Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
The spatial distribution of riparian ash: implications for the dispersal of the emerald ash borer
Susan J. Crocker; W. Keith Moser; Mark H. Hansen; Mark D. Nelson
2007-01-01
A pilot study to assess riparian ash connectivity and its implications for emerald ash borer dispersal was conducted in three subbasins in Michigan's Southern Lower Peninsula. Forest Inventory and Analysis data were used to estimate ash biomass. The nineteen percent of plots in riparian physiographic classes contained 40 percent of ash biomass. Connectivity of...
Aluminium alloys in municipal solid waste incineration bottom ash.
Hu, Yanjun; Rem, Peter
2009-05-01
With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.
Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua
2013-02-01
Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong
2018-05-31
In this study, ash samples were collected from five locations situated in the boiler of a circulating fluidised bed municipal solid waste incinerator (high- and low-temperature superheater, evaporator tubes and upper and lower economiser). These samples represent a huge range of flue gas temperatures and were characterised for their particle size distribution, surface characteristics, elemental composition, chemical forms of carbon and chlorine and distribution of polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and biphenyls (PCB). Enrichment of chlorine, one of the main elements of organochlorinated pollutants, and copper, zinc and lead, major catalytic metals for dioxin-like compounds, was observed in lower-temperature ash deposits. The speciation of carbon and chlorine on ash surfaces was established, showing a positive correlation between organic chlorine and oxygen-containing carbon functional groups. The load of PCDD/F and PCB (especially dioxin-like PCB) tends to rise rapidly with falling temperature of flue gas, reaching their highest value in economiser ashes. The formation of PCDD/F congeners through the chlorophenol precursor route apparently was enhanced downstream the boiler. Principal component analysis (PCA) was applied to study the links between the ash characteristics and distribution of chloro-aromatics. The primary purpose of this study is improving the understanding of any links between the characteristics of ash from waste heat systems and its potential to form PCDD/F and PCB. The question is raised whether further characterisation of fly ash may assist to establish a diagnosis of poor plant operation, inclusive the generation, destruction and eventual emission of persistent organic pollutants (POPs).
NASA Astrophysics Data System (ADS)
Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.
2013-04-01
Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.
The aggregation efficiency of very fine volcanic ash
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; Scarlato, P.
2013-12-01
Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution of particles in the turbulent dispersion, and iii) the number of adhered particles as a function of time. Optical laser granulometry provided constrains on grain size distribution of ash particles effectively adhered to the glass slide at the end of each run. Results obtained from our data-set allowed to provide a relationship for determining aggregation rate as a function of particle number density across a range of particle size distributions. This empirical model can be used to determine the aggregation fraction starting from a given total grain size distribution, thus providing fundamental parameters to incorporate aggregation into numerical models of ash dispersal and deposition.
Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens
NASA Astrophysics Data System (ADS)
Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.
2014-05-01
It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.
Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash
NASA Astrophysics Data System (ADS)
Sahoo, Sanjukta
2018-03-01
Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.
NASA Astrophysics Data System (ADS)
Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej
2018-01-01
One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.
Bidar, Géraldine; Waterlot, Christophe; Verdin, Anthony; Proix, Nicolas; Courcot, Dominique; Détriché, Sébastien; Fourrier, Hervé; Richard, Antoine; Douay, Francis
2016-04-15
Aided phytostabilisation using trees and fly ashes is a promising technique which has shown its effectiveness in the management of highly metal-contaminated soils. However, this success is generally established based on topsoil physicochemical analysis and short-term experiments. This paper focuses on the long-term effects of the afforestation and two fly ashes (silico-aluminous and sulfo-calcic called FA1 and FA2, respectively) by assessing the integrity of fly ashes 10 years after their incorporation into the soil as well as the vertical distribution of the physicochemical parameters and trace elements (TEs) in the amended soils (F1 and F2) in comparison with a non-amended soil (R). Ten years after the soil treatment, the particle size distribution analysis between fly ashes and their corresponding masses (fly ash + soil particles) showed a loss or an agglomeration of finer particles. This evolution matches with the appearance of gypsum (CaSO4 2H2O) in FA2m instead of anhydrite (CaSO4), which is the major compound of FA2. This finding corresponds well with the dissolution and the lixiviation of Ca, S and P included in FA2 along the F2 soil profile, generating an accumulation of these elements at 30 cm depth. However, no variation of TE contamination was found between 0 and 25 cm depth in F2 soil except for Cd. Conversely, Cd, Pb, Zn and Hg enrichment was observed at 25 cm depth in the F1 soil, whereas no enrichment was observed for As. The fly ashes studied, and notably FA2, were able to reduce Cd, Pb and Zn availability in soil and this capacity persists over the time despite their structural and chemical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, David; Purgert, Robert; Rhudy, Richard
2000-04-21
The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containingmore » 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.« less
Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.
1999-01-01
Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.
NASA Astrophysics Data System (ADS)
Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh
2018-04-01
The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Sungchul; Meral, Cagla; Department of Civil Engineering, Middle East Technical University, 06800 Ankara
2014-05-01
The present study focuses on identification and micro-structural characterization of the hydration products formed in high-volume fly ash (HVFA)/portland cement (PC) systems using monochromatic scanning x-ray micro-diffraction (μ-SXRD) and SEM-EDS. Pastes with up to 80% fly ash replacement were studied. Phase maps for HVFA samples using μ-SXRD patterns prove that μ-SXRD is an effective method to identify and visualize the distribution of phases in the matrix. μ-SXRD and SEM-EDS analysis shows that the C-S-H formed in HVFA system containing 50% or more of fly ash has a similar structure as C-S-H(I) with comparatively lower Ca/Si ratio than the one producedmore » in PC system. Moreover, coexistence of C-S-H(I) and strätlingite is observed in the system containing 80% of fly ash, confirming that the amount of alumina and silicate phases provided by the fly ash is a major factor for the formation of C-S-H(I) and strätlingite in HVFA system. - Highlights: • High-volume fly ash (HVFA) paste was studied by scanning x-ray micro-diffraction. • Coexistence of C-S-H(I) and strätlingite in the HVFA system is clearly shown. • The distribution of minor phases in the HVFA system is shown. • Differences between inner and outer products of fly ash are observed by SEM-EDS.« less
Jeguirim, Mejdi; Kraiem, Nesrine; Lajili, Marzouk; Guizani, Chamseddine; Zorpas, Antonis; Leva, Yann; Michelin, Laure; Josien, Ludovic; Limousy, Lionel
2017-04-01
This paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust. The physico-chemical properties of the produced pellets were analysed using different analytical techniques, and a particular attention was paid to their mineral contents. Combustion tests were performed in 12-kW domestic boiler. The particle matter (PM) emission was characterised through the particle number and mass quantification for different particle size. The bottom ash composition and size distribution were also characterised. Molar balance and chemometric analyses were performed to identify the correlation between the mineral contents and PM and bottom ash characteristics. The performed analyses indicate that K, Na, S and Cl are released partially or completely during combustion tests. In contrast, Ca, Mg, Si, P, Al, Fe and Mn are retained in the bottom ash. The chemometric analyses indicate that, in addition to the operating conditions and the pellet ash contents, K and Si concentrations have a significant effect on the PM emissions as well as on the agglomeration of bottom ash.
NASA Astrophysics Data System (ADS)
Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar
2017-04-01
It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.
NASA Astrophysics Data System (ADS)
Osborne, Martin; Marenco, Franco; Adam, Mariana; Buxmann, Joelle; Haywood, Jim
2018-04-01
The Met Office has recently established a series of 10 lidar / sun-photometer installations across the UK, consolidating their ash / aerosol remote sensing capabilities [1]. In addition to this network, the Met Office have acquired the Civil Contingency Aircraft (MOCCA) which allows airborne in-situ measurements of ash / aerosol scattering and size-distributions. Two case studies are presented in which mass concentrations of Saharan dust are obtained remotely using lidar returns, and are then compared with those obtained in-situ. A thorough analysis of the mass concentration uncertainty will be provided at the conference.
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
Geotechnical properties of ash deposits near Hilo, Hawaii
Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.
1982-01-01
Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.
Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard.
Horwell, Claire J
2007-10-01
Volcanic ash has the potential to cause acute and chronic respiratory diseases if the particles are sufficiently fine to enter the respiratory system. Characterization of the grain-size distribution (GSD) of volcanic ash is, therefore, a critical first step in assessing its health hazard. Quantification of health-relevant size fractions is challenging without state-of-the-art technology, such as the laser diffractometer. Here, several methods for GSD characterization for health assessment are considered, the potential for low-cost measurements is investigated and the first database of health-pertinent GSD data is presented for a suite of ash samples from around the world. Methodologies for accurate measurement of the GSD of volcanic ash by laser diffraction are presented by experimental analysis of optimal refractive indices for different magmatic compositions. Techniques for representative sampling of small quantities of ash are also experimentally investigated. GSD results for health-pertinent fractions for a suite of 63 ash samples show that the fraction of respirable (<4 microm) material ranges from 0-17 vol%, with the variation reflecting factors such as the style of the eruption and the distance from the source. A strong correlation between the amount of <4 and <10 microm material is observed for all ash types. This relationship is stable at all distances from the volcano and with all eruption styles and can be applied to volcanic plume and ash fallout models. A weaker relationship between the <4 and <63 microm fractions provides a novel means of estimating the quantity of respirable material from data obtained by sieving.
NASA Astrophysics Data System (ADS)
Bushman, Michelle; Nelson, Stephen T.; Tingey, David; Eggett, Dennis
2010-05-01
SummaryAsh Meadows, Nevada, USA is a site of major groundwater discharge (˜38,000 L/min) in the arid Mojave Desert, and hosts a number of endemic and threatened wetland species. In addition to these resources, Ash Meadows may also represent the future discharge location of radionuclide-laden waters from nuclear weapons testing at the Nevada Test Site. More importantly, however, Ash Meadows provides the opportunity to understand the controls on water transfer between basins through fractured bedrock. 4000+ solute analyses were assembled from the literature into a single database. The data were screened for spatial distribution, completeness, charge balance, and elevated temperatures (⩾20 °C and within regional flow systems), with 246 candidate up-gradient water remaining distributed among six potential source areas in addition to and Ash Meadows itself. These potential sources include both carbonate, volcanic and perhaps valley-fill aquifer systems. These waters were characterized by cluster analysis in order to sort similar waters in an objective fashion into potential flow paths and to establish representative endmember waters for inverse geochemical models and other modes of analysis. Isotopic tracers, both conservative and those reflecting water-rock interaction, all suggest that waters at Ash Meadows are derived by southward flow from volcanic terranes, parallel to the preferred permeability structure induced by active regional east-west extension. Solute balances support this conclusion. However, this runs counter to the prevailing model that waters at Ash Meadows are derived from easterly and northeasterly flows from the Spring Mountains and Pahranagat Valley areas by interbasin flow through a continuous fractured carbonate aquifer. This work suggests that carbonate aquifer systems in extended terranes are more compartmentalized than previously appreciated and that anisotropy in fracture permeability is key to compartmentalization and the control of flow directions.
Generation and distribution of PAHs in the process of medical waste incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi
Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less
Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils
Mark Kimsey; Brian Gardner; Alan Busacca
2007-01-01
Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...
Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki
2016-06-01
This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.
1992-06-25
During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less
Improved prediction and tracking of volcanic ash clouds
Mastin, Larry G.; Webley, Peter
2009-01-01
During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.
Analysis of Pyroclastic Deposits Using MESSENGER MASCS Observations
NASA Astrophysics Data System (ADS)
Besse, S.; Dorresoundiram, A.; Griton, L.
2018-05-01
Pyroclastic Deposits on the surface of Mercury are analysed using MASCS observations and an optimised calibration procedure. Pyroclastic Deposits show similar spectral properties that is explained by isotropic distribution of the ashes.
Metallic elements fractionation in municipal solid waste incineration residues
NASA Astrophysics Data System (ADS)
Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek
2016-04-01
Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for Cr. In comparison to bottom ash, in fly ash 10-fold more Zn was present (8070 ppm), 4-fold more Sn (540 ppm) and also 2-fold more Ti (1.1 wt%), Pb (460 ppm) and Sn (540 ppm). Although APC residue is the material produced in the smallest quantities, in its composition some high concentrations of metallic elements were also present. Contents of Zn (>1 wt%), Pb (2560 ppm) and Sn (875 ppm) were much higher than in bottom and fly ash. Obtained results confirmed that fractionation of elements occurs during the municipal waste incineration and further detailed study of the residues may allow better understanding of the process. Acknowledgment: Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171.
Distribution of arsenic and mercury in lime spray dryer ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panuwat Taerakul; Ping Sun; Danold W. Golightly
The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations ofmore » As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.« less
Kolker, Allan; Senior, Connie L.; van Alphen, Chris; Koenig, Alan E.; Geboy, Nicholas J.
2017-01-01
Eight density separates of Permian Highveld (#4) coal were investigated for partitioning of Hg and trace elements. The separates include float fractions obtained in heavy media having densities of 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 g/cm3, and the sink fraction for 2.0 g/cm3. Bulk analysis of the separates shows strong (R2 ≥ 0.80) positive correlations between pyritic sulfur and mercury, and between ash yield and both pyritic sulfur and mercury. Laser ablation (LA) ICP-MS analysis of individual pyrite grains in the separates confirms association of Hg and As with pyrite as indicated by bulk analysis. Other elements detected in pyrite by LA-ICP-MS include Mn, Co, Ni, Tl, and Pb. Results for the separates allow prediction of Hg, trace elements, and ash yields expected in specific South African coal products. These range from 0.06 ppm Hg and an ash yield of 11.5% ash for the export fraction to 0.47 ppm Hg and an ash yield of 60.9% for the discard (stone) fraction (dry basis). Results show pronounced differences expected between coal used for domestic power generation and coal which is exported.
David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth
2009-01-01
The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...
NASA Technical Reports Server (NTRS)
Rhodes, R. C.; Smith, E. I.
1972-01-01
Individual ash-flow sheets distributed over wide areas in the Mogollon-Datil volcanic province can be delineated and related by flow direction techniques to specific source cauldrons. Two major mid-Tertiary ash flows in the Mogollon Plateau have measurable microscopic directional fabric indicative of primary flow direction imprinted in the ash-flow sheets during late-stage laminar flow. Regional stratigraphic relationships and flow patterns of the ash-flow sheets indicate a late Tertiary origin of the Mogollon Plateau depression. They also show that Basin-Range faulting in southwestern New Mexico was not initiated until after emplacement of the younger ash flow (23 m.y. B.P.). Directional fabric is an inherent property of many calc-alkalic ash-flow sheets and measurement of preferred orientation provides a powerful tool in unravelling the geologic history of complex volcanic terrane.
NASA Astrophysics Data System (ADS)
Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo
2018-04-01
We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.
Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.
Flower, Verity J B; Kahn, Ralph A
2017-10-28
Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.
VIPR III VADR SPIDER Structural Design and Analysis
NASA Technical Reports Server (NTRS)
Li, Wesley; Chen, Tony
2016-01-01
In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.
Ashes to ashes: Large Fraxinus germplasm collections and their fates
Kim C. Steiner; Paul. Lupo
2010-01-01
As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...
Fly ash particles spheroidization using low temperature plasma energy
NASA Astrophysics Data System (ADS)
Shekhovtsov, V. V.; Volokitin, O. G.; Kondratyuk, A. A.; Vitske, R. E.
2016-11-01
The paper presents the investigations on producing spherical particles 65-110 μm in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition of fly ash particles to a state of viscous flow occurs at 20 mm distance from the plasma jet. The X-ray phase analysis is carried out for the both original state of fly ash powders and the particles obtained. This analysis shows that fly ash contains 56.23 wt.% SiO2; 20.61 wt.% Al2O3 and 17.55 wt.% Fe2O3 phases that mostly contribute to the integral (experimental) intensity of the diffraction maximum. The LTP treatment results in a complex redistribution of the amorphous phase amount in the obtained spherical particles, including the reduction of O2Si, phase, increase of O22Al20 and Fe2O3 phases and change in Al, O density of O22Al20 chemical unit cell.
NASA Astrophysics Data System (ADS)
Langmann, Baerbel; ZakšEk, Klemen; Hort, Matthias
2010-01-01
In August 2008, Kasatochi volcano on the Aleutian Islands erupted without much advance warning. Volcanic ash released during this eruption quickly settled out of the atmosphere, mainly into the NE Pacific Ocean. The amount of volcanic ash, as well as the ash fall area and volume into the NE Pacific Ocean, remains speculative, as only a limited number of measurements is available. We used a three-dimensional atmosphere/chemistry-aerosol model to determine the atmospheric distribution of SO2 and volcanic ash and its fallout after the eruption of Kasatochi volcano. In a first step, modeled atmospheric SO2 distributions are compared with satellite data, thereby evaluating the model capabilities to reasonably reproduce atmospheric transport patterns. For modeled volcanic ash mass a considerable reduction of the atmospheric content already occurred by 10 August, the second day after the eruption in accordance with satellite observations. Gravitational settling is the most efficient removal process for volcanic ash mass, exceeding dry and wet deposition by far. Assuming an ash volume of 0.3 km3 released during the eruption of Kasatochi volcano and a median ash particle diameter of 4 μm, the mass of volcanic ash removed at ground within the 0.1 mm isopach covers an area of 7.6 × 105 km2 over the NE Pacific Ocean and makes up 49% of the removed material out of the atmosphere. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease at the ocean station Papa in August 2008 induced by iron fertilization and subsequent phytoplankton production.
USDA-ARS?s Scientific Manuscript database
Ash trees (Fraxinus spp.) are widely distributed through European, Asian, and North American temperate zones. There are numerous recently identified pests and pathogens that have killed hundreds of millions of ash worldwide. In 2014, white ash trees in Colorado exhibited symptoms of chlorotic patche...
NASA Astrophysics Data System (ADS)
Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.
2017-12-01
Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.
NASA Astrophysics Data System (ADS)
Easdale, M. H.; Bruzzone, O.
2018-03-01
Volcanic ash fallout is a recurrent environmental disturbance in forests, arid and semi-arid rangelands of Patagonia, South America. The ash deposits over large areas are responsible for several impacts on ecological processes, agricultural production and health of local communities. Public policy decision making needs monitoring information of the affected areas by ash fallout, in order to better orient social, economic and productive aids. The aim of this study was to analyze the spatial distribution of volcanic ash deposits from the eruption of Puyehue-Cordón Caulle in 2011, by identifying a sudden change in the Normalized Difference Vegetation Index (NDVI) temporal dynamics, defined as a perturbation located in the time series. We applied a sparse-wavelet transform using the Basis Pursuit algorithm to NDVI time series obtained from the Moderate Resolution Image Spectroradiometer (MODIS) sensor, to identify perturbations at a pixel level. The spatial distribution of the perturbation promoted by ash deposits in Patagonia was successfully identified and characterized by means of a perturbation in NDVI temporal dynamics. Results are encouraging for the future development of a new platform, in combination with data from forecasting models and tracking of ash cloud trajectories and dispersion, to inform stakeholders to mitigate impact of volcanic ash on agricultural production and to orient public intervention strategies after a volcanic eruption followed by ash fallout over a wide region.
Evolution and Advances in Satellite Analysis of Volcanoes
NASA Astrophysics Data System (ADS)
Dean, K. G.; Dehn, J.; Webley, P.; Bailey, J.
2008-12-01
Over the past 20 years satellite data used for monitoring and analysis of volcanic eruptions has evolved in terms of timeliness, access, distribution, resolution and understanding of volcanic processes. Initially satellite data was used for retrospective analysis but has evolved to proactive monitoring systems. Timely acquisition of data and the capability to distribute large data files paralleled advances in computer technology and was a critical component for near real-time monitoring. The sharing of these data and resulting discussions has improved our understanding of eruption processes and, even more importantly, their impact on society. To illustrate this evolution, critical scientific discoveries will be highlighted, including detection of airborne ash and sulfur dioxide, cloud-height estimates, prediction of ash cloud movement, and detection of thermal anomalies as precursor-signals to eruptions. AVO has been a leader in implementing many of these advances into an operational setting such as, automated eruption detection, database analysis systems, and remotely accessible web-based analysis systems. Finally, limitations resulting from trade-offs between resolution and how they impact some weakness in detection techniques and hazard assessments will be presented.
A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis
2012-01-01
probability distribution for the input variables (for example, Hermite polynomials for normally distributed parameters, or Legendre for uniformly...parameters and windfields will drive our simulations. We will use uncertainty quantification methodology – polynomial chaos quadrature in combination...quantification methodology ? polynomial chaos quadrature in combination with data integration to complete the DDDAS loop. 15. SUBJECT TERMS 16. SECURITY
Magnetic mapping of distribution of wood ash used for fertilization of forest soil.
Petrovský, Eduard; Remeš, Jiří; Kapička, Aleš; Podrázský, Vilém; Grison, Hana; Borůvka, Luboš
2018-06-01
The effect of wood-ash fertilization on forest soils has been assessed mainly through geochemical methods (e.g., content of soil organic matter or nutrients). However, a simple and fast method of determining the distribution of the ash and the extent of affected soil is missing. In this study we present the use of magnetic susceptibility, which is controlled by Fe-oxides, in comparing the fertilized soil in the forest plantation of pine and oak with intact forest soil. Spatial and vertical distribution of magnetic susceptibility was measured in an oak and pine plantation next to stems of young plants, where wood ash was applied as fertilizer. Pattern of the susceptibility distribution was compared with that in non-fertilized part of the plantation as well as with a spot of intact natural forest soil nearby. Our results show that the wood-ash samples contain significant amount of ferrimagnetic magnetite with susceptibility higher than that of typical forest soil. Clear differences were observed between magnetic susceptibility of furrows and ridges. Moreover, the dispersed ash remains practically on the surface, does not penetrate to deeper layers. Finally, our data suggest significant differences in surface values between the pine and oak plants. Based on this study we may conclude that magnetic susceptibility may represent a simple and approximate method of assessing the extent of soil affected by wood-ash. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni
2013-04-01
The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on the range and ash cloud distribution. The minimum detectable signal can be increased, for a given system and ash plume scenario, by decreasing the observation range and increasing the operational frequency using a multi-sensor approach, but also exploiting possible polarimetric capabilities. In particular, multi-wavelengths lidars can be complementary systems useful to integrate radar-based ash particle measurement. This work, starting from the results of a previous study and from above mentioned issues, is aimed at quantitatively assessing the optimal choices for microwave and millimeter-wave radar systems with a dual-polarization capability for real-time ash cloud remote sensing to be used in combination with an optical lidar. The physical-electromagnetic model of ash particle distributions is systematically reviewed and extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena. The radar and lidar scattering and absorption response is simulated and analyzed in terms of self-consistent polarimetric signatures for ash classification purposes and correlation with ash concentration and mean diameter for quantitative retrieval aims. A sensitivity analysis to ash concentration, as a function of sensor specifications, range and ash category, is carried out trying to assess the expected multi-sensor multi-spectral system performances and limitations. The multi-sensor multi-wavelength polarimetric model-based approach can be used within a particle classification and estimation scheme, based on the VARR Bayesian metrics. As an application, the ground-based observation of the Eyjafjallajökull volcanic ash plume on 15-16 May 2010, carried out at the Atmospheric Research Station at Mace Head, Carna (Ireland) with MIRA36 35-GHz Ka-Band Doppler cloud radar and CHM15K lidar/ceilometer at 1064-nm wavelength, has been considered. Results are discussed in terms of retrievals and intercomparison with other ground-based and satellite-based sensors.
Lanzerstorfer, Christof
2015-04-01
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of (K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO4(3-) was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3±0.8 μm, spread of particle size distribution 19±11, particle density 2620±80 kg/m3 and angle of repose 50°±1°. The density of the straw fly ashes is lower (2260±80 kg/m3) and the spread of the size distribution is higher (72±24). For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller, surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. Copyright © 2015. Published by Elsevier B.V.
Group-V atoms exchange due to exposure of InP surface to AsH3(+PH3) revealed by x-ray CTR scattering
NASA Astrophysics Data System (ADS)
Tabuchi, M.; Yamada, N.; Fujibayashi, K.; Takeda, Y.; Kamei, H.
1996-05-01
We conducted x-ray crystal truncation rod (CTR) measurements using synchro-tron radiation to analyze the As atom distribution in InP to the order of 1 ML. The InP samples which were only exposed to AsH3(+PH3) and capped by InP were investigated to study the effect of the purge sequence. The purge sequence is unavoidable to grow heteroepitaxial layers by OMVPE and is considered to affect largely the structure of the interface. From the results of the measurement and the computer simulation, the distribution of P and As atoms of the order of 1 ML was discussed as functions of the exposing time. It was shown that the number of As atoms contained in the samples saturated when the AsH3-exposure time is longer than 10 s. Comparing the profiles of AsH3-exposed samples with that of (AsH3 + PH3)-exposed samples, it was found that the As distribution in the buffer layer was suppressed in (AsH3 + PH3)-exposed samples. In order to obtain the sharp interfaces, the AsH3-exposure time must be shorter than 0.5 s.
A robust method to forecast volcanic ash clouds
Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin
2012-01-01
Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an efficient means to assess all of the hazards associated with these ash clouds.
Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.
2015-01-01
In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.
NASA Astrophysics Data System (ADS)
Langmann, B.; Hort, M. K.
2010-12-01
During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: A regional model study, J. Geophys. Res., 115, D00L06, doi:10.1029/2009JD013298, 2010. Langmann, B., S. Varghese, E. Marmer, E. Vignati, J. Wilson, P. Stier and C. O’Dowd, Aerosol distribution over Europe: A model evaluation study with detailed aerosol microphysics, Atmos. Chem. Phys. 8, 1591-1607, 2008.
Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan
2014-02-20
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.
2014-01-01
This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140
Fluidized bed combustion of pelletized biomass and waste-derived fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Scala, F.; Solimene, R.
2008-10-15
The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away frommore » the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)« less
Hampton, M.A.; Bouma, A.H.; Frost, T.P.; Colburn, I.P.
1979-01-01
Surficial sediments of the Kodiak shelf, Gulf of Alaska, contain various amounts of volcanic ash whose physical properties indicate that it originated from the 1912 Katmai eruption. The distribution of ash is related to the shelf physiography and represents redistribution by oceanic circulation rather than the original depositional pattern from the volcanic event. The ash distribution can be used, in conjunction with the distribution of grain sizes, as an indicator of present-day sediment dispersal patterns on the shelf. No significant modern input of sediment is occurring on the Kodiak shelf, which is mostly covered by Pleistocene glacial deposits. Coarse-grained sediments on flat portions of shallow banks apparently are being winnowed, with the removed ash-rich fine material being deposited in shallow depressions on the banks and in three of the four major troughs that cut transversely across the shelf. The other major trough seems to be experiencing a relatively high-energy current regime, with little deposition of fine material. ?? 1979.
Dynamics and Deposits of Coignimbrite Plumes
NASA Astrophysics Data System (ADS)
Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto
2014-05-01
Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the importance of entrainment into the established plume, a process that is still poorly defined. The numerical results, and the consistent fine grained nature of ash in the deposits, highlight the importance of physical dynamics in the parent pyroclastic density currents for coignimbrite plume formation and stress the need for tailored methods to investigate hazard and risk from such events. Bursik, M. Effect of wind on the rise height of volcanic plumes. Geophysical Research Letters, 28(18), 3621-3624, 2001.
NASA Astrophysics Data System (ADS)
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
John S. Strazanac; Juli R. Gould; Robert A. Haack; Ivich Fraser
2008-01-01
The introduction of the emerald ash borer (EAB), Agrilis planipennis (Coleoptera: Buprestidae), into the Midwest from Asia has had a devastating affect on ash (Fraxinus spp.). As the emerald ash borer's ability to spread became better understood and its distribution in the Midwest increased, biocontrol became an increasingly...
NASA Astrophysics Data System (ADS)
Elhelou, O.; Richter, C.
2015-12-01
Atmospheric deposition of pollutants is a major health and environmental concern. In a 2010 study, the CATF attributed over 13,000 deaths each year to fly ash and other fine particles emitted by U.S. coal-burning power plants. The magnetic properties of fly ash allows for mapping an area suspect of PM pollution faster and more efficiently than by conducting chemical analysis as the former alternative. The objective of this study is to detect the presence of magnetic particles related to the migration of fly ash from a nearby coal power plant over parts of Pointe Coupee Parish, LA. This is based on the idea that the fly ash that is released into the atmosphere during the coal burning process contains heavy metals and magnetic particles in the form of ferrospheres, which can be used to trace back to the source. Maps of the top and sub soil were generated to differentiate the magnetic susceptibility values of the heavy metals potentially attributed to the migration and settling of fly ash onto the surface from any pre-existing or naturally occurring heavy metals in the sub soil. A 60 km2 area in Pointe Coupee Parish was investigated in approximately 0.5 km2 subsets. The area in Pointe Coupee Parish, LA was selected because land use is predominantly rural with the Big Cajun II power plant as the main contributor for air borne contaminants. Samples of fly ash obtained directly from the source below one of the power plant's precipitators were also analyzed to verify the field and laboratory analysis. Contour maps representing the spatial distribution of fly ash over Pointe Coupee, LA, along with histograms of magnetic susceptibility values, and chemical analysis all indicate a correlation between the proximity to the power plant and the predominant wind direction. Acquisition curves of the isothermal remnant magnetization demonstrate the presence of predominantly low coercivity minerals (magnetite) with a small amount of a high-coercivity phase. The microstructure of the magnetic fractions of the fly ash along with select top and sub soil samples were observed using a reflective light microscope for identifying and confirming the presence of ferrospheres associated with fly ash. Chemical analyses of select samples revealed their heavy metal composition and the correlation with their SIRM and low field mass susceptibility values.
Distribution and extent of tree mortality in North Central hardwood forests
J. Michael Vasievich; Sharon L. Hobrla; Mark H. Hansen
1997-01-01
Forest inventory data shows that biophysical agents and human causes account for annual losses of more than a half-billion ft³ of timber in North Central hardwood forests. This paper reports on an analysis of forest inventory data to determine the extent and distribution of tree mortality in four forest types - Aspen-Birch, Elm-Ash-Cottonwood, Maple-Beech-...
The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction
NASA Astrophysics Data System (ADS)
Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.
2018-01-01
The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...
2016-04-22
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Arsenic Speciation and Cadmium Determination in Tobacco Leaves, Ash and Smoke.
Iwai, Takahiro; Chiba, Koichi; Narukawa, Tomohiro
2016-01-01
The concentrations of arsenic (As) and cadmium (Cd) in the tobacco leaves, ash and smoke of 10 kinds of cigarettes collected from different countries worldwide were determined by ICP-MS after microwave-assisted digestion. Total As and Cd concentrations in the tobacco leaves ranged from 0.20 to 0.63 and 1.8 to 9.9 mg kg(-1), respectively. By the speciation analysis of As in tobacco leaves and ash by HPLC-ICP-MS following acid extraction, arsenite [As(III)] and arsenate [As(V)] were determined and trace amounts of monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA) and some unidentified As species were also found. Arsenic speciation for smoke absorbed in an aqueous solution was carried out. The sum of the As species in tobacco leaves, ash and smoke was in good agreement with the result of total As determination in each sample, and the recoveries of speciation were 100 ± 10%. The distributions and the behaviors of As species were clarified.
Topological and thermal properties of polypropylene composites based on oil palm biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com
Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less
Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2017-09-01
Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH) 2 , KCl and SiO 2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.
Climate change poses additional threat to the future of ash resources in the eastern United States
Anantha Prasad; Louis Iverson; Stephen Matthews; Matthew Peters
2010-01-01
It is becoming increasingly clear that climate change has the potential to alter the distribution of plant species all over the world. In the United States, ash (Fraxinus spp.) is encountering the double threat of short-term emerald ash borer (EAB) infestation, which could decimate ash throughout the country, and longer term perturbations due to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adel, G.T.; Luttrell, G.H.
Automatic control of fine coal cleaning circuits has traditionally been limited by the lack of sensors for on-line ash analysis. Although several nuclear-based analyzers are available, none have seen widespread acceptance. This is largely due to the fact that nuclear sensors are expensive and tend to be influenced by changes in seam type and pyrite content. Recently, researchers at VPI&SU have developed an optical sensor for phosphate analysis. The sensor uses image processing technology to analyze video images of phosphate ore. It is currently being used by PCS Phosphate for off-line analysis of dry flotation concentrate. The primary advantages ofmore » optical sensors over nuclear sensors are that hey are significantly cheaper, are not subject to measurement variations due to changes in high atomic number materials, are inherently safer and require no special radiation permitting. The purpose of this work is to apply the knowledge gained in the development of an optical phosphate analyzer to the development of an on-line ash analyzer for fine coal slurries. During the past quarter, the current prototype of the on-line optical ash analyzer was subjected to extensive testing at the Middlefork coal preparation plant. Initial work focused on obtaining correlations between ash content and mean gray level, while developmental work on the more comprehensive neural network calibration approach continued. Test work to date shows a promising trend in the correlation between ash content and mean gray level. Unfortunately, data scatter remains significant. Recent tests seem to eliminate variations in percent solids, particle size distribution, measurement angle and light setting as causes for the data scatter; however, equipment warm-up time and number of images taken per measurement appear to have a significant impact on the gray-level values obtained. 8 figs., 8 tabs.« less
NASA Astrophysics Data System (ADS)
Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas
2016-04-01
Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.
NASA Astrophysics Data System (ADS)
Straub, S. M.; Schindlbeck, J. C.; Jegen, M. D.; Corry-Saavedra, K.; Murayama, M.; Woodhead, J. D.; Kutterolf, S.; Vautravers, M. J.; Wang, K. L.
