coulomb system in momentum space

SciTech Connect

Lin, D.-H.

2008-02-15

The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.

6. EOS for critical slurry and solution systems

SciTech Connect

DiPeso, G; Peterson, P

1998-10-27

In a fire involving fissile material, the mixture of the fissile material ash with fire fighting water may lead to a criticality excursion if there are nearby sumps that permit a critical geometry. The severity of the resulting energy release and pressure pulse is dependent on the rate at which the mixing occurs. To calculate these excursions, a non-equilibrium equation of state for the water ash mixture or slurry is needed that accounts for the thermal non-equilibrium that occurs due to finite heat transfer rates. We are developing the slurry EOS as well as a lumped neutronic and hydrodynamic model to serve as a testing ground for the non-equilibrium EOS before its incorporation into more sophisticated neutronic-hydrodynamics codes. Though the model lacks spatial dependence, it provides estimates of energy release and pressure pulses for various mixture assembly rates. We are also developing a non-equilibrium EOS for critical solution systems in which the fissile material is dissolved in water, which accounts for chemical non-equilibrium due to finite mass transfer rates. In contrast to previously published solution EOS, our solution EOS specifically accounts for mass diffusion of dissolved radiolytic gas to bubble nucleation sites. This EOS was developed to check our overall modeling against published solution excursion experiments and to compare solution excursions with slurry excursions initiated under the same conditions. Preliminary results indicate a good match between solution EOS calculations and experiments involving premixed 60-80 g U/l solutions for both low rate and high rate reactivity insertions. Comparison between slurry and solution calculations for the same composition show comparable energy release and pressure peaks for both low and high rate reactivity insertions with the slurry releasing less energy but generating more pressure than the solution for the amount of energy released. Calculations more appropriate to actual fire fighting scenarios

7. Flexible solution for interoperable cloud healthcare systems.

PubMed

2012-01-01

It is extremely important for the healthcare domain to have a standardized communication because will improve the quality of information and in the end the resulting benefits will improve the quality of patients' life. The standards proposed to be used are: HL7 CDA and CCD. For a better access to the medical data a solution based on cloud computing (CC) is investigated. CC is a technology that supports flexibility, seamless care, and reduced costs of the medical act. To ensure interoperability between healthcare information systems a solution creating a Web Custom Control is presented. The control shows the database tables and fields used to configure the two standards. This control will facilitate the work of the medical staff and hospital administrators, because they can configure the local system easily and prepare it for communication with other systems. The resulted information will have a higher quality and will provide knowledge that will support better patient management and diagnosis.

8. Automated iodine monitor system. [for aqueous solutions

NASA Technical Reports Server (NTRS)

1973-01-01

The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

9. Rational Solutions for the Fokas System

Rao, Ji-Guang; Wang, Li-Hong; Zhang, Yu; He, Jing-Song

2015-12-01

Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schrödinger equation (Eq. (2), Inverse Problems 10 (1994) L19-L22). By using the bilinear transformation method, general rational solutions for the Fokas system are given explicitly in terms of two order-N determinants τn (n = 0, 1) whose elements m(n)i,j (n = 0, 1; 1 ≤ i, j ≤ N) are involved with order-ni and order-nj derivatives. When N = 1, three kinds of rational solution, i.e., fundamental lump and fundamental rogue wave (RW) with n1 = 1, and higher-order rational solution with n1 ≥ 2, are illustrated by explicit formulas from τn (n = 0, 1) and pictures. The fundamental RW is a line RW possessing a line profile on (x, y)-plane, which arises from a constant background with at t ≪ 0 and then disappears into the constant background gradually at t ≫ 0. The fundamental lump is a traveling wave, which can preserve its profile during the propagation on (x, y)-plane. When N ≥ 2 and n1 = n2 = · · · = nN = 1, several specific multi-rational solutions are given graphically. Supported by the National Natural Science Foundation of China under Grant No. 11271210, the K.C. Wong Magna Fund in Ningbo University

10. Improving cold chain systems: Challenges and solutions.

PubMed

Ashok, Ashvin; Brison, Michael; LeTallec, Yann

2017-04-19

While a number of new vaccines have been rolled out across the developing world (with more vaccines in the pipeline), cold chain systems are struggling to efficiently support national immunization programs in ensuring the availability of safe and potent vaccines. This article reflects on the Clinton Health Access Initiative, Inc. (CHAI) experience working since 2010 with national immunization programs and partners to improve vaccines cold chains in 10 countries-Ethiopia, Nigeria, Kenya, Malawi, Tanzania, Uganda, Cameroon, Mozambique, Lesotho and India - to identify the root causes and solutions for three common issues limiting cold chain performance. Key recommendations include: Collectively, the solutions detailed in this article chart a path to substantially improving the performance of the cold chain. Combined with an enabling global and in-country environment, it is possible to eliminate cold chain issues as a substantial barrier to effective and full immunization coverage over the next few years. Copyright © 2017. Published by Elsevier Ltd.

11. Microfluidic System for Solution Array Based Bioassays

SciTech Connect

Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

2006-02-10

The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

12. The solution for RPR over MSTP system

Tao, Zhiyong; Yang, JiuMin; Liu, Guohui

2004-04-01

The rapid development of the data service has brought great challenge to the traditional telecommunication network. The integrated broadband MAN with large information capability, high subscriber density and multiple sorts of services, is becoming the hot point and competitive focus of the telecommunication field. Resilient packet ring (RPR) is a new metropolitan area network (MAN) technology supporting data transfer among stations interconnected in a dual-ring configuration. Key features of RPR include: Low-delay guaranteed rate, bounded delay committed rate, and best effort service classes; 50 millisecond service restoration following a single station or link failure; Ring capacity reuse downstream of unicast destination (spatial reuse); Weighted fair access to available ring capacity; Point-of-congestion aware flow control (allowing per destination queuing in client). But RPR is belong to layer 2 technology. SDH have already become the dominant optical transport network technology, and it is considered to be one of foundation for the physical layer of the broadband IP network. But SDH is taken as a voice-fit technology. This paper fully make use of RPR & SDH advantages to provide The integrated broadband MAN solution, this is the RPR over MSTP System. The architecture of RPR over MSTP and key technologies of realization of RPR over MSTP node is provided. The main technical specification of RPR over MSTP node is also provided.

13. Optimal parallel solution of sparse triangular systems

NASA Technical Reports Server (NTRS)

1990-01-01

A method for the parallel solution of triangular sets of equations is described that is appropriate when there are many right-handed sides. By preprocessing, the method can reduce the number of parallel steps required to solve Lx = b compared to parallel forward or backsolve. Applications are to iterative solvers with triangular preconditioners, to structural analysis, or to power systems applications, where there may be many right-handed sides (not all available a priori). The inverse of L is represented as a product of sparse triangular factors. The problem is to find a factored representation of this inverse of L with the smallest number of factors (or partitions), subject to the requirement that no new nonzero elements be created in the formation of these inverse factors. A method from an earlier reference is shown to solve this problem. This method is improved upon by constructing a permutation of the rows and columns of L that preserves triangularity and allow for the best possible such partition. A number of practical examples and algorithmic details are presented. The parallelism attainable is illustrated by means of elimination trees and clique trees.

14. Simplified solution of diffraction from a Lyot system

Wang, Yaujen; Vaughan, Arthur H.

1988-01-01

This paper presents a derivation of a simplified analytical solution of diffraction from a Lyot (1939) system designed for observation of the solar corona outside of eclipses. Applying the theorem of Papoulis (1986) to simplify the calculations, a simplified solution is derived which is found to be in reasonable agreement with the exact solution. The simplified solution suffices for the preliminary evaluation of the amount of diffraction reduction needed to meet certain system requirements and also serves as a guideline for further apodization.

15. System solution to improve energy efficiency of HVAC systems

Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

2017-08-01

According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

16. Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions

Pao, C. V.; Ruan, W. H.

2007-09-01

The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.

17. Solution of linear systems by a singular perturbation technique

NASA Technical Reports Server (NTRS)

Ardema, M. D.

1976-01-01

An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

18. Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition

Pao, C. V.; Ruan, W. H.

Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients D(u) may have the property D(0)=0 for some or all i=1,…,N, and the boundary condition is u=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.

19. Extensions to Dynamic System Simulation of Fissile Solution Systems

SciTech Connect

Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

2015-08-24

Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

20. Oscillatory traveling wave solutions to an attractive chemotaxis system

Li, Tong; Liu, Hailiang; Wang, Lihe

2016-12-01

This paper investigates oscillatory traveling wave solutions to an attractive chemotaxis system. The convective part of this system changes its type when crossing a parabola in the phase space. The oscillatory nature of the traveling wave comes from the fact that one far-field state is in the elliptic region and another in the hyperbolic region. Such traveling wave solutions are shown to be linearly unstable. Detailed construction of some traveling wave solutions is presented.

1. L1 limit solutions for control systems

2015-02-01

For a control Cauchy problemsolutions, we believe that various theoretical issues call for a unified notion of trajectory. For instance, this is the case of optimal control problems, possibly with state and endpoint constraints, for which no extra assumptions (like e.g. coercivity, bounded variation, commutativity) are made in advance.

2. COTS Multicore Processors in Avionics Systems: Challenges and Solutions

DTIC Science & Technology

2015-01-06

COTS Multicore Processors in Avionics Systems: Challenges and Solutions Dionisio de Niz Bjorn Andersson and Lutz Wrage dionisio @sei.cmu.edu...Avionics Systems: Challenges and Solutions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wrage / Dionisio de Niz Bjorn

3. National Institute for Rocket Propulsion Systems (NIRPS): Solutions Facilitator

NASA Technical Reports Server (NTRS)

Brown, Tom

2011-01-01

National Institute for Rocket Propulsion Systems (NIRPS) "Solutions" plans to enable our nation's future in rocket propulsion systems by leveraging existing skills and capabilities to support industry's future needs

4. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

SciTech Connect

Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

2014-02-01

A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

5. True Anomalous Osmosis in Multi-Solute Model Membrane Systems

PubMed Central

Grim, Eugene; Sollner, Karl

1960-01-01

The transport of liquid across charged porous membranes separating two electrolytic solutions of different composition consists of both a normal and an anomalous osmotic component. Anomalous osmosis does not occur with electroneutral membranes. Thus, with membranes which can be charged and discharged reversibly, normal osmosis can be measured with the membrane in the electroneutral state, and normal together with anomalous osmosis with the membrane in a charged state, the difference between these two effects being the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, in multi-solute systems with 0.2 and 0.4 osmolar solutions of a variety of electrolytes and of glucose against solutions of other solutes of the same, one-half, and twice these osmolarities. In the simpler systems the magnitude of the true anomalous osmosis can be predicted semiquantitatively by reference to appropriate single-solute systems. In isoosmolar systems with two electrolytic solutions the anomalous osmotic flow rates may reach 300 µl./cm.2 hr. and more; systems with electrolytic solutions against solutions of glucose can produce twice this rate. These fluxes are of the same order of magnitude as the liquid transport rates across such living structures as the mucosa of dog gall bladder, ileum, and urinary bladder. PMID:13708691

6. Minimal Solution of Singular LR Fuzzy Linear Systems

PubMed Central

2014-01-01

In this paper, the singular LR fuzzy linear system is introduced. Such systems are divided into two parts: singular consistent LR fuzzy linear systems and singular inconsistent LR fuzzy linear systems. The capability of the generalized inverses such as Drazin inverse, pseudoinverse, and {1}-inverse in finding minimal solution of singular consistent LR fuzzy linear systems is investigated. PMID:24737977

7. Minimal solution of singular LR fuzzy linear systems.

PubMed

2014-01-01

In this paper, the singular LR fuzzy linear system is introduced. Such systems are divided into two parts: singular consistent LR fuzzy linear systems and singular inconsistent LR fuzzy linear systems. The capability of the generalized inverses such as Drazin inverse, pseudoinverse, and {1}-inverse in finding minimal solution of singular consistent LR fuzzy linear systems is investigated.

8. Periodic Solutions of Hamiltonian Systems: A Survey.

DTIC Science & Technology

1980-12-01

auto - nomous Hamiltonian system has the form: (0.) aH 8Hp -S-(p,q) q ( where d denotes This system can be represented more concisely as (HS) z = ZHz(Z...oscillazioni periodiche d’une sistema dinamico, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 19, (1934), 234-237. [15] Arnold, V. I

9. Systems biology solutions for biochemical production challenges.

PubMed

Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

2017-06-01

10. Highly integrated system solutions for air conditioning.

PubMed

Bartz, Horst

2002-08-01

Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

11. More Student Success: A Systemic Solution

ERIC Educational Resources Information Center

State Higher Education Executive Officers, 2007

2007-01-01

This book tells how to build a system leading to more student success beginning in elementary school and continuing through high school and postsecondary education. It identifies the key elements, describes effective practices, and shows how they come together to help students and educators succeed. "More Student Success" is an updated and…

12. Multiaccommodative stimuli in VR systems: problems & solutions.

PubMed

Marran, L; Schor, C

1997-09-01

Virtual reality environments can introduce multiple and sometimes conflicting accommodative stimuli. For instance, with the high-powered lenses commonly used in head-mounted displays, small discrepancies in screen lens placement, caused by manufacturer error or user adjustment focus error, can change the focal depths of the image by a couple of diopters. This can introduce a binocular accommodative stimulus or, if the displacement between the two screens is unequal, an unequal (anisometropic) accommodative stimulus for the two eyes. Systems that allow simultaneous viewing of virtual and real images can also introduce a conflict in accommodative stimuli: When real and virtual images are at different focal planes, both cannot be in focus at the same time, though they may appear to be in similar locations in space. In this paper four unique designs are described that minimize the range of accommodative stimuli and maximize the visual system's ability to cope efficiently with the focus conflicts that remain: pinhole optics, monocular lens addition combined with aniso-accommodation, chromatic bifocal, and bifocal lens system. The advantages and disadvantages of each design are described and recommendation for design choice is given after consideration of the end use of the virtual reality system (e.g., low or high end, entertainment, technical, or medical use). The appropriate design modifications should allow greater user comfort and better performance.

13. Crystallization in solid solution-aqueous solution systems: Thermodynamic and kinetic approaches

SciTech Connect

Shtukenberg, A. G. Punin, Yu. O.; Azimov, P. Ya.

2010-03-15

A new phenomenological approach is proposed to describe the crystallization kinetics in solid solution-aqueous solution binary systems. The phase diagrams, equilibria, and quasie-quilibria are considered within this approach. The crystallization kinetics near the true equilibrium and the crystallization features at large deviations from equilibrium are discussed on this basis. Special attention is paid to possible interactions in a solution with a seed crystal placed in it. In particular, the interactions leading to the seed's crystal growth or dissolution and to a possible exchange or metasomatic reactions are considered. In addition, the effect of the generated mismatch stress on the crystal growth rate and composition is analyzed.

14. Analytical solutions for systems of partial differential-algebraic equations.

PubMed

Benhammouda, Brahim; Vazquez-Leal, Hector

2014-01-01

This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

15. Boundedness of solutions for reversible system via Moser's twist theorem

Piao, Daxiong; Li, Wenling

2008-05-01

In this paper we consider the problem of the boundedness of all solutions for the reversible system It is shown that all the solutions are bounded provided that the ai(t) (0[less-than-or-equals, slant]i[less-than-or-equals, slant][(n-1)/2]) are of bounded variation in [0,1] and the derivatives of bj(t) and ai(t) are Lipschitzian. It is also shown that there exist ai's being discontinuous everywhere such that all solutions of the equation are bounded. This implies that the continuity of ai's is not necessary for the boundedness of solutions of the equation.

16. Requirements and Solutions for Personalized Health Systems.

PubMed

Blobel, Bernd; Ruotsalainen, Pekka; Lopez, Diego M; Oemig, Frank

2017-01-01

Organizational, methodological and technological paradigm changes enable a precise, personalized, predictive, preventive and participative approach to health and social services supported by multiple actors from different domains at diverse level of knowledge and skills. Interoperability has to advance beyond Information and Communication Technologies (ICT) concerns, including the real world business domains and their processes, but also the individual context of all actors involved. The paper introduces and compares personalized health definitions, summarizes requirements and principles for pHealth systems, and considers intelligent interoperability. It addresses knowledge representation and harmonization, decision intelligence, and usability as crucial issues in pHealth. On this basis, a system-theoretical, ontology-based, policy-driven reference architecture model for open and intelligent pHealth ecosystems and its transformation into an appropriate ICT design and implementation is proposed.

17. Finite-element solutions for geothermal systems

NASA Technical Reports Server (NTRS)

Chen, J. C.; Conel, J. E.

1977-01-01

Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

18. Finite-element solutions for geothermal systems

NASA Technical Reports Server (NTRS)

Chen, J. C.; Conel, J. E.

1977-01-01

Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

19. Iterative solution of high order compact systems

SciTech Connect

Spotz, W.F.; Carey, G.F.

1996-12-31

We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDEs for diffusion, convection-diffusion, and viscous flow applications.

20. The Triple Value Model: A Systems Approach to Sustainable Solutions

EPA Science Inventory

The unintended environmental impacts of economic development threaten the continued availability of ecosystem services that are critical to human well being. An integrated systems approach is needed to characterize sustainability problems and evaluate potential solutions. The T...

1. The Triple Value Model: A Systems Approach to Sustainable Solutions

EPA Science Inventory

The unintended environmental impacts of economic development threaten the continued availability of ecosystem services that are critical to human well being. An integrated systems approach is needed to characterize sustainability problems and evaluate potential solutions. The T...

2. Asymptotic Growth of Solutions of Neutral Type Systems

SciTech Connect

Sklyar, G. M. Polak, P.

2013-06-15

We consider a differential system of neutral type with distributed delay. We obtain a precise norm estimation of semigroup generated by the operator corresponding to the system in question. Our result is based on a spectral analysis of the operator and some uniform estimation of norms of the exponentials of matrices. We also discuss the stability properties of corresponding solutions and the existence of the fastest growing solution.

3. Solvent recovery system provides timely compliance solution

SciTech Connect

1996-11-01

Hoechst Celanese Corp. (Coventry, Rhode Island) faced the challenge of meeting an Environmental Protection Agency (EPA) deadline for solvent recovery within one year. The company also had to ensure that a new solvent recovery system would satisfy Rhode Island state requirements. An initial search for the required technology was fruitless. Finally, MG Industries (Saint Charles, Missouri), an industrial gas supplier, was chosen for the job. Using CRYOSOLV, as the waste stream cools in the cryogenic condenser (heat exchanger), the solvents condense at temperatures below the dewpoint. The recovered solvent can be recycled into the process, while clean gas is vented to the atmosphere.

4. Shear bond strength of the Tenure Solution dentin bonding system.

PubMed

Barkmeier, W W; Cooley, R L

1989-10-01

A liquid solution of an oxalate bonding system containing NTG-GMA and PMDM has become commercially available. The bond strength of this oxalate adhesive (Tenure Solution) to dentin was determined by bonding composite resin cylinders to extracted teeth. The bond strengths obtained in this study are compared to the bond strengths obtained in earlier studies with the first and second generation oxalate adhesives whose components were supplied as powders and required mixing. The oxalate solutions developed significantly higher bond strengths than the original powder type systems.

5. Parallel solution of closely coupled systems

NASA Technical Reports Server (NTRS)

Utku, S.; Salama, M.

1986-01-01

The odd-even permutation and associated unitary transformations for reordering the matrix coefficient A are employed as means of breaking the strong seriality which is characteristic of closely coupled systems. The nested dissection technique is also reviewed, and the equivalence between reordering A and dissecting its network is established. The effect of transforming A with odd-even permutation on its topology and the topology of its Cholesky factors is discussed. This leads to the construction of directed graphs showing the computational steps required for factoring A, their precedence relationships and their sequential and concurrent assignment to the available processors. Expressions for the speed-up and efficiency of using N processors in parallel relative to the sequential use of a single processor are derived from the directed graph. Similar expressions are also derived when the number of available processors is fewer than required.

6. Modeling Complex Chemical Systems: Problems and Solutions

van Dijk, Jan

2016-09-01

Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

7. [The CORBA solution of medical imaging and communication system].

PubMed

Wang, Yong; Lü, Yangsheng; Yu, Hui

2005-02-01

Due to the difficulty of communication and information share between Medical information systems, the Object Management Group issued the software specification of CORBAMed, defining the interfaces of services, and specifying the software architecture of Medical Information System. This paper attempts to use CORBA in Picture Archiving and Communication System (PACS), provides a system model of CORBA solution of PACS, and analyzes the view layers structure of system, finally we discuss the related services of CORBAMed.

8. Numerical solution of multiscale electromagnetic systems

Tobon Llano, Luis Eduardo

The Discontinuous Galerkin time domain (DGTD) method is promising in modeling of realistic multiscale electromagnetic systems. This method defines the basic concept for implementing the communication between multiple domains with different scales. Constructing a DGTD system consists of several careful choices: (a) governing equations; (b) element shape and corresponding basis functions for the spatial discretization of each subdomain; (c) numerical fluxes onto interfaces to bond all subdomains together; and (d) time stepping scheme based on properties of a discretized system. This work present the advances in each one of these steps. First, a unified framework based on the theory of differential forms and the finite element method is used to analyze the discretization of the Maxwell's equations. Based on this study, field intensities (E and H) are associated to 1-forms and curl-conforming basis functions; flux densities (D and B) are associated to 2-forms and divergence-conforming basis functions; and the constitutive relations are defined by Hodge operators. A different approach is the study of numerical dispersion. Semidiscrete analysis is the traditional method, but for high order elements modal analysis is prefered. From these analyses, we conclude that a correct discretization of fields belonging to different p-form (e.g., E and B ) uses basis functions with same order of interpolation; however, different order of interpolation must be used if two fields belong to the same p-form (e.g., E and H). An alternative method to evaluate numerical dispersion based on evaluation of dispersive Hodge operators is also presented. Both dispersion analyses are equivalent and reveal same fundamental results. Eigenvalues, eigenvector and transient results are studied to verify accuracy and computational costs of different schemes. Two different approaches are used for implementing the DG Method. The first is based on E and H fields, which use curl-conforming basis functions

9. Parallel preconditioning for the solution of nonsymmetric banded linear systems

SciTech Connect

Amodio, P.; Mazzia, F.

1994-12-31

Many computational techniques require the solution of banded linear systems. Common examples derive from the solution of partial differential equations and of boundary value problems. In particular the authors are interested in the parallel solution of block Hessemberg linear systems Gx = f, arising from the solution of ordinary differential equations by means of boundary value methods (BVMs), even if the considered preconditioning may be applied to any block banded linear system. BVMs have been extensively investigated in the last few years and their stability properties give promising results. A new class of BVMs called Reverse Adams, which are BV-A-stable for orders up to 6, and BV-A{sub 0}-stable for orders up to 9, have been studied.

10. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

SciTech Connect

Klein, Steven Karl; Determan, John C.

2015-09-14

Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

11. Closed-form solutions of performability. [in computer systems

NASA Technical Reports Server (NTRS)

Meyer, J. F.

1982-01-01

It is noted that if computing system performance is degradable then system evaluation must deal simultaneously with aspects of both performance and reliability. One approach is the evaluation of a system's performability which, relative to a specified performance variable Y, generally requires solution of the probability distribution function of Y. The feasibility of closed-form solutions of performability when Y is continuous are examined. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. Employing an approximate decomposition of the model, it is shown that a closed-form solution can indeed be obtained.

12. Fundamental solutions for stationary Stokes systems with measurable coefficients

Choi, Jongkeun; Yang, Minsuk

2017-10-01

We establish the existence and the pointwise bound of the fundamental solution for the stationary Stokes system with measurable coefficients in the whole space Rd, d ≥ 3, under the assumption that weak solutions of the system are locally Hölder continuous. We also discuss the existence and the pointwise bound of the Green function for the Stokes system with measurable coefficients on Ω, where Ω is an unbounded domain such that the divergence equation is solvable. Such a domain includes, for example, half space and an exterior domain.

13. Solution of a system of dual integral equations.

NASA Technical Reports Server (NTRS)

Buell, J.; Kagiwada, H.; Kalaba, R.; Ruspini, E.; Zagustin, E.

1972-01-01

The solution of a presented system of differential equations with initial values is shown to satisfy a system of dual integral equations of a type appearing in the study of axisymmetric problems of potential theory. Of practical interest are possible applications in biomechanics, particularly, for the case of trauma due to impact.

14. Integrated Learning Systems: The Problems with the Solution.

ERIC Educational Resources Information Center

Bentley, Edward

1991-01-01

Discusses problems with integrated learning systems (ILSs) in the schools, noting they are still an unproven solution to problems in education plagued by many serious limitations. The article recommends dealing with the fundamental problems of the educational system before investing time and money in ILS. (SM)

15. Global stability and exact solution of an arbitrary-solute nonlinear cellular mass transport system.

PubMed

Benson, James D

2014-12-01

The prediction of the cellular state as a function of extracellular concentrations and temperatures has been of interest to physiologists for nearly a century. One of the most widely used models in the field is one where mass flux is linearly proportional to the concentration difference across the membrane. These fluxes define a nonlinear differential equation system for the intracellular state, which when coupled with appropriate initial conditions, define the intracellular state as a function of the extracellular concentrations of both permeating and nonpermeating solutes. Here we take advantage of a reparametrization scheme to extend existing stability results to a more general setting and to a develop analytical solutions to this model for an arbitrary number of extracellular solutes.

16. Asymptotics of solutions of some nonlinear elliptic systems

SciTech Connect

Bidaut-Veron, M.F.; Raoux, T.

1996-12-31

This paper deals with the local and global behaviour of the positive solutions of the semilinear elliptic system in R{sup N} (N{ge}3) {Delta}u+{vert_bar}x{vert_bar}{sup {sigma}}u{sup q}v{sup p+1} =0, {Delta}v+{vert_bar}x{vert_bar}{sup {sigma}}u{sup q+1}v{sup p}=0, where {sigma},p,q{epsilon}R, and p,q>0. Our main results in the fact that the solutions satisfy Harnack inequality when Q = p+q+1<(N+2)/(N-2), which gives local estimates. Without this assumption on Q, we give the precise behaviour of the solutions, provided that these estimates are true. When Q < (N+2)/(N-2), the solutions can also present an anisotropic behaviour. 34 refs.

17. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

NASA Technical Reports Server (NTRS)

Sen, Syamal K.; Shaykhian, Gholam Ali

2011-01-01

Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

18. Finding sets of solutions to systems of nonlinear inequalities

Evtushenko, Yu. G.; Posypkin, M. A.; Rybak, L. A.; Turkin, A. V.

2017-08-01

The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot.

19. Systems Building; A Solution to the Cost Squeeze?

ERIC Educational Resources Information Center

Rogers, A. Robert

1969-01-01

A suggestion that the solution to today's high construction costs for library buildings is through systems building, the key to which is dimensional coordination - relating all the elements that go to make up a building in such a way that the parts will fit together with little or no alteration at the construction site. A supplementary…

20. Systems Building; A Solution to the Cost Squeeze?

ERIC Educational Resources Information Center

Rogers, A. Robert

1969-01-01

A suggestion that the solution to today's high construction costs for library buildings is through systems building, the key to which is dimensional coordination - relating all the elements that go to make up a building in such a way that the parts will fit together with little or no alteration at the construction site. A supplementary…

1. Coherent pulsed excitation of degenerate multistate systems: Exact analytic solutions

SciTech Connect

Kyoseva, E. S.; Vitanov, N. V.

2006-02-15

We show that the solution of a multistate system composed of N degenerate lower (ground) states and one upper (excited) state can be reduced by using the Morris-Shore transformation to the solution of a two-state system involving only the excited state and a (bright) superposition of ground states. In addition, there are N-1 dark states composed of ground states. We use this decomposition to derive analytical solutions for degenerate extensions of the most popular exactly soluble models: the resonance solution, the Rabi, Landau-Zener, Rosen-Zener, Allen-Eberly, and Demkov-Kunike models. We suggest various applications of the multistate solutions, for example, as tools for creating multistate coherent superpositions by generalized resonant {pi} pulses. We show that such generalized {pi} pulses can occur even when the upper state is far off resonance, at specific detunings, which makes it possible to operate in the degenerate ground-state manifold without populating the (possibly lossy) upper state, even transiently.

2. Complexity of Dense Linear System Solution on a Multiprocessor Ring.

DTIC Science & Technology

1985-01-01

Lawrie and Sameh [4] present a technique for solving symmetric positive definite banded systems, which is a generalization of a method for tridiagonal...Numerical Linear Algebra, SIAM Review. 20 (1978), pp. 740-777. [4] D. Lawrie, A.H. Sameh , The Computation and Communication Complexity of a Parallel Banded...409. [7] , Parallel, Iterative Solution of Sparse Linear Systems : Models and Architectures. Technical Report 84-35, ICASE, 1984. (81 A.H. Sameh , On

3. Similarity solutions for systems arising from an Aedes aegypti model

Freire, Igor Leite; Torrisi, Mariano

2014-04-01

In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

4. Problems and solutions of the IFSMTF power and switch system

SciTech Connect

Wood, R.J.; Wintenberg, R.E.; Googe, J.M.; Nickels, L.E.

1985-01-01

Solutions have been found for the problems encountered with the coil power and switching systems of the International Fusion Superconducting Magnet Test Facility (IFSMTF). The coil power system provides the filtered dc sources (+- 12 V dc; 25,000 A) for charging and discharging the coils of the IFSMTF experiment. The switching system provides the means of transferring the coil current into a dump resistor when a rapid discharge of a coil is required due to a coil failure (quench) or other system abnormalities.

5. Systemic solutions for multi-benefit water and environmental management.

PubMed

Everard, Mark; McInnes, Robert

2013-09-01

The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and

6. A new two-component integrable system with peakon solutions

PubMed Central

Xia, Baoqiang; Qiao, Zhijun

2015-01-01

A new two-component system with cubic nonlinearity and linear dispersion: mt=bux+12[m(uv−uxvx)]x−12m(uvx−uxv),nt=bvx+12[n(uv−uxvx)]x+12n(uvx−uxv),m=u−uxx,n=v−vxx,where b is an arbitrary real constant, is proposed in this paper. This system is shown integrable with its Lax pair, bi-Hamiltonian structure and infinitely many conservation laws. Geometrically, this system describes a non-trivial one-parameter family of pseudo-spherical surfaces. In the case b=0, the peaked soliton (peakon) and multi-peakon solutions to this two-component system are derived. In particular, the two-peakon dynamical system is explicitly solved and their interactions are investigated in details. Moreover, a new integrable cubic nonlinear equation with linear dispersion mt=bux+12[m(|u|2−|ux|2)]x−12m(uux∗−uxu∗),m=u−uxx,is obtained by imposing the complex conjugate reduction v=u* to the two-component system. The complex-valued N-peakon solution and kink wave solution to this complex equation are also derived. PMID:25792956

7. Balanced-Viscosity solutions for multi-rate systems

Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe

2016-06-01

Several mechanical systems are modeled by the static momentum balance for the displacement u coupled with a rate-independent flow rule for some internal variable z. We consider a class of abstract systems of ODEs which have the same structure, albeit in a finite-dimensional setting, and regularize both the static equation and the rate-independent flow rule by adding viscous dissipation terms with coefficients εα and ε, where 0 < ε « 1 and α > 0 is a fixed parameter. Therefore for α ≠ 1 u and z have different relaxation rates. We address the vanishing-viscosity analysis as ε ↓ 0 of the viscous system. We prove that, up to a subsequence, (reparameterized) viscous solutions converge to a parameterized curve yielding a Balanced Viscosity solution to the original rate-independent system, and providing an accurate description of the system behavior at jumps. We also give a reformulation of the notion of Balanced Viscosity solution in terms of a system of subdifferential inclusions, showing that the viscosity in u and the one in z are involved in the jump dynamics in different ways, according to whether α > 1, α =1, and α є (0,1).

8. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems

Killawee, J. A.; Fairchild, I. J.; Tison, J.-L.; Janssens, L.; Lorrain, R.

1998-12-01

Low ionic strength waters containing significant calcium and bicarbonate are common in nature, but little literature exists on their behaviour during freezing. Modelling indicates that freezing-induced concentration of solutes (in a closed-system) would lead to progressive increase in calcite saturation index, despite rising partial pressure of CO 2 (PCO 2), but the consequences of CaCO 3 precipitation for the distribution of matter between solid, liquid, and gas phases required experimental investigation. We studied the effects of variations in the rate of advance of an ice-water interface and in the initial degree of saturation for calcite on the behaviour of the system. Downward growth of ice in a 24-cm diameter cylindrical vessel was achieved at a constant linear rate of 3 or 8 mm/h by the progressive cooling of an overlying alcohol reservoir, and the expansion of volume accommodated by regular water sampling through side ports, together with a small expansion chamber. Initial air-saturated solutions (initial PCO 2 in the range 10 -3 to 10 -3.2) were prepared to reflect a range from strongly undersaturated to supersaturated for calcite. Comparative blank experiments were run using deionized water. Ice growth led to enrichment in solutes at the ice-water interface and the creation of a diffusive boundary layer, calculated to be 0.6 mm thick, truncated below by convecting fluid. The first-formed ice (stage 1), was relatively solute-rich because of initial rapid ice nucleation. Where solutions were not strongly supersaturated for calcite this was followed by formation of a solute-poor (stage 2) ice. Ice-interface water segregation coefficients of stage 2 ice were calculated to be 0.0004-0.003 for various solute ions. The relative magnitude of segregation coefficients (Mg 2+ > Ca 2+ > Sr 2+) is attributed to interstitial incorporation (coupled with HCO 3-) in the ice lattice, and controlled by ion size. Air bubbles nucleated once nitrogen supersaturation had

9. Self limiting features of accidental criticality in a solution system

SciTech Connect

Malenfant, R.E.

1988-01-01

Experience with the SHEBA solution critical assembly during validation testing of accidental criticality alarm detectors provided several insights into the character of potential accidental excursions. Two observations were of particular interest. First, it is nearly impossible to maintain a solution system, particularly one employing low-enrichment material, in a constant state. If super-critical, the system will heat up, expand (or form bubbles), return to a sub-critical state, and shut down of its own accord without going into short period oscillations. Second, a very slow change in the system could produce a long ''pulse'' resulting in lengthy exposures, a high dose, but a low dose rate. The experiments dramatically contradicted the popular contention that accidental criticality is characterized by a blue flash, a clap of thunder, and violet expulsion of material. 5 refs., 3 figs., 4 tabs.

10. Discontinuous solutions to hyperbolic systems under operator splitting

NASA Technical Reports Server (NTRS)

Roe, P. L.

1987-01-01

Two-dimensional systems of linear hyperbolic equations are studied with regard to their behavior under a solution strategy that in alternate time-steps solves exactly the component one-dimensional operators. The initial data is a step function across an oblique discontinuity. The manner in which this discontinuity breaks up under repeated applications of the split operator is analyzed, and it is shown that the split solution will fail to match the true solution in any case where the two operators do not share all their eigenvectors. The special case of the fluid flow equations is analyzed in more detail, and it is shown that arbitrary initial data gives rise to pseudo acoustic waves and a non-physical stationary wave. The implications of these findings for the design of high-resolution computing schemes are discussed.

11. Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems

Buică, Adriana; Llibre, Jaume; Makarenkov, Oleg

The paper addresses the problem of bifurcation of periodic solutions from a normally nondegenerate family of periodic solutions of ordinary differential equations under perturbations. The approach to solve this problem can be described as transforming (by a Lyapunov-Schmidt reduction) the initial system into one which is in the standard form of averaging, and subsequently applying the averaging principle. This approach encounters a fundamental problem when the perturbation is only Lipschitz (nonsmooth) as we do not longer have smooth Lyapunov-Schmidt projectors. The situation of Lipschitz perturbations has been addressed in the literature lately and the results obtained conclude the existence of the bifurcated branch of periodic solutions. Motivated by recent challenges in control theory, we are interested in the uniqueness problem. We achieve this in the case when the Lipschitz constant of the perturbation obeys a suitable estimate.

12. Distributed heterogeneous inspecting system and its middleware-based solution.

PubMed

Huang, Li-can; Wu, Zhao-hui; Pan, Yun-he

2003-01-01

There are many cases when an organization needs to monitor the data and operations of its supervised departments, especially those departments which are not owned by this organization and are managed by their own information systems. Distributed Heterogeneous Inspecting System (DHIS) is the system an organization uses to monitor its supervised departments by inspecting their information systems. In DHIS, the inspected systems are generally distributed, heterogeneous, and constructed by different companies. DHIS has three key processes-abstracting core data sets and core operation sets, collecting these sets, and inspecting these collected sets. In this paper, we present the concept and mathematical definition of DHIS, a metadata method for solving the interoperability, a security strategy for data transferring, and a middleware-based solution of DHIS. We also describe an example of the inspecting system at WENZHOU custom.

13. The Felin soldier system: a tailored solution for networked operations

Le Sueur, Philippe

2007-04-01

Sagem Defense Securite has been awarded a 800M euro contract for the French infantrymen modernisation programme. This programme covers the development, the qualification and the production of about 32 000 soldier systems to equip all the French infantry starting fielding in 2008. The FELIN soldier system provides the infantryman with an integrated system increasing dramatically the soldier capability in any dismounted close combat domains. Man remains at the centre of the system, which can interface equipments or systems already fielded and future equipments to match any customer's needs. Urban operations are carefully addressed thanks to a versatile and modular solution and a dedicated C4I system, Sagem Defense Securite is a European leader in defence electronics and takes part of this major French Army transformation programme, which will play a key role in the Info Centric Network initiatives promoted in France and other countries. This paper summarises the system solutions selected by the French Army with a focus on the networked capabilities and the optronic devices.

14. Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions

Martin, W. Blake

Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic

15. Wallpaper concept solution fabrication experiences in FGD systems

SciTech Connect

Agarwal, D.C.; Flasche, L.H.

1987-01-01

In the last few years, a concentrated research effort has led to a better understanding of the corrosion problems in flue gas desulfurization (FGD) systems of coal fired power plants. At first look, operation of a typical limestone FGD system appears very simple, hence the first generation scrubbers of early to mid 70's were designers inspiration. However, the designers inspiration soon turned into a utility's nightmare due to failures of metals and non-metals, both failing in a an embarrassingly short time. A solution was needed which had to be reliable, simple, and cost effective. This objective was met via the application of wallpaper concept, which now has been very well accepted in the industry and is becoming increasingly more popular due to the many successful case histories. This paper describes the wallpaper concept solution, the fabrication techniques, the experiences at certain utilities, the precautions which need to be followed, the associated economics, and some case histories.

16. Analytic Solution of the Boltzmann Equation in an Expanding System.

PubMed

Bazow, D; Denicol, G S; Heinz, U; Martinez, M; Noronha, J

2016-01-15

For a massless gas with a constant cross section in a homogeneous, isotropically expanding spacetime we reformulate the relativistic Boltzmann equation as a set of nonlinear coupled moment equations. For a particular initial condition this set can be solved exactly, yielding the first analytical solution of the Boltzmann equation for an expanding system. The nonequilibrium behavior of this relativistic gas can be mapped onto that of a homogeneous, static nonrelativistic gas of Maxwell molecules.

17. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

Plucktaveesak, Nopparat

The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly

18. Fusion solution for soldier wearable gunfire detection systems

Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

2012-06-01

Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

19. Linear homotopy solution of nonlinear systems of equations in geodesy

Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

2010-01-01

A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

20. The Solution Space Organization: Linking Information Systems Architecture and Reuse

Dakhli, Salem Ben Dhaou

Nowadays, improvement of software development productivity is among the main strategies proposed by academics and practitioners to deal with the chronic software crisis. As stressed by many authors during the last two decades, reuse of software artifacts provides efficient instruments to implement this strategy. Nevertheless, despite organizations high investments in defining software reuse plans, implementation of such plans has often failed. We think that the identification and description of the relationships between the areas of information systems architecture and software reuse are required to define a successful reuse approach which takes into account all the dimensions of information systems. In this chapter, we propose a structural and architecture-oriented description of the solution space associated with information systems development. We use such a description to build a reuse approach compliant with all the dimensions of information systems including the organizational, economic, and human dimensions.

1. Pseudo analytical solution to time periodic stiffness systems

Wang, Yan-Zhong; Zhou, Yuan-Zi

2011-04-01

An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudo-closed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange—Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.

2. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

SciTech Connect

Klein, Steven Karl; Day, Christy M.; Determan, John C.

2015-09-14

LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

3. Exact Solutions for a Coupled Korteweg-de Vries System

Zuo, Da-Wei; Jia, Hui-Xian

2016-11-01

Korteweg-de Vries (KdV)-type equation can be used to characterise the dynamic behaviours of the shallow water waves and interfacial waves in the two-layer fluid with gradually varying depth. In this article, by virtue of the bilinear forms, rational solutions and three kind shapes (soliton-like, kink and bell, anti-bell, and bell shapes) for the Nth-order soliton-like solutions of a coupled KdV system are derived. Propagation and interaction of the solitons are analyzed: (1) Potential u shows three kind of shapes (soliton-like, kink, and anti-bell shapes); Potential v exhibits two type of shapes (soliton-like and bell shapes); (2) Interaction of the potentials u and v both display the fusion phenomena.

4. Scalable Library for the Parallel Solution of Sparse Linear Systems

SciTech Connect

Jones, Mark; Plassmann, Paul E.

1993-07-14

BlockSolve is a scalable parallel software library for the solution of large sparse, symmetric systems of linear equations. It runs on a variety of parallel architectures and can easily be ported to others. BlockSovle is primarily intended for the solution of sparse linear systems that arise from physical problems having multiple degrees of freedom at each node point. For example, when the finite element method is used to solve practical problems in structural engineering, each node will typically have anywhere from 3-6 degrees of freedom associated with it. BlockSolve is written to take advantage of problems of this nature; however, it is still reasonably efficient for problems that have only one degree of freedom associated with each node, such as the three-dimensional Poisson problem. It does not require that the matrices have any particular structure other than being sparse and symmetric. BlockSolve is intended to be used within real application codes. It is designed to work best in the context of our experience which indicated that most application codes solve the same linear systems with several different right-hand sides and/or linear systems with the same structure, but different matrix values multiple times.

5. Improved solution for system identification equations by Epsilon-Decomposition

NASA Technical Reports Server (NTRS)

Ojalvo, Irving U.

1990-01-01

Matrix eigenvalue theory is used to examine the source of ill-conditioning in linear algebraic equations. This approach highlights the crucial role played by the zero and near-zero eigenvalues and corresponding eigenvectors of poorly conditioned systems. Insight gained from this approach is used to significantly improve a recently developed solution procedure called Epsilon-Decomposition (E-D). E-D is an efficient alternative to Singular Value Decomposition (SVD) for ill-conditioned systems arising in parameter estimation and system identification studies. The efficiency of the improved E-D over SVD resides in the need to only obtain the zero and near-zero eigenvalues of the coefficient matrix as opposed to all of its eigenvalues and vectors (as required by SVD). Thus, the efficiency of E-D is significant for large matrices with small rank deficiency.

6. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

USGS Publications Warehouse

Wexler, Eliezer J.

1989-01-01

Analytical solutions to the advective-dispersive solute transport equation are useful in predicting the fate of solutes in groundwater. Analytical solutions compiled from available literature or derived by the author are presented in this report for a variety of boundary condition types and solute-source configuration in one-, two-, and three-dimensional systems with uniform groundwater flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of select solutions, source codes for the computer programs, and samples of program input and output also are described. (USGS)

7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

USGS Publications Warehouse

Wexler, Eliezer J.

1992-01-01

Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems having uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of selected solutions, source codes for the computer programs, and samples of program input and output also are included.

8. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

USGS Publications Warehouse

Glynn, P.D.; Reardon, E.J.; Plummer, L.N.; Busenberg, E.

1990-01-01

Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

9. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

SciTech Connect

Zhang Xi; Shia Runlie; Yung, Yuk L.

2013-04-20

We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

10. Nonperturbative analytical approximate solutions in intrinsically nonlinear systems

Kindall, Kevin Gaylynn

The basis for obtaining analytical approximations in this dissertation is a new nonperturbative iterative approach that preserves the intrinsic nonlinearity of the system. The traditional method for approaching nonlinear equations has been the small amplitude approximation of classical perturbation theory. However, it is becoming increasingly evident that intrinsic nonlinearity or persistence of the interaction is a primary feature of the solutions for the nonlinear equations that have been solved. Although perturbation theory may be useful in certain physical domains, it is a domain which excludes the effects of the persistent interaction, since perturbation theory nullifies any intrinsically nonlinear property. The method of solution used here proceeds by analogy to the well-known result that second order, linear ordinary differential equations can be transformed to a Riccati equation by a change in dependent variable. An analogous transformation for nonlinear partial differential equations leads to a set of integro- differential equations for which the basic structure is Riccati. Approximations are introduced in the integral part of the integro-differential equation which allow for systematic iteration while making no expansion in powers of the coupling constant. Two sets of differential equations are examined: the Maxwell-Bloch set and the Rossler set. The importance of the former lies in its importance to the phenomenon of optical bistability. The latter represents the minimal set necessary to display chaos. In each case, their intrinsic nonlinearity is demonstrated, and nonperturbative approximate solutions are constructed.

11. SNS INJECTION AND EXTRACTION SYSTEMS ? ISSUES AND SOLUTIONS

SciTech Connect

Plum, Michael A

2008-01-01

Beam loss is higher than expected in the Ring injection section and in the injection dump beam line. The primary causes are fairly well understood, and we have made some equipment modifications to reduce the loss. In the ring extraction beam line the beam distribution exhibits cross-plane coupling (tilt), and the cause has been traced to a large skew-quadrupole component in the extraction Lambertson septum magnet. In this paper we will discuss the issues surrounding the ring injection and extraction systems, the solutions we have implemented to date, and our plans for future improvements.

12. Sucrose and KF quenching system for solution phase parallel synthesis.

PubMed

Chavan, Sunil; Watpade, Rahul; Toche, Raghunath

2016-01-01

The KF, sucrose (table sugar) exploited as quenching system in solution phase parallel synthesis. Excess of electrophiles were covalently trapped with hydroxyl functionality of sucrose and due to polar nature of sucrose derivative was solubilize in water. Potassium fluoride used to convert various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, isocyanates to corresponding fluorides, which are less susceptible for hydrolysis and subsequently sucrose traps these fluorides and dissolves them in water thus removing them from reaction mixture. Various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, and isocyanates were quenched successfully to give pure products in excellent yields.

13. Periodic solutions to systems of reaction-diffusion equations

NASA Technical Reports Server (NTRS)

Rosen, G.

1976-01-01

Necessary and sufficient conditions are derived for the existence of temporally periodic 'dissipative structure' solutions in weak diffusion with the reaction rate terms dominant in a generic system of reaction-diffusion differential equations. The enumerator index i of the equations denotes the density or concentration of the ith participating molecular or biological species, and D sub i is the diffusivity constant for the ith species while Q sub i (c), an algebraic function of the n-tuple c, expresses the local rate of production of the ith species due to chemical reactions or biological interactions.

14. Periodic Solutions of Hamiltonian Systems of 3-Body Type

DTIC Science & Technology

1989-08-01

at least once generalized T- peniodic solutions. Generalized solutions are necessary since collision orbits, i.e. solutions which pass through the...possibility as a collision. When collisions are possible, critical points of I need not be classical solutions of (HS) and a notion of a generalized ...solution of (HS) is needed. Following a related situation in [2], we say q E E is a generalized T-periodic solution of (KS) if: (i) = {t E 0, T] qi(t) = qj

15. Pathogen transport in groundwater systems: contrasts with traditional solute transport

Hunt, Randall J.; Johnson, William P.

2016-12-01

Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

16. Pathogen transport in groundwater systems: contrasts with traditional solute transport

Hunt, Randall J.; Johnson, William P.

2017-06-01

Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

17. Thermal expansion of solid solutions in apatite binary systems

SciTech Connect

Knyazev, Alexander V.; Bulanov, Evgeny N. Korokin, Vitaly Zh.

2015-01-15

Graphical abstract: Thermal dependencies of volume thermal expansion parameter for with thermal expansion diagrams for Pb{sub 5}(PO{sub 4}){sub 3}F{sub x}Cl{sub 1−x}. - Highlights: • Solid solutions in three apatitic binary systems were investigated via HT-XRD. • Thermal expansion coefficients of solid solutions in the systems were calculated. • Features of the thermal deformation of the apatites were described. • Termoroentgenography is a sensitive method for the investigation of isomorphism. - Abstract: High-temperature insitu X-ray diffraction was used to investigate isomorphism and the thermal expansion of apatite-structured compounds in three binary systems in the entire temperature range of the existence of its hexagonal modifications. Most of the studied compounds are highly expandable (α{sub l} > 8 × 10{sup 6} (K{sup −1})). In Pb{sub 5}(PO{sub 4}){sub 3}F–Pb{sub 5}(PO{sub 4}){sub 3}Cl system, volume thermal expansion coefficient is independence from the composition at 573 K. In Pb{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(VO{sub 4}){sub 3}Cl, the compound with equimolar ratio of substituted atoms has constant volume thermal expansion coefficient in temperature range 298–973 K. Ca{sub 5}(PO{sub 4}){sub 3}Cl–Pb{sub 5}(PO{sub 4}){sub 3}Cl system is characterized by the most thermal sensitive composition, in which there is an equal ratio of isomorphic substituted atoms.

18. Explicit solutions of the classical Calogero and Sutherland systems for any root system

Sasaki, R.; Takasaki, K.

2006-01-01

Explicit solutions of the classical Calogero (rational with/without harmonic confining potential) and Sutherland (trigonometric potential) systems is obtained by diagonalization of certain matrices of simple time evolution. The method works for Calogero & Sutherland systems based on any root system. It generalizes the well-known results by Olshanetsky and Perelomov for the A type root systems. Explicit solutions of the (rational and trigonometric) higher Hamiltonian flows of the integrable hierarchy can be readily obtained in a similar way for those based on the classical root systems.

19. Multichannel Coherent Lightwave Systems: Practical Problems and Possible Solutions

Tanrikulu, Mustafa Okan

1995-01-01

An extensive field deployment of optical fiber has already undergone, and it is expected to replace the copper within the next twenty years. The ultimate goal in communications and computing industry is to make all optical networks possible in the near future. In this context, certain important practical problems that exist in multichannel coherent lightwave systems are studied, and possible solutions are provided in this dissertation. It is shown that the capacity of dual-filter FSK heterodyne lightwave systems can be enhanced by exploiting the interrelationship between the frequency separation and the amount of laser phase noise. Optimum choice of intermediate frequency filter bandwidth also improves the system capacity. The effect of finite intermediate frequency on the performance of ASK heterodyne lightwave systems is also studied. The results obtained show that certain finite choices of intermediate frequency allows ideal envelope detection. Thus, one can design a multichannel ASK heterodyne lightwave system with relatively small optical domain channel spacings as long as optimum values of intermediate frequency is used. Otherwise, either the channel spacings should be increased, which, in turn, reduces the system capacity, or an extra sensitivity penalty should be tolerated which translates into an increase in the system cost. It is also shown that the effect of finite intermediate frequency is more significant in negligible linewidth systems. On the other hand, non-negligible linewidth systems are more immune to the effects of finite intermediate frequency. However, the amount of channel spacing in a multichannel system significantly increases in the case of non-negligible linewidth systems due to spectral broadening of information bearing signal. The effect of crosstalk in multi-channel ASK heterodyne lightwave systems with polarization control is also studied, and the results obtained show that choice of intermediate frequency filter bandwidth, in

20. Operational Characteristics of an Accelerator Driven Fissile Solution System

SciTech Connect

Kimpland, Robert Herbert

2016-11-28

Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

1. The efficient parallel iterative solution of large sparse linear systems

SciTech Connect

Jones, M.T.; Plassmann, P.E.

1992-06-01

The development of efficient, general-purpose software for the iterative solution of sparse linear systems on a parallel MIMD computer requires an interesting combination of expertise. Parallel graph heuristics, convergence analysis, and basic linear algebra implementation issues must all be considered. In this paper, we discuss how we have incorporated recent results in these areas into a general-purpose iterative solver. First, we consider two recently developed parallel graph coloring heuristics. We show how the method proposed by Luby, based on determining maximal independent sets, can be modified to run in an asynchronous manner and give aa expected running time bound for this modified heuristic. In addition, a number of graph reduction heuristics are described that are used in our implementation to improve the individual processor performance. The effect of these various graph reductions on the solution of sparse triangular systems is categorized. Finally, we discuss the performance of this solver from the perspective of two large-scale applications: a piezoelectric crystal finite-element modeling problem, and a nonlinear optimization problem to determine the minimum energy configuration of a three-dimensional, layered superconductor model.

2. Satellite power systems for Western Europe - Problems and solution proposals

Ruth, J.; Westphal, W.

1980-08-01

This paper deals with the potential utilization of solar satellite power systems (SPS) as baseload powerplants for Western European countries. There are significant differences compared with the U.S.A. for geographical, political, organizational, orbital, and industrial reasons. These differences have been analyzed and critically examined, but no unsurmountable problems have been found. There exist, however, a lot of challenging problems to be solved prior to a full scale SPS development. In this paper some of the most important problems are presented and some potential solutions are discussed. Finally, a research program is proposed, which could help to answer the following question: Is it possible to develop, construct and operate an SPS system which is (1) economically viable, (2) technically feasible, (3) environmentally compatible, and (4) politically acceptable.

3. Darboux transformation of the Drinfeld–Sokolov–Satsuma–Hirota system and exact solutions

SciTech Connect

Geng, Xianguo; Li, Ruomeng

2015-10-15

A Darboux transformation for the Drinfeld–Sokolov–Satsuma–Hirota system of coupled equations is constructed with the aid of gauge transformations between the Lax pairs. As an application, several types of solutions of the Drinfeld–Sokolov–Satsuma–Hirota system are obtained, including soliton solutions, periodic solutions, rational solutions and others.

4. Dynamics of electrons and explicit solutions of Dirac–Weyl systems

Sakhnovich, Alexander

2017-03-01

Explicit solutions of the Dirac–Weyl system, which are essential in graphene studies, are constructed using our recent approach to the construction of solutions of dynamical systems. The obtained classes of solutions are much wider than the ones which have been considered before. It is proved that neither the constructed potentials nor the corresponding solutions have singularities. Various examples are provided.

5. VLT instruments: industrial solutions for non-scientific detector systems

Duhoux, P.; Knudstrup, J.; Lilley, P.; Di Marcantonio, P.; Cirami, R.; Mannetta, M.

2014-07-01

. ESPRESSO is a fiber-fed, cross-dispersed echelle spectrograph that will be located in the Combined-Coudé Laboratory of the VLT in the Paranal Observatory in Chile. It will be able to operate either using the light of any of the UT's or using the incoherently combined light of up to four UT's. The stabilization of the incoming beam is achieved by dedicated piezo systems controlled via active loops closed on 4 + 4 dedicated TCCD's for the stabilization of the pupil image and of the field with a frequency goal of 3 Hz on a 2nd to 3rd magnitude star. An additional 9th TCCD system shall be used as an exposure-meter. In this paper we will present the technical CCD solution for future VLT instruments.

6. [Decentralization: part of the health system problem or the solution?].

PubMed

López-Casasnovas, G; Rico, A

2003-01-01

The greatest change experienced by the Spanish health system in the last two decades has probably been the devolution of power to the autonomous communities composing the Spanish state. This may generate tensions in the status quo and poses questions of whether decentralization of the health system is compatible with a cohesive national health system and whether this devolution of power is part of the problem of the health system or part of its solution. Generalized devolution occurring as rapidly as that produced in Spain (negotiated in slightly less than 6 months, with minimal financial agreements, without explicit legal frameworks in the areas of coordination and development of basic norms, and with a new agreement of general financing of the autonomous communities which possibly contains lacunae, etc.) presents an uncertain panorama. The possible misuse of the wide powers recently transferred to the autonomous communities could easily be used by those who would like to see a restoration of pre-democratic centralism to sow fear of the collapse of the health service as the cornerstone of the welfare state among the general public. The present article briefly addresses these questions.

7. A numerical solution for the diffusion equation in hydrogeologic systems

USGS Publications Warehouse

Ishii, A.L.; Healy, R.W.; Striegl, R.G.

1989-01-01

The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

8. Is the system really the solution? Operating costs in hospital systems.

PubMed

Burns, Lawton Robert; McCullough, Jeffrey S; Wholey, Douglas R; Kruse, Gregory; Kralovec, Peter; Muller, Ralph

2015-06-01

Hospital system formation has recently accelerated. Executives emphasize scale economies that lower operating costs, a claim unsupported in academic research. Do systems achieve lower costs than freestanding facilities, and, if so, which system types? We test hypotheses about the relationship of cost with membership in systems, larger systems, and centralized and local hub-and-spoke systems. We also test whether these relationships have changed over time. Examining 4,000 U.S. hospitals during 1998 to 2010, we find no evidence that system members exhibit lower costs. However, members of smaller systems are lower cost than larger systems, and hospitals in centralized systems are lower cost than everyone else. There is no evidence that the system's spatial configuration is associated with cost, although national system hospitals exhibit higher costs. Finally, these results hold over time. We conclude that while systems in general may not be the solution to lower costs, some types of systems are. © The Author(s) 2015.

9. A solution for the binary system V1373 Orionis

Hauck, Norbert

2016-02-01

Binary system V1373 Ori (HD 36107) has been investigated in the photometric passbands VIc and by spectroscopy (radial velocities). Modelling of the data delivered a single and consistent solution for a detached configuration consisting of a large K-type giant primary component having a radius of 39.40 ± 0.43 Rsun and a mass of 1.132 ± 0.043 Msun, and an invisible dwarf secondary component having a mass of 0.661 ± 0.025 Msun. The red giant fits into a stellar model for a moderately sub-solar metallicity of Z = 0.008. [English and German online-version available under www.bav-astro.eu/rb/rb2016-2/4.html].

10. Picture archiving and communications systems for integrated healthcare information solutions

Goldburgh, Mitchell M.; Glicksman, Robert A.; Wilson, Dennis L.

1997-05-01

The rapid and dramatic shifts within the US healthcare industry have created unprecedented needs to implement changes in the delivery systems. These changes must not only address the access to healthcare, but the costs of delivery, and outcomes reporting. The resulting vision to address these needs has been called the Integrated Healthcare Solution whose core is the Electronic Patient Record. The integration of information by itself is not the issue, nor will it address the challenges in front of the healthcare providers. The process and business of healthcare delivery must adopt, apply and expand its use of technology which can assist in re-engineering the tools for healthcare. Imaging is becoming a larger part of the practice of healthcare both as a recorder of health status and as a defensive record for gatekeepers of healthcare. It is thus imperative that imaging specialists adopt technology which competitively integrates them into the process, reduces the risk, and positively effects the outcome.

11. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

SciTech Connect

Smullen, Rachel A.; Kobulnicky, Henry A.

2015-08-01

We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars in this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.

12. On axisymmetric and stationary solutions of the self-gravitating Vlasov system

Ames, Ellery; Andréasson, Håkan; Logg, Anders

2016-08-01

Axisymmetric and stationary solutions are constructed to the Einstein-Vlasov and Vlasov-Poisson systems. These solutions are constructed numerically, using finite element methods and a fixed-point iteration in which the total mass is fixed at each step. A variety of axisymmetric stationary solutions are exhibited, including solutions with toroidal, disk-like, spindle-like, and composite spatial density configurations, as are solutions with non-vanishing net angular momentum. In the case of toroidal solutions, we show for the first time, solutions of the Einstein-Vlasov system which contain ergoregions.

13. Solute Transport Dynamics in a Large Hyporheic Corridor System

Zachara, J. M.; Chen, X.; Murray, C. J.; Shuai, P.; Rizzo, C.; Song, X.; Dai, H.

2016-12-01

A hyporheic corridor is an extended zone of groundwater surface water-interaction that occurs within permeable aquifer sediments in hydrologic continuity with a river. These systems are dynamic and tightly coupled to river stage variations that may occur over variable time scales. Here we describe the behavior of a persistent uranium (U) contaminant plume that exists within the hyporheic corridor of a large, managed river system - the Columbia River. Temporally dense monitoring data were collected for a two year period from wells located within the plume at varying distances up to 400 m from the river shore. Groundwater U originates from desorption of residual U in the lower vadose zone during periods of high river stage and associated elevated water table. U is weakly adsorbed to aquifer sediments because of coarse texture, and along with specific conductance, serves as a tracer of vadose zone source terms, solute transport pathways, and groundwater-surface water mixing. Complex U concentration and specific conductance trends were observed for all wells that varied with distance from the river shoreline and the river hydrograph, although trends for each well were generally repeatable for each year during the monitoring period. Statistical clustering analysis was used to identify four groups of wells that exhibited common trends in dissolved U and specific conductance. A flow and reactive transport code, PFLOTRAN, was implemented within a hydrogeologic model of the groundwater-surface water interaction zone to provide insights on hydrologic processes controlling monitoring trends and cluster behavior. The hydrogeologic model was informed by extensive subsurface characterization, with the spatially variable topography of a basal aquitard being one of several key parameters. Numerical tracer experiments using PFLOTRAN revealed the presence of temporally complex flow trajectories, spatially variable domains of groundwater - river water mixing, and locations of

14. Systems solutions by lactic acid bacteria: from paradigms to practice

PubMed Central

2011-01-01

Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

15. Linear dynamic system approach to groundwater solute transport equation

SciTech Connect

Cho, W.C.

1984-01-01

Groundwater pollution in the United States has been recognized in the 1980's to be extensive both in degree and geographic distribution. It has been recognized that in many cases groundwater pollution is essentially irreversible from the engineering or economic viewpoint. Under the best circumstance the problem is complicated by insufficient amounts of field data which is costly to obtain. In general, the governing partial differential equation of solute transport is spatially discretized either using finite difference or finite element scheme. The time derivative is also approximated by finite difference. In this study, only the spatial discretization is performed using finite element method and the time derivative is retained in continuous form. The advantage is that special features of finite element are maintained but most important of all is that the equation can be rearranged to be in a standard form of linear dynamic system. Two problems were studied in detail: one is the determination of the locatio of groundwater pollution source(s). The problem is equivalent to identifying an input to the dynamic system and is solved by using the sensitivity theorem. The other one is the prediction of pollutant concentration at a given time at a given location. The eigenvalue technique was employed to solve this problem and the detailed procedures of the computation were delineated.

16. Maintaining exponential growth, solution conductivity, and solution pH in low-ionic-strength solution culture using a computer-controlled nutrient delivery system.

PubMed

Blair, Laura M; Taylor, Gregory J

2004-07-01

Studies of plant nutrient requirements in solution culture have often used nutrient concentrations many-fold higher than levels found in fertile soils, creating an artificial rooting environment that can alter patterns of nutrient acquisition. The relative addition rate (RAR) technique addresses this problem by providing nutrients in exponentially increasing quantities to plant roots in solution culture. A computer-controlled RAR nutrient delivery system has been developed to reduce workload and to facilitate more frequent nutrient additions (4x daily) than is possible with manual additions. In initial experiments, a minimum background solution containing 500 microM nitrogen and all other essential nutrients in optimal proportions was required for the healthy growth of Triticum aestivum. This requirement was reduced to 50 microM nitrogen when calcium in the background solutions was increased to 400 microM. Varying the abundance of ammonium and nitrate in both background and delivery solutions provided a means of controlling plant-induced pH changes in growth solutions. In optimized solutions, plant relative growth rates (RGR) in the order of 0.2 g g(-1) plant d(-1) were maintained over a 22 d experimental period. Variation in RARs provided a means of growing plants with varying RGRs under relatively constant conditions of solution electrical conductivity and pH.

17. Teleradiology mobile internet system with a new information security solution

Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiko; Kaneko, Masahiro; Moriyama, Noriyuki

2014-03-01

18. [Norfloxacin Solution Degradation Under Ultrasound, Potassium Persulfate Collaborative System].

PubMed

Wei, Hong; Shi, Jing-zhuan; Li, Jia-lin; Li, Ke-bin; Zhao, Lin; Han, Kai

2015-11-01

19. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

NASA Technical Reports Server (NTRS)

Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

1992-01-01

The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

20. Optimal partial regularity of very weak solutions to nonhomogeneous A-harmonic systems.

PubMed

Zhao, Qing; Chen, Shuhong

2017-01-01

We study partial regularity of very weak solutions to some nonhomogeneous A-harmonic systems. To obtain the reverse Hölder inequality of the gradient of a very weak solution, we construct a suitable test function by Hodge decomposition. With the aid of Gehring's lemma, we prove that these very weak solutions are weak solutions. Further, we show that these solutions are in fact optimal Hölder continuity based on A-harmonic approximation technique.

1. Meso-/micro-optical system interface coupling solutions.

SciTech Connect

Armendariz, Marcelino G.; Kemme, Shanalyn A.; Boye, Robert R.

2005-10-01

Optoelectronic microsystems are more and more prevalent as researchers seek to increase transmission bandwidths, implement electrical isolation, enhance security, or take advantage of sensitive optical sensing methods. Board level photonic integration techniques continue to improve, but photonic microsystems and fiber interfaces remain problematic, especially upon size reduction. Optical fiber is unmatched as a transmission medium for distances ranging from tens of centimeters to kilometers. The difficulty with using optical fiber is the small size of the core (approximately 9 {micro}m for the core of single mode telecommunications fiber) and the tight requirement on spot size and input numerical aperture (NA). Coupling to devices such as vertical cavity emitting lasers (VCSELs) and photodetectors presents further difficulties since these elements work in a plane orthogonal to the electronics board and typically require additional optics. This leads to the need for a packaging solution that can incorporate dissimilar materials while maintaining the tight alignment tolerances required by the optics. Over the course of this LDRD project, we have examined the capabilities of components such as VCSELs and photodetectors for high-speed operation and investigated the alignment tolerances required by the optical system. A solder reflow process has been developed to help fulfill these packaging requirements and the results of that work are presented here.

2. Practical solutions to implementing "Born Semantic" data systems

Leadbetter, A.; Buck, J. J. H.; Stacey, P.

2015-12-01

The concept of data being "Born Semantic" has been proposed in recent years as a Semantic Web analogue to the idea of data being "born digital"[1], [2]. Within the "Born Semantic" concept, data are captured digitally and at a point close to the time of creation are annotated with markup terms from semantic web resources (controlled vocabularies, thesauri or ontologies). This allows heterogeneous data to be more easily ingested and amalgamated in near real-time due to the standards compliant annotation of the data. In taking the "Born Semantic" proposal from concept to operation, a number of difficulties have been encountered. For example, although there are recognised methods such as Header, Dictionary, Triples [3] for the compression, publication and dissemination of large volumes of triples these systems are not practical to deploy in the field on low-powered (both electrically and computationally) devices. Similarly, it is not practical for instruments to output fully formed semantically annotated data files if they are designed to be plugged into a modular system and the data to be centrally logged in the field as is the case on Argo floats and oceanographic gliders where internal bandwidth becomes an issue [2]. In light of these issues, this presentation will concentrate on pragmatic solutions being developed to the problem of generating Linked Data in near real-time systems. Specific examples from the European Commission SenseOCEAN project where Linked Data systems are being developed for autonomous underwater platforms, and from work being undertaken in the streaming of data from the Irish Galway Bay Cable Observatory initiative will be highlighted. Further, developments of a set of tools for the LogStash-ElasticSearch software ecosystem to allow the storing and retrieval of Linked Data will be introduced. References[1] A. Leadbetter & J. Fredericks, We have "born digital" - now what about "born semantic"?, European Geophysical Union General Assembly, 2014

3. Perturbational Blowup Solutions to the Two-Component Dullin-Gottwald-Holm System

PubMed Central

2016-01-01

We construct a family of nonradially symmetric exact solutions for the two-component DGH system by the perturbational method. Depending on the parameters, the class of solutions includes both blowup type and global existence type. PMID:27127801

4. Equilibrium solutions for microscopic stochastic systems in population dynamics.

PubMed

Lachowicz, Mirosław; Ryabukha, Tatiana

2013-06-01

The present paper deals with the problem of existence of equilibrium solutions of equations describing the general population dynamics at the microscopic level of modified Liouville equation (individually--based model) corresponding to a Markov jump process. We show the existence of factorized equilibrium solutions and discuss uniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposed under the assumption of periodic structures.

5. Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka-Volterra systems

Quittner, Pavol

2016-02-01

We consider positive solutions of cooperative parabolic Lotka-Volterra systems with equal diffusion coefficients, in bounded and unbounded domains. The systems are complemented by the Dirichlet or Neumann boundary conditions. Under suitable assumptions on the coefficients of the reaction terms, these problems possess both global solutions and solutions which blow up in finite time. We show that any solution (u , v) defined on the time interval (0 , T) satisfies a universal estimate of the form

6. Solution of homogeneous systems of linear equations arising from compartmental models

SciTech Connect

Funderlic, R.E.; Mankin, J.B.

1981-12-01

Systems of linear differential equations with constant coefficients, Ax = x, with the matrix A having nonnegative off-diagnonal elements and zero column sums, occur in compartmental analysis. The steady-state solution leads to the homogeneous system of linear equations Ax(infinity)=x(infinity)=0. LU-factorization, the Crout algorithm, error analysis and solution of a modified system are treated.

7. Exact M-Theory Solutions, Integrable Systems, and Superalgebras

D'Hoker, Eric

2015-04-01

In this paper, an overview is presented of the recent construction of fully back-reacted half-BPS solutions in 11-dimensional supergravity which correspond to near-horizon geometries of M2 branes ending on, or intersecting with, M5 and M5' branes along a self-dual string. These solutions have space-time manifold {AdS}_3 × S^3 × S^3 warped over a Riemann surface Σ, and are invariant under the exceptional Lie superalgebra D(2,1;γ) ⊕ D(2,1;γ), where γ is a real continuous parameter and |γ| is governed by the ratio of the number of M5 and M5' branes. The construction proceeds by mapping the reduced BPS equations onto an integrable field theory on Σ which is of the Liouville sine-Gordon type. Families of regular solutions are distinguished by the sign of γ, and include a two-parameter Janus solution for γ >0, and self-dual strings on M5 as well as asymptotically AdS_4/Z_2 solutions for γ <0.

8. Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion

SciTech Connect

Garrido-Atienza, Maria J. Kloeden, Peter E. Neuenkirch, Andreas

2009-10-15

In this article we study the behavior of dissipative systems with additive fractional noise of any Hurst parameter. Under a one-sided dissipative Lipschitz condition on the drift the continuous stochastic system is shown to have a unique stationary solution, which pathwise attracts all other solutions. The same holds for the discretized stochastic system, if the drift-implicit Euler method is used for the discretization. Moreover, the unique stationary solution of the drift-implicit Euler scheme converges to the unique stationary solution of the original system as the stepsize of the discretization decreases.

9. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs

Nitschke, Naomi; Atkovska, Kalina; Hub, Jochen S.

2016-09-01

Molecular dynamics simulations are capable of predicting the permeability of lipid membranes for drug-like solutes, but the calculations have remained prohibitively expensive for high-throughput studies. Here, we analyze simple measures for accelerating potential of mean force (PMF) calculations of membrane permeation, namely, (i) using smaller simulation systems, (ii) simulating multiple solutes per system, and (iii) using shorter cutoffs for the Lennard-Jones interactions. We find that PMFs for membrane permeation are remarkably robust against alterations of such parameters, suggesting that accurate PMF calculations are possible at strongly reduced computational cost. In addition, we evaluated the influence of the definition of the membrane center of mass (COM), used to define the transmembrane reaction coordinate. Membrane-COM definitions based on all lipid atoms lead to artifacts due to undulations and, consequently, to PMFs dependent on membrane size. In contrast, COM definitions based on a cylinder around the solute lead to size-independent PMFs, down to systems of only 16 lipids per monolayer. In summary, compared to popular setups that simulate a single solute in a membrane of 128 lipids with a Lennard-Jones cutoff of 1.2 nm, the measures applied here yield a speedup in sampling by factor of ˜40, without reducing the accuracy of the calculated PMF.

10. A Semiautomatic Protein Crystallization System with Preventing Evaporation of Drops and Surface Sensor of Solution

Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Niino, Ai; Ishizu, Takeshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

2004-01-01

We developed a simple, semiautomated protein crystallization system. The system performs crystallization-condition-screening experiments using commercial solution kits and crystallization plates. It is capable of dispensing a minimum of one microliter of protein solution into a protein well and a maximum of one milliliter of a mother liquor into a reservoir with high reproducibility using two syringes of different sizes. Several new instruments effective in preventing evaporation of solutions, a surface sensor of solutions, and a tube-holder box for solution kits are introduced.

11. Systemic study on fluorescent switching systems composed of naphthopyran and benzimidazole in solution and film forms

He, Yi; Wang, Guang; Wang, Mingxin

2016-07-01

The fluorescent photo-switching systems were prepared based on fluorescent benzimidazole and photochromic naphthopyran. Naphthopyran in this systems displayed excellent photochromic performance in tetrahydrofuran solutions and in PMMA films. The fluorescent emission of benzimidazole was modulated between "on" and "off" via the photoisomerization of naphthopyran in high-contrast due to the photoinduced energy transfer from benzimidazole to the open-form naphthopyran. Both the fluorescent photoswitching and the photochromism of benzimidazole-naphthopyran dyads in solutions and films displayed excellent fatigue resistance. The spaces between benzimidazole and naphthopyran affect the absorbance and fluorescence spectra of benzimidazole-naphthopyran dyads. The non-destructive readout ability of synthesized dyads in doped PMMA film was achieved.

12. Completely Positive Approximate Solutions of Driven Open Quantum Systems

2015-04-01

We define a perturbative approximation for the solution of Lindblad master equations with time-dependent generators that satisfies the fundamental property of complete positivity, as essential for quantum simulations and optimal control. With explicit examples we show that ensuring this property substantially improves the accuracy of the perturbative approximation.

13. On the Solution of a Class of Stochastic Integral Systems.

DTIC Science & Technology

1980-11-01

9]. Existence, unique- ness, stability, and approximation of solutions to such equations have been studied by several authors, for example, Bharucha ...1973),1-15. [2] A. T. Bharucha -Reid, Random Integral Equations, Academic Press, New York, 1972. [3] G. L. Blankenship, Frequency domain stability

14. Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion

Chung, Yun-Sung; Kang, Kyungkeun

2016-04-01

We consider a coupled system consisting of the Navier-Stokes equations and a porous medium type of Keller-Segel system that model the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global-in-time existence of weak solutions for the Cauchy problem of the system in dimension three. In addition, if the Stokes system, instead Navier-Stokes system, is considered for the fluid equation, we prove that bounded weak solutions exist globally in time.