2016-12-01
While the influences of orbital cycles on the ocean-atmosphere system are well documented, it remains largely unknown whether Earth's interior processes are similarly connected to orbital cycles. Recent studies of cyclic deposition in ash fallout from arc volcanism suggest that global climate changes in the form of variable glacial and water load are inversely related to magma production and/or volcanic eruption rate. However, a rigorous test of this hypotheses requires a temporally precise record of past volcanism which spans multiple glacial cycles at high resolution. The marine ash record of explosive volcanism provides such records readily. Here we undertake a detailed chemical study of discrete and disperse tephra deposits in cores from IODP Holes U1437B and U1436A drilled near the Izu Bonin arc in the northwestern Pacific. These locations combine a high background sedimentation rate (>10 m/Ma) of biogenic carbonate and Asian-derived dust with frequent emplacement of tephra fallout from the nearby Izu Bonin and Japan arcs. δ18O analyses record thirteen climatic cycles in the carbonate mud of the uppermost 120 m of Hole U1437B and eleven cycles in the uppermost 70 m of Hole U1436C. Strikingly, the distribution of 134 primary ash layers in Hole U1437B seems to be synchronous with glacial cycles, with a distinct increase in eruption occurrences at either the transitions of glacial/interglacial or at the early interglacials. This is confirmed by first results of a frequency analysis of the ash-time series that indicate a dominance of a 100 ka cycle. The question, which remains to be answered, is whether deglaciation drives volcanism or volcanism drives deglaciation? We also investigate the distribution of `dispersed ash' in this sequence, which is not visible to the naked eye but is volumetrically significant and thus also critical in testing time-cause relationships between arc volcanism and glacial cycles. Major questions we address are: 1) do we see the same cyclic behavior between dispersed ash and discrete ash layers?, 2) does this cyclicity following orbital cycles and 3) is the distribution of tephra layers controlled by orbital cycles or do the tephras reflect the cyclic deposition of the host sediment?
Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan
NASA Astrophysics Data System (ADS)
Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.
2013-12-01
Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).
Primary and secondary fragmentation of crystal-bearing intermediate magma
NASA Astrophysics Data System (ADS)
Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn
2016-11-01
Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.
NASA Astrophysics Data System (ADS)
Chris, Chafer; Doerr, Stefan; Santin, Cristina
2017-04-01
The impacts of wildfire ash, the powdery residue from fuel burning, on post-fire ecosystems are many and diverse. Ash is a source of nutrients and can help the recovery of vegetation. It can also contain substantial amounts of recalcitrant carbon and thus contribute to long-term carbon storage. In its initial state, the ash layer on the ground can protect the bare soil, mitigating post-fire water erosion by runoff. However, when the adsorbent capability of this layer is exceeded, ash can be transported into the hydrological network and be a major contributor to water contamination. Ash can also contribute to post-fire mass movements such as debris flows. The eco-hydro-geomorphic impacts of ash on post-fire ecosystems are therefore important, but remain poorly quantified. A fundamental step in that direction is the understanding of ash production and distribution at the landscape scale, which would allow incorporating ash as a key parameter into post-fire risk models. We have developed a new spectral index (NWAI) using Landsat imagery to model the spatial distribution of ash loads in the post-fire landscape. It was developed based on a severe wildfire that burnt 13,000 ha of dry eucalyptus forest near Sydney and has also been tested for a forested area burnt by the catastrophic 2009 Black Saturday fires near Melbourne. Although ecosystem and fire characteristics differed substantially between the Sydney and Melbourne fires, our NWAI index performs well. In this contribution we will discuss the (i) the principles of the NWAI and (ii) its potential for pollution risk forecasting.
Influence Of Trace Metal Distribution On Its Leachability From Coal Fly Ash
The risks associated with the reuse of coal fly ash in natural environmental settings in terms of their mobility and ecotoxicological significance is largely determined by: (1) the physicochemical conditions the fly ash is placed under; (2) the total leachable metal content in fl...
Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai
2007-09-01
By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.
Experimental aggregation of volcanic ash: the role of liquid bonding
NASA Astrophysics Data System (ADS)
Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.
2015-12-01
Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.
Metal behavior during vitrification of incinerator ash in a coke bed furnace.
Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy
2004-06-18
In this study, municipal waste incinerator ash was vitrified in a coke bed furnace system and the behavior of metals was investigated. Coke and lime were added to provide heat which facilitated vitrification. Ash contributed more than 90% of metal (except for Ca) input-mass. Metal species with low boiling points accounted for the major fraction of their input-mass adsorbed by air pollution control devices (APCDs) fly ash. Among the remaining metals, those species with light specific weights in this furnace tended to be encapsulated in slag, while heavier species were mainly discharged by ingot. Meanwhile, the leachability of hazardous metals in slag was significantly reduced. The distribution index (DI) was defined and used as an index for distribution of heavy metals in the system. A high DI assures safe slag reuse and implies feasibility of recovering hazardous heavy metals such as Cr, Cu, Fe, Pb and Zn. The vitrification in a coke bed furnace proved to be a useful technology for the final disposal of MSW incinerator ash. The heavy metals are separated into the slag, ingot and fly ash, allowing safe reuse of the slag and possible recovery of the metals contained in the ingot and ash fractions.
Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes
NASA Astrophysics Data System (ADS)
Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.
2012-12-01
Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, David; Purgert, Robert; Rhudy, Richard
1999-10-15
Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less
Optical modeling of volcanic ash particles using ellipsoids
NASA Astrophysics Data System (ADS)
Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo
2015-05-01
The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.
Modeling ash fall distribution from a Yellowstone supereruption
Mastin, Larry G.; Van Eaton, Alexa R.; Lowenstern, Jacob B.
2014-01-01
We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km3 of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the ∼640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.
Behavior of cesium in municipal solid waste incineration.
Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki
2015-05-01
As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zidikheri, Meelis J.; Lucas, Christopher; Potts, Rodney J.
2017-08-01
Airborne volcanic ash is a hazard to aviation. There is an increasing demand for quantitative forecasts of ash properties such as ash mass load to allow airline operators to better manage the risks of flying through airspace likely to be contaminated by ash. In this paper we show how satellite-derived mass load information at times prior to the issuance of the latest forecast can be used to estimate various model parameters that are not easily obtained by other means such as the distribution of mass of the ash column at the volcano. This in turn leads to better forecasts of ash mass load. We demonstrate the efficacy of this approach using several case studies.
Vajda, E G; Skedros, J G; Bloebaum, R D
1998-10-01
Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.
NASA Astrophysics Data System (ADS)
Blaha, U.; Basavaiah, N.; Das, P. K.; Deenadayalan, K.
2012-04-01
Rock magnetic parameters of highly magnetic topsoil of the Deccan Trap basalt area are evaluated for their suitability for efficient environmental magnetic pollution screening. Parameters, such as magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (κ fd%), anhysteretic remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM), soft isothermal remanent magnetization (Soft IRM), as well as thermo-magnetic analysis (κ-T) are compared and assessed for best depiction of topsoil contamination due to ash deposition around the Nashik thermal power station (NTPS). Fifty-five topsoil samples, collected along north-south and west-east stretching transects of 24 km length, are the basis for evaluation of the specific ash distribution pattern around the plant and its adjacent ash pond. Similar decline of the magnetic signals with increasing distance from the point source is observed in the concentration dependent magnetic parameters and can be modeled. The magnetic grain size parameters instead reveal increasing trends with increasing distance. Verwey-transition and Hopkinson peak obtained from κ-T analyses demonstrate to be important parameters to prove fly ash accumulation in soils of basaltic origin. The importance of magnetic parameters for indirect tracing of pollutants, such as heavy metals, is shown by Pb, Zn and Cu data, revealing similar distribution pattern as obtained from the concentration dependent magnetic parameters. Confirmation of the presence of a very high amount of ash particles in the vicinity of the NTPS and a low number of particles in more distant areas is provided by scanning electron microscopy (SEM) on quantitatively extracted magnetic particles at 5.5 km and 11.9 km distance in eastern direction. The investigation demonstrates that the majority of the rock magnetic parameters has the potential to be successfully applied in environmental magnetic studies in areas with high magnetic background values.
Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheridan, M.F.; Wohletz, K.H.
1983-01-01
Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less
Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida
NASA Astrophysics Data System (ADS)
1981-05-01
This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.
Removal of introduced inorganic content from chipped forest residues via air classification
Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; ...
2015-08-04
Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less
Mapping ash properties using principal components analysis
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones
2017-04-01
In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2 maps showed high values in one area of the plot, while factors 3,4 and 5 had a cycled pattern. Using a PCA we resume the information of all dataset and we identify that ash properties have a different distribution in the studied area, that may be attributed to the different fire severities. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Cerdà A, Doerr SH. (2008) The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Jordan, A., Zavala, L., Granjed, A.J., Gordillo-Rivero, A.J., Garcia-Moreno, J., Pereira, P., Barcenas-Moreno, G., Celis, R., Jimenez-Compan, E., Alanis, N. Wettability of ash conditions splash erosion and runoff rates in the postfire. Science of the Total Environment, 572, 1261-1268. Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015b) Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, 26, 180-192. Pereira, P., Brevik, E., Cerda, A., Ubeda, X., Novara, A., Francos, M., Comino, R., Bogunovic, I., Khaledian, Y. Mapping ash extractable elements using principal component analysis In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (eds) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006 Pereira, P., Cerdà, A., Jordan, A., Zavala, L., Mataix-Solera, J., Arcenegui, V., Misiune, I., Keesstra, S., Novara, A. (2016) Vegetation recovery after a grassland fire in Lithuania. The effects of fire severity, slope position and aspect. Land Degradation and Development, 27, 1523-1534. Pereira, P., Rein, G., Martin, D. Editorial: Past and Present Post-Fire Environments. Science of the Total Environment, 573, 442-436. Pereira, P., Jordan, A., Cerdà, A., Martin, D. Editorial: The role of ash in fire-affected ecosystems. Catena, 135, 337-379.
Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L
2017-06-01
Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.
2018-01-01
Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.
Analysis of Mount St. Helens ash from optical photoelectric photometry
NASA Technical Reports Server (NTRS)
Cardelli, J. A.; Ackerman, T. P.
1983-01-01
The optical properties of suspended dust particles from the eruption of Mt. St. Helens on July 23, 1980 are investigated using photoelectric observations of standard stars obtained on the 0.76-m telescope at the University of Washington 48 hours after the eruption. Measurements were made with five broad-band filters centered at 3910, 5085, 5480, 6330, and 8050 A on stars of varying color and over a wide range of air masses. Anomalous extinction effects due to the volcanic ash were detected, and a significant change in the wavelength-dependent extinction parameter during the course of the observations was established by statistical analysis. Mean particle size (a) and column density (N) are estimated using the Mie theory, assuming a log-normal particle-size distribution: a = 0.18 micron throughout; N = 1.02 x 10 to the 9th/sq cm before 7:00 UT and 2.33 x 10 to the 9th/sq cm after 8:30 UT on July 25, 1980. The extinction is attributed to low-level, slowly migrating ash, possibly combined with products of gas-to-particle conversion and coagulation.
Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants.
López-Antón, M Antonia; Díaz-Somoano, Mercedes; Cuesta, Aida Fuente; Riesco, Aida Rubio; Martínez-Tarazona, M Rosa
2008-06-01
This study evaluates the behaviour of total Cr and Cr (VI) during coal combustion in two Spanish power stations. The content and distribution of Cr in the feed coal and combustion wastes was determined and the Cr contents were normalized using enrichment factor indexes. The speciation of Cr in the fly ash fractions from the different hoppers of the electrostatic precipitators was established and the possibility that the Cr (VI) might lixiviate when ashes are disposed of at landfill sites was assessed. Differences in the distribution and behavior of Cr in the two power stations were observed. According to European directive 1999/31/CEE, soluble Cr(VI) in the fly ashes studied would be unlikely to pose an environmental or health risk when the ash is disposed of.
Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.; Bran, Donaldo; Gaitán, Juan J.
2017-01-01
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m−1 day−1. Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m−1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover. PMID:28349929
Panebianco, Juan E; Mendez, Mariano J; Buschiazzo, Daniel E; Bran, Donaldo; Gaitán, Juan J
2017-03-28
Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m -1 day -1 . Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m -1 depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover.
Ash production and dispersal from sustained low-intensity Mono-Inyo eruptions
NASA Astrophysics Data System (ADS)
Black, Benjamin A.; Manga, Michael; Andrews, Benjamin
2016-08-01
Recent rhyolitic volcanism has demonstrated that prolonged low-intensity ash venting may accompany effusive dome formation. We examine the possibility and some consequences of episodes of extended, weak ash venting at the rhyolitic Mono-Inyo chain in Eastern California. We describe ash-filled cracks within one of the youngest domes, Panum Crater, which provide a textural record of ash venting during dome effusion. We use synchrotron-based X-ray computed tomography to characterize the particles in these tuffisites. Particle sizes in well-sorted tuffisite layers agree well with grain size distributions observed during weak ash venting at Soufrière Hills Volcano, Montserrat, and yield approximate upper and lower bounds on gas velocity and mass flux during the formation of those layers. We simulate ash dispersal with Ash3d to assess the consequences of long-lived Mono-Inyo ash venting for ash deposition and the accompanying volcanic hazards. Our results highlight the sensitivity of large-scale outcomes of volcanic eruptions to small-scale processes.
Volcanic ash aggregation in the lab - can we mimic natural processes?
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich
2015-04-01
Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights the strongly different properties of single ash grains and ash aggregates. These experiments aim at experimentally constraining the boundary conditions required for the generation of strong ash aggregates. A better mechanistic understanding will serve for more adequate ash mass distribution modeling.
A. R. Tluczek; D. G. Mccullough; Therese M. Poland
2011-01-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloemfeeding beetle native to East Asia, was first discovered in southeast Michigan and Essex County, Ontario, in June 2002 and has since killed millions of ash (Fraxinus spp.) trees in North America. Initial studies in southeast Michigan indicated...
Brian J. Palik; Michael E. Ostry; Robert C. Venette; Ebrahim Abdela
2011-01-01
Extensive tree dieback is a recurrent issue in many regions. Crown dieback of Fraxinus nigra Marsh. (black ash; brown ash) in the northeastern and north central United States is an example. F. nigra is a widely distributed hardwood that is often the dominant species in wetland forests from Manitoba to Newfoundland and West...
Ash from a pulp mill boiler--characterisation and vitrification.
Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V
2010-07-15
The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.
An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.
Kuo, Nae-Wen; Ma, Hwong-Wen; Yang, Ya-Mei; Hsiao, Teng-Yuan; Huang, Chin-Ming
2007-01-01
This study aimed to identify distribution of metals and to estimate the amount of these metals that can be potentially recovered from incineration residues. First, the partitioning behavior of Cr, Cu, Fe, Cd, Al, Zn, and Pb in bottom ash and fly ash was investigated in one large municipal waste incinerator in Taiwan. In addition, the material flow analysis (MFA) method was used to estimate the material flux of metals within incinerator plant, and to calculate the amount of metal recovery. According to the findings of this study, six metals (Fe, Al, Cu, Zn, Cr, and Pb) concentrated in bottom ash mostly, while Cd existed primarily in fly ash. The weight percentages of Fe (4.49%), Al (5.24%), Cu (1.29%), Zn (2.21%), and Pb (0.58%) in incinerator ash are high, and even higher than the compositions of natural minerals. Finally, the amount of Cr, Cu, Fe, Cd, Al, Zn and Pb that can be potentially recovered from incineration residues will reach 2.69 x 10(2), 1.46 x 10(4), 4.91 x 10(4), 6.92 x 10(1), 5.10 x 10(4), 1.85 x 10(4) and 4.66 x 10(3) ton/yr, respectively.
Ash Emissions and Risk Management in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Steensen, T. S.; Webley, P. W.; Stuefer, M.
2012-12-01
Located in the 'Ring of Fire', regions and communities around the Pacific Ocean often face volcanic eruptions and subsequent ash emissions. Volcanic ash clouds pose a significant risk to aviation, especially in the highly-frequented flight corridors around active volcano zones like Indonesia or Eastern Russia and the Alaskan Aleutian Islands. To mitigate and manage such events, a detailed quantitative analysis using a range of scientific measurements, including satellite data and Volcanic Ash Transport and Dispersion (VATD) model results, needs to be conducted in real-time. For the case study of the Sarychev Peak eruption in Russia's Kurile Islands during 2009, we compare ash loading and dispersion from Weather Research and Forecast model with online Chemistry (WRF-Chem) results with satellite data of the eruption. These parameters are needed for the real-time management of volcanic crises to outline no-fly zones and to predict the areas that the ash is most likely to reach in the near future. In the early stages after the eruption, an international group with representatives from the Kamchatkan and Sachalin Volcanic Eruption Response Teams (KVERT, SVERT), the National Aeronautics and Space Administration (NASA), and the Alaska Volcano Observatory (AVO) published early research on the geological and geophysical characteristics of the eruption and the behavior of the resulting ash clouds. The study presented here is a follow-up project aimed to implement VATD model results and satellite data retrospectively to demonstrate the possibilities to develop this approach in real-time for future eruptions. Our research finds that, although meteorological cloud coverage is high in those geographical regions and, consequently, these clouds can cover most of the ash clouds and as such prevent satellites from detecting it, both approaches compare well and supplement each other to reduce the risk of volcanic eruptions. We carry out spatial extent and absolute quantitative comparisons and analyze the sensitivity of model inputs, such as eruption rate and vertical particle size distributions. Our analysis shows that comparisons between real-time satellite observations and VATD model simulations is a complex and difficult process and we present several methods that could be used to reduce the hazards and be useful in any risk assessments.
Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.
Vannatta, A R; Hauer, R H; Schuettpelz, N M
2012-02-01
Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.
NASA Astrophysics Data System (ADS)
Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.
2015-04-01
Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar working at Catania airport (Sicily, Italy) and observing the Mt. Etna fountains about 33 km far away. Collocated infrared satellite observations will be shown as well to complete the investigation. The case study on November 23rd, 2013 is taken as reference case due to its strength and its well-defined narrow plume, which is transported by the prevailing wind hundred kilometers away. For this case study, the X-band radar in Catania tracked the ash-signal from 9:40 UTC to 10:30 UTC every 10 min providing, at each acquisition step, the following variables, abbreviated as ZDR, RHV, VEL, SWD KDP and ZHH. The latter stand for differential reflectivity, correlation coefficients, radial velocity, spectral width, specific differential phase shift and reflectivity, respectively. The outcomes of this analysis reveal that the interpretation of polarization diversity and Doppler shifts might introduce new insights in the estimates of the fraction of ash mass loading due to larger particles and its rate of mass flux. This would be an important achievement for the APhoRISM Project in witch this work is framed. APHORISM is a 3 years FP7-EU project started on December 2013 that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis.
Saqib, Naeem; Bäckström, Mattias
2014-12-01
Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, dep...
NASA Astrophysics Data System (ADS)
Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel
2017-02-01
Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not beneficial for the current case. In addition, extra constraints on the source terms can be given by explicitly enforcing no-ash
for the atmosphere columns above or below the observed ash cloud top height. However, in this case such extra constraints are not helpful for the inverse modeling. It is also found that simultaneously assimilating observations at different times produces better hindcasts than only assimilating the most recent observations.
NASA Astrophysics Data System (ADS)
Marshall, Maurice R.
Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).
Deborah G. McCullough; Nathan W. Siegert; Therese M. Poland; Steven J. Pierce; Su Zie Ahn
2011-01-01
Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of...
Wei, Yunmei; Mei, Xiaoxia; Shi, Dezhi; Liu, Guotao; Li, Li; Shimaoka, Takayuki
2017-06-01
Magnetic fractions were extracted from pulverized waste-to-energy (WTE) bottom ashes using a combined wet-dry extraction method. The resulting magnetic and non-magnetic fractions were subjected to compositional, mineralogical, and redox state analyses by X-ray diffraction (XRD), X-ray fluorescence, and X-ray photoelectron spectroscopy (XPS), respectively. The distribution and leaching toxicity of heavy metals were assessed to evaluate potential effects on the environment. Compositional analyses revealed that Fe accounted for 35% of the magnetic fraction of pulverized ashes, which was approximately seven times that of the raw ash. In addition to Fe, elemental Ni, Mn, and Cr were also significantly enriched in the magnetic fractions. The mineralogical analysis determined that Fe was primarily present as hematite and magnetite, and metallic iron was also identified in the magnetic fraction samples. The XPS analysis further proved the existence of zero-valence Fe. However, a significant amount of Fe remained in the non-magnetic fractions, which could partially be ascribed to the intergrowth structure of the various minerals. The elevated concentrations of toxicity characteristic leaching procedure (TCLP)-extracted Mn, Ni, Cr, Cu, Pb, and Zn were primarily ascribed to the lower buffering capability of the magnetic fractions, with the enrichment of Mn, Ni, and Cr in the magnetic fractions also contributing to this elevation.
NASA Astrophysics Data System (ADS)
Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi
2018-06-01
Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.
Climate change and the ash dieback crisis
Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory
2016-01-01
Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483
Chemical conversion of sulphur dioxide on Eyjafjallajökull's volcanic ash from the 2010 eruption
NASA Astrophysics Data System (ADS)
Dupart, Yoan; Burel, Laurence; Delichere, Pierre; George, Christian; D'Anna, Barbara
2013-04-01
Volcanic eruptions induce important climatic and weather modifications. When volcanic ashes are emitted into the atmosphere they can travel for several weeks according to their size distribution and altitude of the emission. Eyjafjallajökull eruption, between April 14th and May 23th, is considered as a medium-size eruption. The upper level winds advected ashes over the UK and continental Europe. During volcanic eruptions high amounts of SO2 were injected into the atmosphere (from 50 to 200 ppbv)[1]. Previous works showed that SO2 could be convert into sulfate on mineral dust surfaces under dark conditions[2]. However, no conversion has been studied with real volcanic ashes and under day conditions (light exposure). For this study, real Eyjafjallajökull's ashes samples, collected on the 2010.04.18 at Seljavellir, were used. The ashes were deposited on a horizontal cylindrical coated-wall flow tube reactor surrounded by 5 fluorescent lamps (340-420 nm). The kinetic studies revealed that the presence of UV-A irradiation enhanced the conversion of SO2 on ashes samples. Moreover chemical analyses as XPS, Ion Chromatography and SEM were performed on volcanic ashes before and after exposition to SO2. XPS and ion chromatography analyzes showed that the presence of light increase the SO2 uptake on ashes surfaces and convert it into ions sulphate. Beside SEM analyses disclosed that the conversion takes place systematically on an iron oxide site . By combining kinetics and chemical analysis we are able to propose a new mechanism for the SO2 conversion on mineral surfaces under light conditions. 1. Self, S., et al., Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006. 248(1-2): p. 518-532. 2. Zhang et al., Heterogeneous Reactions of Sulfur Dioxide on Typical Mineral Particles, J. Phys. Chem. B, 2006
Thermal constraints on the emerald ash borer invasion of North America
NASA Astrophysics Data System (ADS)
DeSantis, R.; Moser, W. K.; Gormanson, D. D.; Bartlett, M. G.
2012-12-01
Emerald ash borer (Agrilus planipennis Fairmaire; EAB), a non-native invasive beetle, has caused substantial damage to green (Fraxinus pennsylvanica Marsh.), white (Fraxinus americana L.), and black ash (Fraxinus nigra Marsh.), the major ash species of North America. In the absence of effective methods for controlling or eradicating the beetle, EAB continues to spread unimpeded across North America. Evidence indicates the mortality rate for EAB-infested trees near the epicenter of the infestation in southeast Michigan exceeds 99 percent for the major ash species. One possible climatic limitation on the spread of the infestation is suggested by recent work indicating that beetles cannot survive exposure to temperatures below -35.3 degrees Celsius. We considered whether this thermal constraint will limit the spread and distribution of EAB in North America. Historical climatic data for the United States and Canada were employed along with thermal models of the conditions beneath likely winter snowpack and beneath tree bark to predict the potential geographic distribution of the invasion. Results suggested the thermal mortality constraint will not lead to the protection of ash stands across most of North America. However, recent work indicates the majority of beetles cannot survive exposure to temperatures below -30 degrees Celsius. Along with our results, this suggests thermal constraints near the northern and western edges of the ranges of ash might limit EAB survival to some extent, thereby reducing the EAB population, the likelihood of EAB infestation, and subsequent ash mortality.
Treatment of fly ash from power plants using thermal plasma.
Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Ghiloufi, Imed; Binjuwair, Saud
2017-01-01
Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20-50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.
Treatment of fly ash from power plants using thermal plasma
Al-Mayman, Sulaiman; AlShunaifi, Ibrahim; Albeladi, Abdullah; Binjuwair, Saud
2017-01-01
Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy. PMID:28546898
Geotechnical characterization of a Municipal Solid Waste Incineration Ash from a Michigan monofill.
Zekkos, Dimitrios; Kabalan, Mohammad; Syal, Sita Marie; Hambright, Matt; Sahadewa, Andhika
2013-06-01
A field and laboratory geotechnical characterization study of a Municipal Solid Waste Incineration Ash disposed of at the Carleton Farms monofill in Michigan was performed. Field characterization consisted of field observations, collection of four bulk samples and performance of shear wave velocity measurements at two locations. Laboratory characterization consisted of basic geotechnical characterization, i.e., grain size distribution, Atterberg limits, specific gravity tests, compaction tests as well as moisture and organic content assessment followed by direct shear and triaxial shear testing. The test results of this investigation are compared to results in the literature. The grain size distribution of the samples was found to be very similar and consistent with the grain size distribution data available in the literature, but the compaction characteristics were found to vary significantly. Specific gravities were also lower than specific gravities of silicic soils. Shear strengths were higher than typically reported for sandy soils, even for MSWI ash specimens at a loose state. Strain rate was not found to impact the shear resistance. Significant differences in triaxial shear were observed between a dry and a saturated specimen not only in terms of peak shear resistance, but also in terms of stress-strain response. In situ shear wave velocities ranged from 500 to 800 m/s at a depth of about 8m, to 1100-1200 m/s at a depth of 50 m. These high shear wave velocities are consistent with field observations indicating the formation of cemented blocks of ash with time, but this "ageing" process in MSWI ash is still not well understood and additional research is needed. An improved understanding of the long-term behavior of MSWI ash, including the effects of moisture and ash chemical composition on the ageing process, as well as the leaching characteristics of the material, may promote unbound utilization of the ash in civil infrastructure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro
2012-04-01
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ozden, Banu; Guler, Erkan; Vaasma, Taavi; Horvath, Maria; Kiisk, Madis; Kovacs, Tibor
2018-08-01
Coal, residues and waste produced by the combustion of the coal contain naturally occurring radionuclides such as 238 U, 226 Ra, 210 Pb, 232 Th and 40 K and trace elements such as Cd, Cr, Pb, Ni and Zn. In this work, coal and its combustion residues collected from Yatagan and Yenikoy coal fired thermal power plants (CPPs) in Turkey were studied to determine the concentrations of natural radionuclides and trace elements, and their enrichments factors to better understand the radionuclide concentration processes within the combustion system. In addition, the utilization of coal fly ash as a secondary raw material in building industry was also studied in terms of radiological aspects. Fly ash samples were taken at different stages along the emission control system of the thermal power plants. Activity concentrations of naturally occurring radionuclides were determined with Canberra Broad Energy Germanium (BEGe) detector BE3830-P and ORTEC Soloist PIPS type semiconductor detector. The particle size distribution and trace elements contents were determined in various ash fractions by the laser scattering particle size distribution analyzer and inductively coupled plasma (ICP-OES). From the obtained data, natural radionuclides tend to condense on fly ash with and the activity concentrations increase as the temperature drop in CPPs. Measured 210 Pb and 210 Po concentration varied between 186 ± 20-1153 ± 44 Bq kg -1 , and 56 ± 5-1174 ± 45 Bq kg -1 , respectively. The highest 210 Pb and 210 Po activity concentrations were determined in fly ash taken from the temporary storage point as 1153 ± 44 Bq kg -1 and 1174 ± 45 Bq kg -1 , respectively. There were significant differences in the activity concentrations of some natural radionuclide and trace elements (Pb and Zn) contents in ash fractions among the sampling point inside both of the plants (ANOVA, p < 0.001). Coal and ash sample analysis showed an increase activity concentration and enrichment factors towards the electrostatic precipitators for both of the power plants. The enrichment factors for Zn follow a similar trend as Pb, increasing in value towards the end of the emission control system. The calculated activity indexes were above 1.0 value for both of the power plants, assuming the utilization of fly ash at 100%. It can be concluded that the reuse of fly ash as a secondary raw material may not be hazardous depending on the percentage of utilization of ash. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant
NASA Astrophysics Data System (ADS)
Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati
2016-11-01
The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-06-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-02-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
The impact of the characteristics of volcanic ash on forecasting.
NASA Astrophysics Data System (ADS)
Beckett, Frances; Hort, Matthew; Millington, Sarah; Stevenson, John; Witham, Claire
2013-04-01
The eruption of Eyjafjallajökull during April - May 2010 and Grímsvötn in May 2011, Iceland, caused the widespread dispersion of volcanic ash across the NE Atlantic, and ultimately into UK and European airspace. This resulted in thousands of flights to and from affected countries across Europe to be cancelled. The Met Office, UK, is the home of the London VAAC, a Volcanic Ash Advisory Centre, and as such is responsible for providing reports and forecasts for the movement of volcanic ash clouds covering the UK, Iceland and the north-eastern part of the North Atlantic ocean. To forecast the dispersion of volcanic ash requires that the sedimentation of ash particles through the atmosphere is effectively modelled. The settling velocity of an ash particle is a function of its size, shape and density, plus the density and viscosity of the air through which it is falling. We consider the importance of characterising the physical properties of ash when modelling the long range dispersion of ash particles through the atmosphere. Using the Reynolds number dependent scheme employed by NAME, the Lagrangian particle model used operationally by the Met Office, we calculate the settling velocity and thus the maximum travel distance of an ash particle through an idealised atmosphere as a function of its size, shape and density. The results are compared to measured particle sizes from deposits across Europe following the eruption of Eyjafjallajökull in 2010. Further, the particle size distribution (PSD) of ash in a volcanic cloud with time is modelled using NAME: the particle density distribution and particle shape factor are varied and the modelled PSD compared to the PSD measured in the ash cloud during the eruption of Eyjafjallajökull in 2010 by the FAAM research aircraft. The influence of the weather on PSD is also considered by comparing model output using an idealised atmosphere to output using NWP driven meteorological fields. We discuss the sensitivity of forecasts of the dispersion of volcanic ash to the representation of particle characteristics in NAME, the importance of representing the weather in ash fall models, and the implications of these results for the operational forecasting of volcanic ash dispersion at the London VAAC.
Optical properties of volcanic ash: improving remote sensing observations.
NASA Astrophysics Data System (ADS)
Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon
2016-04-01
Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.
NASA Astrophysics Data System (ADS)
Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.
2011-12-01
The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.
NASA Astrophysics Data System (ADS)
Prestifilippo, Michele; Scollo, Simona; Tarantola, Stefano
2015-04-01
The uncertainty in volcanic ash forecasts may depend on our knowledge of the model input parameters and our capability to represent the dynamic of an incoming eruption. Forecasts help governments to reduce risks associated with volcanic eruptions and for this reason different kinds of analysis that help to understand the effect that each input parameter has on model outputs are necessary. We present an iterative approach based on the sequential combination of sensitivity analysis, parameter estimation procedure and Monte Carlo-based uncertainty analysis, applied to the lagrangian volcanic ash dispersal model PUFF. We modify the main input parameters as the total mass, the total grain-size distribution, the plume thickness, the shape of the eruption column, the sedimentation models and the diffusion coefficient, perform thousands of simulations and analyze the results. The study is carried out on two different Etna scenarios: the sub-plinian eruption of 22 July 1998 that formed an eruption column rising 12 km above sea level and lasted some minutes and the lava fountain eruption having features similar to the 2011-2013 events that produced eruption column high up to several kilometers above sea level and lasted some hours. Sensitivity analyses and uncertainty estimation results help us to address the measurements that volcanologists should perform during volcanic crisis to reduce the model uncertainty.
NASA Astrophysics Data System (ADS)
Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard
2015-02-01
The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.
New-Generation Aluminum Composite with Bottom Ash Industrial Waste
NASA Astrophysics Data System (ADS)
Mandal, A. K.; Sinha, O. P.
2018-02-01
Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.
New-Generation Aluminum Composite with Bottom Ash Industrial Waste
NASA Astrophysics Data System (ADS)
Mandal, A. K.; Sinha, O. P.
2018-06-01
Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.
Rock magnetic finger-printing of soil from a coal-fired thermal power plant.
Gune, Minal; Harshavardhana, B G; Balakrishna, K; Udayashankar, H N; Shankar, R; Manjunatha, B R
2016-05-01
We present seasonal rock magnetic data for 48 surficial soil samples collected seasonally around a coal-fired thermal power plant on the southwest coast of India to demonstrate how fly ash from the power plant is transported both spatially and seasonally. Sampling was carried out during pre-monsoon (March), early-monsoon (June), monsoon (September) and post-monsoon (December) seasons. Low- and high-frequency magnetic susceptibility (χlf and χhf), frequency-dependent magnetic susceptibility (χfd), χfd %, isothermal remanent magnetization (IRM), "hard" IRM (HIRM), saturation IRM (SIRM) and inter-parametric ratios were determined for the samples. Scanning electron microscopy (SEM) was used on limited number of samples. NOAA HYSPLIT MODEL backward trajectory analysis and principal component analysis were carried out on the data. Fly ash samples exhibit an average HIRM value (400.07 × 10(-5) Am(2) kg(-1)) that is comparable to that of soil samples. The pre- and post-monsoon samples show a consistent reduction in the concentration of magnetically "hard" minerals with increasing distance from the power plant. These data suggest that fly ash has indeed been transported from the power plant to the sampling locations. Hence, HIRM may perhaps be used as a proxy for tracking fly ash from coal-fired thermal power plants. Seasonal data show that the distribution of fly ash to the surrounding areas is minimum during monsoons. They also point to the dominance of SP magnetite in early-monsoon season, whereas magnetic depletion is documented in the monsoon season. This seasonal difference is attributable to both pedogenesis and anthropogenic activity i.e. operation of the thermal power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan
This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards
NASA Astrophysics Data System (ADS)
Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.
2015-12-01
Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea. References Nimlos, T. J. and Hans, Z., The Distribution and Thickness of Volcanic Ash in Montana, Northwest Science, Vol. 56, No. 3, 1982. Wilson, T., Kaye, G., Stewart, C., and Cole, J., Impacts of the 2006 Eruption of Merapi Volcano, Indonesia, on Agriculture and Infrastructure, GNS Science Report, 2007.
NASA Astrophysics Data System (ADS)
Donelick, H. M.; Donelick, M. B.; Donelick, R. A.
2012-12-01
Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.
Magmatic and fragmentation controls on volcanic ash surface chemistry
NASA Astrophysics Data System (ADS)
Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that partitioning effect, but crucially, disparities between surface and bulk chemistry remain evident. Simple glass-plagioclase mixing calculations suggest that this feature may indicate differences in bulk and surface mineral distributions; future QEMSCAN analysis will investigate this possibility further. Additionally, surface iron enrichments observed in our high temperature experiments suggest that hot oxidation effects can have a near-instantaneous, measurable effect on ash surface chemistry at the nanometre scale. Our preliminary results suggest that the chemical and mineral properties of the source magma, coupled with high temperature fragmentation processes, may have a significant influence on ash surface chemistry and mineralogy, and subsequently, on the post-eruptive alteration of ash particles and their reactivity within biotic and abiotic systems.
DIOXIN AND FURAN FORMATION ON FLY ASH FROM A MIXTURE OF CHLOROPHENOLS
To establish the relationship between specific chlorophenol (CP) congener distributions and polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) products this work investigated the formation of PCDDs/Fs from different CP mixtures passed over fly ash under selected reaction ...
MISAA, The Fall of Saigon, and College Choice, 1972 to 1980. ASHE 1986 Annual Meeting Paper.
ERIC Educational Resources Information Center
Jackson, Gregory A.
Changes in high school graduates' college choices between 1972 and 1980 were investigated, with attention to the importance of different enrollment influences and the distribution of these influences. Analysis of the National Longitudinal Study (NLS) of the High School Class of 1972 and the High School and Beyond (HSB) surveys revealed that 46.4%…
Ribé, V; Nehrenheim, E; Odlare, M
2014-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geochemical and analytical implications of extensive sulfur retention in ash from Indonesian peats
Kane, Jean S.; Neuzil, Sandra G.
1993-01-01
Sulfur is an analyte of considerable importance to the complete major element analysis of ash from low-sulfur, low-ash Indonesian peats. Most analytical schemes for major element peat- and coal-ash analyses, including the inductively coupled plasma atomic emission spectrometry method used in this work, do not permit measurement of sulfur in the ash. As a result, oxide totals cannot be used as a check on accuracy of analysis. Alternative quality control checks verify the accuracy of the cation analyses. Cation and sulfur correlations with percent ash yield suggest that silicon and titanium, and to a lesser extent, aluminum, generally originate as minerals, whereas magnesium and sulfur generally originate from organic matter. Cation correlations with oxide totals indicate that, for these Indonesian peats, magnesium dominates sulfur fixation during ashing because it is considerably more abundant in the ash than calcium, the next most important cation in sulfur fixation.
Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption.
Houghton, Isobel M P; Aplin, Karen L; Nicoll, Keri A
2013-09-13
The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.
Triboelectric Charging of Volcanic Ash from the 2011 Grímsvötn Eruption
NASA Astrophysics Data System (ADS)
Houghton, Isobel M. P.; Aplin, Karen L.; Nicoll, Keri A.
2013-09-01
The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office’s low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010)1748-932610.1088/1748-9326/5/2/024004; H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)JMSJAU0026-1165]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.
Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas
2015-11-01
The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can constitute an attractive option of the waste management system, when physical-mechanical devices are not available or could not be implemented in old MSWI systems. The suggested procedure may lead to the improvement of recovery efficiency up to 83% for CRM and 94% for other valuable metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transformations of inorganic coal constituents in combustion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
Geyer, A; Marti, A; Giralt, S; Folch, A
2017-11-28
Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.
Meteorological Controls on Local and Regional Volcanic Ash Dispersal.
Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M
2018-05-02
Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.
Active mineral additives of sapropel ashes
NASA Astrophysics Data System (ADS)
Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.
2015-01-01
The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.
Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina.
Gómez, Dario; Smichowski, Patricia; Polla, Griselda; Ledesma, Ariel; Resnizky, Sara; Rosa, Susana
2002-12-01
The volcano Copahue, Neuquén province, Argentina has shown infrequent explosive eruptions since the 18th century. Recently, eruptive activity and seismicity were registered in the period July-October, 2000. As a consequence, ash clouds were dispersed by winds and affected Caviahue village located at about 9 km east of the volcano. Samples of deposited particles from this area were collected during this episode for their chemical analysis to determine elements of concern with respect to the health of the local population and its environment. Different techniques were used to evaluate the distribution of elements in four particle size ranges from 36 to 300 microm. X-ray powder diffraction (XRD) was selected to detect major components namely, minerals, silicate glass, fragments of rocks and sulfurs. Major and minor elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, S, Si and Ti), were detected by energy dispersive X ray analysis (EDAX). Trace element (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, U, V and Zn) content was quantified by inductively coupled plasma-mass spectrometry (ICP-MS). Nuclear activation analysis (NAA) was employed for the determination of Ce, Co, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Ta and Yb. An enrichment was observed in the smallest size fraction of volcanic ashes for four elements (As, Cd, Cu and Sb) of particular interest from the environmental and human health point of view.
Euramerican tonsteins: overview, magmatic origin, and depositional-tectonic implications
Lyons, P.C.; Spears, D.A.; Outerbridge, W.F.; Congdon, R.D.; Evans, H.T.
1994-01-01
Carboniferous tonsteins (kaolinized volcanic-ash beds) of wide geographic distribution are known in both Europe and North America. Relict volcanic minerals common in these Euramerican tonsteins are volcanic quartz (including beta-quartz paramorphs), zircon and ilmenite; less common are magnetite, fayalite, rutile, monazite, xenotime, apatite and sanidine. Data for two relatively thick (3-13 cm) and widespread (>400 km) European tonsteins (Erda and Sub-Worsley Four-foot) indicate an increase in detrital quartz near the top of the beds which indicates mixing with normal clastic sediments, including the introduction of heavy detrital minerals (e.g., tourmaline and garnet). These thick tonsteins show multiple horizontal bedding, normal graded bedding, disturbed bedding, and centimeter-scale scour surfaces. The Fire Clay tonstein in North America represents from one to five separate volcanic air-fall ash deposits as determined by normal graded bedding and mineralogical analysis. These features indicate several episodes of volcanic-ash deposition and very localized subsequent erosion and bioturbation. Electron microprobe data from glass inclusions in volcanic quartz in Euramerican tonsteins indicate a rhyolitic origin for these tonsteins and reveal chemical "fingerprints" valuable for intra- and inter-basinal correlations. However, the tectonic framework for European and North American tonsteins was quite different. In Europe, volcanic-ash beds were associated with Variscan collisional tectonics, whereas in North America, volcanic ash was associated with Ouachita tectonic activity, explosive volcanism from the Yucatan block, collision between the South American and North American plates, and the formation of Pangea. ?? 1994.
Effect of fly ash calcination in geopolymer synthesis
NASA Astrophysics Data System (ADS)
Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia
2015-12-01
Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva
2015-04-01
Fire mineralizes the organic matter, increasing the pH level and the amount of dissolved ions (Pereira et al., 2014). The degree of mineralization depends among other factors on fire temperature, burned specie, moisture content, and contact time. The impact of wildland fires it is assessed using the fire severity, an index used in the absence of direct measures (e.g temperature), important to estimate the fire effects in the ecosystems. This impact is observed through the loss of soil organic matter, crown volume, twig diameter, ash colour, among others (Keeley et al., 2009). The effects of fire are highly variable, especially at short spatial scales (Pereira et al., in press), due the different fuel conditions (e.g. moisture, specie distribution, flammability, connectivity, arrangement, etc). This variability poses important challenges to identify the best spatial predictor and have the most accurate spatial visualization of the data. Considering this, the test of several interpolation methods it is assumed to be relevant to have the most reliable map. The aims of this work are I) study the ash pH and Electrical Conductivity (EC) after a grassland fire according to ash colour and II) test several interpolation methods in order to identify the best spatial predictor of pH and EC distribution. The study area is located near Vilnius at 54.42° N and 25.26°E and 154 ma.s.l. After the fire it was designed a plot with a 27 x 9 m space grid. Samples were taken every 3 meters for a total of 40 (Pereira et al., 2013). Ash color was classified according to Úbeda et al. (2009). Ash pH and EC laboratory analysis were carried out according to Pereira et al. (2014). Previous to data comparison and modelling, normality and homogeneity were assessed with the Shapiro-wilk and Levene test. pH data respected the normality and homogeneity, while EC only followed the Gaussian distribution and the homogeneity criteria after a logarithmic transformation. Data spatial correlation was calculated with the Global Moran's I Index. In order to identify the best interpolator, we tested several well known techniques as inverse distance to a power (IDP), with the power of 1, 2, 3, 4 and 5, local polynomial (LP) with the power of 1 (LP1), 2 (LP2) and 3 (LP3), spline with tension (SPT), completely regularized spline (CRS), multiquadratic (MTQ), inverse multiquadratic (IMTQ) thin plate spline (TPS) and ordinary kriging. The best interpolator was the one with the lowest Root mean square error (RMSE). The results shown that on average ash pH was 8.01 (±0.20) and EC (1408± 513.51µm cm3). The coefficient of correlation between both variables was 0.34, p<0.05. Black ash had a significantly higher pH (F=6.29, p<0.05) and EC (F=5.25, p<0.05) than dark grey ash. According to Moran's I index, pH data was significantly (p<0.05) dispersed, while EC had a random pattern. The best spatial predictor for pH was IDW1 (RMSE=0.210), and for EC IMTQ (RMSE=0.141). In both cases the least accurate technique was TPS. pH data did not showed a specific spatial pattern and some high values are very close to high values which shows a great local spatial variability, mainly observed in the northern part of the plot. In relation to EC, the high values were identified in the central part of the plot. In conclusion it was observed that ash pH and EC were different according to fire severity (ash color) and data distribution has a different spatial pattern, despite the significant correlation. pH and EC had different spatial impacts on soil properties in the immediate period after the fire. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Keeley, J.E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 18, 116-126. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28, 3681-3690. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development, 20(6), 589-608.
USDA-ARS?s Scientific Manuscript database
The 33 species of Agrilus (Coleoptera: Buprestidae) hypothesized to be most closely related to Agrilus planipennis Fairmaire (the emerald ash borer), are described and illustrated. Morphology (adults and immatures), biology, distribution, detailed taxonomic history and systematics are presented fo...
Stability of volcanic ash aggregates and break-up processes.
Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B
2017-08-07
Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.
Removal of radium from acidic solutions containing same by adsorption on coal fly ash
Scheitlin, Frank M.
1984-01-01
The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerdà, Artemi
2013-04-01
Ash distribution on soil surface and impacts on soil properties received a great attention in recently (Pereira et al., 2010; Pereira et al., 2013). Ash it is a highly mobile material that can be easily transported wind, especially in severe wildland fires, where organic matter is reduced to dust, due the high temperatures of combustion. In the immediate period after the fire, ash cover rules soil erosion as previous researchers observed (Cerdà, 1998a; 1998b) and have strong influence on soil hydrological properties, such as water retention (Stoof et al. 2011 ) and wettability (Bodi et al., 2011). Ash it is also a valuable source of nutrients important for plant recuperation (Pereira et al., 2011; Pereira et al., 2012), but can act also as a source contamination, since are also rich in heavy metals (Pereira and Ubeda, 2010). Ash has different physical and chemical properties according the temperature of combustion, burned specie and time of exposition (Pereira et al., 2010). Thus this different properties will have different implications on soil properties including erosion that can increase due soil sealing (Onda et al. 2008) or decrease as consequence of raindrop impact reduction (Cerdà and Doerr, 2008). The current knowledge shows that ash has different impacts on soil properties and this depends not only from the type of ash produced, but of the soil properties (Woods and Balfour, 2010). After fire wind and water strong redistribute ash on soil surface, increasing the vulnerability of soil erosion in some areas, and reducing in others. Understand this mobility is fundamental have a better comprehension about the spatial and temporal effects of ash in soil erosion. Have a better knowledge about this mobility is a priority to future research. Other important aspects to have to be assessed in the future are how ash particulates percolate on soil and how ash chemical composition is important to induce soil aggregation and dispersion. How soil micro topography have implications on ash spatial distribution and if soil micro topography changes with time? What the factors that controls it? What it is the impact of ash in vegetation recuperation and the implications of this recover in ash spatial distribution? We need studies with better spatial and temporal resolution, especially in the immediate period after the fire, when the major spatial and temporal changes on ash distribution and impacts occur. Based on high level research conducted by Artemi Cerdà and others, our future research will be focused in these and other aspects in order to have a better knowledge about the impacts of ash on post-fire spatio-temporal erosion. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland.Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda, Y., Dietrich W. E., and Booker, F. 2008. Evolution of overland flow after severe forest fire, Point Reyes, California, Catena, 72, 13-20. Pereira, P. Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. 2013. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In press) Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. 2010. Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia. ISBN: 978-84-370-7887-8. Deposito Legal: V-3541-2010. Pereira, P., Úbeda, X. 2010. Spatial variation of heavy metals released from ashes after a wildfire, Journal of Environmental Engineering and Landscape Management, 18(1), 13-22. Pereira, P., Ubeda, X., Martin, D. 2012. Fire severity effects on ash chemical composition and water-extractable elements, Geoderma, 191, 105-114. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Guerrero, C. 2011. Effects of a low prescribed fire in ash water soluble elements in a Cork Oak (Quercus suber) forest located in Northeast of Iberian Peninsula, Environmental Research, 111(2), 237-247. Stoff, C.R., Wesseling, J.G., Ritsema, C.J. 2011. Effects of ash on soil water retention, Geoderma, 159(3-4), 276-285. Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, 393, 274-286.
Harvey E. Kennedy; Bryce E. Schlaegel
1985-01-01
After three growing seasons, green ash had produced 7,342 pounds per acre of above-ground dry matter compared to 3,572 for oak. Of the total biomass, ash had 53% in the bole (wood plus bark), 22% in old branches, 21% in leaves and 4% in new growth; oak had 50%, 21%, 24%, and 5% in the same components. These proportions changed after leaf fall. Concentrations of N, P, K...
The Effect of Volcanic Ash Composition on Ice Nucleation Affinity
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.
2017-12-01
Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (≥ 2 wt%) in hydrometeors, and be compositionally enriched in K2O relative to MnO and TiO2, the nucleation of ice should efficiently occur. These chemical relationships are not only important for understanding ice nucleation in volcanic plumes, but also for constraining the effect of composition on the INA of other atmospheric aerosols.
Progress toward developing trapping techniques for the emerald ash borer
Therese M. Poland; Deborah G. McCullough; Peter dr Groot; Gary Grant; Linda MacDonald; David L. Cappaert
2005-01-01
Since the 2002 discovery of emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in southeastern Michigan and Windsor, Ontario, the distribution of this exotic insect has continued to expand. The primary infestation in Michigan currently includes 13 counties, with small isolated pockets in at least 13 other counties....
M. Lourdes Chamorro; Eduard Jendek; Robert A. Haack; Toby Petrice; Norman E. Woodley; Alexander S. Konstantinov; Mark G. Volkovitsh; Xing-Ke Yang; Vasily V. Grebennikov
2015-01-01
The 33 species of Agrilus (Coleoptera: Buprestidae) hypothesized to be most closely related or most similar to Agrilus planipennis Fairmaire (the emerald ash borer), are described and illustrated. Morphology (adults and immatures), biology, distribution, detailed taxonomic history and systematics are presented for each species,...
Experimental and numerical analysis of metal leaching from fly ash-amended highway bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin, Bora; Aydilek, Ahmet H., E-mail: aydilek@umd.edu; Li, Lin
2012-05-15
Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. Thismore » objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkaduvasala, V.; Murphy, D.W.; Ban, H.
Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles frommore » a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.« less
Puc, Małgorzata
2012-01-01
Pollen grains are one of the most important groups of atmospheric biological particles that originate allergic processes. Knowledge of intradiurnal variation of the atmospheric pollen may be useful for the treatment and prevention of pollen allergies. Intradiurnal fluctuation of hourly pollen counts in 24 h are related to the daily rhythm of anther opening, and modified by various interacting factors. Flowering and pollen production of individual species are influenced by genetic, phenological, ecological, meteorological and climatic factors. Estimation of the intradiurnal variability in the pollen count permits evaluation of the threat posed by allergens over a given area. Measurements performed in Szczecin over a period of 7 years (2006-2012) permitted analysis of hourly variation of the pollen count of birch (Betula) and ash (Fraxinus) in 24 h, and evaluation of the impact of weather conditions and the concentration of gas air pollutants on the intradiurnal patterns of both taxa. Aerobiological monitoring was conducted using a Hirst volumetric trap (Lanzoni VPPS 2000). Consecutive phases during the day were defined as 1, 5, 25, 50, 75, 95, 99% of annual total pollen. The analysis revealed that 50% of total daily pollen was noted at 14:00 for Betula and Fraxinus. The hourly distribution of birch pollen count skewed to the left and the majority of pollen of this taxon appears in the air in the first 12 hours of the day. However, for ash, the hourly distribution of pollen count skewed to the right. Statistically significant correlation was noted between the Betula and Fraxinus pollen concentration and the mean air temperature, relative humidity, wind speed, air pressure, total radiation and nitrogen oxides (NO(x)).
Size distribution of rare earth elements in coal ash
Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.
2015-01-01
Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
Mueller, Sebastian B; Ayris, Paul M; Wadsworth, Fabian B; Kueppers, Ulrich; Casas, Ana S; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B
2017-03-31
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be "hotspots" for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits.
Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.
2017-01-01
Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966
NASA Astrophysics Data System (ADS)
Molinie, Jack; Bernard, Marie-Lise; Komorowski, Jean-Christophe; Euphrasie-Clotilde, Lovely; Brute, France-Nor; Roussas, Andre
2014-05-01
On the 11 February 2010, fifteen minutes after midday, an explosive eruption of Soufriere Hills volcano sent tephra over the neighbour Caribbean islands. The volcanic ashes benefit from the vertical wind distribution of the moment to reach Guadeloupe island and cover it ground near 5 hours after the ash venting. Since the first ashes arrival over the town of Pointe-a-Pitre (located at 80 km at the South East of Soufriere hills volcano) to the end of the event, we measured the mean particle concentrations and particle size distributions every twenty minutes. Measurements were performed at a building roof of the town using an optical particles counter Lighthouse IAQ 3016 mainly used in indoor air quality studies and which provides up to 6 particle size channels of simultaneous counting with aerodynamic diameters classes ranging from 0.3 to >10 µm. The airborne particulate matter mass concentration, with equivalent aerodynamic diameters less than 10 µm (PM10) were measured by the local air quality network Gwad'air, in the vicinity of the site used to study this ash fall.. The maximum concentration of small particles with diameter lesser than 1µm (D0.3-1) was observed one hour before the larger particles. This result may imply a difference in shape and density between particles D0.3-1 and particles D1-10 (1
Sensitivity test and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Selva, J.; Costa, A.; De Natale, G.; Di Vito, M. A.; Isaia, R.; Macedonio, G.
2018-02-01
We present the results of a statistical study on tephra dispersal in the case of a reactivation of the Campi Flegrei volcano. To represent the spectrum of possible eruptive sizes, four classes of eruptions were considered. Excluding the lava emission, three classes are explosive (Small, Medium, and Large) and can produce a significant quantity of volcanic ash. Hazard assessments were made through simulations of atmospheric dispersion of ash and lapilli, considering the full variability of winds and eruptive vents. The results are presented in form of conditional hazard curves given the occurrence of specific eruptive sizes, representative members of each size class, and then combined to quantify the conditional hazard given an eruption of any size. The main focus of this analysis was to constrain the epistemic uncertainty (i.e. associated with the level of scientific knowledge of phenomena), in order to provide unbiased hazard estimations. The epistemic uncertainty on the estimation of hazard curves was quantified, making use of scientifically acceptable alternatives to be aggregated in the final results. The choice of such alternative models was made after a comprehensive sensitivity analysis which considered different weather databases, alternative modelling of submarine eruptive vents and tephra total grain-size distributions (TGSD) with a different relative mass fraction of fine ash, and the effect of ash aggregation. The results showed that the dominant uncertainty is related to the combined effect of the uncertainty with regard to the fraction of fine particles with respect to the total mass and on how ash aggregation is modelled. The latter is particularly relevant in the case of magma-water interactions during explosive eruptive phases, when a large fraction of fine ash can form accretionary lapilli that might contribute significantly in increasing the tephra load in the proximal areas. The variability induced by the use of different meteorological databases and the selected approach to modelling offshore eruptions were relatively insignificant. The uncertainty arising from the alternative implementations, which would have been neglected in standard (Bayesian) quantifications, were finally quantified by ensemble modelling, and represented by hazard and probability maps produced at different confidence levels.
Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace
NASA Astrophysics Data System (ADS)
Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng
2009-10-01
Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.
Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.
Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T
2014-04-15
The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.
Deposition or not? The fate of volcanic ash after aggregation processes
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.
2017-04-01
In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be a highly hygroscopic salt) in de-ionized water yielded comparable results without observable aggregation. In case of successful aggregation, concentration of salts has been found to be in the range of published values. We conclude that non-hygroscopic salt crystal precipitation from an aqueous liquid interacting with the glass phase in volcanic ash is a very efficient way to produce cohesive ash aggregates that can survive external forces acting during transport and sedimentation. Our parameterization of ash aggregation processes shall now be implemented in ash plume dispersal modelling for improved and more accurate ash distribution forecasting in the event of explosive volcanic eruptions.
Sulfate resistance of high calcium fly ash concrete
NASA Astrophysics Data System (ADS)
Dhole, Rajaram
Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime-fly ash pastes confirmed that fly ash mortar or concrete mixes forming more monosulfate than ettringite before exposure to sulfates would offer poor sulfate resistance and vice versa. During quantitative Rietveld analysis carried out for determining ettringite, monosulfate and gypsum formed in the fly ash pastes, it was observed that fly ash mixtures showing more ettringite after exposures to sulfates, give poor sulfate resistance. A good relationship between the amounts of ettringite formed and expansions of mortar specimens in the ASTM C 1012 test was found.
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-03-01
Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carboni, Elisa; Smith, Andrew; Grainger, Roy; Dudhia, Anu; Thomas, Gareth; Peters, Daniel; Walker, Joanne; Siddans, Richard
2013-04-01
The IASI high resolution infrared spectra is exploited to study volcanic emission of ash and sulphur dioxide (SO2). IASI is a Fourier transform spectrometer that covers the spectral range 645 to 2760 cm-1 (3.62-15.5 μm). The IASI field of view consists of four circles of 12 km inside a square of 50 x 50 km, and nominally it can achieve global coverage in 12 hours. The thermal infrared spectra of volcanic plumes shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. IASI spectra also contain information about the atmospheric profile (temperature, gases, aerosol and cloud) and radiative properties of the surface. In particular the ash signature depends on the composition and size distribution of ash particles as well on their altitude. The sulphur dioxide signature depends on SO2 amount and vertical profile. The results from a new algorithm for the retrieval of sulphur dioxide (SO2) from the Infrared Atmospheric Sounding Interferometer (IASI) data will be presented. The SO2 retrieval follows the method of Carboni et al. (2012) and retrieves SO2 amount and altitude together with a pixel by pixel comprehensive error budget analysis. IASI brightness temperature spectra are analysed, to retrieve ash properties, using an optimal estimation retrieval scheme and a forward model based on RTTOV. The RTTOV output for a clean atmosphere (containing gas but not cloud or aerosol/ash) will be combined with an ash layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. We exploit the IASI measurements in the atmospheric window spectral range together with the SO2 absorption bands (at 7.3 and 8.7 μm) to study the evolution of ash and SO2 volcanic plume for recent volcanic eruptions case studies. Particular importance is given to investigation of mismatching between the forward model and IASI measurements which can be due, for example, to imperfect knowledge of ash optical properties.
Saqib, Naeem; Bäckström, Mattias
2015-10-01
Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Gooding, J. L.; Clanton, U. S.; Gabel, E. M.; Warren, J. L.
1983-01-01
Volcanic ash particles collected from the stratosphere after the March/April, 1982 explosive eruption of El Chichon volcano, Mexico, were mostly 2-40 micron vesicular shards of silicic volcanic glass that varied in abundance, at 16.8-19.2 km altitude, from 200 per cu m (30-49 deg N lat.) in May to 1.3 per cu m (45-75 deg N) in October. At the minimum, the ash cloud covered latitudes 10-60 deg N in July and 10 deg S-75 deg N in October. In May and July, ash particles were mostly free, individual shards (and clusters of shards) but, by October, were intimately associated with liquid droplets (presumably, sulfuric acid). In May 1982, the total stratospheric burden of ash was at least 240 tons (2.2 x 10 to the 8th g) although the total ash injected into the stratosphere by the eruption was probably 480-8400 tons.
NASA Astrophysics Data System (ADS)
Jensen, B. J. L.; Mackay, H.; Pyne-O'Donnell, S.; Plunkett, G.; Hughes, P. D. M.; Froese, D. G.; Booth, R.
2014-12-01
Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.
Tepe, Nathalie; Bau, Michael
2014-08-01
Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution <1000 nm is only rarely documented. We here report results of a geochemical study of glacial-fed rivers, glacial surface runoff, glacial base flow, and pure glacial meltwater from southern Iceland, that had been sampled 25 days after the explosive eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultraviolet Satellite Measurements of Volcanic Ash. Chapter 12
NASA Technical Reports Server (NTRS)
Carn, S. A.; Krotkov, N. A.
2016-01-01
Ultraviolet (UV) remote sensing of volcanic ash and other absorbing aerosols from space began with the launch of the first Total Ozone Mapping Spectrometer (TOMS) instrument in 1978. Subsequent UV satellite missions (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS) have extended UV ash measurements to the present, generating a unique multidecadal record. A UV Aerosol Index (UVAI) based on two near-UV wavelengths, equally applicable to multispectral (TOMS, DSCOVR) or hyperspectral (GOME, SCIAMACHY, OMI, GOME-2, OMPS) instruments, has been used to derive a unique absorbing aerosol climatology across multiple UV satellite missions. Advantages of UV ash measurements relative to infrared (IR) techniques include the ability to detect ash at any altitude (assuming no clouds), above clouds, and over bright surfaces, where visible and IR techniques may fail. Disadvantages include the daytime-only restriction and nonspecificity to silicate ash, since UV measurements are sensitive to any UV-absorbing aerosol, including smoke, desert dust, and pollution. However, simultaneous retrieval of sulfur dioxide (SO2) abundance and UVAI provides robust discrimination of volcanic clouds. Although the UVAI is only semiquantitative, it has proved successful at detecting and tracking volcanic ash clouds from many volcanic eruptions since 1978. NASA A-Train measurements since 2006 (eg, CALIOP) have provided much improved constraints on volcanic ash altitude, and also permit identification of aerosol type through sensor synergy. Quantitative UV retrievals of ash optical depth, effective particle size, and ash column mass are possible and require assumptions of ash refractive index, particle size distribution, and ash layer altitude. The lack of extensive ash refractive index data in the UV-visible and the effects of ash particle shape on retrievals introduce significant uncertainty in the retrieved parameters, although limited validation against IR ash retrievals has been successful. In this contribution, we review UV ash detection and retrieval techniques and provide examples of volcanic eruptions detected in the approx. 37 year data record.
Development of a GNSS Volcano Ash Plume Detector
NASA Astrophysics Data System (ADS)
Rainville, N.; Palo, S. E.; Larson, K. M.; Naik, S. R.
2015-12-01
Global Navigation Satellite Systems (GNSS), broadcast signals continuously from mid Earth orbit at a frequency near 1.5GHz. Of the four GNSS constellations, GPS and GLONASS are complete with more than 55 satellites in total. While GNSS signals are intended for navigation and timing, they have also proved to be useful for remote sensing applications. Reflections of the GNSS signals have been used to sense soil moisture, snow depth, and wind speed while refraction of the signals through the atmosphere has provided data on the electron density in the ionosphere as well as water vapor and temperature in the troposphere. Now analysis at the University of Colorado has shown that the attenuation of GNSS signals by volcanic ash plumes can be used to measure the presence and structure of the ash plume. This discovery is driving development of a distributed GNSS sensor network to complement existing optical and radar based ash plume monitoring systems. A GNSS based sensing system operating in L-band is unaffected by weather conditions or time of day. Additionally, the use of an existing signal source greatly reduces the per sensor cost and complexity compared to a radar system. However since any one measurement using this method provides only the total attenuation between the GNSS satellite and the receiver, full tomographic imaging of a plume requires a large number of sensors observing over a diversity of geometries. This presentation will provide an overview of the ongoing development of the GNSS sensor system. Evaluation of low priced commercial GNSS receivers will be discussed, as well as details on the inter sensor network. Based on analysis of existing GPS receivers near volcanic vents, the baseline configuration for an ash plume monitoring network is a 1km spaced ring of receivers 5km from the vent updating every 5 seconds. Preliminary data from field tests will be presented to show the suitability of the sensor system for this configuration near an active volcano.
Scoppettone, G.G.; Johnson, D.M.; Hereford, M.E.; Rissler, Peter; Fabes, Mark; Salgado, Antonio; Shea, Sean
2012-01-01
Habitat restoration that favors native species can help control non-native species (McShane and others, 2004; Scoppettone and others, 2005; Kennedy and others, 2006). Restoration of Carson Slough and its tributaries present an opportunity to promote habitat types that favor native species over non-natives. Historically, the majority of Ash Meadows spring systems were tributaries to Carson Slough. In 2007 and 2008, a survey of Ash Meadows spring systems was conducted to generate baseline information on the distribution of fishes throughout AMNWR (Scoppettone and others, 2011b). In this study, we conducted a follow-up survey with emphasis on upper Carson Slough. This permitted us to gauge the early effects of spring system restoration on fish populations and to generate further baseline data relevant to future restoration efforts.
NASA Astrophysics Data System (ADS)
De Rosa, R.
This paper illustrates some problems involved in the quantitative compositional study of pyroclastic deposits and proposes criteria for selecting the main petrographic and textural classes for modal analysis. The relative proportions of the different classes are obtained using a point-counting procedure applied to medium-coarse ash samples that reduces the dependence of the modal composition on grain size and avoids tedious counting of different grain-size fractions. The major purposes of a quantified measure of component distributions are to: (a) document the nature of the fragmenting magma; (b) define the eruptive dynamics of the eruptions on a detailed scale; and (c) ensure accuracy in classifying pyroclastic deposits. Compositional modes of the ash fraction of pyroclastic deposits vary systematically, and their graphical representation defines the compositional and textural characteristics of pyroclastic fragments associated with different eruptive styles. Textural features of the glass component can be very helpful for inferring aspects of eruptive dynamics. Four major parameters can be used to represent the component composition of pyroclastic ash deposits: (a) juvenile index (JI); (b) crystallinity index (CrI); (c) juvenile vesicularity index (JVI); and (d) free crystal index (FCrI). The FCrI is defined as the ratio between single and total crystal fragments in the juvenile component (single crystals+crystals in juvenile glass). This parameter may provide an effective estimate of the mechanical energy of eruptions. Variations in FCrI vs JVI discriminate among pyroclastic deposits of different origin and define compositional fields that represent ash derived from different fragmentation styles.
New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials
NASA Astrophysics Data System (ADS)
Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan
2017-12-01
The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.
Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem
Mamidala, Praveen; Bonello, Pierluigi; Herms, Daniel A.; Mittapalli, Omprakash
2011-01-01
Background Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. Methodology and Principal Findings Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. Conclusions and Significance The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development. PMID:21283712
NASA Technical Reports Server (NTRS)
Murrow, P. J.; Rose, W. I., Jr.; Self, S.
1980-01-01
The total grain distribution of tephra from the eruption by the Fuego volcano in Guatemala on Oct. 14, 1974 was determined by grain size analysis. The region within each isopach has a grain distribution which was weighted proportionally to its percentage volume; the total distribution had a median grain size of 0.6 mm and a sorting coefficient of 2.3. The ash composed of fine particles did not fall in the volcano area as part of the recognizable tephra blanket; the eruption column reached well into the stratosphere to the height of 10-12 km above sea level, with mass flux rate estimated altitudes of 18-23 km
NASA Astrophysics Data System (ADS)
Tsuji, T.; Nishizaka, N.; Onishi, K.