15. Structuring Knowledge for Expert System Solutions. Part 1: Definition.

ERIC Educational Resources Information Center

Grabinger, R. Scott

1988-01-01

This introductory article defines and delimits expert systems. The discussion covers the concepts of artificial intelligence, the components of an expert system, and the significance of expert systems when compared to more traditional decision making tools. (CLB)

16. Efficient numerical solution of excitation number conserving quantum systems

Zhang, Zheyong; Ding, Jianping; Wang, Hui-Tian

2017-08-01

A system composed of a harmonic oscillator coupled to a two-level atom is one of the quantum systems, which can be completely solved. Although this system is simple, it is never a easy work for the quantum calculations, especially when the system consists of many such simple constituent parts. In this paper, we present a programming method, by which the calculation tasks for the matrix representation of the Hamiltonian of system can be automatically fulfilled. Coupled-cavity array systems are used to demonstrate our programming method. Some quantum properties of these systems are also discussed.

17. Exact traveling wave solutions for system of nonlinear evolution equations.

PubMed

Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

2016-01-01

In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

18. Lubrication of space systems: Challenges and potential solutions

NASA Technical Reports Server (NTRS)

Fusaro, Robert L.

1992-01-01

Future space missions will all require advanced mechanical moving components which will require wear protection and lubrication. The tribology practices used today are primarily based upon a technology base that is more than 20 years old. This paper will discuss NASA's future space missions and some of the mechanism tribology challenges that will be encountered. Potential solutions to these challenges using coatings technology will be assessed.

19. An efficient frequency response solution for nonproportionally damped systems

NASA Technical Reports Server (NTRS)

Conti, Paul; Rule, William K.

1987-01-01

A method is presented to accurately and economically calculate steady state frequency responses based on the analysis of large finite element models with nonproportional damping effects. The new method is a hybrid of the traditional nonproportional and proportional damping solution methods. It captures the advantages of each computational approach without the burden of their respective shortcomings, as demonstrated with comparative analysis performed on a large finite element model.

20. Biogeochemistry of fluoride in a plant-solution system

NASA Technical Reports Server (NTRS)

Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

2003-01-01

Fluoride (F-) pollutants can harm plants and the animals feeding on them. However, it is largely unknown how complexing and chelating agents affect F bioavailability. Two studies were conducted that measured F- bioavailability and uptake by rice (Oryza sativa L.). In the first study, rice was grown in solution culture (pH 5.0) with 0, 2, or 4 mM F- as KF to compare the interaction of F- with humic acid (HA) and with a conventional chelating agent, N-hydroxyethylenthylenediaminetriacetic acid (HEDTA). In the second study, F was supplied at 0, 0.5, 1.0, and 2.0 mM KF with an additional 2 mM F- treatment containing solution Ca at 2x (2 mM Ca) the level used in the first study, to test the effect added Ca had on F- availability and uptake. Total biomass was greatest with HEDTA and F- < 1 mM. Leaf and stem F concentrations increased exponentially as solution F- increased linearly, with nearly no F partitioning into the seed. Results suggest that F was taken up as HF0 while F- uptake was likely restricted. Additionally, F- competed with HA for Ca, thus preventing the formation of Ca-HA flocculents. The addition of soluble Ca resulted in the precipitation of CaF2 solids on the root surface, as determined by tissue analysis and energy dispersive X-ray spectroscopy.

1. Biogeochemistry of fluoride in a plant-solution system

NASA Technical Reports Server (NTRS)

Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

2003-01-01

Fluoride (F-) pollutants can harm plants and the animals feeding on them. However, it is largely unknown how complexing and chelating agents affect F bioavailability. Two studies were conducted that measured F- bioavailability and uptake by rice (Oryza sativa L.). In the first study, rice was grown in solution culture (pH 5.0) with 0, 2, or 4 mM F- as KF to compare the interaction of F- with humic acid (HA) and with a conventional chelating agent, N-hydroxyethylenthylenediaminetriacetic acid (HEDTA). In the second study, F was supplied at 0, 0.5, 1.0, and 2.0 mM KF with an additional 2 mM F- treatment containing solution Ca at 2x (2 mM Ca) the level used in the first study, to test the effect added Ca had on F- availability and uptake. Total biomass was greatest with HEDTA and F- < 1 mM. Leaf and stem F concentrations increased exponentially as solution F- increased linearly, with nearly no F partitioning into the seed. Results suggest that F was taken up as HF0 while F- uptake was likely restricted. Additionally, F- competed with HA for Ca, thus preventing the formation of Ca-HA flocculents. The addition of soluble Ca resulted in the precipitation of CaF2 solids on the root surface, as determined by tissue analysis and energy dispersive X-ray spectroscopy.

2. Solution to problems of bacterial impurity of heating systems

Sharapov, V. I.; Zamaleev, M. M.

2015-09-01

The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.

3. Implementation of an Oceanographic Expert System: Problems, Feedback, Solutions

DTIC Science & Technology

1990-04-01

An oceanographic expert system to describe the evolution of the Gulf Stream and its rings has been developed at NOARL. Our latest results show the... expert system to be more than 60 percent accurate in ring location predictions. The structural composition of the implemented expert system consists of

4. Exact Solutions in the Invariant Manifolds of the Generalized Integrable Hénon-Heiles System and Exact Traveling Wave Solutions of Klein-Gordon-Schrödinger Equations

Li, Jibin

In this paper, we consider the exact explicit solutions for the famous generalized Hénon-Heiles (H-H) system. Corresponding to the three integrable cases, on the basis of the investigation of the dynamical behavior and level curves of the planar dynamical systems, we find all possible explicit exact parametric representations of solutions in the invariant manifolds of equilibrium points in the four-dimensional phase space. These solutions contain quasi-periodic solutions, homoclinic solutions, periodic solutions as well as blow-up solutions. Therefore, we answer the question: what are the flows in the center manifolds and homoclinic manifolds of the generalized Hénon-Heiles (H-H) system. As an application of the above results, we consider the traveling wave solutions for the coupled (n + 1)-dimensional Klein-Gordon-Schrödinger Equations with quadratic power nonlinearity.

5. Solution of magnetometry problems related to monitoring remote pipeline systems

Sergeev, Andrey V.; Denisov, Alexey Y.; Narkhov, Eugene D.; Sapunov, Vladimir A.

2016-09-01

The purpose of this paper is to solve two fundamental tasks, i.e., to design the pipeline model with sufficient adequacy and reproducibility, and to solve the inverse problem for the transition from the experimental data on the magnetic field in the measurement area directly to the pipeline characteristics, which are necessary for mapping pipes location and finding coordinates of welds. The paper presents a mathematical ideal pipeline model in the geomagnetic field without considering the pipe material. The solution of the direct and inverse problems are described, and the directions of the model development and methods of data interpretation are presented.

6. Localized modulated wave solutions in diffusive glucose-insulin systems

Mvogo, Alain; Tambue, Antoine; Ben-Bolie, Germain H.; Kofané, Timoléon C.

2016-06-01

We investigate intercellular insulin dynamics in an array of diffusively coupled pancreatic islet β-cells. The cells are connected via gap junction coupling, where nearest neighbor interactions are included. Through the multiple scale expansion in the semi-discrete approximation, we show that the insulin dynamics can be governed by the complex Ginzburg-Landau equation. The localized solutions of this equation are reported. The results suggest from the biophysical point of view that the insulin propagates in pancreatic islet β-cells using both temporal and spatial dimensions in the form of localized modulated waves.

7. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

PubMed

Shah, Kamal; Khan, Rahmat Ali

2016-01-01

In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

8. Investigation of Propellant and Explosive Solid Solution Systems II X-Ray Studies

DTIC Science & Technology

1978-03-01

A\\Yj* ^\\C/*^ ^ 1 tatf AD 7t ott w AD-E400 125 TECHNICAL REPORT ARLCD-TR-77066 INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS...Report ARLCD-TR-77066 2. GOVT ACCESSION NO. *. TITLE (and Subtitle) INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS II X-RAY...Interplanar spacings and x-ray diffraction 9 intensities of AP, KP and their physical mixtures and solid solutions 4 X-ray data of 3 AN: KP solid solution and

9. Solid-solution semiconductor nanowires in pseudobinary systems.

PubMed

Liu, Baodan; Bando, Yoshio; Liu, Lizhao; Zhao, Jijun; Masanori, Mitome; Jiang, Xin; Golberg, Dmitri

2013-01-09

Pseudobinary solid-solution semiconductor nanowires made of (GaP)(1-x)(ZnS)(x), (ZnS)(1-x)(GaP)(x) and (GaN)(1-x)(ZnO)(x) were synthesized based on an elaborative compositional, structural, and synthetic designs. Using analytical high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS), we confirmed that the structure uniformity and a lattice match between the two constituting binary components play the key roles in the formation of quaternary solid-solution nanostructures. Electrical transport measurements on individual GaP and (GaP)(1-x)(ZnS)(x) nanowires indicated that a slight invasion of ZnS in the GaP host could lead to the abrupt resistance increase, resulting in the semiconductor-to-insulator transition. The method proposed here may be extended to the rational synthesis of many other multicomponent nanosystems with tunable and intriguing optoelectronic properties for specific applications.

10. Multisoliton solutions of the two-component Camassa-Holm system and their reductions

Matsuno, Yoshimasa

2017-08-01

We develop a systematic procedure for constructing soliton solutions of an integrable two-component Camassa-Holm (CH2) system. The parametric representation of the multisoliton solutions is obtained by using a direct method combined with a reciprocal transformation. The properties of the solutions are then investigated in detail focusing mainly on the smooth one- and two-soliton solutions. The general N-soliton case is described shortly. Subsequently, we show that the CH2 system reduces to the CH equation and the two-component Hunter-Saxton (HS2) system by means of appropriate limiting procedures. The corresponding expressions of the multisoliton solutions are presented in parametric forms, reproducing the existing results for the reduced equations. Last, we discuss the reduction from the HS2 system to the HS equation.

11. Turnpike solutions of control problems in quantum systems

SciTech Connect

2016-06-08

The model of a quantum system of interacting spins based on the Shrödinger equation with unbounded linear control is transformed to an equivalent derived system (known from the degenerate problems theory). It consists of a regular differential system with new control and description of impulse control modes. This reveals the general turnpike structure of control processes and allows to propose some effective algorithms of their investigation.

12. Turnpike solutions of control problems in quantum systems

2016-06-01

The model of a quantum system of interacting spins based on the Shrödinger equation with unbounded linear control is transformed to an equivalent derived system (known from the degenerate problems theory). It consists of a regular differential system with new control and description of impulse control modes. This reveals the general turnpike structure of control processes and allows to propose some effective algorithms of their investigation.

13. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

PubMed

Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong

2014-02-01

We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.

14. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

SciTech Connect

W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2000-02-01

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

15. Spacecraft Power Systems Engineering: Solutions for NASA's Manned Space Program

NASA Technical Reports Server (NTRS)

Scott, John H.

2007-01-01

An overview of spacecraft power systems is presented, with a focus on applications in the manned space program. The topics include: 1) History; 2) State-of-the-art; 3) Development directions; 4) Focus on applications in the manned space program led from JSC; 5) Power Systems Engineering Trade Space; 6) Power Generation and Energy Storage; 7) Power Distribution and Control; and 8) Actuation

16. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

USGS Publications Warehouse

Wood, W.W.; Low, W.H.

1987-01-01

Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Solute reactions indicate that calcite and silica are precipitated in the aquifer. Large amounts of sodium and chloride, relative to their concentration in the igneous rock, are being removed from the aquifer. Release of fluids from inclusions in the igneous rocks, and initial flushing of grain boundaries and pores of detrital marine sediments in interbeds are believed to be the source of the sodium chloride. Identification and quantification of reactions controlling solute concentrations in groundwater in the eastern plain indicate that the aquifer is not a large mixing vessel that simply stores and transmits water and solutes but is undergoing diagenesis and is both a source and sink for solutes. Reactions controlling solutes in the western Snake River basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake River Plain contains

17. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System

SciTech Connect

Yao, Chunhua; Shin, Yongsoon; Wang, Li Q.; Windisch, Charles F.; Samuels, William D.; Arey, Bruce W.; Wang, Chong M.; Risen Jr., William M.; Exarhos, Gregory J.

2007-10-25

The synthesis of materials with targeted size and shape has attracted much attention. Specifically, colloidal spheres with targeted and uniform sizes have opened the door for a variety of applications associated with drug delivery, and manipulation of light (photonic band-gap crystals). Surface modification is a key to realizing many of these applications owing to the inherent inert surface.The remarkable transformation of carbohydrate molecules including sugars to homogeneous carbon spheres is found to readily occur by a dehydration mechanism and subsequent sequestering in aqueous solutions that are heated at 160-180oC in a pressurized vessel. Under such conditions, these molecules actually dehydrate even though they are dissolved in water. Size-tunable metal and metal oxides with uniform shells have also been prepared by using carbon spheres as templates.

18. Analytical Solution to the Pneumatic Transient Rod System at ACRR

SciTech Connect

Fehr, Brandon Michael

2016-01-08

The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

19. Purification of uranothorite solid solutions from polyphase systems

Clavier, Nicolas; Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann; Poinssot, Christophe; Dacheux, Nicolas

2013-10-01

The mineral coffinite, nominally USiO4, and associated Th1-xUxSiO4 uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO2 and nanometric crystallized Th1-yUyO2. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th1-yUyO2 in acid media and of SiO2 in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron Microscopy) observations and X-EDS (X-Ray Energy Dispersive Spectroscopy) analyses.

20. Multi-soliton solutions and the Cauchy problem for a two-component short pulse system

Zhaqilao, Z.; Hu, Qiaoyi; Qiao, Zhijun

2017-10-01

In this paper, we study multi-soliton solutions and the Cauchy problem for a two-component short pulse system. For the multi-soliton solutions, we first derive an N-fold Darboux transformation from the Lax pair of the two-component short pulse system, which is expressed in terms of the quasideterminant. Then by virtue of the N-fold Darboux transformation we obtain multi-loop and breather soliton solutions. In particular, one-, two-, three-loop soliton, and breather soliton solutions are discussed in detail with interesting dynamical interactions and shown through figures. For the Cauchy problem, we first prove the existence and uniqueness of a solution with an estimate of the analytic lifespan, and then investigate the continuity of the data-to-solution map in the space of an analytic function.

1. Periodic solutions for nonlinear integro-differential systems with piecewise constant argument.

PubMed

Chiu, Kuo-Shou

2014-01-01

We investigate the existence of the periodic solutions of a nonlinear integro-differential system with piecewise alternately advanced and retarded argument of generalized type, in short DEPCAG; that is, the argument is a general step function. We consider the critical case, when associated linear homogeneous system admits nontrivial periodic solutions. Criteria of existence of periodic solutions of such equations are obtained. In the process we use Green's function for periodic solutions and convert the given DEPCAG into an equivalent integral equation. Then we construct appropriate mappings and employ Krasnoselskii's fixed point theorem to show the existence of a periodic solution of this type of nonlinear differential equations. We also use the contraction mapping principle to show the existence of a unique periodic solution. Appropriate examples are given to show the feasibility of our results.

2. Some exact solutions of a system of nonlinear Schroedinger equations in three-dimensional space

SciTech Connect

Moskalyuk, S.S.

1988-02-01

Interactions that break the symmetry of systems of nonrelativistic Schroedinger equations but preserve their symmetry with respect to one-parameter subgroups of the Schroedinger group are described. Ansatzes for invariant solutions and the corresponding systems of reduced equations in invariant variables for Galileo-invariant Schroedinger equations are found. Exact solutions for the system of nonlinear Schroedinger equations in three-dimensional space for the generalized Hubbard model are obtained.

3. Solution of homogeneous systems of linear equations arising from compartmental models

SciTech Connect

Funderlic, R.E.; Mankin, J.B.

1980-12-01

Systems of linear differential equations with constant coefficients, Ax = x-dot, with the matrix A having nonnegative off-diagonal elements and zero column sums occur in compartmental analysis. The steady-state solution leads to the homogeneous system of linear equations Ax(infinity) = x-dot(infinity) = 0. LU factorization, the Crout algorithm, error analysis, and solution of a modified system are treated. 3 figures.

4. Nutrient solution cooling and its effect on temperature of leaf lettuce in hydroponic system.

PubMed

Nam, S W; Kim, M K; Son, J E

1996-12-01

The heat transfer characteristics of a hydroponic system were experimentally verified after theoretical establishment and the effect of nutrient solution cooling on the plant temperature was investigated. About 96 percent of the total heat flow transferred from culture bed to nutrient solution was the conductive heat through planting board and partitioning materials. The average and maximum temperatures of the leaf lettuce decreased 0.6 and 1.5 degrees C., respectively, with cooling of nutrient solution by 6 degrees C. A numerical model for prediction of cooling load of nutrient solution in a hydroponic greenhouse was developed, and the results from the simulation model showed a good agreement with those from experiments. A mechanical cooling system using the counter flow type with double pipes was developed for cooling the nutrient solution. Also the heat transfer characteristics of the system were analyzed experimentally and theoretically, and compared with the other existing cooling systems of nutrient solution. The cooling capacities of three different systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipes, were comparatively evaluated.

5. The Fallacy of Univariate Solutions to Complex Systems Problems

PubMed Central

Lessov-Schlaggar, Christina N.; Rubin, Joshua B.; Schlaggar, Bradley L.

2016-01-01

Complex biological systems, by definition, are composed of multiple components that interact non-linearly. The human brain constitutes, arguably, the most complex biological system known. Yet most investigation of the brain and its function is carried out using assumptions appropriate for simple systems—univariate design and linear statistical approaches. This heuristic must change before we can hope to discover and test interventions to improve the lives of individuals with complex disorders of brain development and function. Indeed, a movement away from simplistic models of biological systems will benefit essentially all domains of biology and medicine. The present brief essay lays the foundation for this argument. PMID:27375425

6. Storage system software solutions for high-end user needs

NASA Technical Reports Server (NTRS)

Hogan, Carole B.

1992-01-01

Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.

7. On the Existence of Periodic Solutions for a Class of Symmetric Hamiltonian Systems.

DTIC Science & Technology

1986-01-01

AMD-R167 487 ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR R CLRSS OF u1 SYNNETRIC HNMILTONI.. (U) NISCONSIN UNIY-MDISON IITHEMATICS RESERRCH CENTER P...1,,... 1.,.1...-,....-.I- - ; :. . : < : ’..p .. . . MRC Technical Summary Report #2901 ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF...MADISON , MATHEMATICS RESEARCH CENTER -%>."S.- ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF SYMMETRIC HAMILTONIAN SYSTEMS Paul R. Rabinowitz

8. Properties of solutions of certain control problems associated with the Navier-Stokes system

Fursikov, A. V.

The paper examines the properties of solutions of certain problems involving the control of systems described by the Navier-Stokes equations with periodic boundary conditions and without constraints on the controlling parameter. The uniqueness of the solutions is considered; necessary and sufficient conditions of the absolute minimum are obtained; and the smoothness of the solutions is demonstrated. The corresponding Euler-Lagrange equations are also examined.

9. FELIN: tailored optronics and systems solutions for dismounted combat

Milcent, A. M.

2009-05-01

The FELIN French modernization program for dismounted combat provides the Armies with info-centric systems which dramatically enhance the performances of the soldier and the platoon. Sagem now has available a portfolio of various equipments, providing C4I, data and voice digital communication, and enhanced vision for day and night operations, through compact high performance electro-optics. The FELIN system provides the infantryman with a high-tech integrated and modular system which increases significantly their detection, recognition, identification capabilities, their situation awareness and information sharing, and this in any dismounted close combat situation. Among the key technologies used in this system, infrared and intensified vision provide a significant improvement in capability, observation performance and protection of the ground soldiers. This paper presents in detail the developed equipments, with an emphasis on lessons learned from the technical and operational feedback from dismounted close combat field tests.

10. Technology Solutions Case Study: Hydronic Systems: Designing for Setback Operation

SciTech Connect

2014-05-01

For years, conventional wisdom surrounding space heating has specified two points: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

11. A fast solution switching system with temperature control for single cell measurements

PubMed Central

Koh, Duk-Su; Chen, Liangyi; Ufret-Vincenty, Carmen A.; Jung, Seung-Ryoung

2011-01-01

This article describes a perfusion system for biophysical single cell experiments at the physiological temperature. Our system regulates temperature of test solutions using a small heat exchanger that includes several capillaries. Water circulating inside the heat exchanger warms or cools test solutions flowing inside the capillaries. Temperature-controlled solutions are delivered directly to a single cell(s) through a multibarreled manifold that switches solutions bathing a cell in less than 1 s. This solution exchange is optimal for patch clamp, single-cell microamperometry, and microfluorometry experiments. Using this system, we demonstrate that exocytosis from pancreatic β cells and activation of TRPV1 channels are temperature sensitive. We also discuss how to measure local temperature near a single cell under investigation. PMID:21536068

12. A real time monitoring system of ringer's solution residual amount for automatic nursing in hopsitals

Kwon, Jong-Won; Ha, Kwan-Yong; Nam, Chul; Ayurzana, Odgelral; Kim, Hie-Sik

2005-12-01

A real-time embedded system was developed for remote monitoring and checking the residual quantity and changing of Ringer's solution. It is monitored nurses' room. A Load Cell was applied as a sensor to check the residual quantity of Ringer's solution. This Load Cell detects the physical changes of Ringer's solution and transfers electronic signal to the amplifier. Amplified analog signal is converted into digital signal by A/D converter. Developed Embedded system, which computes these data with microprocess (8052) then makes it possible to monitor the residual quantity of Ringer's solution real-time on a server computer. A Checking system on Residual Quantity of Ringer's Solution Using Load cell cut costs using a simple design for a circuit.

13. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

SciTech Connect

Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

2013-07-01

We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

14. Vibrations of a rectangular orthotropic plate with free edges: Analysis and solution of an infinite system

Papkov, S. O.

2015-03-01

A new asymptotically exact solution is obtained for the problem of transverse vibrations of a rectangular orthotropic plate with free edges. The general solution to the vibration equation is constructed as the sum of Fourier series with unknown coefficients, which are related by a homogeneous quasi-regular infinite system of linear algebraic equations. Analysis of the infinite system makes it possible to determine the power-law asymptotics for a nontrivial solution to the system, which makes it possible to calculate the natural vibration frequencies and to construct the corresponding eigenmodes. Examples of numerical calculations for real materials are presented.

15. A kind of system of multivariate variational inequalities and the existence theorem of solutions.

PubMed

Tang, Yanxia; Guan, Jinyu; Xu, Yongchun; Su, Yongfu

2017-01-01

Let K be a nonempty closed convex and bounded subset of a reflexive Banach space X. Let [Formula: see text] be N-variables monotone demi-continuous mappings from [Formula: see text] into X. Then: (1) the system of multivariate variational inequalities [Formula: see text] has a solution [Formula: see text]; (2) the set of solutions of this system of multivariate variational inequalities is closed convex in [Formula: see text]; (3) if [Formula: see text] are also strictly monotone, this system of multivariate variational inequalities has a unique solution.

16. Methods of construction and study of Frankl system self-similar solutions in the hyperbolic case

Shemyakina, T.; Alekseenkκo, S.

2016-11-01

Self-similar solution of the Frankl system in the hyperbolic case was found. The Frankl system is a system of mixed type equations. Under certain conditions, it describes a model of the membrane theory of shells. The Frankl system describes a stationary irrotational motion of an ideal gas in the transition vicinity from subsonic to supersonic speeds. We find a sufficient condition on the initial data that guarantees existence of a global classical solution continued from a local solution. The proof of the nonlocal solvability of the problem in the original variables is based on the additional argument method. It allowed justify and construct a numerical solution. Numerical experiments were carried out for model examples of the Frankl system.

17. Teleradiology network system using the web medical image conference system with a new information security solution

Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kaneko, Masahiro; Kakinuma, Ryutaru; Moriyama, Noriyuki

2012-02-01

We have developed the teleradiology network system with a new information security solution that provided with web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. We are studying the secret sharing scheme and the tokenization as a method safely to store or to transmit the confidential medical information used with the teleradiology network system. The confidential medical information is exposed to the risk of the damage and intercept. Secret sharing scheme is a method of dividing the confidential medical information into two or more tallies. Individual medical information cannot be decoded by using one tally at all. Our method has the function of automatic backup. With automatic backup technology, if there is a failure in a single tally, there is redundant data already copied to other tally. Confidential information is preserved at an individual Data Center connected through internet because individual medical information cannot be decoded by using one tally at all. Therefore, even if one of the Data Centers is struck and information is damaged due to the large area disaster like the great earthquake of Japan, the confidential medical information can be decoded by using the tallies preserved at the data center to which it escapes damage. Moreover, by using tokenization, the history information of dividing the confidential medical information into two or more tallies is prevented from lying scattered by replacing the history information with another character string (Make it to powerlessness). As a result, information is available only to those who have rightful access it and the sender of a message and the message itself are verified at the receiving point. We propose a new information transmission method and a new information storage method with a new information security solution.

18. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

SciTech Connect

Wood, W.W.; Low, W.H.

1987-01-01

Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs.

19. Global small solutions of 2-D incompressible MHD system

Lin, Fanghua; Xu, Li; Zhang, Ping

2015-11-01

In this paper, we consider the global wellposedness of 2-D incompressible magneto-hydrodynamical system with smooth initial data which is close to some non-trivial steady state. It is a coupled system between the Navier-Stokes equations and a free transport equation with a universal nonlinear coupling structure. The main difficulty of the proof lies in exploring the dissipative mechanism of the system. To achieve this and to avoid the difficulty of propagating anisotropic regularity for the free transport equation, we first reformulate our system (1.1) in the Lagrangian coordinates (2.19). Then we employ anisotropic Littlewood-Paley analysis to establish the key a prioriL1 (R+ ; Lip (R2)) estimate for the Lagrangian velocity field Yt. With this estimate, we can prove the global wellposedness of (2.19) with smooth and small initial data by using the energy method. We emphasize that the algebraic structure of (2.19) is crucial for the proofs to work. The global wellposedness of the original system (1.1) then follows by a suitable change of variables.

20. Distribution coefficients of vitamin B2 in hydrophilic organic solvent-aqueous salt solution systems

Korenman, Ya. I.; Mokshina, N. Ya.; Zykov, A. V.

2010-03-01

Distribution coefficients of vitamin B2 in hydrophilic solvent ( n-butanol, isopropanol, acetone, ethyl acetate, and their mixtures)-aqueous salt (potassium chloride, sodium fluoride, and ammonium sulfate salting-out agents) solution systems were calculated. The synergic effect and optimum proportions of components in the solvent mixture for efficient extraction of vitamin B2 from aqueous solutions were established.

1. New solutions of the Zakharov's equation system for quantum plasmas in form of nonlinear bursts lattice

SciTech Connect

Dubinov, Alexander E.; Kitayev, Ilya N.

2014-02-15

New multiplicative solutions of the Zakharov's quantum system of equations using the separation of variables method are found. The found solutions are interpreted as spatial-periodical lattices of non-linear plasma bursts. It is shown that the bursts could be both symmetrical and asymmetrical by an electric field.

2. Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning

ERIC Educational Resources Information Center

Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan

2009-01-01

In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…

3. Periodic solutions of the N-vortex Hamiltonian system in planar domains

Bartsch, Thomas; Dai, Qianhui

2016-02-01

We investigate the existence of collision-free nonconstant periodic solutions of the N-vortex problem in domains Ω ⊂ C. These are solutions z (t) = (z1 (t) , … ,zN (t)) ∈ΩN of the first order Hamiltonian system

4. Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning

ERIC Educational Resources Information Center

Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan

2009-01-01

In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…

5. Quasistationary Solution of a Two-Component Hyperbolic System on an Interval

Isakov, K. A.; Shapovalov, A. V.

2017-01-01

A quasistationary solution of a two-component system of first-order telegraph equations on an interval with time-dependent conditions is constructed, where these conditions are prescribed at interior points of the interval. Application of the obtained solution as a criterion for leakage detection is considered.

6. Particular transcendent solution of the Ernst system generalized on n fields

SciTech Connect

Leaute, B.; Marcilhacy, G.

1986-03-01

A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields.

7. The Singular Set of Solutions to Non-Differentiable Elliptic Systems

Mingione, Giuseppe

We estimate the Hausdorff dimension of the singular set of solutions to elliptic systems of the type If the vector fields a and b are Hölder continuous with respect to the variable x with exponent α, then the Hausdorff dimension of the singular set of any weak solution is at most n-2α.

8. Solution of generalized shifted linear systems with complex symmetric matrices

Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

2012-07-01

We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green's function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1-9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126-140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

9. Entire radial solutions of elliptic systems and inequalities of the mean curvature type

Filippucci, Roberta

2007-10-01

In this paper we study first nonexistence of radial entire solutions of elliptic systems of the mean curvature type with a singular or degenerate diffusion depending on the solution u. In particular we extend a previous result given in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389]. Moreover, in the scalar case we obtain nonexistence of all entire solutions, radial or not, of differential inequalities involving again operators of the mean curvature type and a diffusion term. We prove that in the scalar case, nonexistence of entire solutions is due to the explosion of the derivative of every nonglobal radial solution in the right extremum of the maximal interval of existence, while in that point the solution is bounded. This behavior is qualitatively different with respect to what happens for the m-Laplacian operator, studied in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389], where nonexistence of entire solutions is due, even in the vectorial case, to the explosion in norm of the solution at a finite point. Our nonexistence theorems for inequalities extend previous results given by Naito and Usami in [YE Naito, H. Usami, Entire solutions of the inequality div(A(=u)=u)[greater-or-equal, slanted]f(u), Math. Z. 225 (1997) 167-175] and Ghergu and Radulescu in [M. Ghergu, V. Radulescu, Existence and nonexistence of entire solutions to the logistic differential equation, Abstr. Appl. Anal. 17 (2003) 995-1003].

10. Boundary-fitted coordinate systems for numerical solution of partial differential equations - A review

NASA Technical Reports Server (NTRS)

Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.

1982-01-01

A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.

11. Solution of quantum integrable systems from quiver gauge theories

Dorey, Nick; Zhao, Peng

2017-02-01

We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.

12. Periodic solutions of a spring-pendulum system.

NASA Technical Reports Server (NTRS)

Broucke, R.; Baxa, P. A.

1973-01-01

A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular, the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.

13. Nonexistence of global solution to Chern-Simons-Higgs system

SciTech Connect

Yuan, Jianjun

2013-12-15

In this paper, we show that for a class of Higgs potentials V, the 2+1-dimensional Chern-Simons-Higgs system with negative energy or zero energy together with (d/(dt) ∫|ϕ(t,x)|{sup 2}dx)(0)>0 blows up in finite time.

14. Distributed Cooperation Solution Method of Complex System Based on MAS

Weijin, Jiang; Yuhui, Xu

To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

15. Subharmonic Solutions Near an Equilibrium Point for Hamiltonian Systems

DTIC Science & Technology

1989-04-01

Thus A = 0 will be continued as A,(6) = A+ + ... j = 1,2. (2.5) Since the matrix V is invertible, W is nilpotent and, V and W commute, the matrix (eV...Hamiltonian system z JA(t)z + JHt..(z, t) where A(t) is a matrix , fl,(z,t) = o(I z 1) and both A and H are periodic in t. On the linear part of the system we...write the Hamiltonian as H(z, t) = 1(A(t)z, z) + II(z, t) (0.2) where A(t) denotes the Hessian matrix of H at z = 0 and ft(z, t) = o(Iz12) represents the

16. Introduction to optical tweezers: background, system designs, and commercial solutions.

PubMed

van Mameren, Joost; Wuite, Gijs J L; Heller, Iddo

2011-01-01

Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a piconewton force resolution, and a millisecond time resolution, which make them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we provide an introduction on the use of optical tweezers in single-molecule approaches. We introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.

17. Evaluation of powertrain solutions for future tactical truck vehicle systems

Pisu, Pierluigi; Cantemir, Codrin-Gruie; Dembski, Nicholas; Rizzoni, Giorgio; Serrao, Lorenzo; Josephson, John R.; Russell, James

2006-05-01

The article presents the results of a large scale design space exploration for the hybridization of two off-road vehicles, part of the Future Tactical Truck System (FTTS) family: Maneuver Sustainment Vehicle (MSV) and Utility Vehicle (UV). Series hybrid architectures are examined. The objective of the paper is to illustrate a novel design methodology that allows for the choice of the optimal values of several vehicle parameters. The methodology consists in an extensive design space exploration, which involves running a large number of computer simulations with systematically varied vehicle design parameters, where each variant is paced through several different mission profiles, and multiple attributes of performance are measured. The resulting designs are filtered to choose the design tradeoffs that better satisfy the performance and fuel economy requirements. At the end, few promising vehicle configuration designs will be selected that will need additional detailed investigation including neglected metrics like ride and drivability. Several powertrain architectures have been simulated. The design parameters include the number of axles in the vehicle (2 or 3), the number of electric motors per axle (1 or 2), the type of internal combustion engine, the type and quantity of energy storage system devices (batteries, electrochemical capacitors or both together). An energy management control strategy has also been developed to provide efficiency and performance. The control parameters are tunable and have been included into the design space exploration. The results show that the internal combustion engine and the energy storage system devices are extremely important for the vehicle performance.

18. Traveling waves solutions of isothermal chemical systems with decay

Qi, Yuanwei

2015-02-01

This article studies propagating traveling waves in a class of reaction-diffusion systems which include a model of microbial growth and competition in a flow reactor proposed by Smith and Zhao [17], and isothermal autocatalytic systems in chemical reaction of order m with a decay order n, where m and n are positive integers and m ≠ n. A typical system in autocatalysis is A + 2 B → 3 B (with rate k1 ab2) and B → C (with rate k2 b), where m = 2 and n = 1, involving two chemical species, a reactant A and an auto-catalyst B whose diffusion coefficients, DA and DB, are unequal due to different molecular weights and/or sizes. Here a is the concentration density of A, b that of B and C an inert chemical species. The two constants k1 and k2 are material constants measuring the relative strength of respective reactions. It is shown that there exist traveling waves when m > 1 and n = 1 with suitable relation between the ratio DB /DA, traveling speed c and rate constants k1, k2. On the other hand, it is proved that there exists no traveling wave when one of the chemical species is immobile, DB = 0 or n > m for all choices of other parameters.

19. An effective system to produce smoke solutions from dried plant tissue for seed germination studies1

PubMed Central

Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

2014-01-01

• Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613

20. Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2

SciTech Connect

Cano, R.J.; Massey, C.P.; St. Clair, T.L.

1996-12-31

This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber. Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.

1. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

DOEpatents

Nerad, Bruce A.; Krantz, William B.

1988-01-01

A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

2. Existence of traveling wave solutions for diffusive predator-prey type systems

Hsu, Cheng-Hsiung; Yang, Chi-Ru; Yang, Ting-Hui; Yang, Tzi-Sheng

In this work we investigate the existence of traveling wave solutions for a class of diffusive predator-prey type systems whose each nonlinear term can be separated as a product of suitable smooth functions satisfying some monotonic conditions. The profile equations for the above system can be reduced as a four-dimensional ODE system, and the traveling wave solutions which connect two different equilibria or the small amplitude traveling wave train solutions are equivalent to the heteroclinic orbits or small amplitude periodic solutions of the reduced system. Applying the methods of Wazewski Theorem, LaSalle's Invariance Principle and Hopf bifurcation theory, we obtain the existence results. Our results can apply to various kinds of ecological models.

3. An effective system to produce smoke solutions from dried plant tissue for seed germination studies.

PubMed

Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

2014-03-01

An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Smoke solutions (300 mL per batch) were produced by burning small quantities (100-200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process.

4. Generalized solutions of initial-boundary value problems for second-order hyperbolic systems

Alexeyeva, L. A.; Zakir'yanova, G. K.

2011-07-01

The method of boundary integral equations is developed as applied to initial-boundary value problems for strictly hyperbolic systems of second-order equations characteristic of anisotropic media dynamics. Based on the theory of distributions (generalized functions), solutions are constructed in the space of generalized functions followed by passing to integral representations and classical solutions. Solutions are considered in the class of singular functions with discontinuous derivatives, which are typical of physical problems describing shock waves. The uniqueness of the solutions to the initial-boundary value problems is proved under certain smoothness conditions imposed on the boundary functions. The Green's matrix of the system and new fundamental matrices based on it are used to derive integral analogues of the Gauss, Kirchhoff, and Green formulas for solutions and solving singular boundary integral equations.

5. Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system

NASA Technical Reports Server (NTRS)

Meyer, J. F.

1981-01-01

Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.

6. Interoperability of a mobile health care solution with electronic healthcare record systems.

PubMed

De Toledo, P; Lalinde, W; Del Pozo, F; Thurber, D; Jimenez-Fernandez, S

2006-01-01

Mobile health care solutions involving patient monitoring are an increasingly accepted element in chronic disease management strategies. When used in healthcare systems with different providers, it is essential that the information gathered from the patient is available at each of these providers information repositories. This paper describes the design of a connectivity interface based on the HL7 standard that allows the MOTOHEALTH mobile health care solution to communicate with external electronic healthcare record systems supporting HL7.

7. Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way

DTIC Science & Technology

2015-01-01

Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way 2015 Annual Report Report Documentation Page Form ApprovedOMB No. 0704-0188...2015 4. TITLE AND SUBTITLE Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way: 2015 Annual Report 5a. CONTRACT NUMBER 5b...and enable this technology in other applications going forward. NMC understands that a smooth sea never made a skilled mariner. Whether the

8. On Improving the Convergence of the Solution of a System of Linear Equations

DTIC Science & Technology

2005-08-01

vector acceleration technique to enhance the convergence. One significant advantage of using the bcg estimates is that the moment matrix , A, does not need...requires the solution of a system of linear equations of the form, Ax = b, where the dimension of the matrix A increases with the nunber of unknowns...appendix to the report. The solution of a system of linear equations can be obtained from direct methods, such as matrix inversion, and indirect methods

9. Global Solution of Dynamical Systems a Report to Z. Kopal, on what Followed Since

Goudas, C. L.; Papadakis, K. E.

2005-04-01

Two basic problems of dynamics, one of which was tackled in the extensive work of Z. Kopal (see e.g. Kopal, 1978, Dynamics of Close Binary Systems, D. Reidel Publication, Dordrecht, Holland.), are presented with their approximate general solutions. The ‘penetration’ into the space of solution of these non-integrable autonomous and conservative systems is achieved by application of ‘ The Last Geometric Theorem of Poincaré’ (Birkhoff, 1913, Am. Math. Soc. (rev. edn. 1966)) and the calculation of sub-sets of ‘solutions précieuses’ that are covering densely the spaces of all solutions (non-periodic and periodic) of these problems. The treated problems are: 1. The two-dimensional Duffing problem, 2. The restricted problem around the Roche limit. The approximate general solutions are developed by applying known techniques by means of which all solutions re-entering after one, two, three, etc, revolutions are, first, located and then calculated with precision. The properties of these general solutions, such as the morphology of their constituent periodic solutions and their stability for both problems are discussed. Calculations of Poincaré sections verify the presence of chaos, but this does not bear on the computability of the general solutions of the problems treated. The procedure applied seems efficient and sufficient for developing approximate general solutions of conservative and autonomous dynamical systems that fulfil the PoincaréBirkhoff theorems. The same procedure does not apply to the sub-set of unbounded solutions of these problems.

10. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument

Xia, Yonghui; Huang, Zhenkun; Han, Maoan

2007-09-01

Certain almost periodic forced perturbed systems with piecewise argument are considered in this paper. By using the contraction mapping principle and some new analysis technique, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of these systems. Furthermore, we study the harmonic and subharmonic solutions of these systems. The obtained results generalize the previous known results such as [A.M. Fink, Almost Periodic Differential Equation, Lecture Notes in Math., volE 377, Springer-Verlag, Berlin, 1974; C.Y. He, Almost Periodic Differential Equations, Higher Education Press, Beijing, 1992 (in Chinese); Z.S. Lin, The existence of almost periodic solution of linear system, Acta Math. Sinica 22 (5) (1979) 515-528 (in Chinese); C.Y. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (2) (1992) 173-181; Y.H. Xia, M. Lin, J. Cao, The existence of almost periodic solutions of certain perturbation system, J. Math. Anal. Appl. 310 (1) (2005) 81-96]. Finally, a tangible example and its numeric simulations show the feasibility of our results, the comparison between non-perturbed system and perturbed system, the relation between systems with and without piecewise argument.

11. Satellite and Ground System Solutions at Your Fingertips

NASA Technical Reports Server (NTRS)

2005-01-01

In the summer of 1998, the blockbuster action movie Armageddon captivated audiences with a thrilling doomsday plot about a meteor the size of Texas that was racing towards the Earth. Though the premise of the movie was purely fictional, the unfortunate reality is that near-Earth asteroids such as the one portrayed in the film do exist. On December 23, 2004, NASA announced that an asteroid it anticipated to pass near the Earth on April 13, 2029, had been assigned the highest score to date on the universally used Torino Impact Hazard Scale. At first, the flyby distance for the asteroid, dubbed MN4, was uncertain and an Earth impact could not be ruled out. The odds of impact were initially believed to be 1 in 300, high enough to merit special monitoring by astronomers around the world, but were then escalated to 1 in 37 on December 27. NASA officials noted, however, that these odds should not be of public concern, since they were likely to change on a day-to-day basis as new data were received. The officials were correct in their assertion, as any chances of an impact with Earth in 2029 were completely ruled out later that same day. Integral Systems, Inc., a leading provider of satellite ground systems and the first company to offer an integrated suite of commercial-off-the-shelf software products for satellite command and control, is helping NASA keep a careful watch for any close-encountering asteroids with its tracking technology. The company supported the first NASA Discovery mission, the Near Earth Asteroid Rendezvous (NEAR) program, back in 1996, and has expanded its business by building more ground systems for a greater variety of satellites than any other company in the world. (NASA has since launched seven more Discovery missions, with the eighth lifting off earlier this year.) The experience gained from the company s participation in developing satellite command and control ground systems for the NEAR program has bolstered its flagship product line, the

12. Privacy Management and Networked PPD Systems - Challenges Solutions.

PubMed

Ruotsalainen, Pekka; Pharow, Peter; Petersen, Francoise

2015-01-01

Modern personal portable health devices (PPDs) become increasingly part of a larger, inhomogeneous information system. Information collected by sensors are stored and processed in global clouds. Services are often free of charge, but at the same time service providers' business model is based on the disclosure of users' intimate health information. Health data processed in PPD networks is not regulated by health care specific legislation. In PPD networks, there is no guarantee that stakeholders share same ethical principles with the user. Often service providers have own security and privacy policies and they rarely offer to the user possibilities to define own, or adapt existing privacy policies. This all raises huge ethical and privacy concerns. In this paper, the authors have analyzed privacy challenges in PPD networks from users' viewpoint using system modeling method and propose the principle "Personal Health Data under Personal Control" must generally be accepted at global level. Among possible implementation of this principle, the authors propose encryption, computer understandable privacy policies, and privacy labels or trust based privacy management methods. The latter can be realized using infrastructural trust calculation and monitoring service. A first step is to require the protection of personal health information and the principle proposed being internationally mandatory. This requires both regulatory and standardization activities, and the availability of open and certified software application which all service providers can implement. One of those applications should be the independent Trust verifier.

13. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.

PubMed

van Mameren, Joost; Wuite, Gijs J L; Heller, Iddo

2018-01-01

Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we will provide an introduction on the use of optical tweezers in single-molecule approaches. We will introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.

14. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

SciTech Connect

2014-12-01

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

15. A general method for the existence of periodic solutions of differential systems in the plane

Fonda, Alessandro; Sfecci, Andrea

We propose a general method to prove the existence of periodic solutions for planar systems of ordinary differential equations, which can be used in many different circumstances. Applications are given to some nonresonant cases, even for systems with superlinear growth in some direction, or with a singularity. Systems "at resonance" are also considered, provided a Landesman-Lazer type of condition is assumed.

16. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

SciTech Connect

Wood, W.W.; Low, W.H.

1988-01-01

The authors report that proposed geochemical reactions controlling solutes in the Snake River plain aquifer system are precipitation of calcite and silica; dissolution of olivine, pyroxene, pyrite, and and-hydrite; and weathering of plagioclase. About 20 percent of solutes are from aquifer framework weathering. The remainig solutes are from tributary drainage basins. Proposed geochemical reactions in the geothermal system are dissolution of fluorite, anhydrite, calcite, and feldspars; oxidation of pyrite; and ion exchange. Geothermal water residence time is about 17,700 years.

17. On global classical solutions of the three dimensional relativistic Vlasov-Darwin system

Li, Xiuting; Zhang, Xianwen

2016-08-01

We study the Cauchy problem of the relativistic Vlasov-Darwin system with generalized variables proposed by Sospedra-Alfonso et al. ["Global classical solutions of the relativistic Vlasov-Darwin system with small Cauchy data: the generalized variables approach," Arch. Ration. Mech. Anal. 205, 827-869 (2012)]. We prove global existence of a non-negative classical solution to the Cauchy problem in three space variables under small perturbation of the initial datum, and as a consequence, we obtain that nearly spherically symmetric solutions with required regularity exist globally in time.

18. A Uniqueness Criterion for Unbounded Solutions to the Vlasov-Poisson System

Miot, Evelyne

2016-09-01

We prove uniqueness for the Vlasov-Poisson system in two and three dimensions under the condition that the L p norms of the macroscopic density grow at most linearly with respect to p. This allows for solutions with logarithmic singularities. We provide explicit examples of initial data that fulfill the uniqueness condition and that exhibit a logarithmic blow-up. In the gravitational two-dimensional case, such states are intimately related to radially symmetric steady solutions of the system. Our method relies on the Lagrangian formulation for the solutions, exploiting the second-order structure of the corresponding ODE.

19. Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange.

PubMed

Tsuji, Yutaro; Kawano, Ryuji; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

2013-04-21

This paper proposes a solution exchange of a droplet-based lipid bilayer system, in which the inner solution of a droplet is replaced for the purpose of efficient ion channel analyses. In our previous report, we successfully recorded the channel conductance of alpha-hemolysin in a bilayer lipid membrane using a droplet contact method that can create a spontaneous lipid bilayer at the interface of contacting droplets; this method is widely used as highly efficient method for preparing planar lipid membranes. When only pipetting droplets of the solution, this method is highly efficient for preparing lipid membranes. However, the drawback of droplet-based systems is their inability to exchange the solution within the droplets. To study the effect of inhibitors and promoters of ion channels in drug discovery, it would be beneficial to conduct a solution exchange of droplets to introduce membrane proteins and to apply or wash-out the chemicals. In this study, we propose a droplet contact method that allows for the solution exchange of droplets via microfluidic channels. We experimentally and numerically investigated the bilayer stability with respect to exchanging flow rates, and then demonstrated a binding assay of an alpha-hemolysin using one of its blockers. The solution exchange in this system was conducted in less than 20 s without rupturing the membrane. We believe that the proposed system will enhance the efficiency of ion channel analyses.

20. Solution of underdetermined systems of equations with gridded a priori constraints.

PubMed

Stiros, Stathis C; Saltogianni, Vasso

2014-01-01

The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

1. Winding solutions for the two-particle system in ? gravity

Welling, M.

1998-03-01

We use a computer to follow the evolution of two gravitating particles in a (2 + 1)-dimensional closed universe. In a closed universe there is enough energy to produce a Gott-pair, i.e. a pair of particles with tachyonic centre of mass, from regular initial data. We study such a pair and find that they can wind around each other with ever increasing momentum. As was shown by 't Hooft, the universe must crunch before any closed timelike curve can be traversed. We study the two-particle system and quantize it, long before this crunch happens, in the high-momentum limit. We find that both the relevant configuration variable and its conjugate momentum become discretized.

2. Phases of polymer systems in solution studied via molecular dynamics

SciTech Connect

Anderson, Joshua Allen

2009-05-01

Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

3. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters

PubMed Central

Saier, Milton H.

2000-01-01

A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional

4. Applications of isotopes to tracing sources of solutes and water in shallow systems

USGS Publications Warehouse

Kendall, Carol; Krabbenhoft, David P.

1995-01-01

New awareness of the potential danger to water supplies posed by the use of agricultural chemicals has focused attention on the nature of groundwater recharge and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. A better understanding of hydrologic flowpaths and solute sources is required to determine the potential impact of sources of contamination on water supplies, to develop management practices for preserving water quality, and to develop remediation plans for sites that are already contaminated. In many cases, environmental isotopes can be employed as 'surgical tools' for answering very specific questions about water and solute sources. Isotopic data can often provide more accurate information about the system than hydrologic measurements or complicated hydrologic models. This note focuses on practical and cost-effective examples of how naturally-occurring isotopes can be used to track water and solutes as they move through shallow systems.

5. Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems

Katzourakis, Nikos

2017-07-01

We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.

6. Open architecture controller solution for custom machine systems

Anderson, Ronald L.; Reagin, J. M.; Garner, T. D.; Sweeny, T. E.

1997-01-01

In today's marketplace, product quality and price have become requirements for entry and are no longer sufficient to differentiate one's product and gain a competitive advantage. A key to competition in the future will be a company's ability to respond quickly to a rapidly-changing global marketplace. Developers of manufacturing equipment must play a role in the reduction of the product development cycle time by increasing the flexibility of their equipment and decreasing its cost and time to market. This paper will discuss the implementation of an open-architecture machine controller on a flip-chip placement machine and how this implementation supports the goals of reduced development time and increased equipment flexibility. The following subjects are discussed: 1) Issues related to the selection of a standard operating system, including real-time performance, preemptive multi-tasking, multi-threaded applications, and development tools. 2) The use of a common API for motion, and I/O. 3) Use of a rapid application development and object-oriented programming techniques on the machine controller to shorten development time and support code reuse. 4) Specific hardware and software issues related to the implementation of the flip chip controller. This includes hardware and software implementation details, controller performance, and human interface issues.

7. An Accurate Heading Solution using MEMS-based Gyroscope and Magnetometer Integrated System (Preliminary Results)

El-Diasty, M.

2014-11-01

An accurate heading solution is required for many applications and it can be achieved by high grade (high cost) gyroscopes (gyros) which may not be suitable for such applications. Micro-Electro Mechanical Systems-based (MEMS) is an emerging technology, which has the potential of providing heading solution using a low cost MEMS-based gyro. However, MEMS-gyro-based heading solution drifts significantly over time. The heading solution can also be estimated using MEMS-based magnetometer by measuring the horizontal components of the Earth magnetic field. The MEMS-magnetometer-based heading solution does not drift over time, but are contaminated by high level of noise and may be disturbed by the presence of magnetic field sources such as metal objects. This paper proposed an accurate heading estimation procedure based on the integration of MEMS-based gyro and magnetometer measurements that correct gyro and magnetometer measurements where gyro angular rates of changes are estimated using magnetometer measurements and then integrated with the measured gyro angular rates of changes with a robust filter to estimate the heading. The proposed integration solution is implemented using two data sets; one was conducted in static mode without magnetic disturbances and the second was conducted in kinematic mode with magnetic disturbances. The results showed that the proposed integrated heading solution provides accurate, smoothed and undisturbed solution when compared with magnetometerbased and gyro-based heading solutions.

8. Management of systemic lupus erythematosus during pregnancy: challenges and solutions.

PubMed

Knight, Caroline L; Nelson-Piercy, Catherine

2017-01-01

Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease predominantly affecting women, particularly those of childbearing age. SLE provides challenges in the prepregnancy, antenatal, intrapartum, and postpartum periods for these women, and for the medical, obstetric, and midwifery teams who provide their care. As with many medical conditions in pregnancy, the best maternal and fetal-neonatal outcomes are obtained with a planned pregnancy and a cohesive multidisciplinary approach. Effective prepregnancy risk assessment and counseling includes exploration of factors for poor pregnancy outcome, discussion of risks, and appropriate planning for pregnancy, with consideration of discussion of relative contraindications to pregnancy. In pregnancy, early referral for hospital-coordinated care, involvement of obstetricians and rheumatologists (and other specialists as required), an individual management plan, regular reviews, and early recognition of flares and complications are all important. Women are at risk of lupus flares, worsening renal impairment, onset of or worsening hypertension, preeclampsia, and/or venous thromboembolism, and miscarriage, intrauterine growth restriction, preterm delivery, and/or neonatal lupus syndrome (congenital heart block or neonatal lupus erythematosus). A cesarean section may be required in certain obstetric contexts (such as urgent preterm delivery for maternal and/or fetal well-being), but vaginal birth should be the aim for the majority of women. Postnatally, an ongoing individual management plan remains important, with neonatal management where necessary and rheumatology followup. This article explores the challenges at each stage of pregnancy, discusses the effect of SLE on pregnancy and vice versa, and reviews antirheumatic medications with the latest guidance about their use and safety in pregnancy. Such information is required to effectively and safely manage each stage of pregnancy in women with SLE.

9. Consumer empowerment as a solution to health system financing.

PubMed

Prewo, W

2000-01-01

The health system of the welfare state has basic design flaws. First, it treats citizens as recipients of entitlements that are bestowed on them rather than as sovereign customers who otherwise can choose among an array of goods and services; with uniform health plans, there are no incentives to economise. Second, benefits are provided by government through monopoly schemes; their performance has been dismal when compared with other sectors of the economy that, under competition, have yielded continuous efficiency improvements. Ceaselessly rising costs for healthcare are the consequence. Applying the principles of the market economy to healthcare--and to social security in general--would unleash a vast potential of efficiency gains. The issue in such a reform is equity. Healthcare must be affordable for all. In reconciling efficiency and equity, the cornerstones of this proposal are financial empowerment and individual responsibility; to hand the individual the money required to purchase the current level of benefits--nobody loses--and to leave it to the individual, within bounds, whether to do so. While guaranteeing that everybody can buy the current benefits, the savings from restraint will be the individual's to keep. The reform steps would be as follows: (i) empowerment, (ii) fairness and finance, (iii) safeguard and choice, and (iv) savings to keep. This is a 'consumer model' of healthcare. Efficiency is achieved by privatisation, individual responsibility and freedom of choice on the demand side and by competition on the supply side. Equity is guaranteed by financial empowerment of the individual and a no-loss rule; mandatory minimum insurance would preserve the safety net.

10. Management of systemic lupus erythematosus during pregnancy: challenges and solutions

PubMed Central

Knight, Caroline L; Nelson-Piercy, Catherine

2017-01-01

Systemic lupus erythematosus (SLE) is a chronic, multisystem autoimmune disease predominantly affecting women, particularly those of childbearing age. SLE provides challenges in the prepregnancy, antenatal, intrapartum, and postpartum periods for these women, and for the medical, obstetric, and midwifery teams who provide their care. As with many medical conditions in pregnancy, the best maternal and fetal–neonatal outcomes are obtained with a planned pregnancy and a cohesive multidisciplinary approach. Effective prepregnancy risk assessment and counseling includes exploration of factors for poor pregnancy outcome, discussion of risks, and appropriate planning for pregnancy, with consideration of discussion of relative contraindications to pregnancy. In pregnancy, early referral for hospital-coordinated care, involvement of obstetricians and rheumatologists (and other specialists as required), an individual management plan, regular reviews, and early recognition of flares and complications are all important. Women are at risk of lupus flares, worsening renal impairment, onset of or worsening hypertension, preeclampsia, and/or venous thromboembolism, and miscarriage, intrauterine growth restriction, preterm delivery, and/or neonatal lupus syndrome (congenital heart block or neonatal lupus erythematosus). A cesarean section may be required in certain obstetric contexts (such as urgent preterm delivery for maternal and/or fetal well-being), but vaginal birth should be the aim for the majority of women. Postnatally, an ongoing individual management plan remains important, with neonatal management where necessary and rheumatology followup. This article explores the challenges at each stage of pregnancy, discusses the effect of SLE on pregnancy and vice versa, and reviews antirheumatic medications with the latest guidance about their use and safety in pregnancy. Such information is required to effectively and safely manage each stage of pregnancy in women with SLE

11. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

SciTech Connect

Campbell, J.R.; Luthy, R.G.

1984-06-01

Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

12. Study of Unstirred Ternary Non-Ionic Solutions Transport in a Double-Membrane System

Ślęzak, A.; Grzegorczyn, S.

1999-12-01

Non-equilibrium thermodynamic model equations describing transport properties of non-ionic and heterogeneous n-component solutions have been studied in a double-membrane system. The system is composed of two complexes: boundary layer/membrane/boundary layer. Definitions of hydraulic permeability ( p), reflection (σ¯ *) and diffusive permeability (Ω¯) coefficients of the double-membrane system and relations between the coefficients of the double-membrane system ( p, σ¯ *, Ω¯) and the respective quantities of the single membranes of the system (L p, σ*, Ω) are given. The validity of the model has been checked in the case of binary and ternary solutions, using a membrane cell with horizontally mounted membranes. The diffusive permeability and reflection coefficients were determined as functions of solution concentration and gravitational configuration.

13. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

2014-05-01

In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

14. Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver

SciTech Connect

Boyse, W.E.

1996-12-31

Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwells equations. Discretization by this method produces general complex dense systems of rank 100s to 100,000s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.

15. General Mixed Multi-Soliton Solutions to One-Dimensional Multicomponent Yajima-Oikawa System

Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

2015-07-01

In this paper, we derive a general mixed (bright-dark) multi-soliton solution to a one-dimensional multicomponent Yajima-Oikawa (YO) system, i.e., the (M + 1)-component YO system comprised of M-component short waves (SWs) and one-component long wave (LW) for all possible combinations of nonlinearity coefficients including positive, negative and mixed types. With the help of the KP-hierarchy reduction method, we firstly construct two types of general mixed N-soliton solution (two-bright-one-dark soliton and one-bright-two-dark one for SW components) to the (3+1)-component YO system in detail. Then by extending the corresponding analysis to the (M + 1)-component YO system, a general mixed N-soliton solution in Gram determinant form is obtained. The expression of the mixed soliton solution also contains the general all bright and all dark N-soliton solution as special cases. Besides, the dynamical analysis shows that the inelastic collision can only take place among SW components when at least two SW components have bright solitons in mixed type soliton solution. Whereas, the dark solitons in SW components and the bright soliton in LW component always undergo usual elastic collision.

16. Time-periodic and stationary solutions to the compressible Hall-magnetohydrodynamic system

Cheng, Ming

2017-04-01

We are concerned with the 3-D compressible Hall-magnetohydrodynamic system with a time-periodic external force in a periodic domain, and establish the existence of a strong time-periodic solution under some smallness and symmetry assumptions by adapting a new approach. The basic idea of the proof is the following. First, we prove the existence of a time-periodic solution to the linearized system by applying the Tychonoff fixed point theorem combined with the energy method and the decay estimates. From the details of the proof, we see that the initial data of the time-periodic solution to the linearized system lies in some convex hull. Then, we construct a set-value function, such that the fixed point of this function is a time-periodic solution of the compressible Hall-magnetohydrodynamic system. The existence of the fixed point is obtained by the Kakutani fixed point theorem. Moreover, we establish the uniqueness of the time-periodic solution and the existence of the stationary solution.

17. A novel web-enabled healthcare solution on health vault system.

PubMed

Liao, Lingxia; Chen, Min; Rodrigues, Joel J P C; Lai, Xiaorong; Vuong, Son

2012-06-01

Complicated Electronic Medical Records (EMR) systems have created problems in systems regarding an easy implementation and interoperability for a Web-enabled Healthcare Solution, which is normally provided by an independent healthcare giver with limited IT knowledge and interests. An EMR system with well-designed and user-friendly interface, such as Microsoft HealthVault System used as the back-end platform of a Web-enabled healthcare application will be an approach to deal with these problems. This paper analyzes the patient oriented Web-enabled healthcare service application as the new trend to delivery healthcare from hospital/clinic-centric to patient-centric, the current e-healthcare applications, and the main backend EMR systems. Then, we present a novel web-enabled healthcare solution based on Microsoft HealthVault EMR system to meet customers' needs, such as, low total cost, easily development and maintenance, and good interoperability. A sample system is given to show how the solution can be fulfilled, evaluated, and validated. We expect that this paper will provide a deep understanding of the available EMR systems, leading to insights for new solutions and approaches driven to next generation EMR systems.

18. Solutions to a reduced Poisson-Nernst-Planck system and determination of reaction rates

Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

2010-04-01

We study a reduced Poisson-Nernst-Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems.

19. Solutions to a reduced Poisson-Nernst-Planck system and determination of reaction rates.

PubMed

Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J Andrew

2010-04-01

We study a reduced Poisson-Nernst-Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems.

20. Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

PubMed Central

Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

2010-01-01

We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems. PMID:20228879

1. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

PubMed Central

Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

2014-01-01

In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

2. Rheological behaviors and miscibility of mixture solution of polyaniline and cellulose dissolved in an aqueous system.

PubMed

Shi, Xingwei; Lu, Ang; Cai, Jie; Zhang, Lina; Zhang, Hongming; Li, Ji; Wang, Xianhong

2012-08-13

In our previous work, supramolecular films composed of hydrophilic cellulose and hydrophobic polyaniline (PANI) dissolved in NaOH/urea aqueous solution at low temperature through rearrangement of hydrogen bonds have been constructed. To further understand the miscibility and processability of the complex solution, the dynamic rheological behaviors of the PANI/cellulose complex solution were investigated, for the first time, in the present work. Transmission electron microscope (TEM) results demonstrated that the inclusion complexes consisted of PANI and cellulose, existed in the aqueous solution, showing a good miscibility. Time-temperatures superposition (tTs) results indicated that the PANI/cellulose solution exhibited a homogeneous system, and the complex solution was more stable than the cellulose solution in the temperature range from 5 to 25 °C. Winter-Chambon theory was proved to be capable of describing the gelation behavior of the PANI/cellulose complex solution. The relaxation exponent at the gel point was calculated to be 0.74, lower than the cellulose solution, indicating strong interactions between PANI and cellulose chains. Relatively larger flow activation energy of the PANI/cellulose solution suggested the formation and rupture of linkages in "junction zones" during the gelation processes. Furthermore, PANI/cellulose gels could form at elevated temperature as a result of the physical cross-linking and chain entanglement, and it was a thermoirreversible process. Moreover, the PANI/cellulose solution remained a liquid state for a long time at the temperature range from 0 to 8 °C, which is important for the industry process.

3. System for creating at a site, remote from a sterile environment, a parenteral solution

NASA Technical Reports Server (NTRS)

Scharf, Mike (Inventor); Finley, Mike (Inventor); Veillon, Joe (Inventor); Kipp, Jim (Inventor); Dudar, Tom (Inventor); Owens, Jim (Inventor); Ogle, Jim (Inventor)

1996-01-01

The present invention relates to a container, system, and method for creating parenteral solutions at a site, remote from sterile environments. The system includes a flexible container that is empty except for a prepackaged amount of a solute that is housed in the interior of the container. The container includes at least one port and a sterilizing filter in communication with an interior of the port. The container is so constructed and arranged that a fluid flow path is created from the port through the filter and into the interior of the container. A sterile water source including means for establishing fluid flow from the sterile water source into the port is provided. Accordingly, sterile water can flow from the sterile water source through the filter into the container where it is mixed with the solute to create a parenteral solution that can then be infused into a patient. A method and container are also provided.

4. Hodograph transformation and differential constraints for wave solutions to 2 × 2 quasilinear hyperbolic nonhomogeneous systems

Curró, C.; Fusco, D.; Manganaro, N.

2012-05-01

The differential constraint method is used to work out a reduction approach to determine solutions in a closed form to the highly nonlinear hodograph system arising from 2 × 2 hyperbolic nonhomogeneous models. These solutions inherit all of the features of the standard wave solutions obtainable via the classical hodograph transformation and in the meantime incorporate the dissipative effects induced on wave processes by the source-like term involved in the governing equations. Within such a theoretical framework the problem of integrating the standard linear hodograph system associated with 2 × 2 homogeneous models is also revisited and a number of results obtained elsewhere of relevant interest in wave problems are recovered as a particular case. Along the lines of the proposed reduction approach, different examples of 2 × 2 governing models are analysed thoroughly in order to highlight the flexibility of the provided solutions to describe hyperbolic dissipative wave processes.

5. Designing torus-doubling solutions to discrete time systems by hybrid projective synchronization

Xie, Hui; Wen, Guilin

2013-11-01

Doubling of torus occurs in high dimensional nonlinear systems, which is related to a certain kind of typical second bifurcations. It is a nontrivial task to create a torus-doubling solution with desired dynamical properties based on the classical bifurcation theories. In this paper, dead-beat hybrid projective synchronization is employed to build a novel method for designing stable torus-doubling solutions into discrete time systems with proper properties to achieve the purpose of utilizing bifurcation solutions as well as avoiding the possible conflict of physical meaning of the created solution. Although anti-controls of bifurcation and chaos synchronizations are two different topics in nonlinear dynamics and control, the results imply that it is possible to develop some new interdisciplinary methods between chaos synchronization and anti-controls of bifurcations.

6. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

2017-08-01

This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

7. Asymptotic properties of solutions of nonlinear systems of dynamic equations on time scales

Vítovec, Jiří

2017-07-01

In this paper we study asymptotic properties of solutions of nonlinear dynamic systems on time scales of the form yΔ(t) = f (t, y(t)), where f : 𝕋 × ℝn → ℝn, and 𝕋 is a time scale. For a given set Ω ⊂ 𝕋 × ℝn, we formulate conditions for function f which guarantee that at least one solution y of the above system stays in Ω. Unlike previous papers, we assume the set Ω in more general shape or we formulate the conditions guaranteeing an existence of bounded solution in easier and better verifiable form. Thanks to this, we can find a wider range of equations with bounded solutions. The example illustrating this type of equations is added.

8. Global search of non-linear systems periodic solutions: A rotordynamics application

Sarrouy, E.; Thouverez, F.

2010-08-01

Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.

9. Systems and methods for laser assisted sample transfer to solution for chemical analysis

DOEpatents

Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

2015-09-29

Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

10. Systems and methods for laser assisted sample transfer to solution for chemical analysis

DOEpatents

Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.

2014-06-03

Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

11. Systems and methods for laser assisted sample transfer to solution for chemical analysis

DOEpatents

Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S

2013-08-27

Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.

12. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

2014-12-01

Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

13. The microbubble mediated surface probe and the ice-antifreeze glycoprotein solution system

Vesenka, J. P.; Feeney, R. E.; Yeh, Y.

1993-05-01

Microbubble growth and its apparent "shrinkage" during the transient approach to steady-state crystal growth have been monitored by dynamic light scattering in the region immediately ahead of ice crystals growing into aqueous solutions containing dilute concentrations of macromolecules. This interfacial bubble growth occurs in the presence of a solution of globular macromolecules, and is independent of the crystal growth direction. In contrast, bubble growth becomes crystal-facet dependent when the solution contains a biological antifreeze molecule, the antifreeze glycoprotein (AFGP-4). This solution elicited an immediate, 100 x increase in bubble size above the prismatic surface of ice, followed by a gradual decrease in the averaged bubble size concomitant with a large increase in the size polydispersity. Furthermore, when the steady-state crystal growth condition is reached (in approximately one hour), the average bubble size was still ˜ 80x the size of those found in the pure ice-water system. However, when the same solution is above the basal facet, after the steady-state growth condition is attained, the microbubble diameter is unchanged from that found in the pure ice-water system. The difference in microbubble growth in the vicinity of the dynamic ice-solution interface between solutions of AFGP-4 samples and that of other molecules suggests facet-specific affinity of AFGP by ice, a condition necessary for facet-specific crystal growth inhibition.

14. Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems

Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki

A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.

15. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

Yang, Jianwen

2012-04-01

A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

16. Optimal Solution for an Engineering Applications Using Modified Artificial Immune System

Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina

2017-03-01

An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.

17. On the Existence of Integrable Solutions to Nonlinear Elliptic Systems and Variational Problems with Linear Growth

Beck, Lisa; Bulíček, Miroslav; Málek, Josef; Süli, Endre

2017-08-01

We investigate the properties of certain elliptic systems leading, a priori, to solutions that belong to the space of Radon measures. We show that if the problem is equipped with a so-called asymptotic radial structure, then the solution can in fact be understood as a standard weak solution, with one proviso: analogously to the case of minimal surface equations, the attainment of the boundary value is penalized by a measure supported on (a subset of) the boundary, which, for the class of problems under consideration here, is the part of the boundary where a Neumann boundary condition is imposed.

18. The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems

SciTech Connect

Sergeev, Igor N

2013-01-31

Lyapunov-type oscillation and wandering indicators are defined for solutions of systems of differential equations; these are the average frequency of zeros for the projection of a solution onto some line and the average angular velocity of rotation of a solution about the origin in some basis, respectively. An integral equality relating these indicators is obtained. The indicators introduced are shown to coincide if, prior to averaging, the oscillation indicators are minimized over all possible lines, and the wandering indicators over all possible bases. Bibliography: 17 titles.

19. Three semi-discrete integrable systems related to orthogonal polynomials and their generalized determinant solutions

Chen, Xiao-Min; Chang, Xiang-Ke; Sun, Jian-Qing; Hu, Xing-Biao; Yeh, Yeong-Nan

2015-07-01

In this paper, we present a generalized Toeplitz determinant solution for the generalized Schur flow and propose a mixed form of the two known relativistic Toda chains together with its generalized Toeplitz determinant solution. In addition, we also give a Hankel type determinant solution for a nonisospectral Toda lattice. All these results are obtained by technical determinant operations. As a bonus, we finally obtain some new combinatorial numbers based on the moment relations with respect to these semi-discrete integrable systems and give the corresponding combinatorial interpretations by means of the lattice paths.

20. Existence of travelling wave solutions for a Fisher-Kolmogorov system with biomedical applications

Belmonte-Beitia, Juan

2016-07-01

We consider a Fisher-Kolmogorov system with applications in oncology Pérez-García et al. (2015). Of interest is the question of the existence of travelling front solutions of the system. When the speed of the travelling wave is sufficiently large, existence of such fronts is shown using singular geometric perturbation theory.

1. A priori L∞ estimates for solutions of a class of reaction-diffusion systems.

PubMed

Du, Zengji; Peng, Rui

2016-05-01

In this short paper, we establish a priori L∞-norm estimates for solutions of a class of reaction-diffusion systems which can be used to model the spread of infectious disease. The developed technique may find applications in other reaction-diffusion systems.

2. Cyber-Security Holism: A System of Solutions for a Distributed Problem

DTIC Science & Technology

2013-04-25

SUBTITLE CYCBER-SECURITY HOLISM: A SYSTEM OF SOLUTIONS FOR A DISTRIBUTED PROBLEM 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT...Simple Dynamic Programing Example .....................................................................18...organism of the parts. Facing this complexity, I turned to holism, to systems theory, and to dynamic programming used to understand complexity in

3. Numerical solutions of the reaction diffusion system by using exponential cubic B-spline collocation algorithms

Ersoy, Ozlem; Dag, Idris

2015-12-01

The solutions of the reaction-diffusion system are given by method of collocation based on the exponential B-splines. Thus the reaction-diffusion systemturns into an iterative banded algebraic matrix equation. Solution of the matrix equation is carried out byway of Thomas algorithm. The present methods test on both linear and nonlinear problems. The results are documented to compare with some earlier studies by use of L∞ and relative error norm for problems respectively.

4. Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds

Andreas, Björn; Garcia-Fernandez, Mario

2012-10-01

We prove that a given Calabi-Yau threefold with a stable holomorphic vector bundle can be perturbed to a solution of the Strominger system provided that the second Chern class of the vector bundle is equal to the second Chern class of the tangent bundle. If the Calabi-Yau threefold has strict SU(3) holonomy then the equations of motion derived from the heterotic string effective action are also satisfied by the solutions we obtain.

5. Existence of periodic travelling wave solutions for a regularized Benjamin-Ono system

Pipicano, Felipe Alexander; Muñoz Grajales, Juan Carlos

2015-12-01

In this paper, we discuss the existence of periodic travelling wave solutions of a regularized Benjamin-Ono system by using the topological-degree theory of positive operators on Banach spaces. Furthermore, we use a high-accuracy pseudospectral solver based on a Fourier decomposition to construct numerical approximations of these stationary solutions. The numerical simulations are in perfect agreement with the theoretical results.

6. Development of a decision support system for analysis and solutions of prolonged standing in the workplace.

PubMed

Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

2014-06-01

Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.

7. Development of a Decision Support System for Analysis and Solutions of Prolonged Standing in the Workplace

PubMed Central

Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

2014-01-01

Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141

8. A System for Managing Replenishment of a Nutrient Solution Using an Electrical Conductivity Controller

NASA Technical Reports Server (NTRS)

Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

1998-01-01

Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120

9. A System for Managing Replenishment of a Nutrient Solution Using an Electrical Conductivity Controller

NASA Technical Reports Server (NTRS)

Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

1998-01-01

Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120

10. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions.

PubMed

Lee, Ping I

2011-10-10

11. Novel solutions to low-frequency problems with geometrically designed beam-waveguide systems

NASA Technical Reports Server (NTRS)

Imbriale, W. A.; Esquivel, M. S.; Manshadi, F.

1995-01-01

The poor low-frequency performance of geometrically designed beam-waveguide (BWG) antennas is shown to be caused by the diffraction phase centers being far from the geometrical optics mirror focus, resulting in substantial spillover and defocusing loss. Two novel solutions are proposed: (1) reposition the mirrors to focus low frequencies and redesign the high frequencies to utilize the new mirror positions, and (2) redesign the input feed system to provide an optimum solution for the low frequency. A novel use of the conjugate phase-matching technique is utilized to design the optimum low-frequency feed system, and the new feed system has been implemented in the JPL research and development BWG as part of a dual S-/X-band (2.3 GHz/8.45 GHz) feed system. The new S-band feed system is shown to perform significantly better than the original geometrically designed system.