2017-12-01
Sedimentation processes during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variation of tephra deposits. Especially, an accurate description of the amount of fine particles has also significant implications for the assessment of specific tephra hazards. Grain size studies for single short-term eruption has advantage to contribute understanding the sedimentation processes because it is simple compared to long-lasting eruption. The 2016 Aso Nakadake eruption, Japan represents an ideal for the study of short-term eruptions thanks to an accurate investigation. Then, we investigate the grain size variation with distance from the vent and sedimentological features of the deposit to discuss the sedimentation processes of the tephra fragments. The eruption provided pyroclastic flow deposit and fallout tephra which distributed NE to ENE direction from the vent. The deposits between 4 and 20 km from vent consist of fine-coated lapilli to coarse ash, ash pellet and mud droplet in ascending degree. The samples are lapilli-bearing within 20 km from vent and those outside of 20 km mainly consist of ash particles. Detailed analyses of individual samples highlight a rapid decay of maximum and mean grain size for the deposit from proximal to distal. The decay trend of maximum grain-size is approximated by three segments of exponential curves with two breaks-in-slope at 10 and 40 km from vent. Most of the sampled deposits are characterized by bimodal grain-size distributions, with the modes of the coarse subpopulation decreasing with distance from vent and those of the fine subpopulation being mostly stable. The fine subpopulation has been interpreted as being mostly associated with size-selective sedimentation processes (e.g., particle aggregation) confirmed by the existence of fine-coated particles, ash pellet and mud droplet. As the fine-coated particles generally have a higher terminal velocity than the individual constituent particles, those could be related with the rapid decrease of maximum grain-size with distance from vent at proximal area. Further detail grain-size analyses and theoretical studies can be contributed to understand the effect of fine ash aggregation on sedimentation processes quantitatively.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.
Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh
2009-11-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.C.; Lee, W.J.; Shih, S.I.
2009-07-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less
Matysiak, W; Królikowska-Prasał, I; Staszyc, J; Kifer, E; Romanowska-Sarlej, J
1989-01-01
The studies were performed on 44 white female Wistar rats which were intratracheally administered the suspension of the soil dust and the electro-energetic ashes. The electro-energetic ashes were collected from 6 different local heat and power generating plants while the soil dust from several random places of our country. The statistical analysis of the body and the lung mass of the animals subjected to the single dust and ash insufflation was performed. The applied variants proved the statistically significant differences between the body and the lung mass. The observed differences are connected with the kinds of dust and ash used in the experiment.
NASA Astrophysics Data System (ADS)
Valverde, Viviana; Mothes, Patricia; Andrade, Daniel
2014-05-01
A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the Huapula and Pablo VI sites (in the western Amazon region of Ecuador), the reworked ashes are predominantly of Sangay volcano (in permanent eruptive activity since 1628). Finally, the work shared between archaeologists and volcanologists allowed us to discover more deposits of volcanic ashes at archaeological sites. These layers sometimes have more than 30 cm thickness in distal regions, such as the thick ash layer left by Pululahua's 2400 yBP eruption, a fact which helps us to comprehend the impact of volcanoes on past cultures.
NASA Astrophysics Data System (ADS)
Nath, D. C. D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C.
2010-02-01
The surfaces of fly ash (FA) particles were modified by surfactant, sodium lauryl sulphate (SLS) and used in fabrication of composite films with polyvinyl alcohol (PVA). Both unmodified fly ash (FA) and modified fly ash (SLS-FA) samples were examined using a range of analytical tools including X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The distribution patterns of SLS-FA particles were shifted to the higher regions compared to FA by adding 1.2-4.2 μm in the ranges between 2 and 25 μm, whereas the modification process reduced the size of the particles over 25 μm due to grinding during the activation process. The increased 1.2-4.2 μm in average can be considered the thickness of the surfactant on the SLS-FA surface. On the oxides based chemical analysis by XRF, the compositions were almost unchanged. SEM and TEM were visualised the irregular sizes morphology mostly spherical of the particles, although it is impossible to capture the images of exactly same particles in modified and unmodified forms. The composite films reinforced with SLS-FA showed 33% higher strength than those of FA filled films. The enhancement of tensile strength attributed from the level of physical bonding between SLS-FA and PVA surfaces.
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Microphysical Properties of Alaskan Volcanic Ash
NASA Astrophysics Data System (ADS)
Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.
2017-12-01
Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved microphysical properties show that Mt. Katmai ash is less absorbing than the Mt. Okmok ash in visible wavelengths. Phase function of these Alaskan volcanic ashes is smooth curve without any significant features. Phase function and polarized phase function measured do not exhibit strong spectral dependence in visible wavelengths.
Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F
2012-07-15
Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not encapsulate the salt or act as a sustainable salt sink due to over time reduction in pore water pH. The leaching behaviours of Ca, Mg, Na+, K+, Se, Cr and Sr are controlled by the pH of the leachant in both fresh and unsaturated weathered ash. Other trace metals like As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. The precipitation of minor quantities of secondary mineral phases in the unsaturated weathered ash has significant effects on the acid susceptibility and leaching patterns of chemical species in comparison with fresh ash. The unsaturated weathered ash had lower buffering capacity at neutral pH (7.94-8.00) compared to fresh (unweathered) ash. This may be due to the initial high leaching/flushing of soluble basic buffering constituents from fly ash after disposal. The overall results of the acid susceptibility tests suggest that both fresh ash and unsaturated weathered ash would release a large percentage of their chemical species when in contact with slightly acidified rain. Proper management of ash dumps is therefore essential to safeguard the environmental risks of water percolation in different fly ashes behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya
2018-07-01
After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dollberg, D D; Bolyard, M L; Smith, D L
1986-03-01
This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophotometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized supply, all laboratories employing the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980.
Markiewicz-Keszycka, Maria; Casado-Gavalda, Maria P; Cama-Moncunill, Xavier; Cama-Moncunill, Raquel; Dixit, Yash; Cullen, Patrick J; Sullivan, Carl
2018-04-01
Gluten free (GF) diets are prone to mineral deficiency, thus effective monitoring of the elemental composition of GF products is important to ensure a balanced micronutrient diet. The objective of this study was to test the potential of laser-induced breakdown spectroscopy (LIBS) analysis combined with chemometrics for at-line monitoring of ash, potassium and magnesium content of GF flours: tapioca, potato, maize, buckwheat, brown rice and a GF flour mixture. Concentrations of ash, potassium and magnesium were determined with reference methods and LIBS. PCA analysis was performed and presented the potential for discrimination of the six GF flours. For the quantification analysis PLSR models were developed; R 2 cal were 0.99 for magnesium and potassium and 0.97 for ash. The study revealed that LIBS combined with chemometrics is a convenient method to quantify concentrations of ash, potassium and magnesium and present the potential to classify different types of flours. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the visibility of airborne volcanic ash and mineral dust
NASA Astrophysics Data System (ADS)
Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.
2012-12-01
After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the airborne aerosol layer and the background, the illumination, the particle size distribution and mass concentration, the wavelength-dependent light scattering and absorption by the aerosol layer, the human perception, etc. In addition, the optical depth along the line of sight through an aerosol layer is more important than just the (vertical) optical depth, which is measured, for example, by sun photometers or satellites. The results of our study are in particular interesting for the question on the visibility of volcanic ash. Our analyses of "visible ash" demonstrate that under clear sky conditions volcanic ash is visible already at concentrations far below what is currently considered as the upper limit for safe operation of an aircraft engine (2 mg m-3). The presence of a grayish-brown layer in the atmosphere does not unambiguously indicate the presence of volcanic ash. An uninformed observer is unlikely to identify an aged volcanic ash layer in his field of view without further information. The presence of clouds would make it even more complicated to visually detect volcanic ash. In regions with high background aerosol loading in the atmosphere from natural or anthropogenic influences, such as seen in large parts of Asia, the visual detection of volcanic ash as an additional contaminant will be substantially more difficult.
Soil quality in a cropland soil treated with wood ash containing charcoal
NASA Astrophysics Data System (ADS)
Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin
2014-05-01
The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio < 0.5 and T50 en DSC= 500 ºC). The evolution of SOM properties were monitored over three years by solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined. Three years after applications the SOM content increased lightly in the treatment receiving more than 16 Mg ha-1 of wood ash. SOM in the treated soils displayed a higher degree of aromaticity than in the untreated soils, indicating a gain in more stable SOM compounds probably as a consequence of the charcoal application. However, both methods also revealed increases in labile C compounds, probably due to the carbohydrates added through root system. Microbial biomass-C and soil respiration increased significantly. The treatments also led to increases in the functional diversity indices. The amended soils showed greater utilization of substrates and the ability of soil bacteria to utilize different C resources was also greatly altered. The application of mixed wood ash did not lead to any difference in MWD, which was around 6 mm in all cases. The application of 16 Mg fly wood ash ha-1 increased significantly the hydraulic conductivity (4.07 cmh-1) when compared with in control plots (1.3 cmh-1) and mixed ash plots (1.52 and 2.45 cmh-1, 16 Mg and 32 Mg respectively). However, air-filled porosity was not higher in 16 Mg fly ash plots. AWC was not improved by wood ash application.
Košnář, Zdeněk; Mercl, Filip; Perná, Ivana; Tlustoš, Pavel
2016-09-01
The use of biomass fuels in incineration power plants is increasing worldwide. The produced ashes may pose a serious threat to the environment due to the presence of polycyclic aromatic hydrocarbons (PAHs), because some PAHs are potent carcinogens, mutagens and teratogens. The objective of this study was to investigate the content of total and individual PAHs in fly and bottom ash derived from incineration of phytomass and dendromass, because the data on PAH content in biomass ashes is limited. Various operating temperatures of incineration were examined and the relationship between total PAH content and unburned carbon in ashes was also considered. The analysis of PAHs was carried out in fly and bottom ash samples collected from various biomass incineration plants. PAH determination was performed using gas chromatography coupled with mass spectrometry. The correlations between the low, medium and high molecular weight PAHs and each other in ashes were conducted. The relationship between PAH content and unburned carbon, determined as a loss on ignition (L.O.I.) in biomass ashes, was performed using regression analysis. The PAH content in biomass ashes varied from 41.1±1.8 to 53,800.9±13,818.4ng/g dw. This variation may be explained by the differences in boiler operating conditions and biomass fuel composition. The correlation coefficients for PAHs in ash ranged from 0.8025 to 0.9790. The regression models were designed and the coefficients of determination varied from 0.908 to 0.980. The PAH content in ash varied widely with fuel type and the effect of operating temperature on PAH content in ash was evident. Fly ashes contained higher amounts of PAHs than bottom ashes. The low molecular weight PAHs prevailed in tested ashes. The exponential relationship between the PAH content and L.O.I. for fly ashes and the linear for bottom ashes was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Rowe, J.J.; Steinnes, E.
1977-01-01
Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.
Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M
2013-11-01
The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples, despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Composite Ni-Co-fly ash coatings on 5083 aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.
2011-03-01
Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.
NASA Astrophysics Data System (ADS)
Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.
2010-05-01
Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have proved to be almost devoid of volcanic ash, which contrasts with results obtained from sites throughout central and northern Europe. This suggests that Spain has remained free of ashfall events throughout the late Pleistocene, or that any ash dispersal over Spain has been short-lived and/or infrequent. This appears to accord with the pattern of dispersal of Eyjafjallajökull ash clouds over April to May 2010. Most of the active period was characterised by low eruptive columns and the tropospheric dispersal of ash. Under these conditions, ash dispersal was multi-directional from eastern Europe to Greenland and beyond, but did not encroach on to the Iberian peninsula. In contrast, when the eruptive columns became more elevated and entrained in the jet stream, the dispersal directions were more uni-directional and passed over Iberia and North Africa. Thus the apparent lack of volcanic ash in Iberia (10 - 40ka) may have as much to do with eruptive column height and volcano location as with circulation patterns (tropospheric v. stratospheric). A more comprehensive assessment of geological records of non-visible ash layers in selected sites may hold the key to examining this matter more robustly.
Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)
NASA Astrophysics Data System (ADS)
Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine
2014-05-01
The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes for recent volcanic eruptions.
Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard
NASA Astrophysics Data System (ADS)
Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.
2013-12-01
Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.
USDA-ARS?s Scientific Manuscript database
The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a serious invasive forest pest that has killed tens of millions of ash (Fraxinus) trees in the United States and Canada. By caging EAB adults on trunks of healthy ash trees, we established three generations of experimental cohorts from ...
NASA Astrophysics Data System (ADS)
Giri Babu, P. V. S.; Swaminathan, G.
2016-09-01
A comprehensive study was carried out on four different fly ashes used as a catalyst for the degradation of Acid Red 1 using ultraviolet rays. These fly ashes are collected from different thermal power stations located at various places in India and having different chemical compositions. Three fly ashes are from lignite-based thermal power plants, and one is from the coal-based power plant. One fly ash is classified as Class F, two fly ashes are classified as Class C and remaining one is not conforming to ASTM C618 classification. X-Ray Fluorescence analysis was used to identify the chemical composition of fly ashes and SiO2, Al2O3, CaO, Fe2O3 and TiO2 were found to be the major elements present in different proportions. Various analysis were carried out on all the fly ashes like Scanning Electron Microscopy to identify the microphysical properties, Energy Dispersive X-Ray spectroscopy to quantify the elements present in the catalyst and X-Ray Diffraction to identify the catalyst phase analysis. The radical generated during the reaction was identified by Electron paramagnetic resonance spectroscopy. The parameters such as initial pH of the dye solution, catalyst dosage and initial dye concentration which influence the dye degradation efficiency were studied and optimised. In 60 min duration, the dye degradation efficiency at optimum parametric values of pH 2.5, initial dye concentration of 10 mg/L and catalyst dosage of 1.0 g/L using various fly ashes, i.e., Salam Power Plant, Barmer Lignite Power Plant, Kutch Lignite Power Plant and Neyveli Lignite Thermal Power plant (NLTP) were found to be 40, 60, 67 and 95 % respectively. The contribution of adsorption alone was 18 % at the above mentioned optimum parametric values. Among the above four fly ash NLTP fly ashes proved to be most efficient.
NASA Astrophysics Data System (ADS)
Khadilkar, Aditi B.
The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied. Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed combustors and gasifiers is initiated at the particle-level by low-melting components rich in iron- and calcium-based minerals. Although the bulk ash chemical composition does not indicate potential for agglomeration, study of particle-level heterogeneities revealed that agglomeration can begin at lower temperatures than the fluidized bed operating temperatures of 850 °C. After initiation at the particle-level, more slag is observed to form from alumino-silicate components at about 50 to 100 °C higher temperatures caused by changes in the system, and agglomerate growth propagates in the bed. A post-mortem study of ash agglomerates using SEM-EDX helped to identify stages of agglomerate growth. Additionally, the modeling methodology developed was used to simulate agglomerate growth in a laboratory-scale fluidized bed combustor firing palm shells (biomass), reported in the literature. A comparison of the defluidization time obtained by simulations to the experimental values reported in the case-study was made for the different operating conditions studied. This indicated that although the simulation results were comparable to those reported in the case study, modifications such as inclusion of heat transfer calculations to determine particle temperature resulting from carbon conversion would improve the predictive capabilities. (Abstract shortened by ProQuest.).
Evaluation of coalbed gas potential of the Seelyville Coal Member, Indiana, USA
Drobniak, A.; Mastalerz, Maria; Rupp, J.; Eaton, N.
2004-01-01
The Seelyville Coal Member of the Linton Formation in Indiana potentially contains 0.03 trillion m3 (1.1 TCF) of coalbed gas. The gas content determined by canister desorption technique ranges from 0.5 to 5.7 cm3/g on dry ash free basis (15.4 to 182.2 scf/ton). The controls on gas content distribution are complex, and cannot be explained by the coal rank alone. Ash content and the lithology of the overlying strata, among other factors, may influence this distribution. ?? 2004 Elsevier B.V. All rights reserved.
Alexander Sinz; Emmile S. Gardiner; Brian R. Lockhart; Ray A. Souter
2011-01-01
Stand-level growth responses and plant-level patterns of biomass accumulation and distribution were examined to learn how stand structure influences morphological acclimation and growth of green ash (Fraxinus pennsylvanica Marsh.) advance regeneration following overstory harvesting. Nine, 20-ha plots that received clearcut harvesting (100% basal area removal), partial...
Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.
2013-01-01
Particle size data showing a preponderance of fine ash, even in the most proximal locations, along with the abundance of aggregate lapilli documented in most samples, confirms that particle aggregation played a significant role in the 2009 eruption and induced premature fallout of fine ash.
Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.
2013-01-01
Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data reported on different bases.
Process for the removal of radium from acidic solutions containing same
Scheitlin, F.M.
The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.
Peterson, Donnie L; Cipollini, Don
2017-02-01
Emerald ash borer, Agrilus planipennis (Fairmaire), is an invasive pest of ash trees (Fraxinus spp.) in North America that was recently found infesting white fringetree (Chionanthus virginicus L.). Initial reports of the infestation of white fringetree by emerald ash borer occurred in southwestern Ohio and Chicago, IL. We examined white fringetrees at additional sites in Illinois, Indiana, Ohio, and Pennsylvania in Summer and Fall 2015 and Winter 2016 for emerald ash borer infestation. Our aim was to examine white fringetrees at a limited number of sites with emerald ash borer infestation and to relate tree size, crown dieback, epicormic sprouting, tree sex, and adjacency to ash or white fringetrees with the likelihood of beetle infestation. A higher proportion of infested trees exhibited epicormic sprouting and the likelihood that a tree was infested increased with increasing crown dieback, variables that may be both predictors and responses to attack. The proportion of trees infested with emerald ash borer increased with increasing tree size. Signs consistent with emerald ash borer infestation were found in 26% of 178 white fringetrees, with at least one host infested at each site in all states. Infestation rates of white fringetrees increased with the density of white fringetrees at each site. The Chicago Botanic Garden site had a significantly lower infestation (3.7%) than other sites, which may be due to proactive management of ash. Overall, these data indicate white fringetree has been utilized by emerald ash borer throughout their overlapping ranges in the United States in ornamental settings likely due to ecological fitting. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2017-01-01
One hundred and forty-one glass fragments from medieval Ciudad de Vascos (Toledo, Spain) were analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The glasses fall into three types according to the fluxing agents used: mineral natron, soda-rich plant ash, and a combination of soda ash and lead. The natron glasses can be assigned to various established primary production groups of eastern Mediterranean provenance. Different types of plant ash glasses indicate differences in the silica source as well as the plant ash component, reflecting changing supply mechanisms. While the earlier plant ash groups can be related to Islamic glasses from the Near East, both in terms of typology and composition, the chemical signature of the later samples appear to be specific to glass from the Iberian Peninsula. This has important implications for our understanding of the emerging glass industry in Spain and the distribution patterns of glass groups and raw materials. The plant ash that was used for the Vascos glasses is rich in soda with low levels of potash, similar to ash produced in the eastern Mediterranean. It could therefore be possible that Levantine plant ash was imported and used in Islamic period glass workshops in Spain. Unlike central and northern Europe where an independent glass industry based on potassium-rich wood ash developed during the Carolingian period, the prevalence of soda ash and soda ash lead glass on the Iberian Peninsula indicates its commercial and technological interconnection with the Islamic east. Our study thus traces several stages leading to the development of a specifically Spanish primary glassmaking industry. PMID:28746419
Ash formation, deposition, corrosion, and erosion in conventional boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, S.A.; Jones, M.L.
1995-12-01
The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less
Hydrologic conditions controlling runoff generation immediately after wildfire
Ebel, Brian A.; Moody, John A.; Martin, Deborah A.
2012-01-01
We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.
NASA Astrophysics Data System (ADS)
van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.
2013-08-01
The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Z.; Natesan, K.; Cai, Z.
Increasing the efficiency of coal power plants requires raising the operating temperature above 650°C. However, coal ash can severely attack alloy materials at high temperature. For example, the corrosion rates of commercial Fe- and Ni-based alloys are generally greater than 2 mm/year at 750°C in the gas environment of oxy-fuel combustion. Thus, a critical study is needed to determine the effect of the constituents in the ash on corrosion and find an approach to reduce the corrosion rates in an ash-laden environment at high temperature. The role of CaO in the ash (typical of U.S. Western coal ash) has beenmore » investigated in laboratory exposure environments with various structural alloys. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, and the cracking of scales for the alloys after exposure at 750°C. The thermal stability of K3Al(SO4)3 under the environment of oxy-fuel combustion was determined by thermogravimetric analysis and differential thermal analysis. The reaction of this low melting temperature salt with the CaO-containing ash is discussed. In addition, we performed synchrotron nanobeam X-ray analysis to study the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are used to address the role of CaO in ash in the long-term corrosion performance of alloys.« less
Synthesis of geopolymer composites from a mixture of ferronickel slag and fly ash
NASA Astrophysics Data System (ADS)
Liu, Yun; Zhang, Kang; Feng, Enjuan; Zhao, Hongyi; Liu, Futian
2017-03-01
The synthesis of geopolymers using ferronickel slag and fly ash under alkaline activation was studied. In order to study the effects of different fly ash content on the mechanical properties of the geopolymers produced, the compressive strength of samples was tested at 3, 7, 28 days. The results showed that when the fly ash content was 40%, the compressive strength reached the highest (110.32MPa) at 28 days. XRD analysis showed that the ferronickel slag geopolymers had amorphous aluminosilicate phase formation, indicating that the hydration reaction occurred. FTIR analysis showed the reaction of the geopolymers generated at Si-O-T (Si, Al) and Al-O-Si three-dimensional network. In SEM images, the structure of the geopolymers with 40% fly ash was more compact and cohesive.
NASA Astrophysics Data System (ADS)
Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.
2010-05-01
Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run-out distance, morphology, and stratigraphic context. Sedimentary structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its dynamics. We also present optical microscopic analysis of ash and lapilli particles which portray the fundamental processes occurring during PDCs.
A technique for mapping urban ash trees using object-based image analysis
Dacia M. Meneguzzo; Susan J. Crocker; Greg C. Liknes
2010-01-01
Ash trees are an important resource in the State of Minnesota and a common fixture lining the streets of the Twin Cities metropolitan area. In 2009, the emerald ash borer (EAB), an invasive pest of ash, was discovered in the city of St. Paul. To properly respond to the new-found threat, decisionmakers would benefit from detailed, spatially explicit information on the...
Metal roof corrosion related to volcanic ash deposition
NASA Astrophysics Data System (ADS)
Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.
2013-12-01
Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).
Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong
2009-04-01
To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.
Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling
NASA Astrophysics Data System (ADS)
Stewart, C.; Johnston, D. M.; Leonard, G. S.; Horwell, C. J.; Thordarson, T.; Cronin, S. J.
2006-11-01
Volcanic ash is the most widely-distributed product of explosive volcanic eruptions, and can disrupt vital infrastructure on a large scale. Previous studies of effects of ashfall on natural waters and water supplies have focused mainly on the consequences of increased levels of turbidity (ash suspended in water), acidity and fluoride, with very little attention paid to other contaminants associated with volcanic ash. The aims of this paper are twofold: firstly, to review previous studies of the effects of volcanic ashfall on water supplies and identify information gaps; and secondly, to propose a simple model for predicting effects of ashfall on water supplies using available information on ash composition. We reviewed reported impacts of historic eruptions on water supplies, drawing on case studies from New Zealand, Vanuatu, Argentina, the USA, Costa Rica, Montserrat, Iceland and Guadeloupe. Elevated concentrations of fluoride, iron, sulphate and chloride, as well as turbidity and acidity, have been reported in water supplies. From a public health perspective, the two main issues appear to be: (1) outbreaks of infectious disease caused by the inhibition of disinfection by high levels of suspended ash, and (2) elevated fluoride concentrations. We devised a simple model using volcanic ash leachate composition data to predict effects on receiving waters. Applying this model to the effects of Ruapehu ash, from the 1995/1996 eruptions, suggests that the primary effects of concern are likely to be an increase in acidity (decrease in pH), and increases in concentrations of the metals aluminium, iron and manganese. These metals are not normally considered to pose health risks, and are regulated only by secondary, non-enforceable guidelines. However, exceedences of guideline values for Al, Mn, Fe and pH will cause water to become undrinkable due to a bitter metallic taste and dark colour, and may also cause corrosion, staining and scale deposition problems in water tanks and pipes. Therefore, the main issues following volcanic ashfall of similar composition to Ruapehu ash are likely to be shortages of potable water and damage to distribution systems, rather than risks to public health.
Gorokhovich, Yuri; Reid, Matthew; Mignone, Erica; Voros, Andrew
2003-10-01
Coal mine reclamation projects are very expensive and require coordination of local and federal agencies to identify resources for the most economic way of reclaiming mined land. Location of resources for mine reclamation is a spatial problem. This article presents a methodology that allows the combination of spatial data on resources for the coal mine reclamation and uses GIS analysis to develop a priority list of potential mine reclamation sites within contiguous United States using the method of extrapolation. The extrapolation method in this study was based on the Bark Camp reclamation project. The mine reclamation project at Bark Camp, Pennsylvania, USA, provided an example of the beneficial use of fly ash and dredged material to reclaim 402,600 sq mi of a mine abandoned in the 1980s. Railroads provided transportation of dredged material and fly ash to the site. Therefore, four spatial elements contributed to the reclamation project at Bark Camp: dredged material, abandoned mines, fly ash sources, and railroads. Using spatial distribution of these data in the contiguous United States, it was possible to utilize GIS analysis to prioritize areas where reclamation projects similar to Bark Camp are feasible. GIS analysis identified unique occurrences of all four spatial elements used in the Bark Camp case for each 1 km of the United States territory within 20, 40, 60, 80, and 100 km radii from abandoned mines. The results showed the number of abandoned mines for each state and identified their locations. The federal or state governments can use these results in mine reclamation planning.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping Sun; Panuwat Taerakul; Linda K. Weavers
Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAHmore » concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.« less
Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki
2014-01-01
We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.
Characterization of coal fly ash components by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yañez, Armando; Nicolas, Gines
2009-10-01
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2, Al 2O 3, Fe 2O 3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003 [3]). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis "on tape" was performed in order to establish the experimental conditions for the future "online analysis".
Sectional methods for aggregation problems: application to volcanic eruptions
NASA Astrophysics Data System (ADS)
Rossi, E.
2016-12-01
Particle aggregation is a general problem that is common to several scientific disciplines such as planetary formation, food industry and aerosol sciences. So far the ordinary approach to this class of problems relies on the solution of the Smoluchowski Coagulation Equations (SCE), a set of Ordinary Differential Equations (ODEs) derived from the Population Balance Equations (PBE), which basically describe the change in time of an initial grain-size distribution due to the interaction of "single" particles. The frequency of particles collisions and their sticking efficiencies depend on the specific problem under analysis, but the mathematical framework and the possible solutions to the ODEs seem to be somehow discipline-independent and very general. In this work we will focus on the problem of volcanic ash aggregation, since it represents an extreme case of complexity that can be relevant also to other disciplines. In fact volcanic ash aggregates observed during the fallouts are characterized by relevant porosities and they do not fit with simplified descriptions based on monomer-like structures or fractal geometries. In this work we propose a bidimensional approach to the PBEs which uses additive (mass) and non-additive (volume) internal descriptors in order to better characterize the evolution of volcanic ash aggregation. In particular we used sectional methods (fixed-pivot) to discretize the internal parameters space. This algorithm has been applied to a one dimensional volcanic plume model in order to investigate how the Total Grain Size Distribution (TGSD) changes throughout the erupted column in real scenarios (i.e. Eyjafjallajokull 2010, Sakurajima 2013 and Mt. Saint Helens 1980).
Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M
2018-01-23
Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.
DOT National Transportation Integrated Search
2015-04-01
Research was performed to support the development and recommendation of a standard operating : procedure (SOP) for analyzing the ammonia content in fly ash intended for use in concrete. A review : of existing ash producers found that several differen...
Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai
2017-12-01
The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lab-scale ash production by abrasion and collision experiments of porous volcanic samples
NASA Astrophysics Data System (ADS)
Mueller, S. B.; Lane, S. J.; Kueppers, U.
2015-09-01
In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances ( 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs and can be observed as co-ignimbrite clouds above density currents. Finally, a significant dependency was found between material density and the mass of fines produced, also observable in the total particle size distribution: higher values of open porosity promote the generation of finer-grained particles and overall greater ratios of ash. While this paper draws on numerous previous studies of particle comminution processes, it is the first to analyze and compare results of several comminution experiments with each other in order to characterize these mechanisms.
Andrew J. Storer; Jessica A. Metzger; Ivich Fraser; Deborah G. McCullough; Therese M. Poland; Robert L. Heyd
2007-01-01
The exotic emerald ash borer (EAB), Agrilus planipennis Fairmaire, was first identified in Michigan in 2002, though it had likely been established there for a number of years prior to detection. A key to management of EAB populations is the ability to detect this insect in order to accurately describe its distribution and to locate new outlier...
Neutron activation analysis of thermal power plant ash and surrounding area soils.
Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A
2015-08-01
Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.
Ash dispersal dynamics: state of the art and perspectives
NASA Astrophysics Data System (ADS)
Sulpizio, R.
2013-05-01
Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.
The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei
2016-01-01
The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.
Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis
NASA Astrophysics Data System (ADS)
Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui
2017-12-01
In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.
Volcanic ash supports a diverse bacterial community in a marine mesocosm
Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,
2017-01-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.
Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?
NASA Astrophysics Data System (ADS)
White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.
2013-12-01
Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.
Physical and biological studies of coal and oil fly ash.
Fisher, G L; McNeill, K L; Prentice, B A; McFarland, A R
1983-01-01
Studies were performed to compare the physical and chemical characteristics and the in vitro macrophage cytotoxicity of oil and coal fly ash. Sampling methodology was developed to collect size-fractionated particulate matter from the smokestack of either a coal-fired or an oil-fired power plant. Morphological studies demonstrated particle heterogeneity, although most coal fly ash particles appeared to be spherical. Oil fly ash contained two major morphologies; nonopaque amorphous particles and opaque amorphous particles. Elemental analysis indicates that the coal ash is predominantly composed of aluminosilicate particles, while the oil ash is predominantly inorganic sulfates and carbonaceous particles. In vitro macrophage assays demonstrate that the finest coal fly ash particles are the most cytotoxic; the cytotoxicity is significantly less than that of alpha-quartz, the positive control particle. In contrast, the oil fly ash particles are more cytotoxic than quartz. The cytotoxicity of oil fly ash is due to soluble components, possibly vanadium salts. Images FIGURE 2. A FIGURE 2. B FIGURE 2. C FIGURE 2. D PMID:6641653
Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle
2015-12-01
Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar
2017-12-01
The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and <100 μm) and five sub-sieve (12-16, 16-23, 23-34, 34-49, and 49-100 μm) particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with <100 μm range. The enrichment factor of individual elements varied considerably within the samples as well as the sub-sieve particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.
2018-06-01
Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.
Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla
2015-04-28
Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less
NASA Astrophysics Data System (ADS)
Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.
2018-05-01
Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.
DOT National Transportation Integrated Search
2015-04-01
Fly ash produced when pulverized coal is burned in electrical generators can be used as a : concrete additive with many benefits. However, fly ash can have a high ammonia content, : which is released when used in concrete, potentially exposing worker...
Environmental hazard of oil shale combustion fly ash.
Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne
2012-08-30
The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.
Material and structural characterization of alkali activated low-calcium brown coal fly ash.
Skvára, Frantisek; Kopecký, Lubomír; Smilauer, Vít; Bittnar, Zdenek
2009-09-15
The waste low-calcium Czech brown coal fly ash represents a considerable environmental burden due to the quantities produced and the potentially high content of leachable heavy metals. The heterogeneous microstucture of the geopolymer M(n) [-(Si-O)(z)-Al-O](n).wH(2)O, that forms during the alkaline activation, was examined by means of microcalorimetry, XRD, TGA, DSC, MIP, FTIR, NMR MAS ((29)Si, (27)Al, (23)Na), ESEM, EDS, and EBSD. The leaching of heavy metals and the evolution of compressive strength were also monitored. The analysis of raw fly ash identified a number of different morphologies, unequal distribution of elements, Fe-rich rim, high internal porosity, and minor crystalline phases of mullite and quartz. Microcalorimetry revealed exothermic reactions with dependence on the activator alkalinity. The activation energy of the geopolymerization process was determined as 86.2kJ/mol. The X-ray diffraction analysis revealed no additional crystalline phases associated with geopolymer formation. Over several weeks, the (29)Si NMR spectrum testified a high degree of polymerization and Al penetration into the SiO(4) tetrahedra. The (23)Na NMR MAS spectrum hypothesized that sodium is bound in the form of Na(H(2)O)(n) rather than Na(+), thus causing efflorescence in a moisture-gradient environment. As and Cr(6+) are weakly bonded in the geopolymer matrix, while excellent immobilization of Zn(2+), Cu(2+), Cd(2+), and Cr(3+) are reported.
NASA Astrophysics Data System (ADS)
Wagner, David R.; Holmgren, Per; Skoglund, Nils; Broström, Markus
2018-06-01
The design and validation of a newly commissioned entrained flow reactor is described in the present paper. The reactor was designed for advanced studies of fuel conversion and ash formation in powder flames, and the capabilities of the reactor were experimentally validated using two different solid biomass fuels. The drop tube geometry was equipped with a flat flame burner to heat and support the powder flame, optical access ports, a particle image velocimetry (PIV) system for in situ conversion monitoring, and probes for extraction of gases and particulate matter. A detailed description of the system is provided based on simulations and measurements, establishing the detailed temperature distribution and gas flow profiles. Mass balance closures of approximately 98% were achieved by combining gas analysis and particle extraction. Biomass fuel particles were successfully tracked using shadow imaging PIV, and the resulting data were used to determine the size, shape, velocity, and residence time of converting particles. Successful extractive sampling of coarse and fine particles during combustion while retaining their morphology was demonstrated, and it opens up for detailed time resolved studies of rapid ash transformation reactions; in the validation experiments, clear and systematic fractionation trends for K, Cl, S, and Si were observed for the two fuels tested. The combination of in situ access, accurate residence time estimations, and precise particle sampling for subsequent chemical analysis allows for a wide range of future studies, with implications and possibilities discussed in the paper.
NASA Astrophysics Data System (ADS)
Poret, Matthieu; Corradini, Stefano; Merucci, Luca; Costa, Antonio; Andronico, Daniele; Montopoli, Mario; Vulpiani, Gianfranco; Freret-Lorgeril, Valentin
2018-04-01
Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-Caulle in 2011) demonstrated the necessity for a better assessment of the eruption source parameters (ESPs; e.g. column height, mass eruption rate, eruption duration, and total grain-size distribution - TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23 November 2013, Etna (Italy) erupted, producing a 10 km height plume, from which two volcanic clouds were observed at different altitudes from satellites (SEVIRI, MODIS). One was retrieved as mainly composed of very fine ash (i.e. PM20), and the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). An atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Apulia regions (southern Italy), permitting tephra sampling in proximal (i.e. ˜ 5-25 km from the source) and medial areas (i.e. the Calabria region, ˜ 160 km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of the initial magma fragmentation. To better constrain the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting TGSD is inverted by best-fitting the field, ground-based, and satellite-based measurements. The results indicate a total erupted mass of 1.2 × 109 kg, being similar to the field-derived value of 1.3 × 109 kg, and an initial PM20 fraction between 3.6 and 9.0 wt %, constituting the tail of the TGSD.
A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios
NASA Astrophysics Data System (ADS)
González-Mellado, A. O.; de La Cruz-Reyna, S.
2010-11-01
The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has been tested, with available data from some recent eruptions in México, and permits to generate ash-fall deposit scenarios from new situations, or to recreate past situations, or to superimpose scenarios from eruptions of other volcanoes. The results may be displayed as thickness vs. distance plots, or as deposit-thickness scenarios superimposed on a regional map by means of a visual computer simulator based on a user-friendly built-in computer graphic interface.
NASA Astrophysics Data System (ADS)
Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.
2004-12-01
Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently preserved in the kettle basins, or more likely, these records lack the resolution to differentiate closely spaced ash-fall events. Core top stratigraphies support the latter interpretation: The 10-12 historically observed ash-fall events are represented by two diffuse zones in the upper 15 cm of the cores. As such, ash records from small kettle lakes should be regarded as conservative statements of ash deposition. Further, ash plumes can have narrow geographic distributions and ash-fall thicknesses can change markedly over short distances. Therefore distal ash-fall stratigraphies underestimate eruption frequencies.
The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation
NASA Astrophysics Data System (ADS)
Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.
2010-12-01
The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.
NASA Astrophysics Data System (ADS)
Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo
2015-04-01
Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands evaluated here. Infiltration reductions and increases in runoff in these systems are more likely caused by the hydrologic effects of the textural interface between ash and soil, or by other fire-induced changes such as vegetation removal, decrease in roughness, and changes in soil water repellency. This is important information for determining the desired focus of post-fire management activities.
Can pore-clogging by ash explain post-fire runoff?
Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.
2016-01-01
Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t
2010-04-15
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feihu Li; Jianping Zhai; Xiaoru Fu
2006-08-15
The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni andmore » V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.« less
In vitro evaluation of pulmonary deposition of airborne volcanic ash
NASA Astrophysics Data System (ADS)
Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn
2013-05-01
There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.
DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009
NASA Astrophysics Data System (ADS)
Gordeev, E.; Droznin, V.
2009-12-01
The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.
NASA Technical Reports Server (NTRS)
Grindle, Thomas J.; Burcham, Frank W., Jr.
2003-01-01
The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.
Studies of fly ash using thermal analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hanxu; Shen, Xiang-Zhong; Sisk, B.
1996-12-31
Improved thermoanalytical methods have been developed that are capable of quantitative identification of various components of fly ash from a laboratory-scale fluidized bed combustion system. The thermogravimetric procedure developed can determine quantities of H{sub 2}O, Ca(OH){sub 2}, CaCO{sub 3}, CaSO{sub 4} and carbonaceous matter in fly ash with accuracy comparable to more time-consuming ASTM methods. This procedure is a modification of the Mikhail-Turcotte methods that can accurately analyze bed ash, with higher accuracy regarding the greater amount of carbonaceous matter in fly ash. In addition, in conjunction with FTIR and SEM/EDS analysis, the reduction mechanism of CaSO{sub 4} as CaSO{submore » 4} + 4H{sub 2} = CaS + 4H{sub 2}O has been confirmed in this study. This mechanism is important in analyzing and evaluating sulfur capture in fluidized-bed combustion systems.« less
Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash
Grau, Francisco; Choo, Hyunwook; Hu, Jong Wan; Jung, Jongwon
2015-01-01
Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM), and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA) maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes. PMID:28793611
Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark
2011-01-01
This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red swamp crayfish and western mosquitofish was in water with temperature greater than 26 degrees C near the springhead, and in shallow (depths less than 10 centimeters) grassy marshes. Among 177 sampling stations within the range of Warm Springs Amargosa pupfish, red swamp crayfish were collected at 96 stations and western mosquitofish were collected at 49 stations. Removal of convict cichlid (Amatitlania nigrofasciata) from Fairbanks Spring was followed by a substantial increase in Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) captures from 910 pre-removal to 3,056 post-removal. Red swamp crayfish was continually removed from Bradford 1 Spring, which seemed to cause an increase in the speckled dace population. Restoration of Kings Pool and Jackrabbit Springs promoted the success of native fishes with the greatest densities in restored reaches. Ongoing restoration of Carson Slough and its tributaries, as well as control and elimination of invasive species, is expected to increase abundance and distribution of Ash Meadows' native fish populations. Further analysis of data from this study will help determine the habitat characteristic(s) that promote native species and curtail non-native species.
NASA Astrophysics Data System (ADS)
Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.
2017-12-01
The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period, despite the detection of significantly higher DOC and TDN concentrations. Examination of seasonal stream water, DOC and TDN export dynamics revealed the relative magnitudes of EAB-induced impacts were not evenly distributed throughout the year, and these differences have distinct seasonal implications for downstream waterbodies.
Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei
2015-03-01
Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.
Evaluation of various agro-wastes for traditional black soap production.
Taiwo, O E; Osinowo, F A
2001-08-01
The agricultural wastes, cocoa-pod husks, palm-bunch waste, sorghum chaff and groundnut shells, which are normally thrown away have been used in the production of black soap. Unlike other soaps which are made from oils and chemicals, black soap is made from oils and agro-wastes ashes. Chemical analysis indicated that the liquid extract from the ashes of the different agro-wastes used contained various amounts of potassium and sodium compounds. The most common ingredient in the agro-wastes was potassium carbonate. The amount of potassium carbonate was 56.73 +/- 0.16% in cocoa-pod ash, 43.15 +/- 0.13% in palm-bunch ash, 16.65 +/- 0.05% in groundnut shell ash and 12.40 +/- 0.08% in sorghum chaff ash. Soaps made from the agro-wastes ashes had excellent solubility, consistency, cleansing and lathering abilities.
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.
2014-12-01
Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total inorganic-N deposition via throughfall. Despite the severity of the disturbance that resulted from the simulated EAB infestation, preliminary results suggest that that these wetlands may show some short-term resiliency to the impacts of ash mortality, resulting in relatively unchanged hydrologic and nutrient deposition regimes.
Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling
NASA Astrophysics Data System (ADS)
Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.
2011-12-01
By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.
NASA Astrophysics Data System (ADS)
Stunder, B.
2009-12-01
Atmospheric transport and dispersion (ATD) models are used in real-time at Volcanic Ash Advisory Centers to predict the location of airborne volcanic ash at a future time because of the hazardous nature of volcanic ash. Transport and dispersion models usually do not include eruption column physics, but start with an idealized eruption column. Eruption source parameters (ESP) input to the models typically include column top, eruption start time and duration, volcano latitude and longitude, ash particle size distribution, and total mass emission. An example based on the Okmok, Alaska, eruption of July 12-14, 2008, was used to qualitatively estimate the effect of various model inputs on transport and dispersion simulations using the NOAA HYSPLIT model. Variations included changing the ash column top and bottom, eruption start time and duration, particle size specifications, simulations with and without gravitational settling, and the effect of different meteorological model data. Graphical ATD model output of ash concentration from the various runs was qualitatively compared. Some parameters such as eruption duration and ash column depth had a large effect, while simulations using only small particles or changing the particle shape factor had much less of an effect. Some other variations such as using only large particles had a small effect for the first day or so after the eruption, then a larger effect on subsequent days. Example probabilistic output will be shown for an ensemble of dispersion model runs with various model inputs. Model output such as this may be useful as a means to account for some of the uncertainties in the model input. To improve volcanic ash ATD models, a reference database for volcanic eruptions is needed, covering many volcanoes. The database should include three major components: (1) eruption source, (2) ash observations, and (3) analyses meteorology. In addition, information on aggregation or other ash particle transformation processes would be useful.
NASA Astrophysics Data System (ADS)
Forte, Pablo; Domínguez, Lucia; Bonadonna, Costanza; Gregg, Chris E.; Bran, Donaldo; Bird, Deanne; Castro, Jonathan M.
2018-01-01
The 2011-2012 Cordón Caulle eruption emitted about 1 km3 of rhyodacitic tephra. Dominant westerly winds in the region caused most of the primary tephra to deposit in neighboring Argentina. In addition to the impact of widespread dispersal and fallout of primary tephra during the eruption, Argentina was also significantly affected by remobilization of the primary ash even several years after the climactic phase of the eruption. In this mixed methods study, we combine aspects of natural and social sciences to characterize the ash resuspension events associated with the 2011-2012 Cordón Caulle deposits and assess the impacts on the Argentinian farming community of Ingeniero Jacobacci in the Patagonian Steppe. Our findings show the primary importance of wind, rainfall and ash availability in controlling the occurrence and persistence of ash resuspension events. The role played by these variables was also reflected in the seasonal distribution of events observed. Regarding the impacts, our results complement those of earlier studies and demonstrate that ash resuspension events can exacerbate the negative impact of primary tephra fallout events from the time of deposition to many years after the eruption. Only after five years has the environment and the farming community begun to show signs of recovery. Our findings also highlight the importance of assessing ash resuspension events in multi-hazard scenarios involving volcanic and hydrometeorologic hazards.
Wilcox, R.E.; Naeser, C.W.
1992-01-01
For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.
Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants
Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.
2011-01-01
Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.
Leaching behaviour of coal-ash: a case study.
Hajarnavis, M R; Bhide, A D
2003-10-01
Leaching of trace elements from fly ash dumps to subsoil layer due to the rain water results in contamination of ground water. The ground water pollution due to fly ash deposition on land so occurring was assessed by simulating the disposal site conditions using two lysimeter with two different soils. Leachate was collected and analysed daily to help understand the phenomenon of leaching of fly-ash constituents in the environment. The trace metals and physico-chemical parameters of fly ash and soil used were measured before and after the experiment. Results of analysis of soil and fly ash samples were then compared with the results of lysimeter-I and lysimeter-II. The study reveals that metals respond differently at dumping site while reacting with soil and water.
Cipollini, Don; Wang, Qin; Whitehill, Justin G A; Powell, Jeff R; Bonello, Pierluigi; Herms, Daniel A
2011-05-01
We examined the extent to which three Fraxinus cultivars and a wild population that vary in their resistance to Emerald Ash Borer (EAB) could be differentiated on the basis of a suite of constitutive chemical defense traits in phloem extracts. The EAB-resistant Manchurian ash (F. mandshurica, cv. Mancana) was characterized by having a rapid rate of wound browning, a high soluble protein concentration, low trypsin inhibitor activities, and intermediate levels of peroxidase activity and total soluble phenolic concentration. The EAB-susceptible white ash (F. americana, cv. Autumn Purple) was characterized by a slow wound browning rate and low levels of peroxidase activity and total soluble phenolic concentrations. An EAB-susceptible green ash cultivar (F. pennsylvanica, cv. Patmore) and a wild accession were similar to each other on the basis of several chemical defense traits, and were characterized by high activities of peroxidase and trypsin inhibitor, a high total soluble phenolic concentration, and an intermediate rate of wound browning. Lignin concentration and polyphenol oxidase activities did not differentiate resistant and susceptible species. Of 33 phenolic compounds separated by HPLC and meeting a minimum criterion for analysis, nine were unique to Manchurian ash, five were shared among all species, and four were found in North American ashes and not in the Manchurian ash. Principal components analysis revealed clear separations between Manchurian, white, and green ashes on the basis of all phenolics, as well as clear separations on the basis of quantities of phenolics that all species shared. Variation in some of these constitutive chemical defense traits may contribute to variation in resistance to EAB in these species.
Volcanic ash supports a diverse bacterial community in a marine mesocosm.
Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G
2017-05-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement. © 2017 The Authors. Geobiology Published by John Wiley & Sons Ltd.
Clast comminution during pyroclastic density current transport: Mt St Helens
NASA Astrophysics Data System (ADS)
Dawson, B.; Brand, B. D.; Dufek, J.
2011-12-01
Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC pumice at MSH increases with distance from source, as does the quantity of fine-grained ash. In addition, we have made the first steps towards determining the proportion of fine ash produced by comminution with distance from source. These results are being tested by numerical methods to understand the effect of an increase in fine ash on overall flow dynamics of the PDCs in which they were produced.
Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin
2016-02-15
Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagland, S.T.; Kilgallon, P.; Coveney, R.
2011-06-15
An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptablemore » range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.« less
NASA Astrophysics Data System (ADS)
Rokhman, B. B.
2015-03-01
The problem on the evolution of the state of an ensemble of reacting coke-ash particles in a fluidized-bed gas generator is considered. A kinetic equation for the distribution function of particles within small ranges of carbon concentration variation for the stages of surface and bulk reaction has been constructed and integrated. Boundary conditions ("matching" conditions) at the boundaries between these ranges are formulated. The influence of the granulometric composition of the starting coal, height, porosity, and of the bed temperature on the process of steam-oxygen gasification of coke-ash particles of individual sorts of fuel and of a binary coal mixture has been investigated.
McCullough, Deborah G; Siegert, Nathan W; Poland, Therese M; Pierce, Steven J; Ahn, Su Zie
2011-10-01
Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of four 50- by 50-m cells. Green ash trees (Fraxinus pennsylvanica Marshall) were inventoried by diameter class and ash phloem area was estimated for each cell. One trap type was randomly assigned to each cell in each block. Because initial sampling showed that A. planipennis density was extremely low, infested ash logs were introduced into the center of the site. In total, 87 beetles were captured during the summer. Purple double-decker traps baited with a blend of ash leaf volatiles, Manuka oil, and ethanol captured 65% of all A. planipennis beetles. Similarly baited, green double-decker traps captured 18% of the beetles, whereas sticky bands on girdled trees captured 11% of the beetles. Purple traps baited with Manuka oil and suspended in the canopies of live ash trees captured only 5% of the beetles. At least one beetle was captured on 81% of the purple double-decker traps, 56% of the green double-decker traps, 42% of sticky bands, and 25% of the canopy traps. Abundance of ash phloem near traps had no effect on captures and trap location and sun exposure had only weak effects on captures. Twelve girdled and 29 nongirdled trees were felled and sampled in winter. Current-year larvae were present in 100% of the girdled trees and 72% of the nongirdled trees, but larval density was five times higher on girdled than nongirdled trees.
NASA Astrophysics Data System (ADS)
Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul
2016-11-01
Waste tires pose significant health and environmental concerns if not recycled or discarded properly. At the same time, natural sand is becoming scarcer and costlier due to its non-availability. Waste tires as fine aggregate can be an economical and sustainable alternative to the natural sand. Recent years, the interest on recycling waste tires into civil engineering applications by the researchers has increased. In this research, the chemical and physical properties of the tires rubber ash and the natural sand have been analysed. The densities of the rubber ash are lower than the natural sand. Rubber ash had finer particle size compared to the natural sand. Almost all chemical in the natural sand had in rubber ash with the additional sulphur trioxide and zinc oxide in the rubber ash, made the rubber ash better than natural sand. Rubber ash seems to be a suitable material to use in concrete as sand replacement.
Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center
NASA Astrophysics Data System (ADS)
Salemi, A.; Hanna, J.
2009-12-01
In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.
NASA Astrophysics Data System (ADS)
Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.
2018-03-01
We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.
Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.
Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco
2016-10-01
Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.
Smitley, David; Davis, Terrance; Rebek, Eric
2008-10-01
Our objective was to characterize the rate at which ash (Fraxinus spp.) trees decline in areas adjacent to the leading edge of visible ash canopy thinning due to emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Trees in southeastern Michigan were surveyed from 2003 to 2006 for canopy thinning and dieback by comparing survey trees with a set of 11 standard photographs. Freeways stemming from Detroit in all directions were used as survey transects. Between 750 and 1,100 trees were surveyed each year. A rapid method of sampling populations of emerald ash borer was developed by counting emerald ash borer emergence holes with binoculars and then felling trees to validate binocular counts. Approximately 25% of the trees surveyed for canopy thinning in 2005 and 2006 also were sampled for emerald ash borer emergence holes using binoculars. Regression analysis indicates that 41-53% of the variation in ash canopy thinning can be explained by the number of emerald ash borer emergence holes per tree. Emerald ash borer emergence holes were found at every site where ash canopy thinning averaged > 40%. In 2003, ash canopy thinning averaged 40% at a distance of 19.3 km from the epicenter of the emerald ash borer infestation in Canton. By 2006, the point at which ash trees averaged 40% canopy thinning had increased to a distance of 51.2 km away from Canton. Therefore, the point at which ash trees averaged 40% canopy thinning, a state of decline clearly visible to the average person, moved outward at a rate of 10.6 km/yr during this period.
Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits
NASA Astrophysics Data System (ADS)
Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.
2010-12-01
The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic processes and environmental impacts of the largest known Quaternary volcanic eruption.
NASA Astrophysics Data System (ADS)
French, M.; Wojtal, S. F.; Housen, B.
2006-12-01
In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is <1m thick along fold limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the distribution and orientations of fractures and veins changes. These zones of structural complication separate broader regions of more uniform deformation patterns. Together, the geometry of structures and AMS fabrics suggest that deformation in eastern DH occurs by the distortion and reorientation of more or less coherent blocks separated by narrow zones where structural elements change orientation.
Alicia M. Bray; Leah S. Bauer; Therese M. Poland; Robert A. Haack; Anthony I. Cognato; James J. Smith
2011-01-01
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of North American ash (Fraxinus spp.) trees first discovered outside of its native range of northeastern Asia in 2002. EAB spread from its initial zone of discovery in the Detroit, Michigan and Windsor, Ontario metropolitan areas,...
NASA Astrophysics Data System (ADS)
Folch, A.; Costa, A.; Basart, S.
2012-03-01
During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instruments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14-23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly-averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
Possible Intercontinental Dispersal of Microorganisms from a Paleolake Toba in Sumatra, Indonesia
NASA Astrophysics Data System (ADS)
Chesner, C. A.; Barbee, O. A.
2014-12-01
Geochemical fingerprinting of glass shards and minerals have clearly demonstrated that ash from the 74 ka Toba eruption was distributed over a vast area including parts of the Indian Ocean, South China Sea, Indian sub-continent, and eastern Africa. The great dispersal has been attributed to eruption column height, co-ignimbrite ash, shard morphology, and volume of the Youngest Toba Tuff (YTT) eruption. New evidence suggests that another contributing factor may have been a phreatomagmatic component of the eruption whereby portions of the YTT interacted with a paleolake Toba during the eruption. This evidence consists of an accretionary lapilli ash fall bed at the base of the YTT, friable lake sediment lithic fragments found within the proximal YTT ignimbrite, and organic remains in distal ash exposures. Notably, diatom frustules and sponge spicules similar to those that occur in post-YTT lacustrine sediments at Toba have now been identified in the proximal YTT ash fall bed and ignimbrite, as well as distal ash exposures in Malaysia and India. Our findings support the observations of J.B.Scrivenor (1930, 1943) who first described such microfossil occurrences in the Toba ash from sites in Malaysia, and speculated that they may have originated from Toba. Species characterization is currently underway to determine if the microflora/faunal assemblages of the Malaysian and Indian ashes are consistent with a Toba source. The preliminary results of our study lends further credence to Van Eaton et al.'s (2013) suggestion that microbiological cargo carried by phreatomagmatic tephra can provide a new tool in deciphering volcanological, paleoenvironmental, and biologic dispersal models.
International Database of Volcanic Ash Impacts
NASA Astrophysics Data System (ADS)
Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.
2015-12-01
Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.
Sensitivity tests and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Costa, Antonio; De Natale, Giuseppe; Di Vito, Mauro; Isaia, Roberto; Macedonio, Giovanni
2017-04-01
We present the results of a statistical study on tephra dispersion in the case of reactivation of the Campi Flegrei volcano. We considered the full spectrum of possible eruptions, in terms of size and position of eruptive vents. To represent the spectrum of possible eruptive sizes, four classes of eruptions were considered. Of those only three are explosive (small, medium, and large) and can produce a significant quantity of volcanic ash. Hazard assessments are made through dispersion simulations of ash and lapilli, considering the full variability of winds, eruptive vents, and eruptive sizes. The results are presented in form of four families of hazard curves conditioned to the occurrence of an eruption: 1) small eruptive size from any vent; 2) medium eruptive size from any vent; 3) large eruptive size from any vent; 4) any size from any vent. The epistemic uncertainty (i.e. associated with the level of scientific knowledge of phenomena) on the estimation of hazard curves was quantified making use of alternative scientifically acceptable approaches. The choice of such alternative models is made after a comprehensive sensitivity analysis which considered different weather databases, alternative modelling of the possible opening of eruptive vents, tephra total grain-size distributions (TGSD), relative mass of fine particles, and the effect of aggregation. The results of this sensitivity analyses show that the dominant uncertainty is related to the choice of TGSD, mass of fine ash, and potential effects of ash aggregation. The latter is particularly relevant in case of magma-water interaction during an eruptive phase, when most of the fine ash can form accretionary lapilli that could contribute significantly in increasing the tephra load in the proximal region. Relatively insignificant is the variability induced by the use of different weather databases. The hazard curves, together with the quantification of epistemic uncertainty, were finally calculated through a statistical model based on ensemble mixing of selected alternative models, e.g. different choices on the estimate of the total erupted mass, mass of fine ash, effects of aggregation, etc. Hazard and probability maps were produced at different confidence levels compared to the epistemic uncertainty (mean, median, 16th percentile, and 84th percentile).
Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi
2014-10-01
After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef
2015-09-03
An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.
Falcone, Caitlin E; Cooks, R Graham
2016-06-15
The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Steinnes, E.; Rowe, J.J.
1976-01-01
Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.
NASA Astrophysics Data System (ADS)
Sharma, Arpita; Saikia, Ananya; Khare, Puja; Dutta, D. K.; Baruah, B. P.
2014-08-01
In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.
Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio
NASA Astrophysics Data System (ADS)
Daniele, P.; Lirer, L.; Petrosino, P.; Spinelli, N.; Peterson, R.
2009-05-01
PUFF is a numerical volcanic ash tracking model developed to simulate the behaviour of ash clouds in the atmosphere. The model uses wind field data provided by meteorological models and adds dispersion and sedimentation physics to predict the evolution of the cloud once it reaches thermodynamic equilibrium with the atmosphere. The software is intended for use in emergency response situations during an eruption to quickly forecast the position and trajectory of the ash cloud in the near (˜1-72 h) future. In this paper, we describe the first application of the PUFF model in forecasting volcanic ash dispersion from the Etna and Vesuvio volcanoes. We simulated the daily occurrence of an eruptive event of Etna utilizing ash cloud parameters describing the paroxysm of 22nd July 1998 and wind field data for the 1st September 2005-31st December 2005 time span from the Global Forecast System (GFS) model at the approximate location of the Etna volcano (38N 15E). The results show that volcanic ash particles are dispersed in a range of directions in response to changing wind field at various altitudes and that the ash clouds are mainly dispersed toward the east and southeast, although the exact trajectory is highly variable, and can change within a few hours. We tested the sensitivity of the model to the mean particle grain size and found that an increased concentration of ash particles in the atmosphere results when the mean grain size is decreased. Similarly, a dramatic variation in dispersion results when the logarithmic standard deviation of the particle-size distribution is changed. Additionally, we simulated the occurrence of an eruptive event at both Etna and Vesuvio, using the same parameters describing the initial volcanic plume, and wind field data recorded for 1st September 2005, at approximately 38N 15E for Etna and 41N 14E for Vesuvio. The comparison of the two simulations indicates that identical eruptions occurring at the same time at the two volcanic centres display significantly different dispersal axes as a consequence of the different local wind field acting at the respective eruptive vents. At the Vesuvio the volcano, a plinian eruptive event with the dynamical parameters of the 79 A.D. eruption was simulated daily for one year, from 1st July 2005 to 30th June 2006. The statistical processing of results points out that, although in most cases the ash cloud dispersal encompasses many different areas, generally the easterly southeasterly direction is preferred. Our results highlight the significant role of wind field trends in influencing the distribution of ash particles from eruptive columns and prove that the dynamical parameters that most influence the variability of plume dispersal are the duration of the eruption and the maximum column height. Finally, the possible use of cloud simulations for refining hazard maps of areas exposed to volcanic ash dispersal is proposed.
The Grainsize Characteristics of Coignimbrite Deposits
NASA Astrophysics Data System (ADS)
Engwell, Samantha; Eychenne, Julia
2015-04-01
Due to their long atmospheric residence time, identifying the source and understanding the dispersion processes of fine-grained ash is of great importance when considering volcanic hazard and risk. An exceptionally efficient mechanism to supply large volumes of fine-grained ash to the stratosphere is the formation of co-ignimbrite plumes. Such plumes form as air is entrained at the top of propagating pyroclastic density currents, allowing a neutrally buoyant package of gas and ash to loft to high altitudes, consequently dispersing over large areas. The study of ash deposits on land and in deep sea cores has demonstrated that such events have played a major role during ignimbrite-forming eruptions, including the Tambora 1815, the Minoan (Santorini), the Campanian Ignimbrite, and the Younger Toba Tuff eruptions, as well as during more recent, pyroclastic flow-forming, intermediate sized eruptions (Vulcanian to Plinian in style), e.g. Mount St. Helens 1980, Fugen-dake (Unzen) 1991, Pinatubo 1991, Montserrat 1997 and Tungurahua 2006 eruptions. Published, as well as new results from the study of co-ignimbrite deposits, show that co-ignimbrite plumes can rise to high altitudes into the atmosphere (the co-ignimbrite plumes from the May 18, 1980 Mount St Helens blast and the Campanian Ignimbrite eruptions reached 30 - 35 km a.s.l,), potentially distribute enormous volumes of ash (the 75 ka Toba eruption and the Minoan eruption of Santorini settled >800 km3 and >25 km3 of co-ignimbrite ash, respectively), and contribute much of the ash to very large (60±6 vol% of the Campanian fallout deposit 130 to 900 km from vent), as well as intermediate size (up to 58 wt% and 52 wt% in the 2006 Tungurahua and May 18, 1980 Mount St. Helens fallout deposits, respectively) explosive eruptions. Comparison of new data with those from the published record shows that co-ignimbrite deposits are strikingly similar, regardless of eruption conditions, and have distinct grain size characteristics. The deposits are very fine grained (< 100 microns), have unimodal grain size distributions skewed towards the fines, and are more poorly sorted in medial to distal areas than tephra fall deposits from vent-derived plumes at the same distance. Deposits from a single eruption show constant grain size over hundreds to thousands of kilometres, except for a slight coarsening close to source in some cases. In intermediate size eruptions, co-ignimbrite ash often settles synchronously to vent-derived tephra, leading to bimodal grain size fallout deposits. These observations highlight the propensity of the ash to remain in the atmosphere for extended periods of time, and pose important questions regarding how the ash is deposited, and especially the role of aggregation. The uniformity of co-ignimbrite ash means that, with regards to real-time dispersion modelling during an eruption, few assumptions are required for the initial grain size, however depositional assumptions utilised when modelling vent-derived plume dispersion, may not be able to accurately reproduce co-ignimbrite depositional patterns.
Bhattacharjee, Ashis; Mandal, Haradhan; Roy, Madhusudan; Kusz, Joachim; Hofmeister, Wolfgang
2013-10-01
This paper deals with the physical nature of the fly ashes obtained from two thermal power plants, situated in West Bengal, India. The fly ash samples are characterized by using comprehensive techniques with an emphasis on their ultrafine nature. The particle sizes of the samples are estimated using scanning electron microcopy (SEM) and found to lie within 0.18-5.90 μm. For morphology and compositional analysis, we also use SEM coupled with energy dispersive X-ray spectrometry. From X-ray study of the fly ashes the nature of conglomeration is seen to be crystalline, and the major components are mullite (Al6Si2O13) and quartz (SiO2). The magnetic measurement of the fly ash samples was carried out by SQUID magnetometer. (57)Fe Mössbauer spectra are obtained using a conventional constant-acceleration spectrometer with a (57)Co/Rh Mössbauer source. The hyperfine parameters obtained, in general, support the findings as made from XRD analysis and provide a quantitative measure of different iron ions present in the samples. The paper presents experimental data on the physical aspects of the fly ash samples of the thermal power plants which comprise coarse, fine, and ultrafine magnetic particulate materials and attempts to provide an exhaustive analysis.
On the removal of hexavalent chromium from a Class F fly ash.
Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C
2016-05-01
Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wildfire ash: its production and hydro-eco-geomorphic effects in forested landscapes
NASA Astrophysics Data System (ADS)
Doerr, S. H.; Bodi, M.; Santin, C.; Balfour, V.; Woods, S.; Mataix-Solera, J.; Cerda, A.; Shakesby, R.
2012-12-01
Fire, whether ignited naturally or by humans, is one of the most important disturbance agents in many of the world's forested ecosystems. Amongst its direct consequences is the deposition of a range of solid and largely powdery residues on the ground consisting of charred organic material including charcoal and residual mineral material. This fragile 'ash' layer can be removed in large quantities from hillslopes within days by wind or water erosion, with the latter facilitating its transfer to the hydrological system. Probably as a result of its ephemeral nature and not being soil, vegetation or litter, ash has seen limited attention in studies on hydrological impacts of wildfire. Those few studies available show that ash can substantially affect the hydrological system. When present on hillslopes as a water-absorbent layer, it can reduce surface runoff, protect soil against rainsplash erosion, and its leachates can reportedly reduce soil erodibility by promoting flocculation of dispersed clays. In contrast, however, ash can also increase surface runoff by blocking soil pores or by forming a crust. Furthermore, ash is thought capable of promoting debris flows. Its net effect probably depends on the nature of the ash and soil including their respective water repellency levels, the pore size distribution of the soil, and general terrain and rainfall characteristics. Being very mobile, ash can be the source of substantial organic and inorganic sediment inputs, and of solute influxes into the fluvial system. These can affect water quality sometimes with detrimental effects on aquatic organisms and domestic water supply. This presentation aims to provide an overview of the current knowledge base regarding the production and potential effects of wildfire ash on the hydrological system in and beyond forested landscapes..The late Scott Woods examining a thick ash layer following a severe fire in a conifer forest. Montana, USA.
Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.
George, K V; Manjunath, S; Rao, C V Chalapati; Bopche, A M
2003-11-01
Almost all coal based thermal power plants (CTPP) in India use electrostatic precipitator (ESP) for reduction of particulate matter (PM) in flue gas generated due to the combustion of Indian coal. This coal is characterized by high ash content, low calorific value and low sulfur content resulting in the generation of a very large amount of highly electrically-resistive fly-ash; thereby requiring a very large size ESP to minimize the fly-ash emissions. However, the flue-gas particle size distribution analysis showed that 60% of the particles are above 15 microm size, which can be conveniently removed using a low-cost inertial separator such as a cyclone separator. It is proposed that a cyclone be used, as a pre-cleaner to ESP so that the large size fraction of fly-ash can be removed in the pre-cleaning and the remaining flue-gas entering the ESP will then contain only small size particles with low dust loading, thereby requiring a small ESP, and improving overall efficiency of dust removal. A low efficiency (65%), high throughput cyclone is considered for pre-cleaning flue gas and the ESP is designed for removal of the remaining 35% fly-ash from the flue gas. It is observed that with 100% dust load, the ESP requires six fields per pass, whereas with cyclone as a pre-cleaner, it requires only five fields per pass. Introducing cyclone into the flue gas path results in additional head loss, which needs to be overcome by providing additional power to induced draft (ID) fan. The permissible head loss due to the cyclone is estimated by comparing the power requirement in the bag filter control unit and cyclone-ESP combined unit. It is estimated that a head loss of 10 cm of water can be permitted across the cyclone so as to design the same for 65% efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1988-01-01
This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)
Modeling of cumulative ash curve in hard red spring wheat
USDA-ARS?s Scientific Manuscript database
Analysis of cumulative ash curves (CAC) is very important for evaluation of milling quality of wheat and blending different millstreams for specific applications. The aim of this research was to improve analysis of CAC. Five hard red spring wheat genotype composites from two regions were milled on...
Chen, Bingyu; Liu, Guijian; Sun, Ruoyu
2016-05-01
A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.
Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution.
Chang, Yu-Min; Dai, Wen-Chien; Tsai, Kao-Shen; Chen, Shiao-Shing; Chen, Jyh-Herng; Kao, Jimmy C M
2013-05-01
Microwave peroxide oxidation (MPO) is an energy-efficient and low GHG emission technology to destroy the hazardous organic compounds in solid waste. The objective of this paper is to explore the reduction feasibility of PCDDs/Fs in MSWI fly ash using the MPO in H2SO4/HNO3 solution. Nearly all PCDDs/Fs, 99% in the original fly ash, can be reduced in 120min at the temperature of 150°C using the MPO treatment. It was also found that a change occurred in the content distribution profiles of 17 major PCDD/F congeners before and after MPO treatment. This provides the potential to reduce the actual PCDDs/Fs content more than I-TEQ contents of PCDDs/Fs. The percentile distribution profile has a tendency of higher chlorinated PCDDs/Fs moving to the lower ones. It concludes that a significant reduction efficiency of I-TEQ toxicity was achieved and showed sufficient reduction of toxic level to lower than 1.0ngI-TEQ(gdw)(-1). The treatment temperature would be a critical factor facilitating the dissolution because higher temperature leads more inorganic salt (parts of fly ash) dissolution. Some problems caused by the MPO method are also delineated in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Bonadonna, Costanza; Carey, Rebecca J.