12. BV weak solutions to Gauss-Codazzi system for isometric immersions

Christoforou, Cleopatra

The isometric immersion problem for surfaces embedded into R is studied via the fluid dynamic framework introduced in Chen et al. (2010) [6] as a system of balance laws of mixed-type. The techniques developed in the theory of weak solutions of bounded variation in continuum physics are employed to deal with the isometric immersions in the setting of differential geometry. The so-called BV framework is formed that establishes convergence of approximate solutions of bounded variation to the Gauss-Codazzi system and yields the C isometric realization of two-dimensional surfaces into R. Local and global existence results are established for weak solutions of small bounded variation to the Gauss-Codazzi system for negatively curved surfaces that admit equilibrium configurations. As an application, the case of catenoidal shell of revolution is provided.

13. The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases

Ding, Bingbing; Witt, Ingo; Yin, Huicheng

2015-01-01

For one dimensional or multidimensional compressible Euler system of polytropic gases, it is well known that the smooth solution will generally develop singularities in finite time. However, for three dimensional Chaplygin gases, due to the crucial role of "null condition" in the potential equation which is derived by the irrotational and isentropic flow, P. Godin in [9] has proved the global existence of a smooth 3-D spherically symmetric flow with variable entropy when the initial data are of small smooth perturbations with compact supports to a constant state. It is noted that there are some clear differences for the global solution or blowup problems between 2-D and 3-D hyperbolic equations or systems. In this paper, we will focus on the global symmetric solution problem of 2-D full compressible Euler system of Chaplygin gases. Through carrying out involved analysis and finding an appropriate weight we can derive some uniform weighted energy estimates on the small symmetric solution to 2-D compressible Euler system of Chaplygin gases and further establish the global existence of the smooth solution by the continuous induction method.

14. Bright-Dark Mixed N-Soliton Solution of Two-Dimensional Multicomponent Maccari System

Han, Zhong; Chen, Yong

2017-08-01

Based on the KP hierarchy reduction method, we construct the general bright-dark mixed N-soliton solution of the two-dimensional (2D) (M+1)-component Maccari system comprised of M-component short waves (SWs) and one-component long wave (LW) with all possible combinations of nonlinearities. We firstly consider two types of mixed N-soliton solutions (two-bright-one-dark and one-bright-two-dark solitons in SW components) to the (3+1)-component Maccari system in detail. Then by extending our analysis to the (M+1)-component Maccari system, its general m-bright-(M-m)-dark mixed N-soliton solution is obtained. The formula obtained also contains the general all-bright and all-dark N-soliton solutions as special cases. For the two-bright-one-dark mixed soliton solution of the (3+1)-component Maccari system, it can be shown that solioff excitation and solioff interaction take place in the two SW components supporting bright solitons, whereas the SW component supporting dark solitons and the LW component possess V-type solitary and interaction.

15. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

NASA Technical Reports Server (NTRS)

Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

1998-01-01

Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

16. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

NASA Technical Reports Server (NTRS)

Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

1998-01-01

Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

17. Three-dimensional analytical solution for transient guided wave propagation in liquid-filled pipe systems.

PubMed

Tang, Liguo; Wu, Zhaojun; Liu, Shengxing; Yang, Wuyi

2012-08-01

The objective of this study is to investigate the three-dimensional (3-D) analytical solution for transient guided wave propagation in liquid-filled pipe systems using the eigenfunction expansion method (EEM). The eigenfunctions corresponding to finite liquid-filled pipe systems with a traction-free lateral boundary and rigid smooth end boundaries are obtained. Additionally, the orthogonality of the eigenfunctions is proved in detail. Subsequently, the exact 3-D analytical transient response of finite liquid-filled pipe systems to external body forces is constructed using the EEM, based on which, the approximate 3-D analytical transient response of the systems to external surface forces is derived. Furthermore, the analytical solution for transient guided wave propagation in finite liquid-filled pipe systems is extended explicitly and concisely to infinite liquid-filled pipe systems. Several numerical examples are given to illustrate the analysis of the spatial and frequency distributions of the radial and axial displacement amplitudes of various guided wave modes; the numerical examples also simulate the transient displacement of the pipe wall and the transient pressure of the internal liquid from the present solution. The present solution can provide some theoretical guidelines for the guided wave nondestructive evaluation of liquid-filled pipes and the guided wave technique for downhole data transfer.

18. Analysis of cloud-based solutions on EHRs systems in different scenarios.

PubMed

Fernández-Cardeñosa, Gonzalo; de la Torre-Díez, Isabel; López-Coronado, Miguel; Rodrigues, Joel J P C

2012-12-01

Nowadays with the growing of the wireless connections people can access all the resources hosted in the Cloud almost everywhere. In this context, organisms can take advantage of this fact, in terms of e-Health, deploying Cloud-based solutions on e-Health services. In this paper two Cloud-based solutions for different scenarios of Electronic Health Records (EHRs) management system are proposed. We have researched articles published between the years 2005 and 2011 about the implementation of e-Health services based on the Cloud in Medline. In order to analyze the best scenario for the deployment of Cloud Computing two solutions for a large Hospital and a network of Primary Care Health centers have been studied. Economic estimation of the cost of the implementation for both scenarios has been done via the Amazon calculator tool. As a result of this analysis two solutions are suggested depending on the scenario: To deploy a Cloud solution for a large Hospital a typical Cloud solution in which are hired just the needed services has been assumed. On the other hand to work with several Primary Care Centers it's suggested the implementation of a network, which interconnects these centers with just one Cloud environment. Finally it's considered the fact of deploying a hybrid solution: in which EHRs with images will be hosted in the Hospital or Primary Care Centers and the rest of them will be migrated to the Cloud.

19. Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems.

PubMed

Jarry, Claire; Leroux, Jean-Christophe; Haeck, Jonathan; Chaput, Cyril

2002-10-01

The effects of steam sterilization and gamma-irradiation on chitosan and thermogelling chitosan-beta-glycerophosphate (GP) solutions containing polyol additives were investigated. The selected polyols were triethylene glycol, glycerol, sorbitol, glucose and poly(ethylene glycol) (PEG). They were incorporated to chitosan solutions prior to sterilization in a proportion ranging from 1 to 5% (w/v). The solutions were characterized with respect to their viscosity, thermogelling properties, compressive stress relaxation behavior and chitosan degradation. All polyols reduced the autoclaving-induced viscosity loss and had a positive impact on the solution thermogelling properties and compressive performance of the gels. Steam sterilization in the presence of glucose resulted in a substantial increase in the solution viscosity and gel strength. This was associated with a strong discoloration suggesting chemical alteration of the system. PEG was the most effective agent in preventing hydrolytic degradation of chitosan chains. Gamma-irradiation strongly decreased the chitosan solution viscosity regardless of the presence of additives, even when sterilization was carried out at -80 degrees C. Moreover, the thermogelling properties were dramatically altered, and thus, gamma-irradiation would not be an appropriate method to sterilize chitosan solutions. In conclusion, polyols are potentially useful additive to maximise the viscoelastic and mechanical properties of chitosan-GP after steam sterilization.

20. Invariant solutions to the Strominger system and the heterotic equations of motion

Otal, Antonio; Ugarte, Luis; Villacampa, Raquel

2017-07-01

We construct many new invariant solutions to the Strominger system with respect to a 2-parameter family of metric connections ∇ ε , ρ in the anomaly cancellation equation. The ansatz ∇ ε , ρ is a natural extension of the canonical 1-parameter family of Hermitian connections found by Gauduchon, as one recovers the Chern connection ∇c for (ε , ρ) = (0 ,1/2), and the Bismut connection ∇+ for (ε , ρ) = (1/2 , 0). In particular, explicit invariant solutions to the Strominger system with respect to the Chern connection, with non-flat instanton and positive α‧ are obtained. Furthermore, we give invariant solutions to the heterotic equations of motion with respect to the Bismut connection. Our solutions live on three different compact non-Kähler homogeneous spaces, obtained as the quotient by a lattice of maximal rank of a nilpotent Lie group, the semisimple group SL (2 , C) and a solvable Lie group. To our knowledge, these are the only known invariant solutions to the heterotic equations of motion, and we conjecture that there is no other such homogeneous space admitting an invariant solution to the heterotic equations of motion with respect to a connection in the ansatz ∇ ε , ρ.

1. On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System

Chiodaroli, Elisabetta; Kreml, Ondrej

2014-07-01

In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(ρ) = ρ γ , γ ≥ 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi (Ann Math 170:1417-1436, 2009), (Arch Ration Mech Anal 195:225-260, 2010). Moreover we prove that for some of these Riemann problems and for 1 ≤ γ < 3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos in (J Diff Equ 14:202-212, 1973) does not favour the classical self-similar solutions.

2. A frequency averaging framework for the solution of complex dynamic systems

PubMed Central

Lecomte, Christophe

2014-01-01

A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518

3. Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian noise.

PubMed

Zeng, Caibin; Yang, Qigui; Cao, Junfei

2014-01-01

This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB (H) (t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation.

4. The existence of traveling wave solutions for a bistable three-component lattice dynamical system

Guo, Jong-Shenq; Wu, Chin-Chin

2016-01-01

We study the traveling wave solutions for a three-component lattice dynamical system. This problem arises in the modeling of three species competing two food resources in an environment with migration in which the habitat is one-dimensional and is divided into countable niches. We are concerned with the case when two species have different preferences of food and the third species has both preferences of food. To understand which species win the competition under the bistable condition, the existence of a traveling wave solution for this lattice dynamical system is proven.

5. Analytical solution of the contact problem for a system of bodies under collective wear

Soldatenkov, I. A.

2017-01-01

The contact problem is considered for a system of bodies subject to wear on a common base. The deformation properties of the bodies and the base are described by the Winkler model. The problem is reduced to a system of ordinary differential equations and an integral equation of hereditary type with difference kernel. The solution of the problem is constructed with the use of the Laplace transform. The asymptotics of the solution at large times is studied. The continuity conditions for the contact of each of the bodies with the base are derived.

6. Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise

PubMed Central

Zeng, Caibin; Yang, Qigui; Cao, Junfei

2014-01-01

This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dBH(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903

7. The closed-form solution of the reduced Fokker-Planck-Kolmogorov equation for nonlinear systems

Chen, Lincong; Sun, Jian-Qiao

2016-12-01

In this paper, we propose a new method to obtain the closed-form solution of the reduced Fokker-Planck-Kolmogorov equation for single degree of freedom nonlinear systems under external and parametric Gaussian white noise excitations. The assumed stationary probability density function consists of an exponential polynomial with a logarithmic term to account for parametric excitations. The undetermined coefficients in the assumed solution are computed with the help of an iterative method of weighted residue. We have found that the iterative process generates a sequence of solutions that converge to the exact solutions if they exist. Three examples with known exact steady-state probability density functions are used to demonstrate the convergence of the proposed method.

8. A Two Stage Solution Procedure for Production Planning System with Advance Demand Information

We model for ‘Naiji System’ which is a unique corporation technique between a manufacturer and suppliers in Japan. We propose a two stage solution procedure for a production planning problem with advance demand information, which is called ‘Naiji’. Under demand uncertainty, this model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to a probabilistic constraint and some linear production constraints. By the convexity and the special structure of correlation matrix in the problem where inventory for different periods is not independent, we propose a solution procedure with two stages which are named Mass Customization Production Planning & Management System (MCPS) and Variable Mesh Neighborhood Search (VMNS) based on meta-heuristics. It is shown that the proposed solution procedure is available to get a near optimal solution efficiently and practical for making a good master production schedule in the suppliers.

9. Application of the quasi-subsubregular solution model: The iron-carbon system

Schlesinger, Mark E.

1990-01-01

The quasi-subsubregular solution model introduced by Chuang et al. represents the most complex approach yet to dealing with both compositional and temperature nonregularity in metallic solutions. Evaluation of the model in relation to the Fe-C equilibrium diagram demonstrates that its applicability in dilute solutions is highly dependent on the accuracy of the experimental data from which its coefficients are derived. Lower-temperature equilibria between α-ferrite, aus-tenite, and pure graphite were modeled with reasonable accuracy; the modeling of higher-temperature equilibria in the system was less successful. In particular, experimental difficulties with the measurement of the thermodynamic properties of liquid Fe-C alloys limited the ability of the model to accurately predict the phase diagram. The model can also be used to determine infinite-dilution activity coefficients and to test the adherence of dilute-solution phases to Henrian behavior.

10. Nonadiabatic dynamics in open quantum-classical systems: forward-backward trajectory solution.

PubMed

Hsieh, Chang-Yu; Kapral, Raymond

2012-12-14

A new approximate solution to the quantum-classical Liouville equation is derived starting from the formal solution of this equation in forward-backward form. The time evolution of a mixed quantum-classical system described by this equation is obtained in a coherent state basis using the mapping representation, which expresses N quantum degrees of freedom in a 2N-dimensional phase space. The solution yields a simple dynamics in which a set of N coherent state coordinates evolves in forward and backward trajectories, while the bath coordinates evolve under the influence of the mean potential that depends on these forward and backward trajectories. It is shown that the solution satisfies the differential form of the quantum-classical Liouville equation exactly. Relations to other mixed quantum-classical and semi-classical schemes are discussed.

11. Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry

Choi, Y. S.; Huan, Zhongdan; Lui, Roger

2003-11-01

This paper consists of two parts. In the first part, we proved the global existence of weak solutions of a strongly coupled quasilinear parabolic system in Rn using weak compactness method. In the second part, we considered the electrochemistry model studied in Choi and Lui (J. Differential Equations 116 (1995) 306) where the Poisson equation governing the electric potential is replaced by a local electro-neutrality condition. In one space dimension, the equations for the model is of the form considered in the first part of this paper except that the coefficient matrix is discontinuous at places where all the charged ions vanish. We approximate the equations by nicer operators and pass to the limit to obtain global existence of weak solutions. The non-negativity of weak solutions and L2-stability of the steady-state solutions are also shown under additional hypotheses.

12. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS)

Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico

2014-05-01

. The current implementation of GEOSS already addresses several big data challenges. In particular, the brokered architecture adopted in the GEOSS Common Infrastructure with the deployment of the GEO DAB (Discovery and Access Broker) allows to connect more than 20 big EO infrastructures while keeping them autonomous as required by their own mandate and governance. They make more than 60 million of unique resources discoverable and accessible through the GEO Portal. Through the GEO DAB, users are able to seamlessly discover resources provided by different infrastructures, and access them in a harmonized way, collecting datasets from different sources on a Common Environment (same coordinate reference system, spatial subset, format, etc.). Through the GEONETCast system, GEOSS is also providing a solution related to the Velocity challenge, for delivering EO resources to developing countries with low bandwidth connections. Several researches addressing other Big data Vs challenges in GEOSS are on-going, including quality representation for Veracity (as in the FP7 GeoViQua project), brokering big data analytics platforms for Velocity, and support of other EO resources for Variety (such as modelling resources in the Model Web).

13. Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions

Leray, Sarah; Engdahl, Nicholas B.; Massoudieh, Arash; Bresciani, Etienne; McCallum, James

2016-12-01

This review presents the physical mechanisms generating residence time distributions (RTDs) in hydrologic systems with a focus on steady-state analytical solutions. Steady-state approximations of the RTD in hydrologic systems have seen widespread use over the last half-century because they provide a convenient, simplified modeling framework for a wide range of problems. The concept of an RTD is useful anytime that characterization of the timescales of flow and transport in hydrologic systems is important, which includes topics like water quality, water resource management, contaminant transport, and ecosystem preservation. Analytical solutions are often adopted as a model of the RTD and a broad spectrum of models from many disciplines has been applied. Although these solutions are typically reduced in dimensionality and limited in complexity, their ease of use makes them preferred tools, specifically for the interpretation of tracer data. Our review begins with the mechanistic basis for the governing equations, highlighting the physics for generating a RTD, and a catalog of analytical solutions follows. This catalog explains the geometry, boundary conditions and physical aspects of the hydrologic systems, as well as the sampling conditions, that altogether give rise to specific RTDs. The similarities between models are noted, as are the appropriate conditions for their applicability. The presentation of simple solutions is followed by a presentation of more complicated analytical models for RTDs, including serial and parallel combinations, lagged systems, and non-Fickian models. The conditions for the appropriate use of analytical solutions are discussed, and we close with some thoughts on potential applications, alternative approaches, and future directions for modeling hydrologic residence time.

14. Numerical solution of system of boundary value problems using B-spline with free parameter

Gupta, Yogesh

2017-01-01

This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

15. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

2016-10-01

Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

16. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

NASA Technical Reports Server (NTRS)

Sen, Symal K.; Shaykhian, Gholam Ali

2011-01-01

Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

17. Acceleration of multiple solution of a boundary value problem involving a linear algebraic system

Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.

2016-06-01

Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.

18. Aquifer Heterogeneity and Solute-Transport Modeling in the Floridan Aquifer System

Guo, W.; Maliva, R. G.; Missimer, T. M.

2008-05-01

The Floridan Aquifer System (FAS) is one of the most prolific aquifers in the world and is widely used for public and irrigation water supply. The FAS is also increasingly being used as a storage zone for aquifer storage and recovery (ASR) systems, including a 333-well system that is planned as part of the Comprehensive Everglades Restoration Plan (CERP). The FAS is highly heterogeneous with respect to hydraulic conductivity, with meter- scale inter-bed variation exceeding seven orders of magnitude in some cases, even in South Florida where mega-karst is not well developed. Aquifer heterogeneity can have a major impact on ASR system performance because of its affects on the movement and mixing of stored water. Aquifer heterogeneity poses challenges for accurate modeling of the FAS, including solute transport modeling of ASR systems and variable density flow modeling of the freshwater/saltwater interface along coastal areas. Dispersivity is an important parameter in solute transport modeling, which is associated with aquifer heterogeneity. Commonly the values of dispersivity used in solute-transport modeling are derived from literature review and adjusted during model calibration process. Artificially large dispersivity values are often used in solute-transport models of ASR systems as a "fudge factor" to simulate the apparent greater mixing caused by inter-bed heterogeneity. This approach is problematic because the use of artificial hydraulic parameters for calibration opens the results of predictive simulations to question. The use of large dispersivity values to simulate aquifer heterogeneity also does not incorporate other impacts of aquifer heterogeneity, such as differential flow rates and migration distances between beds. The technical challenge is to incorporate aquifer heterogeneity into groundwater models at a scale that is sufficient to adequately simulate its effect on ASR system performance and coastal groundwater flow, while maintaining acceptable

19. Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations.

PubMed

2014-01-01

An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable.

20. Water Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations

PubMed Central

2014-01-01

An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable. PMID:25374940

1. A first principle particle mesh method for solution SAXS of large bio-molecular systems

Marchi, Massimo

2016-07-01

This paper will show that the solution small angle X-ray scattering (SAXS) intensity of globular and membrane proteins can be efficiently and accurately computed from molecular dynamics trajectories using 3D fast Fourier transforms (FFTs). A suitable particle meshing interpolation, similar to the one used in smooth particle mesh Ewald for electrostatic energies and forces, was combined with a uniform solvent density FFT padding scheme to obtain a convenient SAXS spectral resolution. The CPU time scaling of the method, as a function of system size, is highly favorable and its application to large systems such as solutions of solvated membrane proteins is computationally undemanding. Differently from other approaches, all contributions from the simulation cell are included. This means that the subtraction of the buffer from the solution scattering intensity is straightforward and devoid of artifact due to ad hoc definitions of proximal and distal solvent intensity contributions.

2. Transition from Legacy to Connectivity Solution for Infrastructure Control of Smart Municipal Systems

Zabasta, A.; Kunicina, N.; Kondratjevs, K.

2017-06-01

Collaboration between heterogeneous systems and architectures is not an easy problem in the automation domain. By now, utilities and suppliers encounter real problems due to underestimated costs of technical solutions, frustration in selecting technical solutions relevant for local needs, and incompatibilities between a plenty of protocols and appropriate solutions. The paper presents research on creation of architecture of smart municipal systems in a local cloud of services that apply SOA and IoT approaches. The authors of the paper have developed a broker that applies orchestration services and resides on a gateway, which provides adapter and protocol translation functions, as well as applies a tool for wiring together hardware devices, APIs and online services.

3. Invariant Functions, Symmetries and Primary Branch Solutions of First Order Autonomous Systems

Lou, Sen-Yue; Yao, Ruo-Xia

2017-07-01

An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (1+1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions. Supported by the National Natural Science Foundations of China under Grant Nos. 11435005, 11471004, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things No. ZF1213 and K. C. Wong Magna Fund in Ningbo University

4. Numerical solution of flow problems using body-fitted coordinate systems

NASA Technical Reports Server (NTRS)

Thompson, J. F.

1980-01-01

The paper deals with numerically generated boundary-fitted coordinate systems. This procedure eliminates the shape of the boundaries as a complicating factor and allows the flow about arbitrary boundaries to be treated essentially as easily as that about simple boundaries. The technique of boundary-fitted coordinate systems is based on a method of automatic numerical generation of a general curvilinear coordinate system having a coordinate line coincident with each boundary of a general multiconnected region involving any number of arbitrarily shaped boundaries. Once the curvilinear coordinate system is generated, any partial differential system of interest may be solved on the coordinate system by transforming the equations and solving the resulting system in finite-difference approximation on the rectangular transformed plane. Attention is given to the types of boundary-fitted coordinate systems, coordinate system control, operation of the coordinate codes, solution of partial differential equations, application to free-surface flow, and other applications of interest.

5. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

PubMed

Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

2015-12-01

Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

6. Fock space, symbolic algebra, and analytical solutions for small stochastic systems

Santos, Fernando A. N.; Gadêlha, Hermes; Gaffney, Eamonn A.

2015-12-01

Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

7. Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems.

PubMed

Lou, S Y; Huang, Fei

2017-04-13

In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined correlated if one event is determined by another, say, [Formula: see text] for suitable [Formula: see text] operators. Taking KdV and coupled KdV systems as examples, we can find some types of models (AB-KdV systems) to exhibit the existence on the correlated solutions linked with two events. The idea of this report is valid not only for physical problems related to KdV systems but also for problems described by arbitrary continuous or discrete models. The parity and time reversal symmetries are extended to shifted parity and delayed time reversal. The new symmetries are found to be useful not only to establish AB-systems but also to find group invariant solutions of numerous AB-systems. A new elegant form of the N-soliton solutions of the KdV equation and then the AB-KdV systems is obtained. A concrete AB-KdV system derived from the nonlinear inviscid dissipative and barotropic vorticity equation in a β-plane channel is applied to the two correlated monople blocking events which is responsible for the snow disaster in the winter of 2007/2008 happened in Southern China.

8. Development of a measurement system for certifying ethanol mass fraction in aqueous solutions.

PubMed

Burke, Daniel G; Mackay, Lindsey G; Myors, Richard; Cuthbertson, Judith; Richardson, Jeremy; Sousou, Nigel; Saxby, David; Askew, Shane; O'Brien, Rebecca

2009-07-15

In response to the sovereign requirement for national standards the National Measurement Institute, Australia (NMIA) has developed a measuring system using isotope dilution mass spectrometry (IDMS) to certify forensic aqueous ethanol solutions. NMIA participated in an international study, CCQM-K27, organized under the auspices of the International Committee for Weights and Measures to compare our measuring system with the techniques being used for certifying aqueous ethanol solutions in other metrology institutes. This comparison provided objective evidence that the measuring system developed was fit for the purpose of certifying aqueous ethanol solutions that ranged in concentration from 0.8 mg/g to 120 mg/g. A complete measurement uncertainty budget is presented and shows that the largest contribution to measurement uncertainty was from method precision followed by the contribution from the calibration solution. The fundamental technology of the measuring system was gas chromatography of the aqueous ethanol solutions using porous layer open tubular columns, and this effectively produced peak area measurements with both GC/MS and GC-FID. It was found that deactivation of the chromatographic system was critical for obtaining reproducible peak shapes and peak area measurements. A range of measuring systems, all using this gas chromatographic technology, was investigated. When conditions were carefully controlled there was no difference in measurement results from GC-IDMS, GC/MS or GC-FID. There was also no difference in results from on-column or split injection systems. A significant issue with the IDMS system was the fragmentation of 13C2-ethanol to produce an ion with the same mass as the molecular ion of ethanol which lead to isobaric interference; careful measurement of this fragmentation ratio was necessary to calculate accurate mass fraction values. NMIA has adopted the GC-IDMS split measuring system to certify aqueous ethanol solutions for Australian legal

9. The existence of solutions with prescribed L2-norm for Kirchhoff type system

Cao, Xiaofei; Xu, Junxiang; Wang, Jun

2017-04-01

In this paper, we study the existence of positive solutions with prescribed L2-norm for two-component Kirchhoff type systems in the whole space. Under different types of potentials, we consider the L2-subcritical case and L2-critical case by the constrained variational method.

10. Fostering Solutions: Bringing Brief-Therapy Principles and Practices to the Child Welfare System

ERIC Educational Resources Information Center

Flemons, Douglas; Liscio, Michele; Gordon, Arlene Brett; Hibel, James; Gutierrez-Hersh, Annette; Rebholz, Cynthia L.

2010-01-01

This article describes a 15-month university-community collaboration that was designed to fast-track children out of foster care. The developers of the project initiated resource-oriented "systems facilitations," allowing wraparound professionals and families to come together in large meetings to solve problems and find solutions. Families also…

11. Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations

ERIC Educational Resources Information Center

Rasmussen, Chris; Keynes, Michael

2003-01-01

The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…

12. Feedback Stabilization Methods for the Numerical Solution of Systems of Ordinary Differential Equations

Karafyllis, Iasson; Grüne, Lars

2009-09-01

In this work we study the problem of step size selection for numerical schemes, which guarantees that the numerical solution presents the same qualitative behavior as the original system of ordinary differential equations, by means of tools from nonlinear control theory. Lyapunov-based stabilization methods are exploited.

13. Asymptotic behaviour of the solution of the two-dimensional Dirac system with rapidly oscillating coefficients

SciTech Connect

Kiselev, O M

1999-02-28

An asymptotic expansion is constructed and substantiated for the solution of the boundary-value problem for the two-dimensional elliptic system of Dirac equations with rapidly oscillating coefficients, which holds uniformly with respect to the complex variable and the two real variables.

14. Implementation guide for MINPACK-1. [Package of Fortran subprograms for solution of systems of nonlinear equations

SciTech Connect

Garbow, B.S.; Hillstrom, K.E.; More, J.J.

1980-07-01

MINPACK-1 is a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least-squares problems. This report describes how to implement the package from the tape on which it is transmitted. 3 tables.

15. The Challenge of Multiple Perspectives: Multiple Solution Tasks for Students Incorporating Diverse Tools and Representation Systems

ERIC Educational Resources Information Center

Kordaki, Maria

2015-01-01

This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…

16. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

ERIC Educational Resources Information Center

Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

2011-01-01

The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

17. Stability of the solitary wave solutions to a coupled BBM system

Chen, Hongqiu; Wang, Xiaojun

2016-07-01

In this work, we present a stability criteria for the solitary wave solutions to a BBM system that contains coupled nonlinear terms. Using the idea by Bona, Chen and Karakashian [5] and exploiting the accurate point spectrum information of the associated Schrödinger operator, we improve the stability results previously gotten by Pereira [15].

18. Fostering Solutions: Bringing Brief-Therapy Principles and Practices to the Child Welfare System

ERIC Educational Resources Information Center

Flemons, Douglas; Liscio, Michele; Gordon, Arlene Brett; Hibel, James; Gutierrez-Hersh, Annette; Rebholz, Cynthia L.

2010-01-01

This article describes a 15-month university-community collaboration that was designed to fast-track children out of foster care. The developers of the project initiated resource-oriented "systems facilitations," allowing wraparound professionals and families to come together in large meetings to solve problems and find solutions. Families also…

19. Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations

ERIC Educational Resources Information Center

Rasmussen, Chris; Keynes, Michael

2003-01-01

The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…

20. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

ERIC Educational Resources Information Center

Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

2011-01-01

The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

1. The Challenge of Multiple Perspectives: Multiple Solution Tasks for Students Incorporating Diverse Tools and Representation Systems

ERIC Educational Resources Information Center

Kordaki, Maria

2015-01-01

This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…

2. The Piranha Solution: Monitoring and Protection of Proprietary System Intangible Assets

ERIC Educational Resources Information Center

Ladwig, Christine; Schwieger, Dana; Clayton, Donald

2017-01-01

The "Piranha Solution"® is a complex and valuable integrated chemical supply inventory management system protected as a trade secret by its asset holder, the Confluence Corporation. The "Piranha" program is the lifeblood of the corporation's growth and success in the chemical supply industry. A common definition of "trade…

3. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

NASA Technical Reports Server (NTRS)

Hanks, Brantley R.; Skelton, Robert E.

1991-01-01

Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

4. The equation of state for solutions of the sunflower oil+isomerhexane system

Safarov, M. M.; Abdukhamidova, Z.

1995-11-01

The article presents the results of an experimental investigation into the density of solutions of the sunflower oil+isomerhexane system (from 23 to 75%) at temperatures of from 293 to 450 K and pressures of from 0.101 to 98.1 MPa. An equation of state is obtained.

5. Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting

Zuo, Wenjie; Jiang, Daqing

2016-07-01

In this paper, we investigate the dynamics of the stochastic autonomous and non-autonomous predator-prey systems with nonlinear predator harvesting respectively. For the autonomous system, we first give the existence of the global positive solution. Then, in the case of persistence, we prove that there exists a unique stationary distribution and it has ergodicity by constructing a suitable Lyapunov function. The result shows that, the relatively weaker white noise will strengthen the stability of the system, but the stronger white noise will result in the extinction of one or two species. Particularly, for the non-autonomous periodic system, we show that there exists at least one nontrivial positive periodic solution according to the theory of Khasminskii. Finally, numerical simulations illustrate our theoretical results.

6. Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution

Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

2005-03-01

The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

7. Anatomic Variations of the Lacunar-Canalicular System Influence Solute Transport in Bone

PubMed Central

Zhou, Xiaozhou; Novotny, John E.; Wang, Liyun

2009-01-01

Solute transport in the lacunar-canalicular system (LCS) is essential for bone metabolism and mechanotransduction. Using the technique of fluorescence recovery after photobleaching (FRAP) we have been quantifying solute transport in the LCS of murine long bone as a function of loading parameters and molecular size. However, the influence of LCS anatomy, which varies among animal species, bone type and location, age and health condition, is not well understood. In this study, we developed a mathematical model to simulate solute convection in the LCS during a FRAP experiment under a physiological cyclic flow. We found that the transport rate (the reciprocal time constant for refilling the photobleached lacuna) increased linearly with canalicular number and decreased with canalicular length for both diffusion and convection. As a result, the transport enhancement of convection over diffusion was much less sensitive to the variations associated with chick, mouse, rabbit, bovine, dog, horse, and human LCS anatomy, when compared with the rates of diffusion or convection alone. Canalicular density did not affect transport enhancement, while solute size and the lacunar density had more complicated, nonlinear effects. This parametric study suggests that solute transport could be altered by varying LCS parameters, and that the anatomical details of the LCS need systemic examination to further understand the etiology of aged and osteoporotic bones. PMID:19576310

8. System for creating on site, remote from a sterile environment, parenteral solutions

NASA Technical Reports Server (NTRS)

Finley, Mike (Inventor); Scharf, Mike (Inventor); Packard, Jeff (Inventor); Kipp, Jim (Inventor); Dudar, Tom (Inventor); Owens, Jim (Inventor); Bindokas, Al (Inventor)

1996-01-01

The present invention provides a system and method for creating on site, remote from a sterile environment, parenteral solutions in large volume parenteral containers for intravenous administration to a patient. In an embodiment, this system comprises an empty large volume container including at least one port for accessing an interior of the container. The port includes a sterilizing filter for sterilizing a fluid fed through the port into the container. A second container is provided including a solute and having means for coupling the second container to the large volume container and thereby providing fluid communication therebetween allowing the solute to be received within the interior of the container. A sterile water source is also provided including means for placing the sterile water source in fluid communication with the port and allowing water to flow from the sterile water source into the interior of the container. This allows the solute, and sterile water that has been fed through the filter, to create a parenteral solution in the large volume parenteral container.

9. Solid Solution Effects on the MgAl2O4 System

SciTech Connect

O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

2009-01-01

Phase relations between the binaries MgAl2O4-ZnAl2O4 and MgAl2O4-MgGa2O4 were studied. Stoichiometric MgAl2O4 spinel can be formed in the laboratory through a coprecipitation method. Complete solid solution formation in the MgAl2O4-MgGa2O4 system was confirmed through X-ray diffraction (XRD) analysis. XRD analysis of the MgAl2O4-ZnAl2O4 system did not confirm solid solution due to the similar lattice parameters of the two end points, however, previous studies have shown that complete solid solution does form. Thermal conductivity data is pending and will be included in the presentation. Based on previous experimentation and open literature, it is suspected that thermal conductivity will be decreased with the addition of solid solution. With increased amounts of disruption to the lattice from solid solution it is also theorized that the temperature at which the mean free path still impacts thermal conductivity could be increased.

10. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

2016-12-01

Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

11. Double-wave solutions to quasilinear hyperbolic systems of first-order PDEs

Curró, C.; Manganaro, N.

2017-10-01

A reduction procedure for determining double-wave exact solutions to first-order hyperbolic systems of PDEs is proposed. The basic idea is to reduce the integration of the governing hyperbolic set of N partial differential equations to that of a 2 × 2 reduced hyperbolic model along with a further differential constraint. Therefore, the method of differential constraints is used in order to solve the auxiliary 2 × 2 system. An example of interest to viscoelasticity is presented.

12. Appearance of self-excitation and its description in a sarcomere-solution system

Okhotnikov, S. A.; Bystrai, G. P.

2008-01-01

Owing to the complete description of chemical reactions in the sarcomere-solution system with the addition of adenosine triphosphate and the corresponding kinetic equations, the self-excitation in this system has been revealed by numerical methods. This self-excitation is manifested in the transition to chaotic states with the Lyapunov exponents λ > 0 and the subsequent development of unstable low-frequency pulsations.

13. Comparison of Hydrogen Peroxide Contact Lens Disinfection Systems and Solutions against Acanthamoeba polyphaga

PubMed Central

Hughes, Reanne; Kilvington, Simon

2001-01-01

Acanthamoeba is a free-living amoeba causing a potentially blinding infection of the cornea. Contact lens wearers are most at risk and account for some 95% of cases. Hydrogen peroxide is used for contact lens disinfection due to its broad antimicrobial activity. Lenses must be neutralized before use to avoid pronounced stinging and possible corneal damage. Neutralization is achieved by adding a catalyst during the disinfection process (one-step) or afterwards (two-step). Here, the activities of commercial peroxide systems and individual solutions against trophozoites and cysts of Acanthamoeba polyphaga were compared. All disinfection systems were active against trophozoites, giving a ≥3-log (99.9%) kill within 1 h. Of the four one-step systems, only one showed some cysticidal activity, giving a 1.28 ± 0.41-log reduction. Both two-step systems were cysticidal, giving a ≥3-log kill at 4 h. All system peroxide solutions were cysticidal, giving a ≥3-log kill by 4 to 6 h. Variation in the cysticidal rate was observed with two solutions that gave a 1.8- to 2.1-log kill at 4 h compared with 3.0 to 4.0 for the rest (P < 0.05). No cysticidal activity was found with the peroxigen sodium perborate or the contact lens protein remover subtilisin A. Two-step systems are cysticidal providing contact times of at least 4 h are employed. Variation in cyst killing occurs between peroxide solutions, possibly due to formulation differences. One-step systems are less effective against Acanthamoeba cysts due to rapid peroxide neutralization. The cysticidal activity of one-step systems could be improved if neutralization rates were retarded. PMID:11408220

14. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

Zhang, Bing; Lin, Zhen; Zhang, Xiao; Yu, Xiang; Wei, Jiali; Wang, Xiaoping

2014-05-01

Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial-radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples.

15. Reorienting health systems to meet the demand for consumer health solutions.

PubMed

Buckeridge, David L

2014-01-01

There is a clear and pronounced gap between the demand for and access to consumer health solutions. Existing health information systems and broader health system factors such as funding models are reasons for this gap. There are strong arguments from the perspectives of the consumer and population health for closing this gap, but the case from the perspective of the current health system is mixed. Closing the gap will require a concerted effort to reorient health information systems and funding models to support online access by consumers to health information and health services.

16. Strong solutions and instability for the fitness gradient system in evolutionary games between two populations

Xu, Qiuju; Belmonte, Andrew; deForest, Russ; Liu, Chun; Tan, Zhong

2017-04-01

In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. The population dynamics are governed by a conservation law, with a spatial migration flux determined by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of global solutions to an approximate system, which retains most of the interesting mathematical properties of the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium states of the fitness gradient system, and its approximations.

17. Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings

Zhang, Limin; Sun, Kehui; He, Shaobo; Wang, Huihai; Xu, Yixin

2017-01-01

Based on the Adomian decomposition method (ADM), the numerical solution of a fractional-order 5-D hyperchaotic system with four wings is investigated. Dynamics of the system are analyzed by means of phase diagram, bifurcation diagram, Lyapunov exponents spectrum and chaos diagram. The method of one-dimensional linear path through the multidimensional parameter space is proposed to observe the evolution law of the system dynamics with parameters varying. The results illustrate that the system has abundant dynamical behaviors. Both the system order and parameters can be taken as bifurcation parameters. The phenomenon of multiple attractors is found, which means that some attractors are generated simultaneously from different initial values. The spectral entropy (SE) algorithm is applied to estimate the fractional-order system complexity, and we found that the complexity decreases with the increasing of system order. In order to verify the reliability of numerical solution, the fractional-order 5-D system with four wings is implemented on a DSP platform. The phase portraits of fractional-order system generated on DSP agree well with those obtained by computer simulations. It is shown that the fractional-order hyperchaotic system is a potential model for application in the field of chaotic secure communication.