2018-05-01
The size distribution of the population of particles injected into the atmosphere during a volcanic explosive eruption, i.e., the total grain-size distribution (TGSD), can provide important insights into fragmentation efficiency and is a fundamental source parameter for models of tephra dispersal and sedimentation. Recent volcanic crisis (e.g. Eyjafjallajökull 2010, Iceland and Córdon Caulle 2011, Chile) and the ensuing economic losses, highlighted the need for a better constraint of eruption source parameters to be used in real-time forecasting of ash dispersal (e.g., mass eruption rate, plume height, particle features), with a special focus on the scarcity of published TGSD in the scientific literature. Here we present TGSD data associated with Hekla volcano, which has been very active in the last few thousands of years and is located on critical aviation routes. In particular, we have reconstructed the TGSD of the initial subplinian-Plinian phases of four historical eruptions, covering a range of magma composition (andesite to rhyolite), eruption intensity (VEI 4 to 5), and erupted volume (0.2 to 1 km3). All four eruptions have bimodal TGSDs with mass fraction of fine ash (<63 μm; m63) from 0.11 to 0.25. The two Plinian dacitic-rhyolitic Hekla deposits have higher abundances of fine ash, and hence larger m63 values, than their andesitic subplinian equivalents, probably a function of more intense and efficient primary fragmentation. Due to differences in plume height, this contrast is not seen in samples from individual sites, especially in the near field, where lapilli have a wider spatial coverage in the Plinian deposits. The distribution of pyroclast sizes in Plinian versus subplinian falls reflects competing influences of more efficient fragmentation (e.g., producing larger amounts of fine ash) versus more efficient particle transport related to higher and more vigorous plumes, displacing relatively coarse lapilli farther down the dispersal axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinaharan, I., E-mail: dinaweld2009@gmail.com
Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less
Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo
2016-07-15
Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H₂O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m³ and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO₂ were all below 1.7 MJ/kg and 0.12 kg CO₂/kg, respectively.
The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.
Brown, Patrick; Jones, Tim; BéruBé, Kelly
2011-12-01
Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.
Andrade, L B; Rocha, J C; Cheriaf, M
2007-01-01
A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.
Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Fu, Jian-Ying; Lu, Sheng-Yong; Li, Xiao-Dong
2015-01-01
Distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the fly ash and atmospheric air of one medical waste incinerator (MWI) and one industrial hazardous waste incinerator (IHWI) plants were characterized. The PCDD/F concentrations of the stack gas (fly ash) produced from MWI and IHWI were 17.7 and 0.7 ng international toxic equivalent (I-TEQ)/Nm(3) (4.1 and 2.5 ng I-TEQ/g), respectively. For workplace air, the total concentrations of PCDD/Fs were 11.32 and 0.28 pg I-TEQ/Nm(3) (819.5 and 15.3 pg/Nm(3)). We assumed that the large differences of PCDD/F concentrations in workplace air were due to the differences in chlorine content of the waste, combustion conditions, and other contamination sources. With respect to the homologue profiles, the concentrations of PCDFs decreased with the increase of the substituted chlorine number for each site. Among all of the PCDD/F congeners, 2,3,4,7,8-PeCDF was the most important contributor to the I-TEQ value accounting for ca. 43 % of two sites. The gas/particle partition of PCDD/Fs in the atmosphere of the workplace in the MWI was also investigated, indicating that PCDD/Fs were more associated in the particle phase, especially for the higher chlorinated ones. Moreover, the ratio of the I-TEQ values in particle and gas phase of workplace air was 11.0. At last, the relationship between the distribution of PCDD/Fs in the workplace air and that from stack gas and fly ash was also analyzed and discussed. The high correlation coefficient might be a sign for diffuse gas emissions at transient periods of fumes escaping from the incinerator.
To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
Sormunen, Laura Annika; Rantsi, Riina
2015-11-01
For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.
Zheng, Xuebo; Cui, Hongbiao; Zhu, Zhenqiu; Liang, Jiani
2017-01-01
Natural biomass ash of agricultural residuals was collected from a power plant and modified with hexagonal mesoporous silica and functionalized with 3-aminopropyltriethoxysilane. The physicochemical and morphological properties of the biomass ash were analyzed by ICP-OES, SEM, TEM-EDS, FTIR, and BET analysis. The adsorption behavior of the modified product for Cd2+ in aqueous solution was studied as a function of pH, initial metal concentration, equilibrium time, and temperature. Results showed that the specific surface area of the modified product was 9 times that of the natural biomass ash. The modified biomass ash exhibited high affinity for Cd2+ and its adsorption capacity increased sharply with increasing pH from 4.0 to 6.0. The maximum adsorption capacity was 23.95 mg/g in a pH 5 solution with an initial metal concentration of 50 mg/L and a contact time of 90 min. The adsorption of Cd2+ onto the modified biomass ash was well fitted to the Langmuir model and it followed pseudo-second-order kinetics. Thermodynamic analysis results showed that the adsorption of Cd2+ was spontaneous and endothermic in nature. The results suggest that the modified biomass ash is promising for use as an inexpensive and effective adsorbent for Cd2+ removal from aqueous solution. PMID:28348509
NASA Technical Reports Server (NTRS)
Rose, W. I., Jr.; Hoffman, M. F.
1982-01-01
Mount St. Helens erupted somewhat less than 0.5 cu km of magma (dense rock equivalent) on May 18, 1980. The May 18 event was usually violent. As much 35% of the volume of the airfall material fell outside of the 2.5 mm isopach, which encloses about 88,000 sq km. This extraordinary dispersive power was transmitted by an eruption column which reached heights of more than 20 km. There was a lateral blast (or surge) of unusually large dimensions associated with the onset of the eruption. The magma is dacitic in composition and had a low ( 500 ppm) sulfur content. Distal ashes contain much nonmagmatic (lithic) material, but smaller ( 50 microns m) particles are mostly finely divided magmatic dacite. The grain size distributions of the ash are multimodal, frequently with peaks at 90, 25, and 10 microns. The finer populations fell out faster than their terminal velocities as simple particles would suggest. It is inferred that large proportions of the fine ash fell out as composite particles. This condition greatly reduces the atmospheric burden of silicate particles. Some of the unusual aspects (violence, intense surges, multimodal grain size distributions, lithic content of the ashes) of the eruption may be due to its phreatomagmatic character. The hydrothermal system above the magma may have infiltrated the magma body at the onset of the eruption. An "overprint" of the geochemistry of this hydrothermal system on the geochemistry of the magmatic gas system is likely. One important feature is that reduced gas species may be much more abundant than in many eruptions. Another is that fine ash may form aggregates more readily.
Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi
2012-12-01
The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.
Marine mesocosm bacterial colonisation of volcanic ash
NASA Astrophysics Data System (ADS)
Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert
2015-04-01
Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the physico-chemical composition of the substrate. Knowledge on pioneer bacterial colonisation may increase our understanding on the resilience of coral reefs to natural "catastrophes", such as volcanic ash fallout.
An Assessment of Worldview-2 Imagery for the Classification Of a Mixed Deciduous Forest
NASA Astrophysics Data System (ADS)
Carter, Nahid
Remote sensing provides a variety of methods for classifying forest communities and can be a valuable tool for the impact assessment of invasive species. The emerald ash borer (Agrilus planipennis) infestation of ash trees (Fraxinus) in the United States has resulted in the mortality of large stands of ash throughout the Northeast. This study assessed the suitability of multi-temporal Worldview-2 multispectral satellite imagery for classifying a mixed deciduous forest in Upstate New York. Training sites were collected using a Global Positioning System (GPS) receiver, with each training site consisting of a single tree of a corresponding class. Six classes were collected; Ash, Maple, Oak, Beech, Evergreen, and Other. Three different classifications were investigated on four data sets. A six class classification (6C), a two class classification consisting of ash and all other classes combined (2C), and a merging of the ash and maple classes for a five class classification (5C). The four data sets included Worldview-2 multispectral data collection from June 2010 (J-WV2) and September 2010 (S-WV2), a layer stacked data set using J-WV2 and S-WV2 (LS-WV2), and a reduced data set (RD-WV2). RD-WV2 was created using a statistical analysis of the processed and unprocessed imagery. Statistical analysis was used to reduce the dimensionality of the data and identify key bands to create a fourth data set (RD-WV2). Overall accuracy varied considerably depending upon the classification type, but results indicated that ash was confused with maple in a majority of the classifications. Ash was most accurately identified using the 2C classification and RD-WV2 data set (81.48%). A combination of the ash and maple classes yielded an accuracy of 89.41%. Future work should focus on separating the ash and maple classifiers by using data sources such as hyperspectral imagery, LiDAR, or extensive forest surveys.
Marine Mesocosm Bacterial Colonisation of Volcanic Ash
NASA Astrophysics Data System (ADS)
Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.
2014-12-01
Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the physico-chemical composition of the substrate. Knowledge on pioneer bacterial colonisation may increase our understanding on the resilience of coral reefs to natural "catastrophes", such as volcanic ash fallout.
NASA Astrophysics Data System (ADS)
Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.
2008-12-01
The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.
Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.
2009-04-01
Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.
Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk
2009-03-01
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.
NASA Astrophysics Data System (ADS)
Wygel, C. M.; Sahagian, D. L.
2017-12-01
Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching rates are correlated to characteristic surface area of ash particles.
Reference data set of volcanic ash physicochemical and optical properties
NASA Astrophysics Data System (ADS)
Vogel, A.; Diplas, S.; Durant, A. J.; Azar, A. S.; Sunding, M. F.; Rose, W. I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A.
2017-09-01
Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a data set that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50-80 wt % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types basalt to rhyolite. We found that the mass density ranges between
Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama
Zielinski, R.A.; Foster, A.L.; Meeker, G.P.; Brownfield, I.K.
2007-01-01
An arsenic-rich (As = 55 ppm) bituminous feed coal from the Black Warrior Basin, Alabama and its derivative fly ash (As = 230 ppm) were selected for detailed investigation of arsenic residence and chemical forms. Analytical techniques included microbeam analysis, selective extraction, and As K-edge X-ray absorption fine-structure (XAFS) spectroscopy. Most As in the coal is contained in a generation of As-bearing pyrite (FeS2) that formed in response to epigenetic introduction of hydrothermal fluids. XAFS results indicate that approximately 50% of the As in the coal sample occurs as the oxidized As(V) species, possibly the result of incipient oxidation of coal and pyrite prior to our analysis. Combustion of pyrite and host coal produced fly ash in which 95% of As is present as As(V). Selective extraction of the fly ash with a carbonate buffer solution (pH = 10) removed 49% of the As. A different extraction with an HCl-NH2OH mixture, which targets amorphous and poorly crystalline iron oxides, dissolved 79% of the As. XAFS spectroscopy of this highly acidic (pH = 3.0) fly ash indicated that As is associated with some combination of iron oxide, oxyhydroxide, or sulfate. In contrast, a highly alkaline (pH = 12.7) fly ash from Turkey shows most As associated with a phase similar to calcium orthoarsenate (Ca3(AsO4)2). The combined XAFS results indicate that fly ash acidity, which is determined by coal composition and combustion conditions, may serve to predict arsenic speciation in fly ash.
Jian J. Duan; Kristopher J. Abell; Leah S. Bauer; Juli Gould; Roy. Van Driesche
2014-01-01
The emerald ash borer Agrilus planipennis Fairmaire is a serious invasive forest pest of ash (Fraxinus) trees in North America. Life tables were constructed for both experimentally established cohorts and wild populations of A. planipennis on healthy host trees from 2008 to 2011 in six forests in central Michigan...
Wildland fire ash: future research directions
NASA Astrophysics Data System (ADS)
Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge
2014-05-01
Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its depth, density, and size fraction distribution compared to that of the underlying soil, f) To measure the spatial variability of ash at the plot or hillslope scale, g) To address issues of how much ash stays on site after fire, especially how much is incorporated into underlying soil layers, compared to how much is eroded by wind and water and becomes incorporated into depositional environments located away from the site. iii) ash effects h) To study the connectivity of patches of ash to make progress in understanding the role of ash in infiltration, the generation of runoff and erosion, i) To take into account the role of ash in the fate of the ecosystem immediately after the fire, as well as the combination of ash and other cover, such as the needles, in the post-fire period, j) To study the amount and forms of C in ash, including studies characterizing its chemical and biological reactivity and degradability in soil and sedimentary environments, k) To understanding the legacy of atmospherically-deposited elements (e.g. P, Si, Mn) and dust to fully understand the complex chemistry of ash, and at the same time assess its effects on human health. iii) enhance collaboration across the globe on the multidisciplinary topic of ash research since research in large areas of the world that burn (e.g., Africa and Russia) is underrepresented. We are sure that several activities, such as land and water supply management, risk reduction, and planning for societal and ecosystem resilience in the face of a changing climate, will benefit from the insights gained from the ash research community. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References: Bodí, M. B., Mataix-Solera, J., Doerr, S. H., Cerdà, A. 2011.The wettability of ash from burned vegetation and its relatioship to Mediterranean plant species type, burn. Geoderma 160: 599-607. Bodí, M.B. Doerr, S.H., Cerdà, A. and Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. http://dx.doi.org/10.1016/j.catena.2012.04.002 Bodí, Merche B., Martin, Deborah A., Balfour, Victoria N., Santín, Cristina, Doerr, Stefan H., Pereira, Paulo, Cerdà, Artemi, Mataix-Solera, Jorge, Wildland fire ash: Production, composition and eco-hydro-geomorphic effects, Earth Science Reviews (2014), doi: 10.1016/j.earscirev.2013.12.007 Cerdà, A. 1998. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A. y Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 , 256- 263. doi:10.1016/S0341-8162(02)00027-9 Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., &, Doerr, S.H. 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35-43. Doi:10.1016/j.catena.2012.02.011 Fernández, C., Vega, J. A., Jiménez, E., Vieira, D. C. S., Merino, A., Ferreiro, A., Fonturbel, T. 2012. Seeding and mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain). Land Degradation & Development, 23: 150- 156. DOI 10.1002/ldr.1064 Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., Gros, R. 2013. Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degradation & Development, 24: 115- 128. DOI 10.1002/ldr.1109 Martín, A., Díaz-Raviña, M., Carballas, T. 2012. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires. Land Degradation & Development, 23: 427- 439. DOI 10.1002/ldr.1078 Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. 2013a. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, DOI: 10.1002/hyp.9907 Pereira, P., Cerda, A., Jordan, A., Bolutiene, V., Pranskevicius, M., Ubeda, X., Mataix-Solera, J. 2013b. Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19, 856-864. DOI:10.1016/j.proenv.2013.06.095. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Martin, D., Jordan, A. and Burguet, M. 2013c. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth, 4, 153-165. www.solid-earth.net/4/153/2013/ doi:10.5194/se-4-153-2013
Ash content, carbon and C/N ratio in paricá in function of NPK fertilization.
Vieira, Cristiane R; Weber, Oscarlina L S; Scaramuzza, José Fernando
2018-01-01
Fertilization in areas of forest plantations is needed to supplement plants´ nutritional needs until harvest. An experiment was performed to check the influence of fertilization on levels of ash, carbon and C/N relation in Schizolobium amazonicum. Soil liming was performed and fertilization occurred after 15 days of incubation. S. amazonicum seedlings were produced and submitted to fertilization with N, P and K: N = 0, 40, 80 and 120 kg ha-1; P2O5 = 0, 50, 100 and 200 kg ha-1; K2O = 0, 50, 100 and 200 kg ha-1. The plants were measured after 180 days. The seedlings of 20 treatments with the highest increase in height and diameter were transplanted to the field. Soil was fertilized and limestone was spread; seedlings were distributed into randomized blocks, with six replications. After 12 months, the plants were removed to determine ash, organic carbon, C/N relation contents. The ashes were submitted to digestion to determine nutrient concentrations. Fertilization influenced the levels of ash and organic carbon and C/N relation in S. amazonicum. Results indicate that the species has a potential for energy production.
Effect of wildfires on physicochemical changes of watershed dissolved organic matter.
Revchuk, Alex D; Suffet, I H
2014-04-01
Physicochemical characterization of dissolved organic carbon (DOC) provides essential data to describe watershed characteristics after drastic changes caused by wildfires. Post-fire watershed behavior is important for water source selection, management, and drinking water treatment optimization. Using ash and other burned vegetation fragments, a leaching procedure was implemented to describe physicochemical changes to watershed DOC caused by wildfires. Samples were collected after the 2007 and 2009 wildfires near Santa Barbara, California. Substantial differences in size distribution (measured by ultrafiltration), polarity (measured by polarity rapid assessment method), and the origin of leached DOC (measured by fluorescence) were observed between burned and unburned sites. Recently burned ash had 10 times the DOC leaching potential, and was dominated by large size fragments, compared to weathered 2-year-old ash. Charged DOC fractions were found to positively correlate with DOC size, whereas hydrophobic and hydrophilic DOC fractions were not. Proteins were only observed in recently burned ash and were indicative of recent post-fire biological activity.
Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.
Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M
2007-05-08
The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.
The effect of habitat geology on calcium intake and calcium status of wild rodents.
Shore, R F; Balment, R J; Yalden, D W
1991-12-01
Calcium is essential for normal physiological function, reproduction and growth in mammals but its distribution in the natural environment is heterogeneous. Spatial variation in calcium soil content is especially marked in the Peak District, United Kingdom, where both calcium-rich limestone and calcium-poor gritstone rock types occur. Wood mice Apodemus sylvaticus (L) and bank voles Clethrionomys glareolus (Schreber 1780) from limestone areas had significantly higher calcium concentrations in stomach contents and in faeces compared with their counterparts from gritstone areas. Calcium status was assessed from serum calcium concentration, femur weight, ash content of the body, calcium concentration in the femur and body ash. There was no significant difference in serum calcium concentration, femur calcium concentration and body ash calcium concentration between animals from the limestone and the gritstone. However, on the limestone, bank voles, but not wood mice, had significantly heavier femora and a greater proportion of ash in the body compared with their gritstone counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn
Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.
2018-03-01
The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.
Uranium-bearing lignite in southwestern North Dakota
Moore, George W.; Melin, Robert E.; Kepferle, Roy C.
1954-01-01
Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.
Spectral analysis of white ash response to emerald ash borer infestations
NASA Astrophysics Data System (ADS)
Calandra, Laura
The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.
Use of rubber and bentonite added fly ash as a liner material.
Cokca, Erdal; Yilmaz, Zeka
2004-01-01
In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.
pH-dependent leaching of dump coal ash - retrospective environmental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, A.; Djordjevic, D.
2009-07-01
Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to havemore » already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Gu; Shiyong Wu; Youqing Wu
2008-11-15
In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less
Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions
NASA Astrophysics Data System (ADS)
song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado
2016-04-01
The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.
Mullan-Boudreau, Gillian; Belland, Rene; Devito, Kevin; Noernberg, Tommy; Pelletier, Rick; Shotyk, William
2017-07-05
Sphagnum moss was collected from ombrotrophic (rain-fed) peat bogs to quantify dust emissions from the open-pit mining and upgrading of Athabasca bituminous sands (ABS). A total of 30 bogs were sampled in the ABS region, and 5 were sampled in central Alberta. Ash was separated into the acid-insoluble ash (AIA) and acid-soluble ash (ASA) fractions using HCl. The AIA concentrations increase toward industry from 0.4 ± 0.5% to 4.7 ± 2.0% over a distance of 30 km; the control site at the Utikuma Region Study Area (URSA) yielded 0.29 ± 0.07% (n = 30). Mass accumulations rates showed similar spatial variation. The morphology and mineralogy of the AIA particles were studied using scanning electron microscopy and energy-dispersive X-ray analysis and the particle size distributions using optical methods. Particle size was more variable in moss closer to industry. Major ions in the ASA fraction showed elevated accumulation rates of Ca, K, Fe, Mg, P, and S, with P being up to 5 times greater in samples nearest industry compared to those in distal locations. Given that P has been regarded as the growth-limiting nutrient in bogs, fertilization of nutrient-poor ecosystems, such as these from fugitive emissions of dusts from open-pit mining, may have long-term ecological ramifications.
Adsorption of mercury from aqueous solutions using palm oil fuel ash as an adsorbent - batch studies
NASA Astrophysics Data System (ADS)
Imla Syafiqah, M. S.; Yussof, H. W.
2018-03-01
Palm oil fuel ash (POFA) is one of the most abundantly produced waste materials. POFA is widely used by the oil palm industry which was collected as ash from the burning of empty fruit bunches fiber (EFB) and palm oil kernel shells (POKS) in the boiler as fuel to generate electricity. Mercury adsorption was conducted in a batch process to study the effects of contact time, initial Hg(II) ion concentration, and temperature. In this study, POFA was prepared and used for the removal of mercury(II) ion from the aqueous phase. The effects of various parameters such as contact time (0- 360 min), temperature (15 – 45 °C) and initial Hg(II) ion concentration (1 – 5 mg/L) for the removal of Hg(II) ion were studied in a batch process. The surface characterization was examined by scanning electron microscopy (SEM) and particle size distribution analysis. From this study, it was found that the highest Hg(II) ion removal was 99.60 % at pH 7, contact time of 4 h, initial Hg(II) ion concentration of 1 mg/L, adsorbent dosage 0.25 g and agitation speed of 100 rpm. The results implied that POFA has the potential as a low-cost and environmental friendly adsorbent for the removal of mercury from aqueous solution.
Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment
NASA Astrophysics Data System (ADS)
Macedonio, G.; Costa, A.; Folch, A.
2008-12-01
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection-diffusion-sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection-diffusion-sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.
Respiratory Health Effects of Volcanic Ash - a new Approach
NASA Astrophysics Data System (ADS)
Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.
2003-12-01
Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable particles. At the onset of new eruptions, the database will be used to aid the rapid assessment of health hazard from volcanic ash.
Fossil and active fumaroles in the 1912 eruptive deposits, Valley of ten thousand smokes, Alaska
Keith, T.E.C.
1991-01-01
Fumaroles in the ash-flow sheet emplaced during the 1912 eruption of Novarupta were intensely active throughout the Valley of Ten Thousand Smokes (VTTS) when first studied in 1917. Fumarole temperatures recorded in 1919 were as hot as 645??C. Influx of surface waters into the hot ash-flow sheet provided the fluid flow to sustain the fumaroles but also enhanced cooling so that by the mid-1930's vigorous activity survived only in the vent region. Configuration and distribution of high-temperature fissure fumaroles tens of meters long, that are prevalent in the middle and upper VTTS, were controlled largely by sintering and degree of welding, which in turn controlled fracturing and permeability of the ash-flow tuff. One fracture type developed parallel to the enclosing valley walls during compaction of the ash-flow sheet. Another type extends across the VTTS nearly perpendicular to the flow direction. A third type of randomly oriented fractures developed as cooling contraction cracks during vapor-phase devitrification. In distal parts of the ash-flow sheet where the tuff is nonwelded, prominent fumaroles have irregular funnel-shaped morphologies. Fumarole distribution in the nonwelded part of the ash-flow sheet is concentrated above pre-emplacement river channels. The hottest, longest-lived fumaroles occurred in the upper VTTS near the 1912 vent where the ash-flow sheet is thicker, more indurated, and on average more mafic (richer in dacite and andesite) in contrast to the thinner, nonwelded rhyolitic tuff in the distal part of the sheet. Fumarolic activity was less intense in the distal part of the tuff because of lower emplacement temperatures, more diffuse fumarole conduits in the nonwelded tuff, and the thinness of the ash-flow sheet. Chemical leaching of ash-flow tuff by hot rising fluids took place adjacent to fumarolic conduits in deep parts of the fumaroles. Deposition of incrustation minerals, the components of which were carried upward by fumarolic gases, took place in the upper part of the ejecta, mostly in the fallout layers. The permeability difference between the ash-flow tuff and the overlying coarse dacite fallout was a critical factor in promoting the abrupt gradients in temperature, pressure, and fO2 that resulted in deposition of minerals from the fumarolic gases. The permeability difference between nonwelded ash-flow tuff and overlying fine-grained fall layers in the lower VTTS is less pronounced. The total mass of fumarolically deposited minerals appears large at first glance owing to the conspicuous coloration by Fe minerals; the mass is appreciably less than is apparent, however, because most incrustations are composed largely of ejecta coated or cemented by fine-grained fumarolic minerals. A large mass of unstable incrustation minerals, mainly chlorides and sulfates, reported during the 1917-1919 studies have since been removed by dissolution and weathering. In the vent region, argillic alteration that followed high-temperature degassing is localized along arcuate subsidence fractures in fallback ejecta. At widely scattered residual orifices, fumarolic gases presently are near-neutral steam, and temperatures are as hot as 90??C. ?? 1991.
Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes
Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James
2015-09-27
Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less
Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James
Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less
Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma
Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael
2016-01-01
Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180
DOE Office of Scientific and Technical Information (OSTI.GOV)
James C. Hower; Bruno Valentim; Irena J. Kostova
2008-03-15
Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanicalmore » sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.« less
The effect of water binder ratio and fly ash on the properties of foamed concrete
NASA Astrophysics Data System (ADS)
Saloma, Hanafiah, Urmila, Dea
2017-11-01
Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.
The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...
Tree bark suber-included particles: A long-term accumulation site for elements of atmospheric origin
NASA Astrophysics Data System (ADS)
Catinon, Mickaël; Ayrault, Sophie; Spadini, Lorenzo; Boudouma, Omar; Asta, Juliette; Tissut, Michel; Ravanel, Patrick
2011-02-01
The deposition of atmospheric elements on and into the bark of 4-year-old Fraxinus excelsior L. was studied. The elemental composition of the suber tissue was established through ICP-MS analysis and the presence of solid mineral particles included in this suber was established and described through SEM-EDX. Fractionation of the suber elements mixture was obtained after ashing at 550 °C through successive water (C fraction) and HNO 3 2 M (D fraction) extraction, leading to an insoluble residue mainly composed of the solid mineral particles (E fraction). The triplicated % weight of C, D and E were respectively 34.4 ± 2.7, 64.8 ± 2.7 and 0.8 ± 0.1% of the suber ashes weight. The main component of C was K, of D was Ca. Noticeable amounts of Mg were also observed in D. The E fraction, composed of insoluble particles, was mostly constituted of geogenic products, with elements such as Si, Al, K, Mg, representing primary minerals. E also contained Ca 3(PO 4) 2 and concentrated the main part of Pb and Fe. Moreover, The SEM-EDX analysis evidenced that this fraction also concentrated several types of fly ashes of industrial origin. The study of the distribution between C, D and E was analysed through ICP-MS with respect to their origin. The origin of the elements found in such bark was either geogenic (clay, micas, quartz…), anthropogenic or biogenic (for instance large amounts of solid Ca organic salts having a storage role). As opposed to the E fraction, the C fraction, mainly composed of highly soluble K+ is characteristic of a biological pool of plant origin. In fraction D, the very high amount of Ca++ corresponds to two different origins: biological or acid soluble minerals such as calcite. Furthermore, the D fraction contains the most part of pollutants of anthropic origin such as Zn, Cu, Ni, Co, Cd. As a whole, the fractionation procedure of the suber samples allows to separate elements as a function of their origin but also gives valuable information on distribution and speciation of trace elements.
Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo
2016-01-01
Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Using a Scheffé-based mixture design, targeting applications with low thermal conductivity, light weight and moderate strength and allowing for a maximum of five percent by mass of rice hull ash in consideration of the waste utilization of all three components, it has been determined that an 85-10-5 by weight ratio of CFA-CBA-RHA activated with 80-20 by mass ratio of 12 M NaOH and sodium silicate (55% H2O, modulus = 3) produced geopolymers with a compressive strength of 18.5 MPa, a volumetric weight of 1660 kg/m3 and a thermal conductivity of 0.457 W/m-°C at 28-day curing when pre-cured at 80 °C for 24 h. For this study, the estimates of embodied energy and CO2 were all below 1.7 MJ/kg and 0.12 kg CO2/kg, respectively. PMID:28773702
Volcanic ash impacts on critical infrastructure
NASA Astrophysics Data System (ADS)
Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.
2012-01-01
Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this approach is likely to become increasingly necessary.
NASA Astrophysics Data System (ADS)
Alfano, Fabrizio; Bonadonna, Costanza; Watt, Sebastian; Connor, Chuck; Volentik, Alain; Pyle, David M.
2016-07-01
The 2008-2013 eruption of Chaitén Volcano (Chile) was a long-lasting eruption whose climactic phase (May 6, 2008) produced a sub-Plinian plume, with height ranging between 14 and 20 km that dispersed to the NE, reaching the Atlantic coast of Argentina. The erupted material was mainly of lithic origin (˜77 wt%), resulting in a unimodal total grain size distribution (TGSD) dominated by coarse ash (77 wt%), with Mdϕ of 2.7 and σϕ of 2.4. Lapilli clasts (>2 mm) dominate the proximal deposit within ~20 km of the vent, while coarse (63 μm-2 mm) and fine ash (<63 μm) sedimented as far as 800 km from vent, generating mostly poly-modal grain size distributions across the entire deposit. Given that most of the mass is sedimented in proximal areas, results show that possible contributions of later explosive events to the thickness of the distal deposit where layers are less distinguishable (>400 km) do not significantly affect the determination of the TGSD. In contrast, gaps in data sampling in the medial deposit (in particular the gap between 50 and 350 km from vent that coincides with shifts in sedimentation regimes) have large impacts on estimates of TGSD. Particle number distribution for this deposit is characterized by a high power-law exponent (3.0) following a trend very similar to the vesicle size distribution in the juvenile pyroclasts. Although this could be taken to indicate a bubble-driven fragmentation process, we suggest that fragmentation was more likely the result of a shear-driven process because of the predominance of non-vesicular products (lithics and obsidians) and the large fraction of coarse ash in the TGSD.
Zhou, Y.; Ren, Y.; Tang, D.; Bohor, B.
1994-01-01
Kaolinitic tonsteins of altered synsedimentary volcanic ash-fall origin are well developed in the Late Permian coal-bearing formations of eastern Yunnan Province. Because of their unique origin, wide lateral extent, relatively constant thickness and sharp contacts with enclosing strata, great importance has been attached to these isochronous petrographic markers. In order to compare tonsteins with co-existing, non-cineritic claystones and characterize the individuality of tonsteins from different horizons for coal bed correlation, a semi-quantitative method was developed that is based on statistical analyses of the concentration and morphology of zircons and their spatial distribution patterns. This zircon-based analytical method also serves as a means for reconstructing volcanic ash-fall dispersal patterns. The results demonstrate that zircons from claystones of two different origins (i.e., tonstein and non-cineritic claystone) differ greatly in their relative abundances, crystal morphologies and spatial distribution patterns. Tonsteins from the same area but from different horizons are characterized by their own unique statistical patterns in terms of zircon concentration values and morphologic parameters (crystal length, width and the ratio of these values), thus facilitating stratigraphic correlation. Zircons from the same tonstein horizon also show continuous variation in these statistical patterns as a function of areal distribution, making it possible to identify the main path and direction in which the volcanic source materials were transported by prevailing winds. ?? 1994.
Linking the IR Christiansen effect to the mean particle size and type of volcanic ash
NASA Astrophysics Data System (ADS)
Scollo, Simona; Baratta, Giuseppe A.; Palumbo, Maria Elisabetta; Corradini, Stefano; Leto, Giuseppe; Strazzulla, Giovanni
2013-04-01
Infrared transmittance spectra of several volcanic ash samples positioned in the path of a IR beam have been obtained. This technique is widely used in astronomy, in biological applications, in industrial and environmental fields. Nevertheless, in spite of its wide diffusion in several branch of science, up to now only few IR measurements on volcanic ash particles have been carried out in laboratory. In this work, infrared spectroscopy is used to investigate the spectral signature of volcanic ash particles emitted during the 21-24 July 2001 eruption at Mt. Etna, in Italy. A Bruker Equinox-55 FTIR interferometer operating in the range 1.43-16.67 µm is used to analyse the infrared transmittance of ash particles on KBr windows. For every collected spectrum, an image of the volcanic ash particles was recorded in the visible spectral range through the same microscope. These images are then analyzed by standard image analysis software in order to evaluate the main features of the particle shape: the length of the major and minor axes, Feret diameter, area and aspect ratio. We measured the spectrum of only one particle (Single Particle Measurement SPM), the spectrum of a number of particles from two to ten particles (Multi Particle Measurements type 1, MPM1) and of more than a hundred particles (Multi Particle Measurements type 2, MPM2). For SPM, the length of the major and minor axis ranges between 5 and 25 μm and 3.5 and 15 μm, respectively, Feret diameter ranges between 5.5 and 25 μm, while variations of aspect ratio (AR) and area are between 0.5 and 0.95 and between 14 and 285 μm ^ 2. For MPM1 and MPM2, the mean values of the length of the minor and major axis are between 3-4 and 10-17 μm, the Feret diameter between 5 and 20 μm, AR between 0.3 and 0.7 and area between 50 and 400 μm ^ 2. The optical depth spectra as a function of the wave number showed the presence of the Christiansen effect that produces high transmission at a given wavelength in the infrared region. The ratio between a and b that are respectively the distance in optical depth between the minimum and maximum optical depth values with respect to the continuum, were plotted vs all the shape parameters. We found a linear relationship with the length of the major axis that demonstrates the possibility of evaluating the size distribution of volcanic ash suspended in the atmosphere from infrared spectra. More, we also showed the possibility to use the Christiansen signature (shape and minimum) to characterize the ash type. This additional information can be used to significantly improve the IR remote sensing volcanic ash quantitative estimations.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-04-01
Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis
NASA Astrophysics Data System (ADS)
Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.
2017-06-01
Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.
The report describes a new technique for sulfur forms analysis based on low-temperature oxygen plasma ashing. The technique involves analyzing the low-temperature plasma ash by modified ASTM techniques after selectively removing the organic material. The procedure has been tested...