18. Solution of the inverse Langevin problem for open dissipative systems with anisotropic interparticle interaction

SciTech Connect

Lisin, E. A.; Lisina, I. I.; Vaulina, O. S.; Petrov, O. F.

2015-03-15

Solution of the inverse Langevin problem is presented for open dissipative systems with anisotropic interparticle interaction. Possibility of applying this solution for experimental determining the anisotropic interaction forces between dust particles in complex plasmas with ion flow is considered. For this purpose, we have tested the method on the results of numerical simulation of chain structures of particles with quasidipole-dipole interaction, similar to the one occurring due to effects of ion focusing in gas discharges. Influence of charge spatial inhomogeneity and fluctuations on the results of recovery is also discussed.

19. Solution of the inverse Langevin problem for open dissipative systems with anisotropic interparticle interaction

Lisin, E. A.; Lisina, I. I.; Vaulina, O. S.; Petrov, O. F.

2015-03-01

Solution of the inverse Langevin problem is presented for open dissipative systems with anisotropic interparticle interaction. Possibility of applying this solution for experimental determining the anisotropic interaction forces between dust particles in complex plasmas with ion flow is considered. For this purpose, we have tested the method on the results of numerical simulation of chain structures of particles with quasidipole-dipole interaction, similar to the one occurring due to effects of ion focusing in gas discharges. Influence of charge spatial inhomogeneity and fluctuations on the results of recovery is also discussed.

20. Piecewise smooth dynamical systems: Persistence of periodic solutions and normal forms

Gouveia, Márcio R. A.; Llibre, Jaume; Novaes, Douglas D.; Pessoa, Claudio

2016-04-01

We consider an n-dimensional piecewise smooth vector field with two zones separated by a hyperplane Σ which admits an invariant hyperplane Ω transversal to Σ containing a period annulus A fulfilled by crossing periodic solutions. For small discontinuous perturbations of these systems we develop a Melnikov-like function to control the persistence of periodic solutions contained in A. When n = 3 we provide normal forms for the piecewise linear case. Finally we apply the Melnikov-like function to study discontinuous perturbations of the given normal forms.

1. New developments in the numerical solution of differential/algebraic systems

SciTech Connect

Petzold, L.R.

1987-04-01

In this paper we survey some recent developments in the numerical solution of nonlinear differential/algebraic equation (DAE) systems of the form 0 = F(t,y,y'), where the initial values of y are known and par. deltaF/par. deltay' may be singular. These systems arise in the simulation of electrical networks, as well as in many other applications. DAE systems include standard form ODEs as a special case, but they also include problems which are in many ways quite different from ODEs. We examine the classification of DAE systems according to the degree of singularity of the system, and present some results on the analytical structure of these systems. We give convergence results for backward differentiation formulas applied to DAEs and examine some of the software issues involved in the numerical solution of DAEs. One-step methods are potentially advantageous for solving DAE systems with frequent discontinuities. However, recent results indicate that there is a reduction in the order of accuracy of many implicit Runge-Kutta methods even for simple DAE systems. We examine the current state of solving DAE systems by implicit Runge-Kutta methods. Finding a consistent set of initial conditions is often a problem for DAEs arising in applications. We explore some numerical methods for obtaining a consistent set of initial conditions. 21 refs.

2. Modeling expected solute concentration in randomly heterogeneous flow systems with multicomponent reactions.

PubMed

Malmström, Maria E; Destouni, Georgia; Martinet, Philippe

2004-05-01

Many environmental problems require assessment of extensive reaction systems within natural subsurface flow systems exhibiting large physical and biogeochemical heterogeneity. We present an approach to couple stochastic advective-reactive modeling of physical solute transport (LaSAR) with the geochemical model PHREEQC for modeling solute concentrations in systems with variable flow velocity and multicomponent reactions. PHREEQC allows for general and flexible quantification of a multitude of linear and nonlinear geochemical processes, while LaSAR efficiently handles field-scale solute spreading in stochastic heterogeneous flow fields. The combined LaSAR-PHREEQC approach requires very modest computational efforts, thereby allowing a large number of reactive transport problems to be readily assessed and facilitating handling of quantifiable uncertainty in environmental model applications. Computational efficiency and explicit handling of field-scale dispersion without introduction of excessive fluid mixing that may impair model results are general advantages of the LaSAR compared with alternative solute transport modeling approaches. The LaSAR-PHREEQC approach is restricted to steady or unidirectional flow fields, and our specific application examples are limited to homogeneous reaction systems without local or transverse dispersion-diffusion, although these are not general methodological limitations. As a comprehensive application example, we simulate the spreading of acid mine drainage in a groundwater focusing on Zn2+ and including relevant, major-component geochemistry. Model results show that Zn2+ may be substantially attenuated by both sorption and precipitation, with flow heterogeneity greatly affecting expected solute concentrations downstream of the mine waste deposit in both cases.

3. Trace Formula for Linear Hamiltonian Systems with its Applications to Elliptic Lagrangian Solutions

Hu, Xijun; Ou, Yuwei; Wang, Penghui

2015-04-01

In the present paper, we build up trace formulas for both the linear Hamiltonian systems and Sturm-Liouville systems. The formula connects the monodromy matrix of a symmetric periodic orbit with the infinite sum of eigenvalues of the Hessian of the action functional. A natural application is to study the non-degeneracy of linear Hamiltonian systems. Precisely, by the trace formula, we can give an estimation for the upper bound such that the non-degeneracy preserves. Moreover, we could estimate the relative Morse index by the trace formula. Consequently, a series of new stability criteria for the symmetric periodic orbits is given. As a concrete application, the trace formula is used to study the linear stability of elliptic Lagrangian solutions of the classical planar three-body problem, which depends on the mass parameter and the eccentricity . Based on the trace formula, we estimate the stable region and hyperbolic region of the elliptic Lagrangian solutions.

4. Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system

Liu, Cunming; Peng, Yue-Jun

2017-10-01

This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler-Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.

5. An Explicit Linear Filtering Solution for the Optimization of Guidance Systems with Statistical Inputs

NASA Technical Reports Server (NTRS)

Stewart, Elwood C.

1961-01-01

The determination of optimum filtering characteristics for guidance system design is generally a tedious process which cannot usually be carried out in general terms. In this report a simple explicit solution is given which is applicable to many different types of problems. It is shown to be applicable to problems which involve optimization of constant-coefficient guidance systems and time-varying homing type systems for several stationary and nonstationary inputs. The solution is also applicable to off-design performance, that is, the evaluation of system performance for inputs for which the system was not specifically optimized. The solution is given in generalized form in terms of the minimum theoretical error, the optimum transfer functions, and the optimum transient response. The effects of input signal, contaminating noise, and limitations on the response are included. From the results given, it is possible in an interception problem, for example, to rapidly assess the effects on minimum theoretical error of such factors as target noise and missile acceleration. It is also possible to answer important questions regarding the effect of type of target maneuver on optimum performance.

6. Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth

Wang, Jun; Tian, Lixin; Xu, Junxiang; Zhang, Fubao

2015-10-01

In this paper, we are concerned with the existence, multiplicity and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson system -\\varepsilon2 Δ u+a(x)u+λφ(x)u=b(x)f(u)+|u|4u,&xin{R}3, -\\varepsilon2 Δφ=u2, uin H1({R}3),&xin{R}3, where {\\varepsilon > 0} is a small parameter, f is a continuous, superlinear and subcritical nonlinearity, and {λ≠0} is a real parameter. Suppose that a( x) has at least one global minimum and b( x) has at least one global maximum. We prove that there are two families of positive solutions for sufficiently small {\\varepsilon > 0}, of which one is concentrating on the set of minimal points of a and the other on the sets of maximal points of b. Moreover, we obtain some sufficient conditions for the nonexistence of positive ground state solutions.

7. HOW ECCENTRIC ORBITAL SOLUTIONS CAN HIDE PLANETARY SYSTEMS IN 2:1 RESONANT ORBITS

SciTech Connect

Anglada-Escude, Guillem; Chambers, John E.; Lopez-Morales, Mercedes E-mail: mercedes@dtm.ciw.ed

2010-01-20

The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect exoplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a single planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available data sets, finding that (1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution, and (3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets.

8. Application of the Cramer rule in the solution of sparse systems of linear algebraic equations

2001-11-01

In this work, the solution of a sparse system of linear algebraic equations is obtained by using the Cramer rule. The determinants are computed with the help of the numerical structure approach defined in Suchkov (Graphs of Gearing Machines, Leningrad, Quebec, 1983) in which only the non-zero elements are used. Cramer rule produces the solution directly without creating fill-in problem encountered in other direct methods. Moreover, the solution can be expressed exactly if all the entries, including the right-hand side, are integers and if all products do not exceed the size of the largest integer that can be represented in the arithmetic of the computer used. The usefulness of Suchkov numerical structure approach is shown by applying on seven examples. Obtained results are also compared with digraph approach described in Mittal and Kurdi (J. Comput. Math., to appear). It is shown that the performance of the numerical structure approach is better than that of digraph approach.

9. A loudspeaker-driven system for rapid and multiple solution exchanges in patch-clamp experiments.

PubMed

Méry, P F; Lechêne, P; Fischmeister, R

1992-04-01

A new and inexpensive system allowing rapid and synchronized changes of solutions around a membrane patch or a cell under voltage-clamp conditions is described. Four plastic capillary tubings (OD 640 microns; ID 430 microns) were glued together horizontally and attached to a coil of a commercially available loudspeaker. Servo-control of the position of the coil allowed the mouth of any of the capillaries to be positioned near the pipette tip within 6 ms. A high flow speed of the test solution was crucial to achieve rapid solution exchange. At a flow speed of 5 cm/s, complete exchange of the external environment of a frog ventricular cell was achieved within 20-30 ms. The time course of solution change was found to be 3-5 times faster at the tip of an open patch pipette. To preserve the physical integrity of the cell, the cell was usually perfused by a control capillary at a slow velocity (0.2-0.4 cm/s) and test solutions flowing out of adjacent capillaries at high velocity (4-5 cm/s) were applied to the cell only for short periods. Determination of the three-dimensional contamination profile around the mouth of the control capillary allowed the optimal conditions for the use of the system to be established and possible sources of contamination to be avoided between adjacent capillaries with unmatched flow speeds. Successive and multiple changes in external solutions could be easily synchronized with voltage-clamp depolarizations to examine the time course of the effect of drugs on voltage-operated ion channels.(ABSTRACT TRUNCATED AT 250 WORDS)

10. Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System

NASA Technical Reports Server (NTRS)

Saunders, Chad; Evans, Kurt; Sagers, Neil

1999-01-01

A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.

11. A Survey of Real-Time Operating Systems and Virtualization Solutions for Space Systems

DTIC Science & Technology

2015-03-01

increasing complexity of operating systems (Armand, 2009). Microkernels are well suited for use in embedded systems , which are often not designed ...VxWorks is a proprietary suite of software products designed for embedded systems with real-time requirements. VxWorks is developed and maintained... system is tightly coupled with the additional software products designed for embedded systems that Wind River offers. As such, the operating system is

12. Various power quality challenges and solution techniques using FACTS technology for power system

Soni, J. Sandeep; Jangalwa, N. K.; Gupta, R.; Palwalia, D. K.

2016-03-01

This paper presents a comprehensive review on the various power quality problems and various solution techniques using FACTS in Power system. The term "Power Quality" is a broad concept and its meaning is taken different by different peoples. It is associated with electrical transmission, distribution and utilization systems those are having experience of any Voltage, current or frequency divergence from normal operation. Due to power quality problems industries have to invest large amount for mitigation of Voltage sags, distortions, harmonics and short term interruptions/disturbances etc. In paper authors tried to cover various possible sources and compensation methods of reactive power in power system.

13. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

NASA Technical Reports Server (NTRS)

Rosenbaum, J. S.

1971-01-01

Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

14. Exact solutions for the (2+1)-dimensional Hirota-Maxwell-Bloch system

Yesmakhanova, Kuralay; Shaikhova, Gaukhar; Bekova, Guldana; Myrzakulov, Ratbay

2017-09-01

In this paper, we consider the (2+1)-dimensional Hirota-Maxwell-Bloch system (HMBS) which with higher order effects usually governs the propagation of ultrashort pulses in nonlinear erbium doped fibers. Integrable condition of such system determined via the associated Lax pair is explicitly constructed. The (2+1)-dimensional HMBS admits reductions such as complex modified Korteweg de Vries-Maxwell-Bloch equations, Hirota system, Schrodinger-Maxwell-Bloch equations, nonlinear Schrodinger equations, complex modified Korteweg de Vries equations. We construct Darboux transformation and provide soliton solutions of the (2+1)-dimensional HMBS by using obtained Darboux transformation.

15. Classical Solutions to Semi-geostrophic System with Variable Coriolis Parameter

Cheng, Jingrui; Cullen, Michael; Feldman, Mikhail

2017-09-01

We prove the short time existence and uniqueness of smooth solutions (in {C^{k+2,α}} with {k ≥q 2} ) to the 2-D semi-geostrophic system and the semi-geostrophic shallow water system with variable Coriolis parameter f and periodic boundary conditions, under the natural convexity condition on the initial data. The dual space used in analysis of the semi-geostrophic system with constant f is not available for the variable Coriolis parameter case, and we develop a time-stepping procedure in Lagrangian coordinates in the physical space to overcome this difficulty.

16. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

Flores, Steven M.; Kleban, Peter

2015-01-01

This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404

17. SUPPORT OF NEW COMPUTER HARDWARE AT LUCH'S MC&A SYSTEM: PROBLEMS AND A SOLUTION

SciTech Connect

Fedoseev, Victor; Shanin, Oleg

2009-07-14

Abstract Microsoft Windows NT 4.0 operating system is the only software product certified in Russia for using in MC&A systems. In the paper a solution for allowing the installation of this outdated operating system on new computers is discussed. The solution has been successfully tested and has been in use at Luch's network since March 2008. Furthermore, it is being recommended for other Russian enterprises for the same purpose. Introduction Typically, the software part of a nuclear material control and accounting (MC&A) system consists of an operating system (OS), database management systems (DBMS), accounting program itself and database of nuclear materials. Russian regulations require the operating system and database for MC&A be certified for information security, and the whole system must pass an accreditation. Historically, the only certified operating system for MC&A still continues to be Microsoft Windows NT 4.0 Server/Workstation. Attempts to certify newer versions of Windows failed. Luch, like most other Russian sites, uses Microsoft Windows NT 4.0 and SQL Server 6.5. Luch's specialists have developed an application (LuchMAS) for accounting purposes. Starting from about 2004, some problems appeared in Luch's accounting system. They were related to the complexity of installing Windows NT 4.0 on new computers. At first, it was possible to solve the problem choosing computer equipment that is compatible with Windows NT 4.0 or selecting certain operating system settings. Over time, the problem worsened and now it is almost impossible to install Windows NT 4.0 on new computers. The reason is the lack of hardware drivers in the outdated operating system. The problem was serious enough that it could have affected the long-term sustainability of Luch's MC&A system if adequate alternate measures were not developed.

18. Community of solution for the U.S. health care system: lessons from the U.S. educational system.

PubMed

Devoe, Jennifer E; Gold, Rachel

2013-01-01

The Folsom Group asserts that radical changes are needed to fix the health care system in the United States. The U.S. education system is one potential model to emulate. Could a future health care system-level community of solution be modeled after the U.S. education system? Could community health care services be planned, organized, and delivered at the neighborhood level by district, similar to the structure for delivering public education? Could community health centers, governed by community boards, serve every neighborhood? This essay imagines how U.S. health care system reforms could be designed using our public school system as a roadmap. Our intention is to challenge readers to recognize the urgent need for radical reform in the U.S. health care system, to introduce one potential model for reform, and to encourage creative thinking about other system-level communities of solution that could lead to profound change and improvements in the U.S. health care system.

19. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

PubMed

Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

2009-01-30

A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

20. Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws

Xu, Jiang; Kawashima, Shuichi

2014-02-01

The basic existence theory of Kato and Majda enables us to obtain local-in-time classical solutions to generally quasilinear hyperbolic systems in the framework of Sobolev spaces (in x) with higher regularity. However, it remains a challenging open problem whether classical solutions still preserve well-posedness in the case of critical regularity. This paper is concerned with partially dissipative hyperbolic system of balance laws. Under the entropy dissipative assumption, we establish the local well-posedness and blow-up criterion of classical solutions in the framework of Besov spaces with critical regularity with the aid of the standard iteration argument and Friedrichs' regularization method. Then we explore the theory of function spaces and develop an elementary fact that indicates the relation between homogeneous and inhomogeneous Chemin-Lerner spaces (mixed space-time Besov spaces). This fact allows us to capture the dissipation rates generated from the partial dissipative source term and further obtain the global well-posedness and stability by assuming at all times the Shizuta-Kawashima algebraic condition. As a direct application, the corresponding well-posedness and stability of classical solutions to the compressible Euler equations with damping are also obtained.

1. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

Alfonso, Lester; Zamora, Jose; Cruz, Pedro

2015-04-01

The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

2. ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

SciTech Connect

Dooraghi, Alex A.; Carroll, Lewis; Collins, Jeffrey; van Dam, R. Michael; Chatziioannou, Arion F.

2016-03-09

3. ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

DOE PAGES

Dooraghi, Alex A.; Carroll, Lewis; Collins, Jeffrey; ...

2016-03-09

4. Diagnostic Solution Assistant cornerstone for intelligent system monitoring, management, analysis and administration

Aaseng, Gordon; Holland, Courtney; Nelson, Bill

2000-01-01

The Diagnostic Solution Assistant (DSA) provides diagnostics for space hardware and subsystems. Advanced Honewell smart' model-based technology performs the real-time fault detection, isolation and diagnostics. This model-based technology provides 24-hour access to the operational knowledge of the system experts. The complexity of the International Space Station (ISS) and other manned space vehicles requires that a full staff of ground based system diagnosis experts be trained and available at all times. Response to critical situations must be immediate no matter what time of the day or night. Installation of new systems plus normal staff turnover cause personnel to be in training constantly. Domain knowledge lost due to staff attrition may also never be regained. All of these factors lead to higher cost ground based flight system monitoring stations and sub-optimal efficiency. The Diagnostic Solution Assistant (DSA) provides a solution to these issues. The DSA can be deployed into the ISS Mission Control Center to enhance Flight Controller awareness and decision making. DSA can be utilized onboard the vehicle to enhance crew awareness and potentially offload the crew in time- or safety-critical situations. The DSA can be used to isolate and diagnose faults during flight preparation, thus reducing the overall vehicle turn-around time. In addition to having diagnostic capability, DSA is a tremendous requirements and operations knowledge capture tool that could streamline training for the flight controller and crew, and facilitate the rapid location of important information. .

5. Global solution to a hyperbolic problem arising in the modeling of blood flow in circulatory systems

Ruan, Weihua; Clark, M. E.; Zhao, Meide; Curcio, Anthony

2007-07-01

This paper considers a system of first-order, hyperbolic, partial differential equations in the domain of a one-dimensional network. The system models the blood flow in human circulatory systems as an initial-boundary-value problem with boundary conditions of either algebraic or differential type. The differential equations are nonhomogeneous with frictional damping terms and the state variables are coupled at internal junctions. The existence and uniqueness of the local classical solution have been established in our earlier work [W. Ruan, M.E. Clark, M. Zhao, A. Curcio, A hyperbolic system of equations of blood flow in an arterial network, J. Appl. Math. 64 (2) (2003) 637-667; W. Ruan, M.E. Clark, M. Zhao, A. Curcio, Blood flow in a network, Nonlinear Anal. Real World Appl. 5 (2004) 463-485; W. Ruan, M.E. Clark, M. Zhao, A. Curcio, A quasilinear hyperbolic system that models blood flow in a network, in: Charles V. Benton (Ed.), Focus on Mathematical Physics Research, Nova Science Publishers, Inc., New York, 2004, pp. 203-230]. This paper continues the analysis and gives sufficient conditions for the global existence of the classical solution. We prove that the solution exists globally if the boundary data satisfy the dissipative condition (2.3) or (3.2), and the norms of the initial and forcing functions in a certain Sobolev space are sufficiently small. This is only the first step toward establishing the global existence of the solution to physiologically realistic models, because, in general, the chosen dissipative conditions (2.3) and (3.2) do not appear to hold for the originally proposed boundary conditions (1.3)-(1.12).

6. Macropore system characteristics controls on non-reactive solute transport at different flow rates

Larsbo, Mats; Koestel, John

2014-05-01

Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

7. A computer package for the design and eigenproblem solution of damped linear multidegree of freedom systems

NASA Technical Reports Server (NTRS)

1982-01-01

Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.

8. Adsorption of sodium bis(2-ethylhexyl) sulfosuccinate and wettability in polytetrafluoroethylene solution air system

Harkot, Joanna; Jańczuk, Bronisław

2007-06-01

The role of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) adsorption at water-air and polytetrafluoroethylene-water (PTFE) interfaces in wetting of low energy PTFE was established from measurements of the contact angle of aqueous AOT solutions in PTFE-solution drop-air systems and the aqueous AOT solution surface tension measurements. For calculations of the adsorption at these interfaces the relationship between adhesion tension ( γLV cos θ) and surface tension ( γLV), and the Gibbs and Young equations were taken into account. On the basis of the measurements and calculations the slope of the γLV cos θ- γLV curve was found to be constant and equal -1 over the whole range of surfactant concentration in solution. It means that the amount of surfactant adsorbed at the PTFE-water interface, ΓSL, is essentially equal to its amount adsorbed at water-air interface, ΓLV. By extrapolating the linear dependence between γLV cos θ and γLV to cos θ = 1 the determined value of critical surface tension of PTFE surface wetting, γC, was obtained (23.6 mN/m), and it was higher than the surface tension of PTFE (20.24 mN/m). Using the value of PTFE surface tension and the measured surface tension of aqueous AOT solution in Young equation, the PTFE-solution interface tension, γSL, was also determined. The shape of the γSL-log C curve occurred to be similar to the isotherm of AOT adsorption at water-air interface, and a linear dependence existed between the PTFE-solution interfacial tension and polar component of aqueous AOT solution. The dependence was found to be established by the fact that the work of adhesion of AOT solution to the PTFE surface was practically constant amounting 46.31 mJ/m 2 which was close to the work of water adhesion to PTFE surface.

9. Everyday solutions for everyday problems: how mental health systems can support recovery.

PubMed

2012-07-01

People who experience mental illness can be viewed as either fundamentally different than, or fundamentally like, everyone else in society. Recovery-oriented mental health systems focus on commonality. In practice, this involves an orientation toward supporting everyday solutions for everyday problems rather than providing specialist treatments for mental illness-related problems. This change is evident in relation to help offered with housing, employment, relationships, and spirituality. Interventions may contribute to the process of striving for a life worth living, but they are a means, not an end. Mental health systems that offer treatments in support of an individual's life goals are very different than those that treat patients in their best interests. The strongest contribution of mental health services to recovery is to support everyday solutions to everyday problems.

10. A note on the solution of the variational equations of a class of dynamical systems

NASA Technical Reports Server (NTRS)

Broucke, R.; Lass, H.; Boggs, D.

1976-01-01

Some properties are derived for the solutions of the variational equations of a class of dynamical systems. It is shown that under rather general conditions, the matrix of the linearized Lagrangian equations of motion have an important property for which the word 'skew-symplectic' has been introduced. It is also shown that the fundamental matrix of solutions is 'symplectic', the word symplectic being used here in a more general sense than in the classical literature. Two consequences of the symplectic property are that the fundamental matrix is easily invertible and that the eigenvalues appear in reciprocal pairs. The effect of coordinate transformations is also analyzed; in particular, the change from Lagrangian to canonical systems.

11. Blow-Up of Solutions for a System of Petrovsky Equations with an Indirect Linear Damping

Liu, Wenjun

2013-05-01

In this paper, we consider a coupled system of Petrovsky equations in a bounded domain with clamped boundary conditions. Due to several physical considerations, a linear damping which is distributed everywhere in the domain under consideration appears only in the first equation whereas no damping term is applied to the second one (this is indirect damping). Many studies show that the solution of this kind of system has a polynomial rate of decay as time tends to infinity, but does not have exponential decay. For four different ranges of initial energy, we show here the blow-up of solutions and give the lifespan estimates by improving the method of Wu (Electron. J. Diff. Equ. 105, 1 (2009)) and Li et al. (Nonlin. Anal. 74, 1523 (2011)). From the applications point of view, our results may provide some qualitative analysis and intuition for the researchers in other fields such as engineering and mechanics when they study the concrete models of Petrovsky type.

12. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions

PubMed Central

Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George

2011-01-01

The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions. PMID:22102792

13. Exact multisolitonic solutions and their interactions in a (3+1)-dimensional system.

PubMed

Bai, Cheng-Lin

2009-10-01

Taking the approach via a special variable separation, some features of the (3+1)-dimensional multisolitonic solutions, including the embedded soliton, the taperlike soliton, the plateau-type soliton, and the rectangle soliton, were revealed in this study thanks to the intrusion of the appropriate boundary conditions and/or their initial qualifications. Some physical properties, such as the spatiotemporal evolution, wave form structure, and interactive phenomena with or without the background waves of multisolitons are discussed, especially in the two-soliton case. It is found that different interactive behaviors of solitary waves take place under different parameter conditions of collision in this system. It is verified that the elastic interaction phenomena exist in this (3+1)-dimensional integrable model. Furthermore, in other types of nonlinear systems, the abundant (3+1)-dimensional multisolitonic solutions were also investigated.

14. System and method for laser assisted sample transfer to solution for chemical analysis

DOEpatents

Van Berkel, Gary J; Kertesz, Vilmos

2014-01-28

A system and method for laser desorption of an analyte from a specimen and capturing of the analyte in a suspended solvent to form a testing solution are described. The method can include providing a specimen supported by a desorption region of a specimen stage and desorbing an analyte from a target site of the specimen with a laser beam centered at a radiation wavelength (.lamda.). The desorption region is transparent to the radiation wavelength (.lamda.) and the sampling probe and a laser source emitting the laser beam are on opposite sides of a primary surface of the specimen stage. The system can also be arranged where the laser source and the sampling probe are on the same side of a primary surface of the specimen stage. The testing solution can then be analyzed using an analytical instrument or undergo further processing.

15. The Euler-Maxwell System for Electrons: Global Solutions in 2 D

Deng, Yu; Ionescu, Alexandru D.; Pausader, Benoit

2017-08-01

A basic model for describing plasma dynamics is given by the Euler-Maxwell system, in which compressible ion and electron fluids interact with their own self-consistent electromagnetic field. In this paper we consider the "one-fluid" Euler-Maxwell model for electrons, in 2 spatial dimensions, and prove global stability of a constant neutral background. In 2 dimensions our global solutions have relatively slow (strictly less than 1/ t) pointwise decay and the system has a large (codimension 1) set of quadratic time resonances. The issue in such a situation is to solve the "division problem". To control the solutions we use a combination of improved energy estimates in the Fourier space, an L 2 bound on an oscillatory integral operator, and Fourier analysis of the Duhamel formula.

16. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions.

PubMed

Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

2011-11-15

The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions.

17. Exact solution of the two-level system and the Einstein solid in the microcanonical formalism

Bertoldi, Dalía S.; Bringa, Eduardo M.; Miranda, E. N.

2011-11-01

The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In this paper, those two models are solved without any approximation, using the gamma function and its derivatives. Exact values are calculated for the entropy, temperature and specific heat, and the relative error between our exact solution and the approximate one using the Stirling approximation. This error is significant for small systems, with a number of particles N ~ 100, as in studies of atomic clusters or nanoscale structures.

18. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

SciTech Connect

Rothe, R.E.

1996-09-30

A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solutions concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the Poisoned Tube Tank because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

19. Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis.

PubMed

Priess, M Cody; Conway, Richard; Choi, Jongeun; Popovich, John M; Radcliffe, Clark

2015-03-01

In this paper, we present a set of techniques for finding a cost function to the time-invariant Linear Quadratic Regulator (LQR) problem in both continuous- and discrete-time cases. Our methodology is based on the solution to the inverse LQR problem, which can be stated as: does a given controller K describe the solution to a time-invariant LQR problem, and if so, what weights Q and R produce K as the optimal solution? Our motivation for investigating this problem is the analysis of motion goals in biological systems. We first describe an efficient Linear Matrix Inequality (LMI) method for determining a solution to the general case of this inverse LQR problem when both the weighting matrices Q and R are unknown. Our first LMI-based formulation provides a unique solution when it is feasible. Additionally, we propose a gradient-based, least-squares minimization method that can be applied to approximate a solution in cases when the LMIs are infeasible. This new method is very useful in practice since the estimated gain matrix K from the noisy experimental data could be perturbed by the estimation error, which may result in the infeasibility of the LMIs. We also provide an LMI minimization problem to find a good initial point for the minimization using the proposed gradient descent algorithm. We then provide a set of examples to illustrate how to apply our approaches to several different types of problems. An important result is the application of the technique to human subject posture control when seated on a moving robot. Results show that we can recover a cost function which may provide a useful insight on the human motor control goal.

20. Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis

PubMed Central

Priess, M Cody; Conway, Richard; Choi, Jongeun; Popovich, John M; Radcliffe, Clark

2015-01-01

In this paper, we present a set of techniques for finding a cost function to the time-invariant Linear Quadratic Regulator (LQR) problem in both continuous- and discrete-time cases. Our methodology is based on the solution to the inverse LQR problem, which can be stated as: does a given controller K describe the solution to a time-invariant LQR problem, and if so, what weights Q and R produce K as the optimal solution? Our motivation for investigating this problem is the analysis of motion goals in biological systems. We first describe an efficient Linear Matrix Inequality (LMI) method for determining a solution to the general case of this inverse LQR problem when both the weighting matrices Q and R are unknown. Our first LMI-based formulation provides a unique solution when it is feasible. Additionally, we propose a gradient-based, least-squares minimization method that can be applied to approximate a solution in cases when the LMIs are infeasible. This new method is very useful in practice since the estimated gain matrix K from the noisy experimental data could be perturbed by the estimation error, which may result in the infeasibility of the LMIs. We also provide an LMI minimization problem to find a good initial point for the minimization using the proposed gradient descent algorithm. We then provide a set of examples to illustrate how to apply our approaches to several different types of problems. An important result is the application of the technique to human subject posture control when seated on a moving robot. Results show that we can recover a cost function which may provide a useful insight on the human motor control goal. PMID:26640359

1. CRC Clinical Trials Management System (CTMS): An Integrated Information Management Solution for Collaborative Clinical Research

PubMed Central

Payne, Philip R.O.; Greaves, Andrew W.; Kipps, Thomas J.

2003-01-01

The Chronic Lymphocytic Leukemia (CLL) Research Consortium (CRC) consists of 9 geographically distributed sites conducting a program of research including both basic science and clinical components. To enable the CRC’s clinical research efforts, a system providing for real-time collaboration was required. CTMS provides such functionality, and demonstrates that the use of novel data modeling, web-application platforms, and management strategies provides for the deployment of an extensible, cost effective solution in such an environment. PMID:14728471

2. An analytical solution for predicting the transient seepage from a subsurface drainage system

Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling

2016-05-01

Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.

3. Existing Whole-House Solutions Case Study: Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts

SciTech Connect

2013-11-01

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. In this project, Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent).

4. Bianchi I solutions of the Einstein-Boltzmann system with a positive cosmological constant

Lee, Ho; Nungesser, Ernesto

2017-09-01

In this paper, we study the future global existence and late-time behaviour of the Einstein-Boltzmann system with Bianchi I symmetry and a positive cosmological constant Λ >0 . For the Boltzmann equation, we consider the scattering kernel of Israel particles which are the relativistic counterpart of Maxwellian particles. Under a smallness assumption on initial data in a suitable norm, we show that solutions exist globally in time and isotropize at late times.

5. Future global existence and asymptotic behaviour of solutions to the Einstein-Boltzmann system with Bianchi I symmetry

Lee, Ho; Nungesser, Ernesto

2017-06-01

In this paper we study the Einstein-Boltzmann system with Bianchi I symmetry. We show that for small initial data the corresponding solutions of the Einstein-Boltzmann system are future geodesically complete and that they isotropize and have a dust-like behaviour at late times. Detailed information about the metric and the matter terms is obtained, and the results show that the solutions tend asymptotically to the Einstein-de Sitter solution.

6. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

PubMed

2014-01-01

We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

7. The discussion of crucial techniques in the emergency solution of special equipment security systems

Li, Zhao; Liu, Renyi; Liu, Nan

2007-06-01

This paper analyzes the necessity and feasibility of the supervision of special equipment security. The emergency solution of special equipment security system aims to integrate the emergency response department, such as police security, fire control, first aid, and traffic police and so on, to conduct the disaster rescue jointly under the command of the government departments. China Special Equipment Inspection and Research Center launched a GIS based system that manages the special equipment security. It designs the database, software and hardware structure, and functional module of the emergency solution of special equipment security based on WebGIS and GPS techniques. This paper analyzes three key issues of this system is explosion model, security patrol vehicles and special vehicles GPS positioning and special equipment monitoring. This system uses the information sharing technology based on Web Service. Transplanting GIS to Internet, designs special equipment spatial data WebGIS web site. B/S architecture is used in the system, and the software SuperMap IS Java of SuperMap Company is used as the GIS server for the spatial data publishing. This system also contains a PDA platform that provide for fieldwork.

8. Guidelines for sampling and analyzing solutions from aquifer thermal-energy-storage systems

SciTech Connect

Deutsch, W.J.

1982-09-01

The successful aquifer storage and retrieval of energy in the form of heated or chilled water require that the engineered system be compatible with the natural ground-water system. The composition of the ground water must be well known to predict and avoid potential problems that heating or cooling the water may create for operation of the plant. This paper presents a set of guidelines for sampling and analyzing solutions from simulated or real groundwater energy storage systems. Sampling guidelines include methods for flushing wells of stagnant water and monitoring selective solution parameters (pH, Eh, temperature or conductivity) as indicators of the efficiency of flushing. Certain unstable groundwater parameters (temperature, pH, Eh, dissolved oxygen, and conductivity) should be measured onsite. It is recommended that alkalinity, sulfide, and ammonia determinations be done within 24 hr of sampling. In addition to these field measurements, samples of the ground water should be filtered, preserved, and stored for laboratory analysis of major cations, anions, trace metals, organic and inorganic carbon and certain redox couples (Fe/sup 2 +//Fe/sup 3 +/ and As/sup 3 +//As/sup 5 +/). The final results of the analysis should be verified by computing the cation-anion balance and comparing measured conductivity with the solution analysis.

9. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

SciTech Connect

Gonzalez, L.A.; Lohmann, K.C.

1985-01-01

Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

10. On travelling wave solutions of a generalized Davey-Stewartson system

2005-02-01

The generalized Davey-Stewartson (GDS) equations, as derived by Babaoglu & Erbay (2004, Int. J. Non-Linear Mech., 39, 941-949), is a system of three coupled equations in (2 + 1) dimensions modelling wave propagation in an infinite elastic medium. The physical parameters ({gamma}, m1, m2, {lambda} and n) of the system allow one to classify the equations as elliptic-elliptic-elliptic (EEE), elliptic-elliptic-hyperbolic (EEH), elliptic-hyperbolic-hyperbolic (EHH), hyperbolic-elliptic-elliptic (HEE), hyperbolic-hyperbolic-hyperbolic (HHH) and hyperbolic-elliptic-hyperbolic (HEH) (Babaoglu et alE, 2004, preprint). In this note, we only consider the EEE and HEE cases and seek travelling wave solutions to GDS systems. By deriving Pohozaev-type identities we establish some necessary conditions on the parameters for the existence of travelling waves, when solutions satisfy some integrability conditions. Using the explicit solutions given in Babaoglu & Erbay (2004) we also show that the parameter constraints must be weaker in the absence of such integrability conditions.

11. Undergraduate Research to Obtain Preliminary Solutions for New Eclipsing Binary Systems

Wetterer, Charles J.; Walker, A. C.; Izzo, D. M.; Bloomer, R. H.

2009-01-01

An ongoing research program using the 0.61-m telescope at the US Air Force Academy (AFA) Observatory strives to identify, conduct multi-filter photometry, and obtain preliminary model solutions to new eclipsing binary systems. The new candidate systems currently come from the recent list of over 1800 suspected variable stars in the original CCD/Transit Instrument (CTI-I) survey. The undergraduate students involved in the program are AFA cadets in academic research courses and visiting students from the Appalachian College Association's Consortium for Astronomy Research and Teaching (CART) who conduct observations over the summer at the AFA Observatory and continue collaborative interactions with AFA cadets during the following academic year. The goal is to increase the number of known eclipsing variable star systems and identify interesting systems for follow-up research. This is an ideal small telescope research program in which to involve undergraduate students. Hundreds of potential eclipsing systems remaining to be explored.

12. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay

Tang, Xianhua; Cao, Daomin; Zou, Xingfu

We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].

13. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

DOEpatents

Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

2010-09-21

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

14. 78 FR 48467 - Delphi Automotive Systems, LLC, Products and Service Solutions Division, Including On-Site Leased...