Rowe, Michael C.; Thornber, Carl R.; Kent, Adam J.R.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Petrologic studies of volcanic ash are commonly used to identify juvenile volcanic material and observe changes in the composition and style of volcanic eruptions. During the 2004-5 eruption of Mount St. Helens, recognition of the juvenile component in ash produced by early phreatic explosions was complicated by the presence of a substantial proportion of 1980-86 lava-dome fragments and glassy tephra, in addition to older volcanic fragments possibly derived from crater debris. In this report, we correlate groundmass textures and compositions of glass, mafic phases, and feldspar from 2004-5 ash in an attempt to identify juvenile material in early phreatic explosions and to distinguish among the various processes that generate and distribute ash. We conclude that clean glass in the ash is derived mostly from nonjuvenile sources and is not particularly useful for identifying the proportion of juvenile material in ash samples. High Li contents (>30 μg/g) in feldspars provide a useful tracer for juvenile material and suggest an increase in the proportion of the juvenile component between October 1 and October 4, 2004, before the emergence of hot dacite on the surface of the crater on October 11, 2004. The presence of Li-rich feldspar out of equilibrium (based on Liplagioclase/melt partitioning) with groundmass and bulk dacite early in the eruption also suggests vapor enrichment in the initially erupted dacite. If an excess vapor phase was, indeed, present, it may have provided a catalyst to initiate the eruption. Textural and compositional comparisons between dome fault gouge and the ash produced by rockfalls, rock avalanches, and vent explosions indicate that the fault gouge is a likely source of ash particles for both types of events. Comparison of the ash from vent explosions and rockfalls suggests that the fault gouge and new dome were initially heterogeneous, containing a mixture of conduit and crater debris and juvenile material, but became increasingly homogeneous, dominated by juvenile material, by early January 2005.
NASA Astrophysics Data System (ADS)
Scudder, R.; Murray, R. W.; Schindlbeck, J.; Kutterolf, S.
2013-12-01
Terrigenous material and volcanic ash play important roles in the IODP Seismogenic Zone and 'Subduction Factory' initiatives. Particularly relevant to these projects are studies of geochemical budgets including how fluids within subducting sediment will be affected by hydration/dehydration reactions. Of great importance is the volcanic component, which occurs both as discrete ash layers and as ash dispersed throughout the sediment column and their related altered products in the down-going plate. Based on bulk sedimentary geochemical studies of IODP Sites C0011 and C0012 drilled during Expeditions 322 and 333, we will show the importance of dispersed ash to the Nankai subduction zone and document important changes in terrigenous provenance to these locations. The major elemental characteristics of the hemipelagic mudstones are remarkably consistent both downcore and between Site C0011 and Site C0012. For example, the average Si/Al ratio at both sites C0011 and C0012 is 3.3 × 0.2. This is observed in other key major elemental indicators as well (e.g., Fe2O3). Alkali elements, Trace elements and REEs exhibit greater downcore variability while remaining consistent between the sites. Ternary diagrams such as La-Th-Sc and Sc-Cr-Th as well as other geochemical plots (i.e., Sm/Al vs. Th/Al) show that Site C0011 and Site C0012 are fairly clustered, derived primarily from a continental arc source, and that distal sources to the sediment are important in addition to a modest and varying component from the proximal Izu-Bonin Island Arc. Multivariate statistical treatments are further being applied to the datasets from these sites to allow a better determination of the number of sources that make up the bulk sediment (and their provenance). Q-mode Factor Analysis was performed in order to determine the composition of potential end member contributions to these sites. The multivariate statistics indicate Site C0011 and C0012 each have 4-5 end members that explain 98% of the total variance in the data. These factors include those with very high SiO2, some with intermediate SiO2, and carbonate components. Applying these results in conjunction with Total Inversion, a linear regression technique, will allow us to determine the compositional variation of these end members. The potential mineralogical implications of these sources, contributing different amounts and species of magmatic minerals to the sediment, will also be presented. In addition we will examine the relationship between the source(s) of the discrete ash layers to the provenance of the dispersed ash component. Shipboard visual studies of the discrete ash layers identified at least two broad types of ash present at each site. Electron microprobe analysis of individual glass shards from ash layers at Sites 322 and 333 confirms the presence of two types of ash, the majority of the ashes are rhyolitic, while the rest are andesitic to dacitic in composition. Additionally, shipboard smear slide analysis noted a sharp gradient of glass alteration in ash layers at the Unit IA/IB boundary at Site C0011. Further work will determine how these discrete ash layers relate to the composition of the dispersed ash particularly in this section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.M.G.; Chen, J.C.
1995-12-31
In this study, solid-gas partitioning coefficients of PAHs on fly ash in stack gas from a municipal incinerator were determined according to elution analysis with gas-solid chromatography. The fly ash from the electrostatic precipitator was sieved and packed into a 1/4 inch (6.3 mm) pyrex column. Elution analysis with gas-solid chromatography was conducted for three PAEs, Napthalene, Anthracene, and Pyrene. The temperature for elution analysis was in the range of 100{degrees}C to 300{degrees}C. Vg, specific retention volume obtained from elution analysis, and S, specific surface area of fly ash measured by a surface area measurement instrument were used to estimatemore » the solid-gas partitioning coefficient KR. In addition, the relationships between KR and temperature and KR and PAH concentrations were investigated.« less
Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites
NASA Astrophysics Data System (ADS)
Appel, E.; Rösler, W.; Ojha, G.
2012-04-01
Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence
[A case of volcanic ash lung: report of a case].
Shojima, Junko; Ikushima, Soichiro; Ando, Tsunehiro; Mochida, Akihiko; Yanagawa, Takashi; Takemura, Tamiko; Oritsu, Masaru
2006-03-01
A 57-year-old woman inhaled much volcanic ash without using a mask every day during the eruption of the Miyake Volcano in August 2000. An abnormal shadow was pointed out on her chest radiography by chance, after she sought refuge in Higashimurayama city in September. She had no respiratory symptoms and her chest radiography in an annual health check in July 2000 had showed no abnormality. She was admitted to our hospital and thoracoscopic lung biopsy was performed. We diagnosed it as lung inflammation caused by volcanic ash. The reasons for diagnosis were because the abnormal shadow appeared after the inhalation of volcanic ash, chest computed tomography showed diffuse irregular shadows with air bronchogram, thoracoscopic lung biopsy showed cellular-bronchiolitis around crystals, and the results of mineralogical analysis of the particles in alveolar macrophages detected in the biopsy specimen by scanning electron microscopy (SEM) were very similar to those of volcanic ash. The shadow on her chest radiography disappeared gradually without any treatment, but she avoided further exposure to volcanic ash. It is necessary to consider volcanic ash capable of causing lung inflammation.
Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.
2009-01-01
Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Crouch, John F.; Pardo, Natalia; Miller, Craig A.
2014-10-01
The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.
Coir fibre toxicity: in vivo and in vitro studies.
Saxena, R P; Dogra, R K; Bhattacherjee, J W
1982-03-01
The biological activity of coir fibre, coir ash and their components were investigated in vitro by measuring the haemolytic activity and macrophage cytotoxicity. In vivo studies carried out by injecting guinea pigs intratracheally with coir fibres resulted in resolving granulomas. The observed haemolytic activity and macrophage cytotoxicity was more marked with coir ash compared with coir fibres. Chemical analysis of coir ash revealed the presence of toxic chemical constituents in appreciable amounts.
Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris
2008-05-01
Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.
1998-12-31
Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less
Valavanidis, Athanasios; Iliopoulos, Nikiforos; Fiotakis, Konstantinos; Gotsis, George
2008-06-01
Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical problem.
Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea
NASA Astrophysics Data System (ADS)
Choi, Eun-kyeong; Kim, Sung-wook
2017-04-01
Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
AVAL - The ASTER Volcanic Ash Library
NASA Astrophysics Data System (ADS)
Williams, D.; Ramsey, M. S.
2016-12-01
Volcanic ash is a rich data source for understanding the causal mechanisms behind volcanic eruptions. Petrologic and morphometric information can provide direct information on the characteristics of the parent magma. Understanding how erupted ash interacts with the atmosphere can help quantify the effect that explosive volcanism has on the local to regional climate, whereas a measure of the particle size distribution enables more accurate modeling of plume propagation. Remote sensing is regularly employed to monitor volcanic plumes using a suite of high temporal/low spatial resolution sensors. These methods employ radiative transfer modeling with assumptions of the transmissive properties of infrared energy through the plume to determine ash density, particle size and sulfur dioxide content. However, such approaches are limited to the optically-transparent regions, and the low spatial resolution data are only useful for large-scale trends. In a new approach, we are treating the infrared-opaque regions of the plume in a similar way to a solid emitting surface. This allows high spatial resolution orbital thermal infrared data from the dense proximal plume to be modeled using a linear deconvolution approach coupled with a spectral library to extract the particle size and petrology. The newly created ASTER Volcanic Ash Library (AVAL) provides the end member spectral suite, and is comprised of laboratory emission measurements of volcanic ash taken from a variety of different volcanic settings, to obtain a wide range of petrologies. These samples have been further subdivided into particle size fractions to account for spectral changes due to diffraction effects. Once mapped to the ASTER sensor's spectral resolution, this library is applied to image data and the plume deconvolved to estimate composition and particle size. We have analyzed eruptions at the Soufrière Hills Volcano, Montserrat, Chaitén and Puyehue-Cordón Caulle, both Chile, and Eyjafjallajökull, Iceland. These results provide particle size distributions within actively-erupting volcanic plumes for the first time in high resolution, and the petrologic information is being studied to understand the underlying eruptive processes observed.
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.
1998-01-01
A large number of Lower Silurian (Llandovery) K-bentonite beds have been recorded from northwestern Europe, particularly in Baltoscandia and the British Isles, but previous attempts to trace single beds regionally have yielded inconclusive results. The present study suggests that based on its unusual thickness, stratigraphic position and trace element geochemistry, one Telychian ash bed, the Osmundsberg K-bentonite, can be recognized at many localities in Estonia, Sweden and Norway and probably also in Scotland and Northern Ireland. This bed, which is up to 115 cm thick, is in the lower-middle turriculatus Zone. The stratigraphic position, thickness variation and geographic distribution of the Osmundsberg K-bentonite are illustrated by means of 12 selected Llandovery successions in Sweden, Estonia, Norway, Denmark, Scotland and Northern Ireland. In Baltoscandia, the Osmundsberg K-bentonite shows a trend of general thickness increase in a western direction suggesting that its source area was located in the northern Iapetus region between Baltica and Laurentia. Because large-magnitude ash falls like the one that produced the Osmundsberg K-bentonite last at most a few weeks, such an ash bed may be used as a unique time-plane for a variety of regional geological and palaeontological studies.
Geotechnical approaches to coal ash content control in mining of complex structure deposits
NASA Astrophysics Data System (ADS)
Batugin, SA; Gavrilov, VL; Khoyutanov, EA
2017-02-01
Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.
Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion
NASA Astrophysics Data System (ADS)
Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.
2012-06-01
Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.
Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing
2014-05-06
Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (<2 μm) and coarse fractions (>2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of particle sizes, from nanometer range to micrometer range. Many aggregated particles were observed, demonstrating that ENO, bulk-derived nano-objects and combustion-generated nano-objects can form aggregates in the incineration process.
The measurement of unburned carbon in fly ash using infrared photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waller, D.J.; Brown, R.C.
1995-12-31
Unburned carbon in fly ash yields valuable information on coal combustion efficiency in coal-fired boilers. The carbon content of fly ash is also an important parameters in the sale of fly ash for Portland cement. Unfortunately, a reliable and inexpensive instrument for measuring unburned carbon is not commercially available. The authors have developed an off-line instrument that detects carbon in fly ash via the photoacoustic effect. In this process, amplitude-modulated radiation is absorbed by a bulk sample of fly ash. The wavelength of the radiation is chosen such that mineral compounds and moisture in the fly ash are transparent tomore » the radiation but carbon is strongly absorbing. The modulated absorption generates a periodic pressure wave at the surface of the sample which propagates through the surrounding air as an acoustic wave. This wave is detected by a sensitive microphone, and is dependent on the carbon content of the sample. The resulting instrument has been used to measure fly ash carbon concentrations from less than 0.1% to nearly 7% by mass. The precision of these measurements is nominally within 4%, which is equivalent to the precision of the chemical analysis used to develop the calibration standards. The applicability of a theoretical model to the empirical results is discussed with respect to fly ash sample preparation.« less
Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan
2009-07-30
Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.
Magnetic separation of coal fly ash from Bulgarian power plants.
Shoumkova, Annie S
2011-10-01
Fly ash from three coal-burning power plants in Bulgaria: 'Maritza 3', 'Republika' and 'Rousse East' were subjected to wet low-intensity magnetic separation. The tests were performed at different combinations of magnetic field intensity, flow velocity and diameter of matrix elements. It was found that all parameters investigated affected the separation efficiency, but their influence was interlinked and was determined by the properties of the material and the combination of other conditions. Among the fly ash characteristics, the most important parameters, determining the magnetic separation applicability, were mineralogical composition and distribution of minerals in particles. The main factors limiting the process were the presence of paramagnetic Fe-containing mineral and amorphous matter, and the existence of poly-mineral particles and aggregates of magnetic and non-magnetic particles. It was demonstrated that the negative effect of both factors could be considerably limited by the selection of a proper set of separation conditions. The dependences between concentration of ferromagnetic iron in the ash, their magnetic properties and magnetic fraction yields were studied. It was experimentally proved that, for a certain set of separation conditions, the yields of magnetic fractions were directly proportional to the saturation magnetization of the ferromagnetic components of the ash. The main properties of typical magnetic and non-magnetic fractions were studied.
Size limits for rounding of volcanic ash particles heated by lightning
Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.
2017-01-01
Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929
Estimation of postfire nutrient loss in the Florida everglades.
Qian, Y; Miao, S L; Gu, B; Li, Y C
2009-01-01
Postfire nutrient release into ecosystem via plant ash is critical to the understanding of fire impacts on the environment. Factors determining a postfire nutrient budget are prefire nutrient content in the combustible biomass, burn temperature, and the amount of combustible biomass. Our objective was to quantitatively describe the relationships between nutrient losses (or concentrations in ash) and burning temperature in laboratory controlled combustion and to further predict nutrient losses in field fire by applying predictive models established based on laboratory data. The percentage losses of total nitrogen (TN), total carbon (TC), and material mass showed a significant linear correlation with a slope close to 1, indicating that TN or TC loss occurred predominantly through volatilization during combustion. Data obtained in laboratory experiments suggest that the losses of TN, TC, as well as the ratio of ash total phosphorus (TP) concentration to leaf TP concentration have strong relationships with burning temperature and these relationships can be quantitatively described by nonlinear equations. The potential use of these nonlinear models relating nutrient loss (or concentration) to temperature in predicting nutrient concentrations in field ash appear to be promising. During a prescribed fire in the northern Everglades, 73.1% of TP was estimated to be retained in ash while 26.9% was lost to the atmosphere, agreeing well with the distribution of TP during previously reported wild fires. The use of predictive models would greatly reduce the cost associated with measuring field ash nutrient concentrations.
Size limits for rounding of volcanic ash particles heated by lightning.
Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B
2017-03-01
Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.
Size limits for rounding of volcanic ash particles heated by lightning
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.
2017-03-01
Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.
Ash fusion characteristics during co-gasification of biomass and petroleum coke.
Xiong, Qing-An; Li, Jiazhou; Guo, Shuai; Li, Guang; Zhao, Jiantao; Fang, Yitian
2018-06-01
In this study, the effect of biomass ash on petroleum coke ash fusibility was investigated at a reducing atmosphere. Some analytical methods, such as ash fusion temperatures (AFTs) analysis, X-ray diffraction (XRD), FactSage and scanning electron microscopy (SEM), were applied to determine the characteristics of ash fusion and transformation of mineral matters. The results indicated that AFTs were closely associated with ash mineral compositions. It was found that the formations of high melting point calcium silicate, vanadium trioxide and coulsonite resulted in the high AFTs of Yanqing petroleum coke (YQ). When blending with certain proportional pine sawdust (PS), corn stalk (CS), the AFTs of mixture could be decreased significantly. For PS addition, the formations of low-melting point calcium vanadium oxide should be responsible for the reduction of AFTs, whereas for CS addition the reason was ascribed to the formation of low-melting point leucite and the disappearance of high-melting V 2 O 3 . Copyright © 2018. Published by Elsevier Ltd.
Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011.
Oudin, Anna; Carlsen, Hanne K; Forsberg, Bertil; Johansson, Christer
2013-12-10
In the aftermath of the Icelandic volcano Grimsvötn's eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24-31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study effects of the Grimsvötn ash on morbidity and mortality. Such studies would be of particular importance for European societies preparing for future large scale volcanic eruptions in Iceland.
Volcanic Ash and Daily Mortality in Sweden after the Icelandic Volcano Eruption of May 2011
Oudin, Anna; Carlsen, Hanne K.; Forsberg, Bertil; Johansson, Christer
2013-01-01
In the aftermath of the Icelandic volcano Grimsvötn’s eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24–31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study effects of the Grimsvötn ash on morbidity and mortality. Such studies would be of particular importance for European societies preparing for future large scale volcanic eruptions in Iceland. PMID:24336019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seungmok; Seong, Heeje
In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), andmore » three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.« less
Choi, Seungmok; Seong, Heeje
2015-03-02
In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), andmore » three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madankan, R.; Pouget, S.; Singla, P., E-mail: psingla@buffalo.edu
Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This papermore » presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.« less
A proposed origin of the Olympus Mons escarpment. [Martian volcanic feature
NASA Technical Reports Server (NTRS)
King, J. S.; Riehle, J. R.
1974-01-01
Olympus Mons (Nix Olympica) on Mars is delimited by a unique steep, nearly circular scarp. A pyroclastic model is proposed for the construct's origin. It is postulated that the Olympus Mons plateau is constructed predominantly of numerous ash-flow tuffs which were erupted from central sources over an extended period of time. Lava flows may be intercalated with the tuffs. A schematic radial profile incorporating the inferred compaction zones for an ash sheet is proposed. Following emplacement, eolian (and possibly fluvial) erosion and abrasion during dust storms would act on the ash sheets. Interior portions of the sheets would spall and slump following eolian erosion, generating steep, relatively smooth boundary scarps. The scarp would be circular due to symmetrical distribution of compaction zones. The model implies further that the Olympus Mons plateau rests on a more resistant rock substrate.
Ertit Taştan, Burcu
2017-09-15
In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.
MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2008-12-01
Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.
Study on microstructure and tensile properties of fly ash AMCs welded by FSW
NASA Astrophysics Data System (ADS)
Sachinkumar, Narendranath, S.; Chakradhar, D.
2018-04-01
Aluminum matrix composite (AMCs) constitute a new class of light weight and high strength materials which have widespread applications in almost all engineering sectors. But the cost of AMCs is the only barrier to increase their applications still. Hence there is a huge demand for the composites containing low cost reinforcement with less weight, keeping this in mind, in the present work, Friction stir welding (FSW) of AA6061/SiC/fly ash was carried out successfully. Microstructural study on the welded specimens was performed using optical microscopy (OM) and scanning electron microscopy (SEM). Results indicate that fly ash particles were uniformly distributed in the weld nugget area because of the stirring action of the FSW tool also promoted the grain refinement of the matrix material with complete elimination of clusters present in matrix material which resulting in sound welds without any defects for AA6061/SiC/fly ash composites. 82% of joint efficiency is obtained for selected AMCs. Transverse tensile test results showed that all welds fractured in HAZ.
Coal fly ash as a resource for rare earth elements.
Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena
2015-06-01
Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.
NASA Astrophysics Data System (ADS)
Matson, Ernest A.
1989-01-01
Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.
Streibel, T; Nordsieck, H; Neuer-Etscheidt, K; Schnelle-Kreis, J; Zimmermann, R
2007-04-01
On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of PCDD/PCDF concentration in solid residues has to be derived anew for each individual plant and type of ash.
Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.
Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G
2007-03-01
Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.
Influence of heating on the weight loss and mineral phase in MSWI ash: LOI of incineration ash
NASA Astrophysics Data System (ADS)
Yang, Shuo
2017-04-01
Loss on ignition (LOI) is a very common method for estimating the volatile species in solid sample. Normally, the measurement of LOI can be convenient and accurate, but for municipal solid waste incineration (MSWI) ash, the process may become intricate due to the complexity of the sample. In the incineration ash, there exist various phases, such as mineral, metal, organic and glass. The reaction and transformation of some materials during heating will influence the measurement. 5 incineration ash samples were selected and tested in this study. LOI content was basically measured at high (850°C) and relatively low (440°C) temperatures. The comparison between these two measurements showed a large difference. X-ray diffraction (XRD) and thermal analysis (TG-DTA) were carried out to investigate the mineral changes and weight losses with different ignition temperatures. The mineralogical analysis suggests that the decomposition of hydrate and carbonate phases cannot be neglected for LOI measurement of incineration. A long-time heating under relatively lower temperature (400∼450°C) compared with soil sample measurement (≥500°C) was recommended by this study.
Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A
2014-06-01
Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.
The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-12-01
The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Samolczyk, Mary; Vallance, James W.; Cubley, Joel; Osborn, Gerald; Clark, Douglas H.
2016-01-01
The oldest postglacial lapilli–ash tephra recognized in sedimentary records surrounding Mount Rainier (Washington State, USA) is R tephra, a very early Holocene deposit that acts as an important stratigraphic and geochronologic marker bed. This multidisciplinary study incorporates tephrostratigraphy, radiocarbon dating, petrography, and electron microprobe analysis to characterize R tephra. Tephra samples were collected from Tipsoo Lake and a stream-cut exposure in the Cowlitz Divide area of Mount Rainier National Park. Field evidence from 25 new sites suggests that R tephra locally contains internal bedding and has a wider distribution than previously reported. Herein, we provide the first robust suite of geochemical data that characterize the tephra. Glass compositions are heterogeneous, predominantly ranging from andesite to rhyolite in ash- to lapilli-sized clasts. The mineral assemblage consists of plagioclase, orthopyroxene, clinopyroxene, and magnetite with trace apatite and ilmenite. Subaerial R tephra deposits appear more weathered in hand sample than subaqueous deposits, but weathering indices suggest negligible chemical weathering in both deposits. Statistical analysis of radiocarbon ages provides a median age for R tephra of ∼10 050 cal years BP, and a 2σ error range between 9960 and 10 130 cal years BP.
Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.
2017-07-01
Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.
NASA Astrophysics Data System (ADS)
Bilal Naim Shaikh, Mohd; Arif, Sajjad; Arif Siddiqui, M.
2018-04-01
This paper reports the fabrication and characterization of aluminium hybrid composites (AMCs) reinforced with commonly available and inexpensive fly ash (FA, 0, 5, 10 and 15 wt.%) particles along silicon carbide (SiC) using powder metallurgy process. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were employed for microstructural characterization and phase identification respectively. Wear behaviour were investigated using pin-on-disc wear tester for the different combinations of wear parameters like load (10, 20 and 30 N), sliding speed (1.5, 2 and 2.5 m s‑1) and sliding distance (300, 600 and 900 m). SEM confirms the uniform distribution of FA and SiC in aluminium matrix. The hardness of Al/SiC/FA is increased by 20%–25% while wear rate decreased by 15%–40%. From wear analysis, sliding distance was the least significant parameter influencing the wear loss followed by applied load and sliding speed. To identify the mechanism of wear, worn out surface were also analysed by SEM.
Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal
2012-08-01
Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rogers, R A; Antonini, J M; Brismar, H; Lai, J; Hesterberg, T W; Oldmixon, E H; Thevenaz, P; Brain, J D
1999-05-01
Hamsters breathed, nose-only, for 13 weeks, 5 days/week, 6 hr/day, either man-made vitreous fiber (MMVF)10a, MMVF33, or long amosite asbestos at approximately 300 World Health Organization (WHO) fibers/cc or long amosite at 25 WHO fibers/cc. [World Health Organization fibers are longer than 5 microm and thicker than 3 microm, with aspect ratio >3.] After sacrifice, fiber burden was estimated (left lungs) by ashing and scanning electron microscopy (ashing/SEM) or (right middle lobes) by confocal laser scanning microscopy (CLSM) in situ. In situ CLSM also provided three-dimensional views of fibers retained, undisturbed, in lung tissue. Fibers of each type were lodged in alveoli and small airways, especially at airway bifurcations, and were seen fully or partly engulfed by alveolar macrophages. Amosite fibers penetrated into and through alveolar septa. Length densities of fibers in parenchyma (total length of fiber per unit volume of lung) were estimated stereologically from fiber transsections counted on two-dimensional optical sections and were 30.5, 25.3, 20.0, and 81.6 mm/mm3 for MMVF10a, MMVF33, and low- and high-dose amosite, respectively. Lengths of individual fibers were measured in three dimensions by tracking individual fibers through series of optical sections. Length distributions of amosite fibers aerosolized, but before inhalation versus after retention in the lung were similar, whether determined by ashing/SEM or in situ CLSM. In contrast, the fraction of short MMVF10a and MMVF33 fibers increased and the geometric mean fiber lengths of both MMVFs decreased by approximately 60% during retention. Most likely due to fiber deposition pattern and differences in sampling, fiber burdens [MMVF10a, MMVF33, and amosite (high dose; 269 WHO fibers/cc)] determined by ashing/SEM were 1.4, 1. 5, and 3.5 times greater, respectively, than those calculated from in situ CLSM data. In situ CLSM is able to provide detailed information about the anatomic sites of fiber retention and also fiber lengths and burdens in good agreement with ashing/SEM results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.
2015-10-15
The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found thatmore » vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.« less
Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts
Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.
2016-01-01
Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ∼ 2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( < 0.063 mm) ash (3–59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.
Life cycle based risk assessment of recycled materials in roadway construction.
Carpenter, A C; Gardner, K H; Fopiano, J; Benson, C H; Edil, T B
2007-01-01
This paper uses a life-cycle assessment (LCA) framework to characterize comparative environmental impacts from the use of virgin aggregate and recycled materials in roadway construction. To evaluate site-specific human toxicity potential (HTP) in a more robust manner, metals release data from a demonstration site were combined with an unsaturated contaminant transport model to predict long-term impacts to groundwater. The LCA determined that there were reduced energy and water consumption, air emissions, Pb, Hg and hazardous waste generation and non-cancer HTP when bottom ash was used in lieu of virgin crushed rock. Conversely, using bottom ash instead of virgin crushed rock increased the cancer HTP risk due to potential leachate generation by the bottom ash. At this scale of analysis, the trade-offs are clearly between the cancer HTP (higher for bottom ash) and all of the other impacts listed above (lower for bottom ash). The site-specific analysis predicted that the contaminants (Cd, Cr, Se and Ag for this study) transported from the bottom ash to the groundwater resulted in very low unsaturated zone contaminant concentrations over a 200 year period due to retardation in the vadose zone. The level of contaminants predicted to reach the groundwater after 200 years was significantly less than groundwater maximum contaminant levels (MCL) set by the US Environmental Protection Agency for drinking water. Results of the site-specific contaminant release estimates vary depending on numerous site and material specific factors. However, the combination of the LCA and the site specific analysis can provide an appropriate context for decision making. Trade-offs are inherent in making decisions about recycled versus virgin material use, and regulatory frameworks should recognize and explicitly acknowledge these trade-offs in decision processes.
Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz
2016-01-02
The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.
Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz
2016-01-01
The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821
Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying
2014-09-01
The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.
Medunić, Gordana; Ahel, Marijan; Mihalić, Iva Božičević; Srček, Višnja Gaurina; Kopjar, Nevenka; Fiket, Željka; Bituh, Tomislav; Mikac, Iva
2016-10-01
This paper presents the levels of sulphur, polycyclic aromatic hydrocarbons (PAHs), and potentially toxic trace elements in soils surrounding the Plomin coal-fired power plant (Croatia). It used domestic superhigh-organic-sulphur Raša coal from 1970 until 2000. Raša coal was characterised by exceptionally high values of S, up to 14%, making the downwind southwest (SW) area surrounding the power plant a significant hotspot. The analytical results show that the SW soil locations are severely polluted with S (up to 4%), and PAHs (up to 13,535ng/g), while moderately with Se (up to 6.8mg/kg), and Cd (up to 4.7mg/kg). The composition and distribution pattern of PAHs in the polluted soils indicate that their main source could be airborne unburnt coal particles. The atmospheric dispersion processes of SO2 and ash particles have influenced the composition and distribution patterns of sulphur and potentially toxic trace elements in studied soils, respectively. A possible adverse impact of analysed soil on the local karstic environment was evaluated by cytotoxic and genotoxic methods. The cytotoxicity effects of soil and ash water extracts on the channel catfish ovary (CCO) cell line were found to be statistically significant in the case of the most polluted soil and ash samples. However, the primary DNA-damaging potential of the most polluted soil samples on the CCO cells was found to be within acceptable boundaries. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Maozhe; Blanc, Denise, E-mail: denise.blanc-biscarat@insa-lyon.fr; Gautier, Mathieu
2013-05-15
Highlights: ► We used sewage sludge ashes in ready-mix concrete recipe. ► SSAs were used as a substitution of cement. ► Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ► Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials,more » provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at concentrations above the threshold limits considered. The leaching tests conducted on concrete monoliths showed however that none of the contaminants monitored, including Mo and Se, were leached above the limits. In addition, whether concrete recipe incorporated ashes or not, similar concentrations were measured for each potential contaminant in the leachates. This result indicated that mixing ash with cement and sand to produce mortar or concrete induced a stabilization of Mo and Se and thereby constituted in itself a good treatment of the ashes.« less
Concentration of heavy metals in ash produced from Lithuanian forests
NASA Astrophysics Data System (ADS)
Baltrenaite, Edita; Pereira, Paulo; Butkus, Donatas; Úbeda, Xavier
2010-05-01
Wood ash contains important amounts of heavy metals. This quantity depends on burned specie, temperature of exposition and heat duration time. Due the high mineralization imposed by the temperatures, ash is used as lime product in agriculture and forests. Also, after a forest fire large quantities of ash are produced and distributed in soil surface. This mineralized organic matter can induce important environmental problems, including soil toxicity provoked by heavy metals leachates from ash. There is an extensive literature about heavy metals contents on ash in different species. However, it recently highlighted that the same species placed in different environments can respond diversely to same temperatures. This question is of major importance because temperature effects on severity can be a function of the plant communities instead of specie characteristics. These findings add a higher degree of complexity in the understanding of temperature effects on ash composition and consequent availability of heavy metals. The aim of this study is to compare the ash chemical heavy metal composition, Cobalt (Co), Chromium (Cr), Cooper (Cu), Silver (Ag), Lead (Pb), Nickel (Ni), Manganese (Mn) and Zinc (Zn), from Pinus sylvestris and Betula pendula, collected in key and representative areas of Lithuanian forests, located in southern, coastal and central part. Samples were collected from alive trees, taken to laboratory and air dried. Subsequently were crushed and submitted to muffle furnace at temperature of 550°C during two hours. The ash samples were digested and in a HNO3-HCl solution and then analysed with AAS. Comparisons between species and sites were performed with a Non-parametric one-way ANOVA‘s on rank transformed data followed by Tukey‘s HSD, significant at a p<0.05. Results showed significant difference between Co and Ag concentrations between Pinus sylvestris and Betula pendula. Also, significantly different concentrations of Pb, Cu, Ni and Mn were determined among investigated sites. No significant difference was found for Zn and Cr among investigated sites. Variation of metals between sites and stands can be explained by their age, flammability difference between plant communities and anthropogenic heavy metal load. These and other aspects will be discussed with more detail in the communication.
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.
2016-01-01
Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary pellets, suggesting them to be the result of a particular granulometry and fast-acting selective aggregation processes. For such aggregates to survive deposition and be preserved in the deposits of eruption plumes and pyroclastic density currents likely requires a significant pre-existing salt load on ash surfaces, and rapid aggregate drying prior to deposition or interaction with a more energetic environment. Our results carry clear benefits for future efforts to parameterize models of ash transport and deposition in the field.
[Proximate analysis of straw by near infrared spectroscopy (NIRS)].
Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling
2009-04-01
Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.
Optoelectronic system of online measurements of unburned carbon in coal fly ash
NASA Astrophysics Data System (ADS)
Golas, Janusz; Jankowski, Henryk; Niewczas, Bogdan; Piechna, Janusz; Skiba, Antoni; Szkutnik, Wojciech; Szkutnik, Zdzislaw P.; Wartak, Ryszarda; Worek, Cezary
2001-08-01
Carbon-in-ash level is an important consideration for combustion efficiency as well as ash marketing. The optoelectronic analyzing system for on-line determination and monitoring of the u burned carbon content of ash samples is presented. The apparatus operates on the principle that carbon content is proportional to the reflectance of IR light. Ash samples are collected iso kinetically from the flue gas duct and placed in a sample tube with a flat glass bottom. The same is then exposed to a light. The reflectance intensity is used by the system's computer to determine residual carbon content from correlation curves. The sample is then air purged back to the duct or to the attached sample canister to enable laboratory check analysis. The total cycle time takes between 5 and 10 minutes. Real time result of carbon content with accuracy 0.3-0.7 percent are reported and can be used for boiler controlling.
NASA Astrophysics Data System (ADS)
Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon
2017-09-01
The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing
fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.