Federal Register 2010, 2011, 2012, 2013, 2014

2013-08-08

... Division, Including On-Site Leased Workers From Bartech Workforce Management, Kokomo, Indiana; Amended... workers of Delphi Automotive Systems, LLC, Product and Service Solutions Division, Original Equipment... of ] Delphi Automotive Systems, LLC, Product and Service Solutions Division, including on-site leased...

15. Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system.

PubMed

Zou, Shiqiang; He, Zhen

2017-05-15

Forward osmosis (FO) has been widely studied for desalination or water recovery from wastewater, and one of its key challenges for practical applications is reverse solute flux (RSF). RSF can cause loss of draw solutes, salinity build-up and undesired contamination at the feed side. In this study, in-situ electrolysis was employed to mitigate RSF in a three-chamber FO system ("e-FO") with Na2SO4 as a draw solute and deionized (DI) water as a feed. Operation parameters including applied voltage, membrane orientation and initial draw concentrations were systematically investigated to optimize the e-FO performance and reduce RSF. Applying a voltage of 1.5 V achieved a RSF of 6.78 ± 0.55 mmol m(-2) h(-1) and a specific RSF of 0.138 ± 0.011 g L(-1) in the FO mode and with 1 M Na2SO4 as the draw, rendering ∼57% reduction of solute leakage compared to the control without the applied voltage. The reduced RSF should be attributed to constrained ion migration induced by the coactions of electric dragging force (≥1.5 V) and high solute rejection of the FO membrane. Reducing the intensity of the solution recirculation from 60 to 10 mL min(-1) significantly reduced specific energy consumption of the e-FO system from 0.693 ± 0.127 to 0.022 ± 0.004 kWh m(-3) extracted water or from 1.103 ± 0.059 to 0.044 ± 0.002 kWh kg(-1) reduced reversed solute. These results have demonstrated that the electrolysis-assisted RSF mitigation could be an energy-efficient method for controlling RSF towards sustainable FO applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

16. Reversible hydrogel-solution system of silk with high beta-sheet content.

PubMed

Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun

2014-08-11

Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self

17. Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content

PubMed Central

2015-01-01

Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers

18. Interaction Solutions for (1+1)-Dimensional Higher-Order Broer—Kaup System

Xin, Xiang-Peng; Liu, Xi-Qiang

2016-11-01

The (1+1)-dimensional higher-order Broer—Kaup (HBK) system is studied by consistent tanh expansion (CTE) method in this paper. It is proved that the HBK system is CTE solvable, and some exact interaction solutions among different nonlinear excitations such as solitons, rational waves, periodic waves, corresponding images are explicitly given. Supported by National Natural Science Foundation of China under Grant Nos. 11505090, 11171041, 11405103, 11447220, Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009

19. Iterative solution of large, sparse linear systems on a static data flow architecture - Performance studies

NASA Technical Reports Server (NTRS)

Reed, D. A.; Patrick, M. L.

1985-01-01

The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PE's, and pipelining, the streaming of data from array memories through the PE's. The performance model is used to analyze a row partitioned iterative algorithm for solving sparse linear systems of algebraic equations. Based on this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.

20. Solar-powered saline sorbent-solution heat pump/storage system

Robison, H.; Houston, S.

Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. This chemical heat pump needs no mechanical compressor, condenser, vacuum system, or pressure system. The collector-regenerators are inexpensive. The refrigerant is water and the desiccant is calcium chloride. First cost and operating expenses are very low.

1. Financail Disaster Risk Mangement Solutions for Life Systems Infrastructure in Low and Middle Income Countries

Skees, J. R.

2016-12-01

Growing populations and increased frequency of extreme climate events as a result of anthropogenic climate change will make poor populations more vulnerable in the future. Seismic events (earthquakes and tsunamis) also create extreme hazards for the poor and vulnerable living in cities in low and middle income countries. Vulnerability of life-systems infrastructure (e.g., water treatment facilities, hospitals, protective sea walls, etc.) to extreme climate and seismic events compound problems for the poor and vulnerable. By using risk hazard modelling with engineering design, it is possible to blend improved engineering in concert with financial disaster risk management (including insurance) solutions to improve the resiliency of life-systems infrastructure.

2. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

PubMed

Xie, Hui; Song, Kang; He, Yu

2014-07-01

A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations.

3. Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems.

PubMed

Aramaki, Kenji; Iemoto, Suzuka; Ikeda, Naoaki; Saito, Keitaro

2010-01-01

We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.

4. Joule-Thomson Inversion in Vapor-Liquid-Solid Solution Systems

Nichita, Dan Vladimir; Pauly, Jerome; Daridon, Jean-Luc

2009-07-01

Solid phase precipitation can greatly affect thermal effects in isenthalpic expansions; wax precipitation may occur in natural hydrocarbon systems in the range of operating conditions, the wax appearance temperature being significantly higher (as high as 350 K) for hyperbaric fluids. Recently, methods for calculating the Joule-Thomson inversion curve (JTIC) for two-phase mixtures, and for three-phase vapor-liquid-multisolid systems have been proposed. In this study, an approach for calculating the JTIC for the vapor-liquid-solid solution systems is presented. The JTIC is located by tracking extrema and angular points of enthalpy departure variations versus pressure at isothermal conditions. The proposed method is applied to several complex synthetic and naturally occurring hydrocarbon systems. The JTIC can exhibit several distinct branches (which may lie within two- or three-phase regions or follow phase boundaries), multiple inversion temperatures at fixed pressure, as well as multiple inversion pressures at given temperature.

5. The next generation in optical transport semiconductors: IC solutions at the system level

2005-02-01

6. Transfer of control system interface solutions from other domains to the thermal power industry.

PubMed

Bligård, L-O; Andersson, J; Osvalder, A-L

2012-01-01

In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

7. Rational solutions to two- and one-dimensional multicomponent Yajima-Oikawa systems

Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

2015-07-01

Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima-Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints.

8. An explicit solution for progress curve analysis in systems characterized by endogenous substrate production.

PubMed

Goudar, Chetan T

2012-05-01

The Lambert W function was used to explicitly relate substrate concentration S, to time t, and the kinetic parameters V (m), K (m), and R in the modified Michaelis-Menten equation that accounts for endogenous substrate production. The applicability of this explicit formulation for kinetic parameter estimation by progress curve analysis was demonstrated using a combination of synthetic and experimental substrate depletion data. Synthetic substrate depletion data were generated using S (0) values of 1, 2, and 3 μM and V (m), K (m), and R values of 1.0 μM h(-1), 1.0 μM, and 0.1 μM h(-1), respectively, and contained 5% normally distributed error. Experimental data were obtained from two previously published studies on hydrogen depletion in four experimental systems. In all instances, experimental data were well described by the explicit solution presented in this study. Differential equation solution and iterative S estimation are eliminated with the explicit solution approach, thereby simplifying progress curve analysis in systems characterized by endogenous substrate production.

9. NOTE: A VMAT planning solution for prostate patients using a commercial treatment planning system

Boylan, C. J.; Golby, C.; Rowbottom, C. G.

2010-07-01

Volumetric modulated arc therapy (VMAT) is a rotational delivery technique which offers the potential of improved dose distributions and shorter treatment times when compared to fixed-beam intensity-modulated radiation therapy (IMRT). This note describes the use of an existing treatment planning system (Philips Pinnacle3 v.8.0), supplemented by in-house software, to produce a single-arc VMAT prostate plan. While a number of planning systems for the Elekta VMAT platform are commercially available, the use of an in-house solution has allowed more detailed investigations of VMAT planning, as well as greater control over the optimization process. The solution presented here begins with a static step-and-shoot IMRT approach to provide initial segment shapes, which are then modified and sequenced into 60 equally spaced control points in a 360° arc. Dose-volume histogram comparisons demonstrate that this VMAT planning method offers multiple dose level target coverage comparable to that from a standard IMRT approach. The VMAT plans also show superior sparing of critical structures such as the rectum and bladder. Delivery times are reduced with the VMAT method, and the results of dosimetric verification, resilience and repeatability tests indicate that the solution is robust.

10. A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

NASA Technical Reports Server (NTRS)

Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.

2010-01-01

The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any

11. Microrheological Characterization of Collagen Systems: From Molecular Solutions to Fibrillar Gels

PubMed Central

Shayegan, Marjan; Forde, Nancy R.

2013-01-01

Collagen is the most abundant protein in the extracellular matrix (ECM), where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering. PMID:23936454

12. Review on Malaysian Rail Transit Operation and Management System: Issues and Solution in Integration

Masirin, Mohd Idrus Mohd; Salin, Aminah Mohd; Zainorabidin, Adnan; Martin, David; Samsuddin, Norshakina

2017-08-01

In any context, operation and management of transportation systems are key issues which may affect both life quality and economic development. In large urban agglomerations, an efficient public transportation system may help abate the negative externalities of private car use such as congestion, air and noise pollution, accident and fuel consumption, without excessively penalizing user travel times or zone accessibility. Thus, this study is conducted to appraise the Malaysian rural rail transit operation and management system, which are considered important as there are many issues and solution in integration of the services that need to be tackled more conscientiously. The purpose of this paper is to describe some of the most important issues on integration of services and rail transit system in Malaysian and how to solve or reduce these problems and conflicts. In this paper, it consists of the historical development of rail transit construction in Malaysia. This paper also attempts to identify the important issues related to rail transit services and integration in Malaysian rural rail operation and management system. Comparison is also conducted with other countries such as UK, France, and Japan. Finally, a critical analysis is presented in this paper by looking at the possible application for future Malaysian rail transit operation system and management, especially focusing on enhancing the quality of Malaysian rural rail transit. In conclusion, this paper is expected to successfully review and appraise the existing Malaysian rural rail transit operation and management system pertaining to issues & solution in integration. It is also hoped that reformation or transformation of present service delivery quality of the rail transit operation and management will enable Malaysia to succeed in transforming Malaysian transportation system to greater heights.

13. Hydrogen‐Bonded Macrocyclic Supramolecular Systems in Solution and on Surfaces

PubMed Central

Mayoral, María J.; Bilbao, Nerea

2015-01-01

Abstract Cyclization into closed assemblies is the most recurrent approach to realize the noncovalent synthesis of discrete, well‐defined nanostructures. This review article particularly focuses on the noncovalent synthesis of monocyclic hydrogen‐bonded systems that are self‐assembled from a single molecule with two binding‐sites. Taking advantage of intramolecular binding events, which are favored with respect to intermolecular binding in solution, can afford quantitative amounts of a given supramolecular species under thermodynamic control. The size of the assembly depends on geometric issues such as the monomer structure and the directionality of the binding interaction, whereas the fidelity achieved relies largely on structural preorganization, low degrees of conformational flexibility, and templating effects. Here, we discuss several examples described in the literature in which cycles of different sizes, from dimers to hexamers, are studied by diverse solution or surface characterization techniques. PMID:27308207

14. Bifurcation and global periodic solutions in a delayed facultative mutualism system

Yan, Xiang-Ping; Li, Wan-Tong

2007-03-01

A facultative mutualism system with a discrete delay is considered. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. Some explicit formulae are obtained by applying the normal form theory and center manifold reduction. Such formulae enable us to determine the stability and the direction of the bifurcating periodic solutions bifurcating from Hopf bifurcations. Furthermore, a global Hopf bifurcation result due to Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838] is employed to study the global existence of periodic solutions. It is shown that the local Hopf bifurcation implies the global Hopf bifurcation after the third critical value τ1(1) of delay. Finally, numerical simulations supporting the theoretical analysis are given.

15. On the Shape of Meissner Solutions to a Limiting Form of Ginzburg-Landau Systems

Xiang, Xingfei

2016-12-01

In this paper we study a semilinear system involving the curl operator, which is a limiting form of the Ginzburg-Landau model for superconductors in R^3 for a large value of the Ginzburg-Landau parameter. We consider the locations of the maximum points of the magnitude of solutions, which are associated with the nucleation of instability of the Meissner state for superconductors when the applied magnetic field is increased in the transition between the Meissner state and the vortex state. For small penetration depth, we prove that the location is not only determined by the tangential component of the applied magnetic field, but also by the normal curvatures of the boundary in some directions. This improves the result obtained by Bates and Pan in Commun. Math. Phys. 276, 571-610 (2007). We also show that the solutions decay exponentially in the normal direction away from the boundary if the penetration depth is small.

16. Solutions to corrosion problems of FGD systems providing functional reliability and cost effectiveness

SciTech Connect

Agarwal, D.C.

1986-01-01

Extensive research programs at various utilities and institutions to find better materials of construction led to higher alloys up the ladder of Ni-Cr-Mo family and new non-metallic coatings. One result of this was the development of the ''wallpaper concept solution'' of lining with thin sheets of highly corrosion-resistant alloy of the Ni-Cr-Mo family which over the last six years has provided maintenance free performance in a very cost effective manner. This paper will describe the simplicity of the wallpaper concept solution, economics as compared to other alternatives, and case histories where maintenance free service is being provided to many utilities in the critical areas of their FGD systems.

17. Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system.

PubMed

Wang, F; Choudhury, A; Selzer, M; Mukherjee, R; Nestler, B

2012-12-01

In this paper, we study the effect of solutal Marangoni convection (SMC) on the microstructure evolution in a monotectic system, using the convective Cahn-Hilliard and Navier-Stokes equations with a capillary tensor contributed by the chemical concentration gradient. At first, we simulate the spontaneous motion of two distant droplets induced by SMC and compare our results with an analytical solution. We then compute the coalescence of two droplets in contact and coarsening of two distant droplets considering different sizes. We further study the influence of SMC on the evolution of phase separation processes inside the spinodal region for Fe-50 at %Sn and Fe-40 at %Sn alloys. In the former case, we rationalize our results using Fourier spectra and in the latter case, we compare the size distribution of droplets with the LSW theory.

18. [Au(9-methylcaffein-8-ylidene)2 ](+) /DNA Tel23 System: Solution, Computational, and Biological Studies.

PubMed

Papi, Francesco; Bazzicalupi, Carla; Ferraroni, Marta; Massai, Lara; Bertrand, Benoît; Gratteri, Paola; Colangelo, Donato; Messori, Luigi

2017-10-04

Physicochemical methods have been used to investigate interactions occurring in solution between the dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 (AuNHC) and a human telomeric DNA sequence, namely Tel23. Circular dichroism measurements allow identification of the conformational changes experienced by Tel23 upon interaction with AuNHC, and the respective binding stoichiometries and constants were determined. Computational studies provide a good link between previous crystallographic results of the same system and the present solution data, offering an exhaustive description of the inherent noncovalent metallodrug-DNA interactions. Remarkably, we found that a preformed AuNHC/Tel23 adduct is capable of producing strong and selective inhibition of the enzyme telomerase. The latter feature is mechanistically relevant and might account for the conspicuous in vitro anticancer properties of the investigated dicarbene gold(I) complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

19. Note on Solutions of the Strominger System from Unitary Representations of Cocompact Lattices of

Andreas, Bjorn; Garcia-Fernandez, Mario

2014-12-01

This note is motivated by a recently published paper (Biswas and Mukherjee in Commun Math Phys 322(2):373-384, 2013). We prove a no-go result for the existence of suitable solutions of the Strominger system in a compact complex parallelizable manifold . For this, we assume G to be non-abelian, the Hermitian metric to be induced from a right invariant metric on G, the Bianchi identity to be satisfied using the Chern connection and furthermore the gauge field to be flat. In Biswas and Mukherjee (Commun Math Phys 322(2):373-384, 2013) it is claimed that one such solution exists on . Our result contradicts the main result in Biswas and Mukherjee (Commun Math Phys 322(2):373-384, 2013).

20. Decay estimates of solutions to the bipolar non-isentropic compressible Euler–Maxwell system

Tan, Zhong; Wang, Yong; Tong, Leilei

2017-10-01

We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler–Maxwell system in {R}3 , where the background magnetic field could be non-zero. The global existence is established under the assumption that the H 3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al (2012 SIAM J. Math. Anal. 44 3429–57).

1. Numerical solution and asymptotic behavior for a nonlocal reaction-diffusion coupled systems

Chin, Pius W. M.

2017-07-01

This paper is considered on a class of nonlocal systems of reaction-diffusion equations with coefficients which are Lipschitz-continuous positive functions. In this model, we are concerned with designing a coupling technique consisting of the non-standard finite difference(NSFD) and finite element method(FEM) both in time and space respectively. We prove theoretically that the schemes designed by the above technique converges optimally in some specified norms for given conditions. Furthermore, we show that the numerical solutions of the said schemes replicates the decaying properties of the exact solutions. Numerical experiments are presented to justify the above theory and some practical studies are carried out for the asymptotic behavior of the schemes under consideration.

2. Algebraic solution of the Lindblad equation for a collection of multilevel systems coupled to independent environments

Bolaños, Marduk; Barberis-Blostein, Pablo

2015-11-01

We consider the Lindblad equation for a collection of multilevel systems coupled to independent environments. The equation is symmetric under the exchange of the labels associated with each system and thus the open-system dynamics takes place in the permutation-symmetric subspace of the operator space. The dimension of this space grows polynomially with the number of systems. We construct a basis of this space and a set of superoperators whose action on this basis is easily specified. For a given number of levels, M, these superoperators are written in terms of a bosonic realization of the generators of the Lie algebra {sl}({M}2). In some cases, these results enable finding an analytic solution of the master equation using known Lie-algebraic methods. To demonstrate this, we obtain an analytic expression for the state operator of a collection of three-level atoms coupled to independent radiation baths. When analytic solutions are difficult to find, the basis and the superoperators can be used to considerably reduce the computational resources required for simulations.

3. Reactive solute transport in a filled single fracture-matrix system under unilateral and radial flows

Zhou, Renjie; Zhan, Hongbin; Chen, Kewei

2017-06-01

The study of transport processes in a single fracture is the basis of understanding transport in complex fractured networks. Many single fractures in the field are filled with sediments, and the transport in such filled single fractures has received much less attention up to present. When the fracture is partially filled with sediments, a mobile-immobile approach is considered necessary. This study deals with a coupled three-domain transport problem using mobile and immobile domains to characterize a filled single fracture and a matrix domain to characterize the rock body. Mathematical models are developed for such a coupled three-domain transport problem with new semi-analytical solutions to analyze the spatial-temporal concentration and mass distributions in the fracture and rock matrix with the help of Laplace transforms. This study addresses transport in a filled fracture-matrix system under two different flow conditions: unilateral flow, and radial flow. The new solutions have been tested extensively against previous solutions under various special settings and are proven to be robust and accurate. This study has the following findings: 1) Longitudinal dispersion in the fracture often plays an important role in such a coupled system in unilateral flow, 2) Mass partitions in three domains follow similar patterns in respect to the influence of fracture apertures, mobile/immobile ratios, and first-order mass transfer rates, 3) The system is most sensitive to the dispersivity and least sensitive to the first-order mass transfer rate and the mobile/immobile ratio in the unilateral flow model over a wide range of time scales (if the longitudinal dispersivity and Darcian flow velocity remain constant), 4) The system is most sensitive to the dispersivity, less sensitive to the mobile/immobile ratio, and least sensitive to the first-order mass transfer rate in the radial flow model (if the radial dispersivity and injection rate remain constant).

4. Four Challenges, and a Proposed Solution, for Cognitive System Engineering - System Development Integration

DTIC Science & Technology

2008-01-01

purposive information. The cognitive systems approach begins, therefore, with a consideration of work environment ecology: Its properties and...constraints as well as the “system’s “purpose space” within the work environment . This creates the work context within which all system activity is assumed...Hopcroft and Moylan, 2005). These range from text descriptions of work environment ecology to specifications of human performance parameters. However

5. A Solution Space for a System of Null-State Partial Differential Equations: Part 1

Flores, Steven M.; Kleban, Peter

2015-01-01

This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405

6. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

SciTech Connect

Cwik, T.; Katz, D.S.

1996-12-31

Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

7. Energy conservative solutions to the system of full variational sine-Gordon equations in a unit sphere

Wang, Qin; Song, Kyungwoo

2016-02-01

We establish the global existence of a conservative weak solution to the Cauchy problem for a complete system of variational sine-Gordon equations, which models the motion of long waves on a neutral dipole chain in the continuum limit in a unit sphere. Although singularities may develop in finite time, the energy of the solution is conserved across singular times. We also obtain the continuous dependence of solutions on the given initial data.

8. Stability of localized solutions in a subcritically unstable pattern-forming system under a global delayed control.

PubMed

Rubinstein, B Y; Nepomnyashchy, A A; Golovin, A A

2007-04-01

The formation of spatially localized patterns in a system with subcritical instability under feedback control with delay is investigated within the framework of globally controlled Ginzburg-Landau equation. It is shown that feedback control can stabilize spatially localized solutions. With the increase of delay, these solutions undergo oscillatory instability that, for large enough control strength, results in the formation of localized oscillating pulses. With further increase of the delay the solution blows up.

9. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

Berzina, Alise; Dace, Elina; Bazbauers, Gatis

2010-01-01

This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

10. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM).

PubMed

Yamazawa, Toshiko; Nakamura, Naotoshi; Sato, Mari; Sato, Chikara

2016-12-01

Exocrine glands, e.g., salivary and pancreatic glands, play an important role in digestive enzyme secretion, while endocrine glands, e.g., pancreatic islets, secrete hormones that regulate blood glucose levels. The dysfunction of these secretory organs immediately leads to various diseases, such as diabetes or Sjögren's syndrome, by poorly understood mechanisms. Gland-related diseases have been studied by optical microscopy (OM), and at higher resolution by transmission electron microscopy (TEM) of Epon embedded samples, which necessitates hydrophobic sample pretreatment. Here, we report the direct observation of tissue in aqueous solution by atmospheric scanning electron microscopy (ASEM). Salivary glands, lacrimal glands, and pancreas were fixed, sectioned into slabs, stained with phosphotungstic acid (PTA), and inspected in radical scavenger d-glucose solution from below by an inverted scanning electron microscopy (SEM), guided by optical microscopy from above to target the tissue substructures. A 2- to 3-µm specimen thickness was visualized by the SEM. In secretory cells, cytoplasmic vesicles and other organelles were clearly imaged at high resolution, and the former could be classified according to the degree of PTA staining. In islets of Langerhans, the microvascular system used as an outlet by the secretory cells was also clearly observed. Microvascular system is also critically involved in the onset of diabetic complications and was clearly visible in subcutaneous tissue imaged by ASEM. The results suggest the use of in-solution ASEM for histology and to study vesicle secretion systems. Further, the high-throughput of ASEM makes it a potential tool for the diagnosis of exocrine and endocrine-related diseases.

11. Unified semiclassical theory for the two-state system: Analytical solutions for scattering matrices

Zhu, Chaoyuan

1996-09-01

Unified semiclassical theory is established for general two-state system by employing an exactly analytical quantum solution [C. Zhu, J. Phys. A29, 1293 (1996)] for the Nikitin exponential-potential model which contains the two-state curve crossing and noncrossing cases as a whole. Analytical solutions for scattering matrices are found for both three- and two-channel cases within the time-independent treatment. This is made possible by introducing a very important parameter d(R0)=√)/[V22(R0)-V11(R0)]2 (V11(R), V22(R) and V12(R) are diabatic potentials and coupling, R0 is real part of complex crossing point between two adiabatic potentials) which represents a type of nonadiabatic transition for the two-state system. For instance, d=∞ represents the Landau-Zener type and d=√ represents Rosen-Zener type. Since d(R0) runs from unity to infinity, this parameter provides a quantitative description of nonadiabatic transition. The idea used here is the parameter comparison method which makes a unique link between the model and general potential system at the complex crossing point. This method is testified not only by numerical examples, but also by agreement of the present semiclassical formulas with all existing semiclassical formulas.

12. General N-Dark Soliton Solutions of the Multi-Component Mel'nikov System

Han, Zhong; Chen, Yong; Chen, Junchao

2017-07-01

A general form of N-dark soliton solutions of the multi-component Mel'nikov system are presented. Taking the coupled Mel'nikov system comprised of two-component short waves and one-component long wave as an example, its general N-dark-dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction method. The dynamics of single dark-dark soliton and two dark-dark solitons are discussed in detail. It can be shown that the collisions of dark-dark solitons are elastic and energies of the solitons in different components completely transmit through. In addition, the dark-dark soliton bound states including both stationary and moving cases are also investigated. An interesting feature for the coupled Mel'nikov system is that the stationary dark-dark soliton bound states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types, while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

13. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

PubMed Central

Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

2015-01-01

Abstract. Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use. PMID:25607724

14. An integrated high-throughput data acquisition system for biological solution X-ray scattering studies.

PubMed

Martel, Anne; Liu, Ping; Weiss, Thomas M; Niebuhr, Marc; Tsuruta, Hiro

2012-05-01

A fully automated high-throughput solution X-ray scattering data collection system has been developed for protein structure studies at beamline 4-2 of the Stanford Synchrotron Radiation Lightsource. It is composed of a thin-wall quartz capillary cell, a syringe needle assembly on an XYZ positioning arm for sample delivery, a water-cooled sample rack and a computer-controlled fluid dispenser. It is controlled by a specifically developed software component built into the standard beamline control program Blu-Ice/DCS. The integrated system is intuitive and very simple to use, and enables experimenters to customize data collection strategy in a timely fashion in concert with an automated data processing program. The system also allows spectrophotometric determination of protein concentration for each sample aliquot in the beam via an in situ UV absorption spectrometer. A single set of solution scattering measurements requires a 20-30 µl sample aliquot and takes typically 3.5 min, including an extensive capillary cleaning cycle. Over 98.5% of measurements are valid and free from artefacts commonly caused by air-bubble contamination. The sample changer, which is compact and light, facilitates effortless switching with other sample-handling devices required for other types of non-crystalline X-ray scattering experiments.

15. Phase Pattern of Barium Strontium Titanate System and Dielectric Responses of Its Solid Solutions

Sadykov, Kh. A.; Verbenko, I. A.; Reznichenko, L. A.; Pavelko, A. A.; Shilkina, L. A.; Konstantinov, G. M.; Abubakarov, A. G.; Shevtsova, S. I.; Pavlenko, A. V.; Khasbulatov, S. V.

2017-04-01

Samples of solid solutions of the system Ba1- x Sr x TiO3 (0 ≤ x ≤1.0) are produced by solid-phase synthesis followed by sintering using conventional ceramic technology. Their crystal structure and grain structure are studied at room temperature and dielectric properties - in a wide range of external influences (temperature and frequency of the alternating electric field). Based on these results, the state diagram of the system is constructed including three single-phase fields with different-symmetry (tetragonal, pseudocubic, and cubic) and two morphotropic fields with coexistence of the tetragonal and pseudocubic, pseudocubic and cubic phases. Peculiarities of the grain landscape associated with the formation of morphotropic areas and melting of barium hydroxide are revealed. The dependence of the dielectric properties of solid solutions on their crystal-chemical specifics and position in the phase diagram of the system is demonstrated. A conclusion is made about the possibility of using the compositions with x = 0.2 to create materials with high dielectric constants promising for applications in microelectronics.

16. Numerical solution of fluid-structure interaction in piping systems by Glimm's method

Gomes da Rocha, Rogerio; Bastos de Freitas Rachid, Felipe

2012-01-01

This work presents a numerical procedure for obtaining approximated solutions for one-dimensional fluid-structure interaction (FSI) models, which are used in transient analyses of liquid-filled piping systems. The FSI model considered herein is formed by a system of hyperbolic partial differential equations and describes, simultaneously, pressure waves propagating in the liquid as well as axial, shear and bending waves traveling in the pipe walls. By taking advantage of an operator splitting technique, the flux term is split away from the source one, giving rise to a sequence of simpler problems formed by a set of homogeneous hyperbolic differential equations and by a set of ordinary differential equations in time. The numerical procedure is constructed by advancing in time sequentially through these sets of equations by employing Glimm's method and Gear's stiff method, respectively. To implement Glimm's method, analytical solutions for the associated Riemann problems are presented. The boundary conditions are properly accounted for in Glimm's method by formulating and analytically solving suitable (non-classical) Riemann problems for the pipe's ends. The proposed numerical procedure is used to obtain numerical approximations for the well-known eight-equation FSI model for two closed piping systems, in which transients are generated by the impact of a rod onto one of the ends. The obtained numerical results are compared with experimental data available in the literature and very good agreement is found.

17. Novel DC ring topology and protection system - a comprehensive solution for mega city power grids

Haj-Maharsi, Mohamed Yassine

2009-07-01

The development of mega cities leads to increased load concentration and brings additional challenges to managing the electrical grid while keeping power available for critical loads. Techniques using FACTS devices are being applied to alleviate power management difficulties and to confine faults in their originating areas in order to limit the risk of cascading failures in the grid. The addition of many FACTS devices often results in control and protection coordination difficulties, power oscillations between connected networks, subsynchronous resonance problems, and torsional interactions with nearby generator units. The most effective solution is obtained when the individual AC subsystems representing sources and loads are decoupled so a fault in a given subsystem is not propagated to another subsystem. This solution can be achieved by the deployment of a DC system where power sources and loads are connected to the DC bus through voltage source converters. For a mega city, this would be conceived as a DC ring feeding multiple loads and connected to remote and local power sources. Unfortunately, the lack of fast DC circuit breakers has been one of the key issues affecting extensive applications of DC systems with common DC buses; a DC fault would discharge all the capacitors of the DC bus and cause delays in system recovery and possibly a wide system collapse. In this research, I provide a comprehensive solution to mega city power grid problems by proposing a DC system topology that enables grid expansions without affecting existing protection settings or changing existing AC breaker ratings. I also propose the means for protecting the DC system by designing a fast DC breaker and developing a control algorithm capable of isolating DC faults without blocking converter stations or depleting DC bus capacitors. My contribution is three folds: (1) I modeled and simulated Shanghai power grid and performed a study to identify short circuit and voltage stability problems

18. Pyrene and phenanthrene sorption to model and natural geosorbents in single- and binary-solute systems.

PubMed

Zhang, Jing; Séquaris, Jean-Marie; Narres, Hans-Dieter; Vereecken, Harry; Klumpp, Erwin

2010-11-01

Sorption of pyrene and phenanthrene to model (illite and charcoal) and natural (Yangtze sediment) geosorbents were investigated by batch techniques using fluorescence spectroscopy. A higher adsorption of phenanthrene was observed with all sorbents, which is related to the better accessibility of smaller molecules to micropores in the molecular sieve sorbents. In addition, pyrene sorption in binary-solute systems with a constant initial concentration of phenanthrene (0.1 μmol L(-1) or 2 μmol L(-1)) was studied. A 0.1 μmol L(-1) concentration of phenanthrene causes no competitive effect on the pyrene sorption. A 2 μmol L(-1) concentration of phenanthrene significantly suppresses the sorption of pyrene, especially in the low concentration range; nonlinearity of the pyrene sorption isotherms thus decreases. The competitive effect of 2 μmol L(-1) phenanthrene on the pyrene sorption is overestimated by the ideal adsorbed solution theory (IAST) using the fitted single sorption results of both solutes. An adjustment of the IAST application by taking into account the molecular sieve effect is proposed, which notably improves the IAST prediction for the competitive effect.

19. Optimized design of recycle chromatography to isolate intermediate retained solutes in ternary mixtures: Langmuir isotherm systems.

PubMed

Lee, Ju Weon; Wankat, Phillip C

2009-10-09

Batch chromatography with a recycle stream is a popular and simple technique to separate a single target component in a complex mixture with moderate operating conditions. Design of recycle chromatography depends on the retention behaviors of the mixture components. In this work, four nucleosides were considered as solutes. Feed concentration and recycle methods were optimized to isolate only the intermediate retained solute in ternary and pseudo-ternary mixtures. Two recycle methods introduced in our previous work for linear isotherms, the desorbent and feed recycle methods, were compared in terms of productivity and desorbent to feed ratio, D/F, with various feed concentrations for competitive Langmuir isotherm systems. The simulation results show that the target (intermediate retained solute) was separated with over 99.76% purity and 99.88% yield. Productivity of the feed recycle method was increased by up to 162% and D/F was decreased by up to 59% compared to the desorbent recycle method. For the separation of nucleosides, recycle chromatography was compared to eight column simulated moving bed (SMB) cascades with a recycle stream and D/F of the SMB cascades was 58% lower than D/F of recycle chromatography at the same productivity. However, recycle chromatography is much simpler.

20. Infrared endoscopic system for bleeding-point detection after flushing with indocyanine green solution (with videos).

PubMed

Ishihara, Ryu; Iishi, Hiroyasu; Kidu, Takashi; Yamamoto, Sachiko; Miyoshi, Rika; Inoue, Takuya; Takeuchi, Yoji; Higashino, Koji; Uedo, Noriya; Tatsuta, Masaharu

2008-11-01

Infrared endoscopy is used to visualize vessels in the GI tract. By applying this system, we developed a new method to visualize a bleeding point during endoscopic resection. This study aimed to evaluate the ability of infrared endoscopy to detect a bleeding point during endoscopic resection and to elucidate the mechanism required for clear visualization of a bleeding point by in vitro color analysis. Observational case series. A cancer-referral center. A total of 10 bleeding sites were observed during endoscopic resection of upper-GI cancers by infrared endoscopy after flushing with indocyanine green (ICG) solution (0.125 mg/mL water). Detection of bleeding points. Bleeding points were identified in all bleeding sites by infrared endoscopic viewing. Bleeding points were displayed in white, whereas, an ulcer bed was in blue and pooled blood was a blue-to-gray color. By in vitro color analysis, blood was white, blood twice diluted with ICG solution was dark blue, and blood 4-times diluted with ICG solution was light blue on infrared endoscopic views. Color differences with blood dilution were more obvious in an infrared endoscopic view compared with a conventional endoscopic view. Blood thickness, movement, and clotting did not influence the color differences. Uncontrolled study. We reported a flushing method by which we could detect all bleeding points during endoscopic resection. Clear visualization of bleeding points comes from differences in blood and ICG concentration between spurting and pooled blood.

1. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view

Kay, Lewis E.

2011-06-01

With the development of appropriate labeling schemes and the associated experiments that exploit them it has become possible to record high quality solution NMR spectra of supra-molecular complexes with molecular masses extending to 1 MDa. One such approach involves selective 13CH 3 methyl labeling in highly deuterated proteins using experiments that make use of a methyl-TROSY effect that significantly improves both resolution and sensitivity in spectra. The utility of this methodology has been demonstrated on a growing number of interesting particles. It seems appropriate at this juncture, therefore, to 'step back' and evaluate the role that solution NMR spectroscopy can play in what has traditionally been the domain of X-ray crystallography and more recently cryo-electron microscopy. It is argued here that solution NMR can make a critical contribution to our understanding of how dynamics regulate function in these high molecular weight systems. Several examples from work in my laboratory on the proteasome are presented as an illustration.

2. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

PubMed

McCarthy, Carrie L; Brutchey, Richard L

2017-05-02

Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

3. A recourse-based solution approach to the design of fuel cell aeropropulsion systems

Choi, Taeyun Paul

In order to formulate a nondeterministic solution approach that capitalizes on the practice of compensatory design, this research introduces the notion of recourse. Within the context of engineering an aerospace system, recourse is defined as a set of corrective actions that can be implemented in stages later than the current design phase to keep critical system-level figures of merit within the desired target ranges, albeit at some penalty. Recourse programs also introduce the concept of stages to optimization formulations, and allow each stage to encompass as many sequences or events as determined necessary to solve the problem at hand. A two-part strategy, which partitions the design activities into stages, is proposed to model the bi-phasal nature of recourse. The first stage is defined as the time period in which an a priori design is identified before the exact values of the uncertain parameters are known. In contrast, the second stage is a period occurring some time after the first stage, when an a posteriori correction can be made to the first-stage design, should the realization of uncertainties impart infeasibilities. Penalizing costs are attached to the second-stage corrections to reflect the reality that getting it done right the first time is almost always less costly than fixing it after the fact. Consequently, the goal of the second stage becomes identifying an optimal solution with respect to the second-stage penalty, given the first-stage design, as well as a particular realization of the random parameters. This two-stage model is intended as an analogue of the traditional practice of monitoring and managing key Technical Performance Measures (TPMs) in aerospace systems development settings. One obvious weakness of the two-stage strategy as presented above is its limited applicability as a forecasting tool. Not only cannot the second stage be invoked without a first-stage starting point, but also the second-stage solution differs from one specific

4. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.; Forrey, Christopher

2016-07-01

We investigate the link between dynamic localization, characterized by the Debye-Waller factor, , and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/ over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

5. Existence of ground state solutions to a generalized quasilinear Schrödinger-Maxwell system

Zhu, Xiaoli; Li, Fuyi; Liang, Zhanping

2016-10-01

In this paper, a class of generalized quasilinear Schrödinger-Maxwell systems is considered. Via the mountain pass theorem, we conclude the existence of positive ground state solutions when the potential may vanish at infinity and the nonlinear term has a quasicritical growth. During this process, we use the Coulomb energy studied by Ruiz [Arch. Ration. Mech. Anal. 198(1), 349-368 (2010)] and establish a convergency theorem to overcome the lack of compactness caused by the potential which may vanish at infinity.

6. Higher Integrability of Solutions to Generalized Stokes System Under Perfect Slip Boundary Conditions

Mácha, Václav; Tichý, Jakub

2014-10-01

We prove an L q theory result for generalized Stokes system in a {{C}^{2,1}} domain complemented with the perfect slip boundary conditions and under Φ-growth conditions. Since the interior regularity was obtained in Diening and Kaplický (Manu Math 141:336-361, 2013), a regularity up to the boundary is an aim of this paper. In order to get the main result, we use Calderón-Zygmund theory and the method developed in Caffarelli and Peral (Ann Math 130:189-213, 1989). We obtain higher integrability of the first gradient of a solution.

7. The numerical solution of linear multi-term fractional differential equations: systems of equations

Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

2002-11-01

In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

8. Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems.

PubMed

Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A

2016-01-01

This paper presents the analysis of three classes of fractional differential equations appearing in the field of fractional adaptive systems, for the case when the fractional order is in the interval α ∈(0,1] and the Caputo definition for fractional derivatives is used. The boundedness of the solutions is proved for all three cases, and the convergence to zero of the mean value of one of the variables is also proved. Applications of the obtained results to fractional adaptive schemes in the context of identification and control problems are presented at the end of the paper, including numerical simulations which support the analytical results.

9. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

NASA Technical Reports Server (NTRS)

Stone, H. S.

1971-01-01

Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

10. [Difficulties in the IT solutions of the Danish health-care system].

PubMed

Kildebro, Niels; Fergo, Charlotte; Rosenberg, Jacob

2014-12-08

The IT solutions of the Danish health-care system have been under criticism. Especially the time spent on login. We examined if the daily recommended pelvic floor muscle training could be achieved during login. Login time was measured on five laptops used in daily care in a hospital. Time to conduct pelvic floor training was measured in six volunteers. Median login time/day was 77 minutes and four seconds, and median time to complete exercises was 35 minutes and 14 seconds. The hypothesis was verified, and further studies to optimize time spent on login are recommended. not relevant. not relevant.

11. Embedded Systems and TensorFlow Frameworks as Assistive Technology Solutions.

PubMed

Mulfari, Davide; Palla, Alessandro; Fanucci, Luca

2017-01-01

In the field of deep learning, this paper presents the design of a wearable computer vision system for visually impaired users. The Assistive Technology solution exploits a powerful single board computer and smart glasses with a camera in order to allow its user to explore the objects within his surrounding environment, while it employs Google TensorFlow machine learning framework in order to real time classify the acquired stills. Therefore the proposed aid can increase the awareness of the explored environment and it interacts with its user by means of audio messages.

12. Fault Estimation for Fuzzy Delay Systems: A Minimum Norm Least Squares Solution Approach.

PubMed

Huang, Sheng-Juan; Yang, Guang-Hong

2016-07-18

This paper mainly focuses on the problem of fault estimation for a class of Takagi-Sugeno fuzzy systems with state delays. A minimum norm least squares solution (MNLSS) approach is first introduced to establish a fault estimation compensator, which is able to optimize the fault estimator. Compared with most of the existing fault estimation methods, the MNLSS-based fault estimation method can effectively decrease the effect of state errors on the accuracy of fault estimation. Finally, three examples are given to illustrate the effectiveness and merits of the proposed method.

13. A comparative study of iterative solutions to linear systems arising in quantum mechanics

SciTech Connect

Jing Yanfei

2010-11-01

This study is mainly focused on iterative solutions with simple diagonal preconditioning to two complex-valued nonsymmetric systems of linear equations arising from a computational chemistry model problem proposed by Sherry Li of NERSC. Numerical experiments show the feasibility of iterative methods to some extent when applied to the problems and reveal the competitiveness of our recently proposed Lanczos biconjugate A-orthonormalization methods to other classic and popular iterative methods. By the way, experiment results also indicate that application specific preconditioners may be mandatory and required for accelerating convergence.

14. Thermodynamic characteristics of the heparin-leucine-CaCl2 system in a diluted physiological solution

Nikolaeva, L. S.; Belov, G. V.; Rulev, Yu. A.; Semenov, A. N.

2013-03-01

Chemical equilibria in aqueous solutions of high-molecular weight heparin (Na4hep) and leucine (HLeu) are calculated through the mathematical modeling of chemical equilibria based on representative experimental pH titration data. In addition, chemical equilibria in the CaCl2-Na4hep-HLeu-H2O-NaCl system in the presence of 0.154M NaCl background electrolyte at a temperature of 37°C in the range of 2.30 ≤ pH ≤ 10.50 and initial concentrations of basic components n × 10-3 M ( n ≤ 4).

15. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system.

PubMed

Saylor, David M; Jawahery, Sudi; Silverstein, Joshua S; Forrey, Christopher

2016-07-21

We investigate the link between dynamic localization, characterized by the Debye-Waller factor, 〈u(2)〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u(2)〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

16. Existence and boundedness of solutions for a singular phase field system

Bonetti, Elena; Colli, Pierluigi; Fabrizio, Mauro; Gilardi, Gianni

This paper is devoted to the mathematical analysis of a thermo-mechanical model describing phase transitions in terms of the entropy and order structure balance law. We consider a macroscopic description of the phenomenon and make a presentation of the model. Then, the initial and boundary value problem is addressed for the related PDE system, which contains some nonlinear and singular terms with respect to the temperature variable. Existence of the solution is shown along with the boundedness of both phase variable χ and absolute temperature ϑ. Finally, uniqueness is proved in the framework of a source term depending Lipschitz continuously on ϑ.

17. Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces

Ma, Haitao; Zhai, Xiaoping; Yan, Wei; Li, Yongsheng

2017-02-01

In this paper, we study the global well posedness of the 3D incompressible magnetohydrodynamic system with horizontal dissipation and horizontal magnetic diffusion in the scaling invariant Besov-Sobolev-type spaces. We first get a unique global solution to this system with small initial data by the classical Friedrich's regularization method. Then using a weighted Chemin-Lerner-type norm, we prove the system also can generate a global solution if the horizontal components of the initial data are small enough compared to the vertical components. In particular, our results imply the global large solutions with highly oscillating initial data.

18. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

NASA Technical Reports Server (NTRS)

Pavarini, C.

1974-01-01

Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

19. Existence and Uniqueness of a Generalized Solution for a System of Equations of Mixed Type

Yamamoto, Yoshiyuki

1994-01-01

In order to explore the problem of wave propagation in a plasma, the traditional method has been to utilize geometric optics or plane stratified medium approximations. However, neither of these approximations is valid in applications involving moderately low frequencies and moderately long wave length. The partial differential equations associated with this model are basically Maxwell's equations. The dielectric medium in which the electromagnetic waves propagate is characterized by a cold plasma conductivity tensor which is a function of the space variables and the frequency. After the introduction of a pair of appropriate electromagnetic potentials, the wave propagation problem reduces to a system of two second-order partial differential equations. While one equation is elliptic as expected, the other is of mixed type: the equation makes a transition from elliptic to hyperbolic across a resonance curve. Such transition occurs at lower and upper hybrid resonances and also at cyclotron resonance surfaces, near which the cold plasma approximation breaks down. The change in type of the cold plasma model is represented by mixed type equations, such as the Tricomi equation. Solutions of the Tricomi equation are locally well-behaved near the transition line in the sense that generalized solutions belong to the L_2 -space. This indicates that the energy is preserved across the resonance line and thus no absorption takes place. However, Tricomi form fails to represent the model near points at which the resonance surface is tangent to a flux surface. The correct model equation shows that the degenerate point is located at the origin, and energy absorption is thought to be possible in the specified region near the origin. A uniqueness theorem for a generalized or weak solution of the Dirichlet problem for the cold plasma model, which permits a specified singularity at the origin on its boundary, is proved by establishing an apriori estimate. The existence of such a weak

20. Qualitative Analysis for a New Integrable Two-Component Camassa-Holm System with Peakon and Weak Kink Solutions

Yan, Kai; Qiao, Zhijun; Yin, Zhaoyang

2015-06-01

This paper is devoted to a new integrable two-component Camassa-Holm system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable system that admits weak kink and kink-peakon interactional solutions. In addition, the new system includes both standard (quadratic) and cubic Camassa-Holm equations as two special cases. In the paper, we first establish the local well-posedness for the Cauchy problem of the system, and then derive a precise blow-up scenario and a new blow-up result for strong solutions to the system with both quadratic and cubic nonlinearity. Furthermore, its peakon and weak kink solutions are discussed as well.

1. 77 FR 58424 - Drucker, Inc., DynaMotive Energy Systems Corp., and Gate to Wire Solutions, Inc., Order of...

Federal Register 2010, 2011, 2012, 2013, 2014

2012-09-20

... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Drucker, Inc., DynaMotive Energy Systems Corp., and Gate to Wire Solutions, Inc., Order of... current and accurate information concerning the securities of Gate to Wire Solutions, Inc. because it has...

2. Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution.

PubMed

Chen, Shi-lv; Ding, Fen; Liu, Yu; Zhao, Hui-chun

2006-05-01

The electrochemiluminescence (ECL) of Tb3+-enoxacin-Na2SO3 system (ENX system) and Tb3+-ofloxacin-Na2SO3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na2SO3, which is enhanced by Tb3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na2SO3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb3+, indicating that the emission is from the excited state of Tb3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 x 10(-10) -8.0 x 10(-7)mol l(-1) for ENX and 6.0 x 10(-10) -6.0 x 10(-7)mol l(-1) for OFLX, respectively. A theoretical limit of detection is 5.4 x 10(-11)mol l(-1) for ENX and 1.6 x 10(-10)mol l(-1) for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.

3. Electrochemiluminescence of terbium (III)-two fluoroquinolones-sodium sulfite system in aqueous solution

Chen, Shi-lv; Ding, Fen; Liu, Yu; Zhao, Hui-chun

2006-05-01

The electrochemiluminescence (ECL) of Tb 3+-enoxacin-Na 2SO 3 system (ENX system) and Tb 3+-ofloxacin-Na 2SO 3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na 2SO 3, which is enhanced by Tb 3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na 2SO 3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb 3+, indicating that the emission is from the excited state of Tb 3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 × 10 -10-8.0 × 10 -7 mol l -1 for ENX and 6.0 × 10 -10-6.0 × 10 -7 mol l -1 for OFLX, respectively. A theoretical limit of detection is 5.4 × 10 -11 mol l -1 for ENX and 1.6 × 10 -10 mol l -1 for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.

4. Human-machine cooperation: a solution for life-critical systems?

PubMed

Millot, Patrick; Boy, Guy A

2012-01-01

Decision-making plays an important role in life-critical systems. It entails cognitive functions such as monitoring, as well as fault prevention and recovery. Three kinds of objectives are typically considered: safety, efficiency and comfort. People involved in the control and management of such systems provide two kinds of contributions: positive with their unique involvement and capacity to deal with the unexpected; and negative with their ability to make errors. In the negative view, people are the problem and need to be supervised by regulatory systems in the form of operational constraints or by design. In the positive view, people are the solution and lead the game; they are decision-makers. The former view also deals with error resistance, and the latter with error tolerance, which, for example, enables cooperation between people and decision support systems (DSS). In the real life, both views should be considered with respect to appropriate situational factors, such as time constraints and very dangerous environments. This is known as function allocation between people and systems. This paper presents a possibility to reconcile both approaches into a joint human-machine organization, where the main dimensioning factors are safety and complexity. A framework for cooperative and fault tolerant systems is proposed, and illustrated by an example in Air Traffic Control.

5. Blow-up of weak solutions to a chemotaxis system under influence of an external chemoattractant

Black, Tobias

2016-06-01

We study nonnnegative radially symmetric solutions of the parabolic-elliptic Keller-Segel whole space system {ut=Δu-∇ṡ(u∇v), x∈Rn,t>0,0=Δv+u+f(x), x∈Rn,t>0,u(x,0)=u0(x), x∈Rn, with prototypical external signal production f(x):={f0|x|-α,if |x|⩽R-ρ,0,if |x|⩾R+ρ, for R\\in (0,1) and ρ \\in ≤ft(0,\\frac{R}{2}\\right) , which is still integrable but not of class {{L}\\frac{n{2}+{δ0}}}≤ft({{{R}}n}\\right) for some {δ0}\\in ≤ft[0,1\\right) . For corresponding parabolic-parabolic Neumann-type boundary-value problems in bounded domains Ω , where f\\in {{L}\\frac{n{2}+{δ0}}}(Ω ){\\cap}{{C}α}(Ω ) for some {δ0}\\in (0,1) and α \\in (0,1) , it is known that the system does not emit blow-up solutions if the quantities \\parallel {{u}0}{{\\parallel}{{L\\frac{n{2}+{δ0}}}(Ω )}},\\parallel f{{\\parallel}{{L\\frac{n{2}+{δ0}}}(Ω )}} and \\parallel {{v}0}{{\\parallel}{{Lθ}(Ω )}} , for some θ >n , are all bounded by some \\varepsilon >0 small enough. We will show that whenever {{f}0}>\\frac{2n}α(n-2)(n-α ) and {{u}0}\\equiv {{c}0}>0 in \\overline{{{B}1}(0)} , a measure-valued global-in-time weak solution to the system above can be constructed which blows up immediately. Since these conditions are independent of R\\in (0,1) and c 0  >  0, we obtain a strong indication that in fact {δ0}=0 is critical for the existence of global bounded solutions under a smallness conditions as described above.

6. A Solution Space for a System of Null-State Partial Differential Equations: Part 4

Flores, Steven M.; Kleban, Peter

2015-01-01

This article is the last of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban in Commun Math Phys, 2012; Flores and Kleban, in Commun Math Phys, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Using these results in the third article (Flores and Kleban, in Commun Math Phys, 2013), we prove that dim and is spanned by (real-valued) solutions constructed with the Coulomb gas (contour integral) formalism of CFT. In this article, we use these results to prove some facts concerning the solution space . First, we show that each of its elements equals a sum of at most two distinct Frobenius series in powers of the difference between two adjacent points (unless is odd, in which case a logarithmic term may appear). This establishes an important element in the operator product expansion for one-leg boundary operators, assumed in CFT. We also identify particular elements of , which we call connectivity weights, and exploit their special properties to conjecture a formula for the probability that the curves of a multiple-SLE process join in a particular connectivity. This leads to new formulas for crossing probabilities of critical lattice models inside polygons with a free/fixed side-alternating boundary condition, which we derive in Flores et al. (Partition functions and crossing probabilities for critical systems inside polygons, in preparation). Finally, we propose a reason for why the exceptional speeds [certain values that appeared in the analysis of the Coulomb gas solutions in Flores and Kleban (Commun Math Phys, 2013)] and

7. 21st century energy solutions. Coal and Power Systems FY2001 program briefing

SciTech Connect

2001-01-01

The continued strength of American's economy depends on the availability of affordable energy, which has long been provided by the Nations rich supplies of fossil fuels. Forecasts indicate that fossil fuels will continue to meet much of the demand for economical electricity and transportation fuels for decades to come. It is projected that natural gas, oil, and coal will supply nearly 90% of US energy in 2020, with coal fueling around 50% of the electricity. It is essential to develop ways to achieve the objectives for a cleaner environment while using these low-cost, high-value fuels. A national commitment to improved technologies--for use in the US and abroad--is the solution. The Coal and Power Systems program is responding to this commitment by offering energy solutions to advance the clean, efficient, and affordable use of the Nations abundant fossil fuel resources. These solutions include: (1) Vision 21--A multi-product, pollution-free energy plant--producing electricity, fuels, and/or industry heat--could extract 80% or more of the energy value of coal and 85% or more of the energy value of natural gas; (2) Central Power Systems--Breakthrough turbines and revolutionary new gasification technologies that burn less coal and gas to obtain energy, while reducing emissions; (3) Distributed Generation--Fuel cell technology providing highly efficient, clean modular power; (4) Fuels--The coproduction of coal-derived transportation fuels and power from gasification-based technology; (5) Carbon Sequestration--Capturing greenhouse gases from the exhaust gases of combustion or other sources, or from the atmosphere itself, and storing them for centuries or recycling them into useful products; and (6) Advanced Research--Going beyond conventional thinking in the areas of computational science, biotechnology, and advanced materials.

8. MBSSAS: A code for the computation of margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems

USGS Publications Warehouse

Glynn, P.D.

1991-01-01

The computer code MBSSAS uses two-parameter Margules-type excess-free-energy of mixing equations to calculate thermodynamic equilibrium, pure-phase saturation, and stoichiometric saturation states in binary solid-solution aqueous-solution (SSAS) systems. Lippmann phase diagrams, Roozeboom diagrams, and distribution-coefficient diagrams can be constructed from the output data files, and also can be displayed by MBSSAS (on IBM-PC compatible computers). MBSSAS also will calculate accessory information, such as the location of miscibility gaps, spinodal gaps, critical-mixing points, alyotropic extrema, Henry's law solid-phase activity coefficients, and limiting distribution coefficients. Alternatively, MBSSAS can use such information (instead of the Margules, Guggenheim, or Thompson and Waldbaum excess-free-energy parameters) to calculate the appropriate excess-free-energy of mixing equation for any given SSAS system. ?? 1991.

9. Algebraic solutions of shape-invariant position-dependent effective mass systems

Amir, Naila; Iqbal, Shahid

2016-06-01

Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class of non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.

10. Algebraic solutions of shape-invariant position-dependent effective mass systems

SciTech Connect

Amir, Naila E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid E-mail: siqbal@sns.nust.edu.pk

2016-06-15

Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class of non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.

11. Vaporization studies of the CdS-ZnS solid-solution system

SciTech Connect

Steinbrunner, B.S.; Edwards, J.G. . Dept. of Chemistry)

1991-01-01

The CdS-ZnS system was studied by simultaneous Knudsen-torsion-effusion techniques in the range 900--1,219 K and at starting compositions X[sub CdS] = 0.00, 0.05, 0.10, 0.25, 0.74, and 1.00. Samples and residues were analyzed by powder X-ray diffraction and ICP/AES. Results from effusion experiments were compared to a model that treated the CdS-ZnS system as an ideal solution. Suppression of ZnS vaporization by CdS vaporization through the mass action of S[sub 2](g) was observed at high temperatures. At low temperatures and low X[sub CdS], CdS vaporization was not sufficient to suppress ZnS vaporization. The effusion of CdS from an effusion cell was limited by the rate of diffusion of Cd from the crystallites of solid solution. Such behavior led to nonequilibrium conditions in the effusion cell.

12. Groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios

Lobo-Ferreira, Joao-Paulo; Oliveira, Luís.; Diamantino, Catarina

2010-05-01

The paper addresses groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios. The conceptual idea of Aquifer Storage and Recovery (ASR) is considered as one of the scientific based solutions towards scientific based mitigation measures to climate variability and change in many parts of the world. In Portugal two European Union sponsored 6th Framework Programme for Research Projects have been addressing this topic, namely GABARDINE Project on "Groundwater artificial recharge based on alternative sources of water: Advanced integrated technologies and management" and the Coordinated Action ASEMWATERNet, a "Multi-Stakeholder Platform for ASEM S&T Cooperation on Sustainable Water Use". An application of Aquifer Storage and Recovery methodologies aiming drought mitigation and Integrated Water Resource Management of the Algarve (Portugal). The technique of artificial recharge of groundwater is used in many parts of the world with several aims, e.g. water storing in appropriate aquifers for the mitigation of future water needs during droughts or as protection against pollution or even for the recovery of groundwater quality. Artificial recharge of the aquifer systems of Campina de Faro and Silves-Querença is addressed in this paper, proposed to be an alternative to decrease the vulnerability of the Algarve to a future drought. Integrated management of water resources in the Algarve is not a clear issue since the last decade, when groundwater resources that supplied almost all water needs, have been drastically replaced by surface water stored in new reservoirs.

13. A modern solver framework to manage solution algorithms in the Community Earth System Model

SciTech Connect

Evans, Katherine J; Worley, Patrick H; Nichols, Dr Jeff A; WhiteIII, James B; Salinger, Andy; Price, Stephen; Lemieux, Jean-Francois; Lipscomb, William; Perego, Mauro; Vertenstein, Mariana; Edwards, Jim

2012-01-01

Global Earth-system models (ESM) can now produce simulations that resolve ~50 km features and include finer-scale, interacting physical processes. In order to achieve these scale-length solutions, ESMs require smaller time steps, which limits parallel performance. Solution methods that overcome these bottlenecks can be quite intricate, and there is no single set of algorithms that perform well across the range of problems of interest. This creates significant implementation challenges, which is further compounded by complexity of ESMs. Therefore, prototyping and evaluating new algorithms in these models requires a software framework that is flexible, extensible, and easily introduced into the existing software. We describe our efforts to create a parallel solver framework that links the Trilinos library of solvers to Glimmer-CISM, a continental ice sheet model used in the Community Earth System Model (CESM). We demonstrate this framework within both current and developmental versions of Glimmer-CISM and provide strategies for its integration into the rest of the CESM.

14. Virtual instrumentation and real-time executive dashboards. Solutions for health care systems.

PubMed

Rosow, Eric; Adam, Joseph; Coulombe, Kathleen; Race, Kathleen; Anderson, Rhonda

2003-01-01

Successful organizations have the ability to measure and act on key indicators and events in real time. By leveraging the power of virtual instrumentation and open architecture standards, multidimensional executive dashboards can empower health care organizations to make better and faster data-driven decisions. This article will highlight how user-defined virtual instruments and dashboards can connect to hospital information systems (e.g., admissions/discharge/transfer systems, patient monitoring networks) and use statistical process control to "visualize" information and make timely, data-driven decisions. The case studies described will illustrate enterprisewide solutions for: bed management and census control, operational management, data mining and business intelligence applications, and clinical applications (physiological data acquisition and wound measurement and analysis).

15. Nonlocal Symmetries, Consistent Riccati Expansion, and Analytical Solutions of the Variant Boussinesq System

Feng, Lian-Li; Tian, Shou-Fu; Zhang, Tian-Tian; Zhou, Jun

2017-07-01

Under investigation in this paper is the variant Boussinesq system, which describes the propagation of surface long wave towards two directions in a certain deep trough. With the help of the truncated Painlevé expansion, we construct its nonlocal symmetry, Bäcklund transformation, and Schwarzian form, respectively. The nonlocal symmetries can be localised to provide the corresponding nonlocal group, and finite symmetry transformations and similarity reductions are computed. Furthermore, we verify that the variant Boussinesq system is solvable via the consistent Riccati expansion (CRE). By considering the consistent tan-function expansion (CTE), which is a special form of CRE, the interaction solutions between soliton and cnoidal periodic wave are explicitly studied.

16. Security Attacks and Solutions in Electronic Health (E-health) Systems.

PubMed

Zeadally, Sherali; Isaac, Jesús Téllez; Baig, Zubair

2016-12-01

For centuries, healthcare has been a basic service provided by many governments to their citizens. Over the past few decades, we have witnessed a significant transformation in the quality of healthcare services provided by healthcare organizations and professionals. Recent advances have led to the emergence of Electronic Health (E-health), largely made possible by the massive deployment and adoption of information and communication technologies (ICTs). However, cybercriminals and attackers are exploiting vulnerabilities associated primarily with ICTs, causing data breaches of patients' confidential digital health information records. Here, we review recent security attacks reported for E-healthcare and discuss the solutions proposed to mitigate them. We also identify security challenges that must be addressed by E-health system designers and implementers in the future, to respond to threats that could arise as E-health systems become integrated with technologies such as cloud computing, the Internet of Things, and smart cities.

17. Analyzing Heterogeneous Complexity in Complementary and Alternative Medicine Research: A Systems Biology Solution via Parsimony Phylogenetics

PubMed Central

Abu-Asab, Mones; Koithan, Mary; Shaver, Joan; Amri, Hakima

2012-01-01

Summary Systems biology offers cutting-edge tools for the study of complementary and alternative medicine (CAM). The advent of ‘omics’ techniques and the resulting avalanche of scientific data have introduced an unprecedented level of complexity and heterogeneous data to biomedical research, leading to the development of novel research approaches. Statistical averaging has its limitations and is unsuitable for the analysis of heterogeneity, as it masks diversity by homogenizing otherwise heterogeneous populations. Unfortunately, most researchers are unaware of alternative methods of analysis capable of accounting for individual variability. This paper describes a systems biology solution to data complexity through the application of parsimony phylogenetic analysis. Maximum parsimony (MP) provides a data-based modeling paradigm that will permit a priori stratification of the study cohort(s), better assessment of early diagnosis, prognosis, and treatment efficacy within each stratum, and a method that could be used to explore, identify and describe complex human patterning. PMID:22327551

18. An automatic multigrid method for the solution of sparse linear systems

NASA Technical Reports Server (NTRS)

Shapira, Yair; Israeli, Moshe; Sidi, Avram

1993-01-01

An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

19. Composition optimization and stability testing of a parenteral antifungal solution based on a ternary solvent system.

PubMed

Kovács, Kristóf; Antal, István; Stampf, György; Klebovich, Imre; Ludányi, Krisztina

2010-03-01

An intravenous solution is a dosage forms intended for administration into the bloodstream. This route is the most rapid and the most bioavailable method of getting drugs into systemic circulation, and therefore it is also the most liable to cause adverse effects. In order to reduce the possibility of side effects and to ensure adequate clinical dosage of the formulation, the primarily formulated composition should be optimized. It is also important that the composition should retain its therapeutic effectiveness and safety throughout the shelf-life of the product. This paper focuses on the optimization and stability testing of a parenteral solution containing miconazole and ketoconazole solubilized with a ternary solvent system as model drugs. Optimization of the solvent system was performed based on assessing the risk/benefit ratio of the composition and its properties upon dilution. Stability tests were conducted based on the EMEA (European Medicines Agency) "guideline on stability testing: stability testing of existing active substances and related finished products". Experiments show that both the amount of co-solvent and surface active agent of the solvent system could substantially be reduced, while still maintaining adequate solubilizing power. It is also shown that the choice of various containers affects the stability of the compositions. It was concluded that by assessing the risk/benefit ratio of solubilizing power versus toxicity, the concentration of excipients could be considerably decreased while still showing a powerful solubilizing effect. It was also shown that a pharmaceutically acceptable shelf-life could be assigned to the composition, indicating good long-term stability.

20. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

Frampton, Andrew; Destouni, Georgia

2016-04-01

In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

1. Monotonicity and 1-Dimensional Symmetry for Solutions of an Elliptic System Arising in Bose-Einstein Condensation

Farina, Alberto; Soave, Nicola

2014-07-01

We study monotonicity and 1-dimensional symmetry for positive solutions with algebraic growth of the following elliptic system: for every dimension . In particular, we prove a Gibbons-type conjecture proposed by Berestycki et al.

2. Designing Solutions for the Retirement System - In Search of Balance between Economy and Health.

PubMed

Romaniuk, Piotr; Brukało, Katarzyna

2016-01-01

Social security system currently faces a number of difficulties arising of changes in the demographic structure of societies, like the decrease in fertility, lengthening of life expectancy, and unfavorable change in the proportion of the population receiving retirement benefits to the population in working age. In result, social security systems are being subjected to transition aimed at securing their financial stability, part of which is a tendency to rise the retirement age and eliminate all the incentives to prematurely exit the labor market. On the other hand, this process of transition, as observed in Poland, is being driven mainly by political processes and due to economic reasons, while lacking public health evidence. This raises a danger that in final result the financial savings will be illusory only and that the final configuration of the system will be inconsistent with the actual social needs of the population and will not efficiently protect against the social risks. In this article, we present arguments for using the Healthy Life Years indicator in analyses relating to the performance of social security systems. The indicator may help to reflect differences in health status of different professional groups and adjust system's solutions to conditions characterizing these groups, in terms of both risk protection and prevention.

3. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

USGS Publications Warehouse

Souza, W.R.; Voss, C.I.

1987-01-01

The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

4. Discrete Pluriharmonic Functions as Solutions of Linear Pluri-Lagrangian Systems

Bobenko, A. I.; Suris, Yu. B.

2015-05-01

Pluri-Lagrangian systems are variational systems with the multi-dimensional consistency property. This notion has its roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics, in the theory of variational symmetries going back to Noether and in the theory of discrete integrable systems. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form L on an m-dimensional space, m > d, whose coefficients depend on a function u of m independent variables (called field), find those fields u which deliver critical points to the action functionals for any d-dimensional manifold Σ in the m-dimensional space. We investigate discrete 2-dimensional linear pluri-Lagrangian systems, i.e., those with quadratic Lagrangians L. The action is a discrete analogue of the Dirichlet energy, and solutions are called discrete pluriharmonic functions. We classify linear pluri-Lagrangian systems with Lagrangians depending on diagonals. They are described by generalizations of the star-triangle map. Examples of more general quadratic Lagrangians are also considered.

5. Development of A General Principle Solution Forisoagrinet Compliant Networking System Components in Animal Husbandry

Kuhlmann, Arne; Herd, Daniel; Röβler, Benjamin; Gallmann, Eva; Jungbluth, Thomas

In pig production software and electronic systems are widely used for process control and management. Unfortunately most devices on farms are proprietary solutions and autonomically working. To unify data communication of devices in agricultural husbandry, the international standard ISOagriNET (ISO 17532:2007) was developed. It defines data formats and exchange protocols, to link up devices like climate controls, feeding systems and sensors, but also management software. The aim of the research project, "Information and Data Collection in Livestock Systems" is to develop an ISOagriNET compliant IT system, a so called Farming Cell. It integrates all electronic components to acquire the available data and information for pig fattening. That way, an additional benefit to humans, animals and the environment regarding process control and documentation, can be generated. Developing the Farming Cell is very complex; in detail it is very difficult and long-winded to integrate hardware and software by various vendors into an ISOagriNET compliant IT system. This ISOagriNET prototype shows as a test environment the potential of this new standard.

6. A Full Automatic Device for Sampling Small Solution Volumes in Photometric Titration Procedure Based on Multicommuted Flow System

PubMed Central

Borges, Sivanildo S.; Vieira, Gláucia P.; Reis, Boaventura F.

2007-01-01

In this work, an automatic device to deliver titrant solution into a titration chamber with the ability to determine the dispensed volume of solution, with good precision independent of both elapsed time and flow rate, is proposed. A glass tube maintained at the vertical position was employed as a container for the titrant solution. Electronic devices were coupled to the glass tube in order to control its filling with titrant solution, as well as the stepwise solution delivering into the titration chamber. The detection of the titration end point was performed employing a photometer designed using a green LED (λ=545 nm) and a phototransistor. The titration flow system comprised three-way solenoid valves, which were assembled to allow that the steps comprising the solution container loading and the titration run were carried out automatically. The device for the solution volume determination was designed employing an infrared LED (λ=930 nm) and a photodiode. When solution volume delivered from proposed device was within the range of 5 to 105 μl, a linear relationship (R = 0.999) between the delivered volumes and the generated potential difference was achieved. The usefulness of the proposed device was proved performing photometric titration of hydrochloric acid solution with a standardized sodium hydroxide solution and using phenolphthalein as an external indicator. The achieved results presented relative standard deviation of 1.5%. PMID:18317510

7. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

SciTech Connect

Kim, Taehwan Olek, Jan

2015-01-15

Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

8. A Solution-Based Intelligent Tutoring System Integrated with an Online Game-Based Formative Assessment: Development and Evaluation

ERIC Educational Resources Information Center

Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Abdollahi, Abbas; Horng, Shi-Jinn; Lim, Heuiseok

2016-01-01

Nowadays, intelligent tutoring systems are considered an effective research tool for learning systems and problem-solving skill improvement. Nonetheless, such individualized systems may cause students to lose learning motivation when interaction and timely guidance are lacking. In order to address this problem, a solution-based intelligent…

9. A Solution-Based Intelligent Tutoring System Integrated with an Online Game-Based Formative Assessment: Development and Evaluation

ERIC Educational Resources Information Center

Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Abdollahi, Abbas; Horng, Shi-Jinn; Lim, Heuiseok

2016-01-01

Nowadays, intelligent tutoring systems are considered an effective research tool for learning systems and problem-solving skill improvement. Nonetheless, such individualized systems may cause students to lose learning motivation when interaction and timely guidance are lacking. In order to address this problem, a solution-based intelligent…

10. Generalized Darboux transformation and rogue wave solution of the coherently-coupled nonlinear Schrödinger system

Zhang, Hai-Qiang; Yuan, Sha-Sha; Wang, Yue

2016-05-01

In this paper, the generalized Darboux transformation for the coherently-coupled nonlinear Schrödinger (CCNLS) system is constructed in terms of determinant representations. Based on the Nth-iterated formula, the vector bright soliton solution and vector rogue wave solution are systematically derived under the nonvanishing background. The general first-order vector rogue wave solution can admit many different fundamental patterns including eye-shaped and four-petaled rogue waves. It is believed that there are many more abundant patterns for high order vector rogue waves in CCNLS system.

11. A survey of COTS wireless transceiver solutions for unmanned/unattended homeland defense systems

Wurth, Timothy J.; Wells, Jeffrey S.; Trimble, Michael L.

2004-08-01

12. Internet Protocol Display Sharing Solution for Mission Control Center Video System

NASA Technical Reports Server (NTRS)

Brown, Michael A.

2009-01-01

With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole

13. Internet Protocol Display Sharing Solution for Mission Control Center Video System

NASA Technical Reports Server (NTRS)

Brown, Michael A.

2009-01-01

With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole

14. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

PubMed

Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

2015-06-01

In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

15. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

PubMed

DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

2011-01-06

Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

16. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

PubMed Central

DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

2011-01-01

Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

17. Evaluation of bacterial microleakage of root canals irrigated with different irrigation solutions and KTP laser system.

PubMed

Simşek, Neslihan; Akpinar, Kerem Engin; Sümer, Zeynep

2013-01-01

The aim of this study was to evaluate bacterial microleakage of the root canals irrigated with different irrigation solutions and the potassium-titanyl-phosphate (KTP) laser system and filled with gutta-percha and AH26 root canal sealer. In addition, the effect of the irrigation solutions on dentin surface was evaluated with a scanning electron microscope (SEM). A few studies have reported that KTP laser has the capacity to remove the smear layer. Many researchers have demonstrated that propolis has a bactericidal effect. Both are important effects on root canal treatments. One hundred and twenty single-root single-canal mandibular premolar teeth were used for this study. The root canals were prepared by Dentaport Root ZX and ProTaper rotary instruments with the crown-down technique. The specimens were randomly divided into five groups of 20 teeth each. Each group was irrigated with 17% ethylenediaminetetraacetic acid (EDTA), 20% propolis, 2.5% sodium hypochlorite (NaOCl), 2% chlorhexidine gluconate (CHX), and KTP laser, respectively. A total of 20 teeth were used as controls-10 positive controls and 10 negative controls-which were irrigated with distilled water. The root canals were filled with gutta-percha and AH-26. The external surfaces of specimens were covered with three layers of nail varnish except the apical third. The teeth were inserted into Eppendorf plastic tubes and suspended in glass bottles containing sterile broth. All specimens were inoculated every 5 days with Enterococcus faecalis. The contamination onset time was continuously recorded, as turbidity was the first indication of contamination in a period of 30 days. All statistical analysis was performed using the SPSS for Windows version 15.0 software. A χ(2) test was computed and the statistical significance was set at p<0.05. The controls behaved as expected. This study showed that different irrigation solutions and KTP laser allowed microleakage of E. faecalis.

18. A liquid flatjet system for solution phase soft-x-ray spectroscopy

PubMed Central

Ekimova, Maria; Quevedo, Wilson; Faubel, Manfred; Wernet, Philippe; Nibbering, Erik T. J.

2015-01-01

We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10−3 mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4–3 μm, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (∼10 ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4+. Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime. PMID:26798824

19. Designing Solutions for the Retirement System – In Search of Balance between Economy and Health

PubMed Central

Romaniuk, Piotr; Brukało, Katarzyna

2016-01-01

Social security system currently faces a number of difficulties arising of changes in the demographic structure of societies, like the decrease in fertility, lengthening of life expectancy, and unfavorable change in the proportion of the population receiving retirement benefits to the population in working age. In result, social security systems are being subjected to transition aimed at securing their financial stability, part of which is a tendency to rise the retirement age and eliminate all the incentives to prematurely exit the labor market. On the other hand, this process of transition, as observed in Poland, is being driven mainly by political processes and due to economic reasons, while lacking public health evidence. This raises a danger that in final result the financial savings will be illusory only and that the final configuration of the system will be inconsistent with the actual social needs of the population and will not efficiently protect against the social risks. In this article, we present arguments for using the Healthy Life Years indicator in analyses relating to the performance of social security systems. The indicator may help to reflect differences in health status of different professional groups and adjust system’s solutions to conditions characterizing these groups, in terms of both risk protection and prevention. PMID:27630982

20. Solution of dense systems of linear equations in electromagnetic scattering calculations

SciTech Connect

Rahola, J.

1994-12-31

The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an irregular particle. The DDA has been used for example in calculations of optical properties of cosmic dust. In this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric. In the author`s work, the linear systems of equations are solved by various iterative methods such as the conjugate gradient method applied to the normal equations and QMR. The linear systems have rather low condition numbers due to which many iterative methods perform quite well even without any preconditioning. Some possible preconditioning strategies are discussed. Finally, some fast special methods for computing the matrix-vector product in the iterative methods are considered. In some cases, the matrix-vector product can be computed with the fast Fourier transform, which enables the author to solve dense linear systems of hundreds of thousands of unknowns.