Kataki, Sampriti; Hazarika, Samarendra; Baruah, D C
2017-07-01
Success and acceptability of the bio energy conversion technology to a large extent depend upon management of the inevitable by-products generated during the conversion process. By-products can be considered favourable as organic fertilizer as they retain nutrients with varying composition depending upon input biomass. However, characteristics of these heterogeneous resources with respect to feedstock and processing conditions have to be assessed to state on their agricultural and environmental benefits. Therefore, 3 types of anaerobic digestion by-products (digestate) from surplus biomass viz. cow dung, Ipomoea carnea:cow dung (60:40 dry weight basis) and rice straw:green gram stover:cow dung (30:30:40 dry weight basis) and one gasification by-product (biochar) from rice husk are considered to understand the fertilizer prospects. Considering 3 potential application options, digestate from each feedstock option was further processed as separated solid, separated liquid and ash from solid digestates. Thus, a total of 10 by-products were investigated for understanding their prospects as fertilizer using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X ray Spectroscopy (EDX) and phyto-toxicity test to have a broad insight in terms of their organic, mineral, elemental composition, morphological feature and potential phyto-toxicity. In general, irrespective of origin of feedstock, solid digestate, ash digestate and char showed similarity in terms of composition of functional groups with some degree of variation in relative content as reflected by FTIR analysis. Dominance of organic functional groups in separated solid digestates compared to liquid fraction indicated the former as favourable organic amendments. Quartz was the prevalent mineral phase in all separated solid, ash digestate and rice husk char. Digestates in ash phase represent more concentrated plant nutrient source with higher content of K, Ca, P, Na and Mg than their respective solid phase. Application of ash digestates and char is likely to improve adsorptive capacity of soil for water and nutrient due to presence of relatively uniformly distributed porous particles. Liquid fraction of Ipomoea digestates exhibited inhibitory effect on seed germination of greengram (Vigna radiate) with significant reduction of germination index. Inhibitory effects of by-products were found to correlate negatively with their electrical conductivity and ammonia-nitrogen content. Understanding on spectroscopic, morphological and phytotoxic properties of different application options of bioenergy by-products would be useful for assessment of their appropriate use in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mapping wildfire effects on Ca2+ and Mg2+ released from ash. A microplot analisis.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Úbeda, Xavier; Martin, Deborah
2010-05-01
Wildland fires have important implications in ecosystems dynamic. Their effects depends on many biophysical components, mainly burned specie, ecosystem affected, amount and spatial distribution of the fuel, relative humidity, slope, aspect and time of residence. These parameters are heterogenic across the landscape, producing a complex mosaic of severities. Wildland fires have a heterogenic impact on ecosystems due their diverse biophysical features. It is widely known that fire impacts can change rapidly even in short distances, producing at microplot scale highly spatial variation. Also after a fire, the most visible thing is ash and his physical and chemical properties are of main importance because here reside the majority of the available nutrients available to the plants. Considering this idea, is of major importance, study their characteristics in order to observe the type and amount of elements available to plants. This study is focused on the study of the spatial variability of two nutrients essential to plant growth, Ca2+ and Mg2+, released from ash after a wildfire at microplot scale. The impacts of fire are highly variable even small distances. This creates many problems at the hour of map the effects of fire in the release of the studied elements. Hence is of major priority identify the less biased interpolation method in order to predict with great accuracy the variable in study. The aim of this study is map the effects of wildfire on the referred elements released from ash at microplot scale, testing several interpolation methods. 16 interpolation techniques were tested, Inverse Distance to a Weight (IDW), with the with the weights of 1,2, 3, 4 and 5, Local Polynomial, with the power of 1 (LP1) and 2 (LP2), Polynomial Regression (PR), Radial Basis Functions, especially, Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (MTQ), and Thin Plate Spline (TPS). Also geostatistical methods were tested from Kriging family, mainly Ordinary Kriging (OK), Simple Kriging (SK) and Universal Kriging (UK). Interpolation techniques were assessed throughout the Mean Error (ME) and Root Mean Square (RMSE), obtained from the cross validation procedure calculated in all methods. The fire occurred in Portugal, near an urban area and inside the affected area we designed a grid with the dimensions of 9 x 27 m and we collected 40 samples. Before modelling data, we tested their normality with the Shapiro Wilk test. Since the distributions of Ca2+ and Mg2+ did not respect the gaussian distribution we transformed data logarithmically (Ln). With this transformation, data respect the normality and spatial distribution was modelled with the transformed data. On average in the entire plot the ash slurries contained 4371.01 mg/l of Ca2+, however with a higher coefficient of variation (CV%) of 54.05%. From all the tested methods LP1 was the less biased and hence the most accurate to interpolate this element. The most biased was LP2. In relation to Mg2+, considering the entire plot, the ash released in solution on average 1196.01 mg/l, with a CV% of 52.36%, similar to the identified in Ca2+. The best interpolator in this case was SK and the most biased was LP1 and TPS. Comparing all methods in both elements, the quality of the interpolations was higher in Ca2+. These results allowed us to conclude that to achieve the best prediction it is necessary test a wide range of interpolation methods. The best accuracy will permit us to understand with more precision where the studied elements are more available and accessible to plant growth and ecosystem recovers. This spatial pattern of both nutrients is related with ash pH and burned severity evaluated from ash colour and CaCO3 content. These aspects will be also discussed in the work.
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Samal, S.; Pattnaik, D.; Sahu, A.; Swain, B.; Thiyagarajan, T. K.; Mishra, S. C.
2018-03-01
The environment is being contaminated with advancement of new technology, day by day. One of the primary sources for this contamination is the industrial waste. Industrialization is the prime reason behind the prosperity of any country to meet the materialistic demand. To run the industries, a huge amount of (electric) power is needed and hence need for thermal power plants to serve the purpose. In present scenario, coal fired thermal power plants are set up which generates a huge quantity of Fly ash. Consumption of industrial waste (Fly ash), continually a major concern for human race. In recent years, fly ash is being utilized for various purposes i.e. making bricks, mine reclamation, production of cements etc. The presence of Silica and Alumina in fly ash makes it useful for thermal barrier applications also. The plasma spray technology has the advantage of being able to process any types of metal/ceramic mineral, low-grade-ore minerals etc. to make value-added products and also to deposit ceramics, metals and a combination of these to deposit composite coatings with desired microstructure and required properties on a range of substrate materials. The present work focuses on utilization of fly ash mixing with bauxite (ore mineral) for a high valued application. Fly ash with 10 and 20% bauxite addition is used to deposit plasma spray overlay coatings at different power levels (10-20kW) on aluminum and mild steel substrates. Adhesion strength and surface roughness of the coatings are evaluated. Phase composition analysis of the coatings were done using X-ray diffraction analysis. Surface morphology of the coatings was studied using a scanning electron microscope (SEM). Maximum adhesion strength of 4.924 MPa is obtained for the composition fly ash and bauxite (10%), coated on mild steel at 16kW torch power level. The surface roughness (Ra) of the coatings is found to vary between 10.0102 to 17.2341 micron.
Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru
2009-02-01
Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.
Raman spectroscopy for characterizing and determining the pozzolanic reactivity of fly ashes
NASA Astrophysics Data System (ADS)
Garg, Nishant
The efficacy and potential of Raman spectroscopy in characterization of a commercial Ordinary Portland Cement (OPC) and three fly ashes (FA's), and their evolving hydration products were studied in this Master's thesis work. While there have been several studies focusing on the application of Raman spectroscopy to synthetic, pure samples, work on commercial cementitious systems is scarce. This work covers this gap by evaluating mixtures containing cements and fly ashes. The study first involved determination followed by establishment of instrumental configuration and testing parameters optimum for studying cementitious materials both in the dry and wet form. It was found that by tweaking several parameters, collection methodologies and analysis techniques, improved, representative and reproducible data could be obtained. Mapping a representative area to determine the spatial distribution and concentration of sulfates and hydroxides on sample surfaces was found to be the most effective way to study these complex and heterogeneous systems. The Raman dry analysis of OPC and three different FA's of varying calcium contents and reactivity was able to identify the major mineralogical phases in these binders and the results were in correlation with the X-ray diffraction data. The observed calcium and sulfate phases and their relative concentration also agreed well with the supplementary compositional data obtained from X-ray fluorescence and Atomic absorption spectrometry. The wet analysis of pastes prepared with 100% OPC and 50%OPC+50%FA(1,2,3) followed the hydration process of the systems for 56 days (0, 0.2, 2, 4, 8, 12, 16, 20, 24, 48, 72 hours, 7, 14, 21, 28, and 56 days). Consistency of trends in the hydration mechanism of such pastes was only obtained when studies were focused on narrow wavenumber ranges: 950--1050 cm-1 for evolution of sulfates and 3600--3700cm-1 for evolution of hydroxides. Gradual disappearance of Gypsum with a parallel formation of Ettringite was clearly visible in most mixes, while transition of AFt to AFm was not very obvious and needs further research. Evolution of hydroxides showed the gradual spatial growth of portlandite in the studied areas of the samples. The growth rate and concentration of portlandite in different fly ash-cement-water mixes was correlated to the reactivity of the given fly ashes. While a clear connection wasnot established, several observations were made based on the interpretation of the obtained data. This lack of agreement between expected and observed results may be attributed to the heterogeneity of the studied materials, potential problems in sample preparations as well as limitations of the technique. Overall, Raman was effectively applied to the study of commercial, cementitious systems---this work being one of the early attempts if not the first attempt to study multi-phase fly ash blended cement pastes. While Raman may not be able to completely characterize and analyze such systems as a standalone tool, it definitely has a great potential in serving as a supplementary tool for deeper understanding of cement chemistry and hydration mechanisms.
YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS
2015-01-01
Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094
Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.
1993-01-01
Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.
[Characterization of PAHs in fly ashes from coke production].
Mu, Ling; Peng, Lin; Liu, Xiao-Feng; Bai, Hui-Ling; Zhang, Jian-Qiang
2013-03-01
In order to investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) in ashes from coking, PAHs in ashes from three coke production plants were analyzed with GC-MS, and the distribution characteristics of PAHs and potential toxicity risk were discussed. The sum of 16 EPA prior PAHs varied from 8.17 x 10(2) to 5.17 x 10(3) microg x g(-1). PAH contents from the coke oven (stamp charging) with the height of 3.2 m were two times higher than those from the one (top charging) with the height of 6.0 m, and PAHs in ashes from coal charging were significantly higher than those from coke pushing in the same plant. Four-ring and five-ring PAHs were the dominant species in ashes from coking and the sum of them accounted for more than 80.00% of total PAHs. Chrysene (Chr), benzo [a] anthracene (BaA) and benzo [b] fluoranthene (BbF) were abundant in all ash samples. The content of total BaP-based toxic equivalency (BaPeq) ranged from 1.64 x 10(2) to 9.57 x 10(2) microg x g(-1). From the carcinogenic point of view, besides benzo [a] pyrene (BaP), dibenz [a,h] anthracene (DbA) contributed most to the overall toxicity of PAHs, followed by BaA and BbF. BaPeq concentration from coal charging was 5.21-fold higher than that from coke pushing, indicating that different reuse ways should be considered based on their specific toxicity profiles of PAHs.
NASA Astrophysics Data System (ADS)
Badar, Mohammad Sufian
This thesis reports a comprehensive study related to the experimental evaluation of carbonation in reinforced geopolymer concrete, the evaluation of geopolymer concretes at elevated temperature, and the resistance of geopolymer concrete to microbial induced corrosion (MIC). Carbonation: Reinforced concretes, made of geopolymer, prepared from two class F fly ashes and one class C fly ash, were subjected to accelerated carbonation treatment for a period of 450 days. Electrochemical, microstructure and pore structure examinations were performed to evaluate the effect of corrosion caused due to carbonation. GPC specimens prepared from class F fly ash exhibited lower corrosion rates by a factor of 21, and higher pH values (pH>12) when compared with concrete specimens prepared from class C Fly ash (GPCMN). Microstructure and pore characterization of GPC prepared using class F fly ash revealed lower porosity by a factor of 2.5 as compared with thier counterparts made using GPC-MN. The superior performace of GPC prepared with the class F fly ash could be attributed to the dense pore structure and formation of the protective layer of calcium and sodium alumino silicate hydrates (C/N-A-S-H) geopolymeric gels around the steel reinforcement. Elevated Temperature: Geopolymers are an emerging class of cementitious binders which possess a potential for high temperature resistance that could possibly be utilized in applications such as nozzles, aspirators and refractory linings. This study reports on the results of an investigation into the performance of a fly ash based geopolymer binder in high temperature environments. Geopolymer concrete (GPC) was prepared using eleven types of fly ashes obtained from four countries. High content alumina and silica sand was used in the mix for preparing GPC. GPC was subjected to thermal shock tests following ASTM C 1100-88. The GPC samples prepared with tabular alumina were kept at 1093° C and immediately quenched in water. GPC specimens prepared with certain fly ashes exhibited signs of expansion along with cracking and spalling, while GPC prepared with specific class F fly ash showed superior resistance to thermal shock. Microstructural analysis revealed that the resistance of GPC at elevated temperatures was dependent on the type of fly ash used, its particle size distribution, formation of zeolitic phases such as sodalite, analcime and nepheline, and the overall pore structure of the geopolymer concrete. The work indicates that the chemical composition and particle size distribution of the fly ash, type of fly ash (Class C & F) and the geopolymerization process that took place a vital role in the performance of geopolymer concretes in high temperature applications. Microbial Induced Corrosion: Corrosion is a major form of deterioration in concrete structures. According to a report published by the U.S. FHWA 2002, the cost of corrosion in water and wastewater conveyance, and storage and treatment facilities in the U.S. is about $138 billions. A main form of corrosion in wastewater collection systems is Microbial Induced Corrosion (MIC). However, the conditions present in industrial or municipal wastewater pipes, or storage facility are induced by the production of sulfuric acid by biological processes, which cannot be fully mimicked by simple acid corrosion. The present study intends to provide similar conditions inside pipe specimens that mimic a true sewer atmosphere. The experimental setup consisted of three 12" diameter and 30" long concrete pipe specimens, 2 specimens were coated with different formulations of GPC while the third was a control. Both ends of each pipe specimen were sealed to prevent hydrogen sulfide gas from escaping. One pipe was coated with GPC that had a biocide agent entrained. Another pipe specimen was coated with OPC and the 3rd pipe was used as a control and was not coated. Parameters measured can be divided into three groups: general environmental parameters like pH and temperature: pH is measured at regular intervals. Substrates and products that include Chemical Oxygen Demand (COD) and sulfide concentrations: COD is measured using the Hach Method (APHA, 5220D).Temperature (65 - 70° F) and humidity (50 - 60%) were maintained throughout the experiment. Sulfide concentration was measured by the methylene blue method (APHA, 4500-S-2D). Bacterial count was measured by Spectrophotometer (APHA, 9215B). In addition, the thickness of the slime layer was measured and the end of the 16-week test. Test data revealed that the use of the antibacteria agent has initial input on the rate of pH reduction, but that effect were out after 6 weeks, The slime lyer band on the wall of the geopolymer coated pipes was to be 1/4 of that found on the non-coated pipe, suggesting the geopolymer matrices provide a less suitable substrate for sulfate reducing bacteria (Desulfovibrio desulfuricans) compound with a standard OPC substate.
NASA Astrophysics Data System (ADS)
Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur
2016-11-01
The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.
NASA Astrophysics Data System (ADS)
Nurfiani, D.; Bouvet de Maisonneuve, C.
2018-04-01
Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.
Recent studies on activated carbons and fly ashes from Turkish resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayhan Demirbas; Gulsin Arslan; Erol Pehlivan
2006-05-15
This article deals with adsorptive properties of activated carbons (ACs) and fly ashes from Turkish coal and biomass resources. ACs because of their high surface area, microporous character and the chemical nature of their surface have been considered potential adsorbents for the removal of heavy metals from industrial wastewater. Pyrolysis is an established process method for preparation of activated carbon from biomass. The bio-char is can be used as AC. The adsorption properties of ACs were strictly defined by the physicochemical nature of their surface and their texture, i.e., pore volume, pore size distribution, surface area. It is well knownmore » that the pH of the solution-adsorbant mixture is an important variable in the adsorption process. Fly ash has the highest adsorption capacity (198.2 mg/g for Cd(II)). Almond shell AC has the lowest adsorption capacity (2.7 mg/g).« less
Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C
2012-08-21
Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters.
NASA Astrophysics Data System (ADS)
Scudder, R. P.; Murray, R. W.; Underwood, M.; Kutterolf, S.; Plank, T.; Dyonisius, M.; Arshad, M. A.
2011-12-01
Volcanic ash has long been recognized to be an important component of the global sedimentary system. Ash figures prominently in a number of sedimentary and petrophysical investigations, including how the fluid budget of subducting sediment will be affected by hydration/dehydration reactions. Additionally, many studies focus on discrete ash layers, and how to link their presence with volcanism, climate, arc evolution, biological productivity, and other processes. Less widely recognized is the ash that is mixed into the bulk sediment, or "dispersed" ash. Dispersed ash is quantitatively significant and is an under-utilized source of critical geochemical and tectonic information. Based on geochemical studies of ODP Site 1149, a composite of DSDP Sites 579 & 581, as well as IODP Sites C0011 & C0012 drilled during Expedition 322, we will show the importance of dispersed ash to the Izu-Bonin-Marianas, Kurile-Kamchatka and Nankai subduction zones. Initial geochemical analyses of the bulk sediment, as related to dispersed ash entering these subduction systems are presented here. Geochemical analysis shows that the characteristics of the three sites exhibit some variability consistent with observed lithological variations. For example, the average SiO2/Al2O3 ratios at Site 1149, Site C0011 and Site C0012 average 3.7. The composite of Sites 579 & 581 exhibits a higher average of 4.6. There are contrasts between other key major elemental indicators as well (e.g., Fe2O3). Ternary diagrams such as K2O-Na2O-CaO show that there are at least two distinct geochemical fields with Sites 1149, C0011 and C0012 clustering in one and Sites 579 & 581 in the other. Q-mode Factor Analysis was performed on the bulk sediment chemical data in order to determine the composition of potential end members of these sites. The multivariate statistics indicate that Site 1149 has 3-4 end members, consistent with the results of Scudder et al. (2009, EPSL, v. 284, pp 639), while each of the other sites has 4-5 end members. These geochemical signatures (e.g., K2O) of the dispersed ash can be exploited to provide insight into the importance of clay mineralogy (i.e., smectite). Additional results from trace and REE analyses, combined with additional statistical treatments, will also be presented.
[MSW incineration fly ash melting by DSC-DTA].
Li, Rundong; Chi, Yong; Li, Shuiqing; Wang, Lei; Yan, Jianhua; Cen, Kefa
2002-07-01
Melting characteristics of two kinds of municipal solid waste incineration(MSWI) fly ash were studied in this paper by high temperature differential scanning calorimetry and differential temperature analysis. MSWI fly ash was considered as hazardous waste because it contains heavy metals and dioxins. The experiments were performed in either N2 or O2 atmosphere in temperature range of 20 degrees C-1450 degrees C at various heating rates. Two different MSW incineration fly ashes used in the experiments were collected from our country and France respectively. The process of fly ash melting exhibits two reactions occurring at temperature ranges of about 480 degrees C-670 degrees C and 1136 degrees C-1231 degrees C, respectively. The latent heat of polymorphic transformation and fusion were approximately 20 kJ/kg and 700 kJ/kg, while the total heat required for melting process was about 1800 kJ/kg. The paper also studied effect of CaO to melting. A heat flux thermodynamic model for fly ash melting was put forward and it agrees well with experimental data.
Ash-flow tuffs: Their origin, geologic relations, and identification
Ross, Clarence S.; Smith, Robert L.
1961-01-01
Pyroclastic materials, which are interpreted as having been deposited by flowage as a suspension of ash in volcanic gas, are becoming widely recognized as major geologic episodes. These may be unconsolidated, indurated by partial welding, or welded into a compact rock. Many students are working on these materials and the interest in them is so widespread that need for a coordinated treatise on them has developed. This report deals with the history of the concept of their origin; gives detailed descriptions of their character and mode of occurrence; gives criteria for their recognition; and considers their distribution and consolidation.
Zhang, Lingen; Xu, Zhenming
2017-06-16
Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.
Wood ash to treat sewage sludge for agricultural use
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.K.
About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less
Ganguli, Rajive; Bandopadhyay, Sukumar
2012-01-01
Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash). he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less
NASA Astrophysics Data System (ADS)
Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.
2016-07-01
Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.
NASA Astrophysics Data System (ADS)
Luo, Kevin
Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to evaluate the microstructure of the layers within the TBC system, and the SEM micrographs showed that the TBC/fly ash deposition interaction zone made the YSZ coating more susceptible to delamination and promoted a dissolution-reprecipitation mechanism that changes the YSZ morphology and composition. EDS examination provided elemental maps which showed a shallow infiltration depth of the fly ash deposits and an elemental distribution spectrum analysis showed yttria migration from the YSZ top coating into the molten deposition. This preliminary work should lead to future studies in gas turbine material coating systems and their interaction with simulated fly ash and potentially CMAS or volcanic ash deposition.
NASA Astrophysics Data System (ADS)
Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.
2012-04-01
A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite abundances. The proportion of MPD and MRD, in agreement with bubble-number density (BND), in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. Recent works (Kueppers et al. 2006, "Explosive energy" during volcanic eruptions from fractal analysis of pyroclasts) indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension (D) of the size distribution of pyroclasts. At Croscat, BND and MPD/MRD volume ratio decreased during the violent Strombolian activity while D increased, suggesting that the decrease in the magma flow rate was accompanied by the increase in fragmentation efficiency, i.e. by the increase in the ash production capability. This trend may be tentatively attributed to an increased rheological stiffness of the magma progressively enhancing its brittle, more efficient fragmentation.
Search for possible relationship between volcanic ash particles and thunderstorm lightning activity
NASA Astrophysics Data System (ADS)
Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.
2011-12-01
Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.
Damage cost of the Dan River coal ash spill.
Dennis Lemly, A
2015-02-01
The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. Published by Elsevier Ltd.
Ash in fire affected ecosystems
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah
2015-04-01
Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of the role of ash in fire affected areas. Acknowledgments The 'Litfire' Project (MIP-048/2011; 181 Pereira) funded by the Lithuanian Research Council, Soil quality, erosion control and plant cover recovery under different post-firemanagement scenarios (POSTFIRE), funded by the Spanish Ministry of Economy and Competitiveness (CGL2013-47862-C2-1-R), Preventing and Remediating Degradation of Soils in Europe Through Land Care (RECARE) funded by the European Commission (FP7-ENV-2013-TWO STAGE) and European Research Project LEDDRA (243857) and COST action ES1306 (Connecting European connectivity research). References Balfour, V.N., Determining wildfire ash saturated hydraulic conductivity and sorptivity with laboratory and field methods. Catena. doi:10.1016/j.catena.2014.01.009 Barreiro, A., Fontúrbel, M.T., Lombao, A., Martín, C., Vega, J.A., Fernández, C., Carballas, T., Díaz-Raviña, M., Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. Catena. doi:10.1016/j.catena.2014.07.011 Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodí, M.B., Doerr, S.H., Cerdà, A. and Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. Burjachs, F., Expósito, I., Charcoal and pollen analysis: examples of Holocene fire dynamics in Mediterranean Iberian Peninsula. Catena. doi:10.1016/j.catena.2014.10.006 Burns, K., Gabet, E., The effective viscosity of slurries laden with vegetative ash. Catena. doi:10.1016/j.catena.2014.06.008 Cerdà, A. Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 , 256-263. Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H., Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena. doi:10.1016/j.catena.2014.06.018 Dorta Almenar, I., Navarro Rivero, F.J., Arbelo, C.D., Rodríguez, A., Notario del Pino, J., The temporal distribution of water-soluble nutrients from high mountain soils following a wildfire within legume scrubland of Tenerife, Canary Islands, Spain. Catena. Escuday, M., Arancibia-Miranda, N., Pizarro, C., Antilén, M., Effect of ash from forest fires on leaching in volcanic soils. Catena. doi:10.1016/j.catena.2014.08.006 León, J., Echeverría, M.T., Marti, C., Badía, D., Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain). Catena. doi:10.1016/j.catena.2014.05.024 Lombao, A., Barreiro, A., Carballas, T., Fontúrbel, M.T., Martín, C., Vega, J.A., Fernández, C., Díaz-Raviña, M., 2014. Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena. doi:10.1016/j.catena.2014.08.007 Pereira, P., Jordan, A., Cerda, A., Martin, D. (2014) Editorial: The role of ash in fire-affected ecosystems, Catena (In press) doi:10.1016/j.catena.2014.11.016 Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014a) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690. Pereira, P., Ubeda, X., Mataix-Solera, J., Oliva, M., Novara, A. (2014) Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania, Solid Earth, 5, 209-225. Silva, V., Pereira, J.S., Campos, I., Keizer, J.J., Gonçalves, F., Abrantes, N., Toxicity assessment of aqueous extracts of ash from forest fires. Catena doi:10.1016/j.catena.2014.06.021
A six-year record of volcanic ash detection with Envisat MIPAS
NASA Astrophysics Data System (ADS)
Griessbach, S.; Hoffmann, L.; von Hobe, M.; Müller, R.; Spang, R.
2012-04-01
Volcanic ash particles have an impact on the Earth's radiation budget and pose a severe danger to air traffic. Therefore, the ability to detect and characterize volcanic ash layers on a global and altitude-dependent scale is essential. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on-board ESA's Envisat is mainly used for measurements of vertical profiles of atmospheric trace gases. It is also very sensitive to cloud and aerosol particles. We developed a fast, simple, and reliable method to detect volcanic ash using MIPAS spectra. From calculations of volcanic ash and ice particle optical properties, such as extinction coefficients and single scattering albedos as well as simulated MIPAS radiance spectra, we derived two optimal micro windows at 10.5 and 12.1 μm to detect volcanic ash. The calculations were performed with the JUelich RApid Spectral Simulation Code (JURASSIC), which includes a scattering module. Our method applies two radiance thresholds to detect volcanic ash. The first one is derived from a statistical analysis of six years of measured MIPAS radiances in the selected spectral windows. This statistical threshold accounts only for pure volcanic ash detections. The second threshold is derived from simulations of MIPAS radiances with JURASSIC for a broad range of atmospheric conditions and tangent altitudes for volcanic ash and ice particles. The second threshold allows more volcanic ash detections, because it accounts also for mixtures of ice and volcanic ash particles within the instrument's field of view. With the new method major eruptions (from e.g. Chaiten, Okmok, Kasatochi, Sarychev, Eyafjallajökull, Merapi, Grimsvötn, Puyehue-Cordon Caulle, Nabro) as well as several smaller eruptions at mid-latitudes and in polar regions between 2006 - 2011 were clearly identified in the MIPAS data. Trajectory calculations using the Chemical Langangian Model of the Stratosphere (CLaMS) are used to locate a volcanic eruption for each detection. In a case study of the 2011 eruption of the Chilean volcano Puyehue-Cordon Caulle we show how the volcanic ash spreads over the complete southern hemisphere mid-latitudes, is diluted and descends slowly with time. Ash is detected up to two month after the first eruption.
Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica
Ningxia Du; Paula M. Pijut
2010-01-01
An AGAMOUS homolog (FpAG) was isolated from green ash (Fraxinus pennsylvanica) using a reverse transcriptase polymerase chain reaction method. Southern blot analysis indicated that FpAG was present as a single-copy sequence in the genome of green ash. RNA accumulated in the reproductive tissues (female...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.W.; Kirkconnell, S.F.
1996-04-01
Many power plants, particularly after conversion to low-NOx burners, produce fly ash that is too high in carbon content to be successfully marketed as a concrete admixture. Fly ash beneficiation using Carbon Burn-Out (CBO) technology offers the opportunity to market fly ash that was previously landfilled. This site application study of beneficiating pulverized coal boiler fly ash at Tennessee Valley Authority`s Colbert and Shawnee Stations indicates this process is a cost effective solution for decreasing solid waste disposal, increasing landfill life, improving boiler heat rate, and generating a positive revenue stream. Results indicate that the Colbert Station has the flymore » ash market, site integration potential, and positive economics to support construction and operation of a CBO plant with an annual production rate of approximately 150,000 tons. As the market for fly ash increases, this capacity may be expanded to handle the majority of fly ash generated at Colbert. Results of the Shawnee Station analysis indicate that site integration constraints combined with the lack of near term local area fly ash market growth do not support construction and operation of a CBO plant. CBO commercial process design work in developing a generic commercial design resulted in a major improvement to the heat recovery portion of the process. This development resulted in the elimination of five major equipment items, with a corresponding reduction in plant complexity and costs. The design change is now considered part of the commercial offering.« less
Wildfires and water chemistry: effect of metals associated with wood ash.
Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J
2016-08-10
The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.
Jadhav, Umesh U; Hocheng, Hong
2015-01-01
Aspergillus niger culture supernatant is used for bioleaching process. Before starting bioleaching process, fly ash was washed with distilled water. This removed 100 % sodium, 47 % (±0.45) boron, 38.07 % (±0.12) calcium, 29.89 % (±0.78) magnesium, and 11.8 % (±0.05) potassium. The pH was reduced from 10.5 to 8.5 after water washing. During bioleaching process, around 100 % metal removal was achieved in 4 h for all metals except chromium 93 % (±1.18), nickel 83 % (±0.32), arsenic 78 % (±0.52), and lead 70 % (±0.20). The process parameters including temperature, shaking speed, and solid/liquid ratio were optimized for bioleaching process. Experiments were conducted to evaluate effect of fly ash on growth of mung bean (Vigna radiata). At 20 g/100 ml fly ash concentration no germination of V. radiata seeds was observed. With an increasing concentration of untreated fly ash, a gradual decrease in root/shoot length was observed. After bioleaching process 78 % (±0.19) germination of V. radiata was observed with 20 g/100 ml fly ash. This study will help to develop an efficient process to remove the toxic metals from fly ash.
Bolukbasi, A; Kurt, L; Palacio, S
2016-03-01
Depending on their specificity to gypsum, plants can be classified as gypsophiles (gypsum exclusive) and gypsovags (non-exclusive). The former may further be segregated into wide and narrow gypsophiles, depending on the breadth of their distribution area. Narrow gypsum endemics have a putative similar chemical composition to plants non-exclusive to gypsum (i.e. gypsovags), which may indicate their similar ecological strategy as stress-tolerant plant refugees on gypsum. However, this hypothesis awaits testing in different regions of the world. We compared the chemical composition of four narrow gypsum endemics, one widely distributed gypsophile and six gypsovags from Turkey. Further, we explored the plasticity in chemical composition of Turkish gypsovags growing on high- and low-gypsum content soils. Differences were explored with multivariate analyses (RDA) and mixed models (REML). Narrow gypsum endemics segregated from gypsovags in their chemical composition according to RDAs (mainly due to higher K and ash content in the former). Nevertheless, differences were small and disappeared when different nutrients were analysed individually. All the gypsovags studied accumulated more S and ash when growing on high-gypsum than on low-gypsum soils. Similar to narrow gypsum endemics from other regions of the world, most local gypsum endemics from Turkey show a similar chemical composition to gypsovags. This may indicate a shared ecological strategy as stress-tolerant plants not specifically adapted to gypsum. Nevertheless, the narrow gypsum endemic Gypsophila parva showed a chemical composition typical of gypsum specialists, indicating that various strategies are feasible within narrowly distributed gypsophiles. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Dispersal of Volcanic Ash on Mars: Ash Grain Shape Analysis
NASA Astrophysics Data System (ADS)
Langdalen, Z.; Fagents, S. A.; Fitch, E. P.
2017-12-01
Many ash dispersal models use spheres as ash-grain analogs in drag calculations. These simplifications introduce inaccuracies in the treatment of drag coefficients, leading to inaccurate settling velocities and dispersal predictions. Therefore, we are investigating the use of a range of shape parameters, calculated using grain dimensions, to derive a better representation of grain shape and effective grain cross-sectional area. Specifically, our goal is to apply our results to the modeling of ash deposition to investigate the proposed volcanic origin of certain fine-grained deposits on Mars. Therefore, we are documenting the dimensions and shapes of ash grains from terrestrial subplinian to plinian deposits, in eight size divisions from 2 mm to 16 μm, employing a high resolution optical microscope. The optical image capture protocol provides an accurate ash grain outline by taking multiple images at different focus heights prior to combining them into a composite image. Image composite mosaics are then processed through ImageJ, a robust scientific measurement software package, to calculate a range of dimensionless shape parameters. Since ash grains rotate as they fall, drag forces act on a changing cross-sectional area. Therefore, we capture images and calculate shape parameters of each grain positioned in three orthogonal orientations. We find that the difference between maximum and minimum aspect ratios of the three orientations of a given grain best quantifies the degree of elongation of that grain. However, the average aspect ratio calculated for each grain provides a good representation of relative differences among grains. We also find that convexity provides the best representation of surface irregularity. For both shape parameters, natural ash grains display notably different shape parameter values than sphere analogs. Therefore, Mars ash dispersal modeling that incorporates shape parameters will provide more realistic predictions of deposit extents because volcanic ash-grain morphologies differ substantially from simplified geometric shapes.
Karagiannidis, A; Kontogianni, St; Logothetis, D
2013-02-01
The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin
NASA Astrophysics Data System (ADS)
Pattan, J. N.; Shyam Prasad, M.; Babu, E. V. S. S. K.
2010-08-01
We have identified an ash layer in association with Australasian microtektites of ˜0.77 Ma old in two sediment cores which are ˜450 km apart in the central Indian Ocean Basin (CIOB). Morphology and chemical composition of glass shards and associated microtektites have been used to trace their provenance. In ODP site 758 from Ninetyeast Ridge, ash layer-D (13 cm thick, 0.73-0.75 Ma) and layer-E (5 cm thick, 0.77-0.78 Ma) were previously correlated to the oldest Toba Tuff (OTT) eruptions of the Toba caldera, Sumatra. In this investigation, we found tephra ˜3100 km to the southwest of Toba caldera that is chemically identical to layer D of ODP site 758 and ash in the South China Sea correlated to the OTT. Layer E is not present in the CIOB or other ocean basins. The occurrence of tephra correlating to layer D suggests a widespread distribution of OTT tephra (˜3.6 × 107 km2), an ash volume of at least ˜1800 km3, a total OTT volume of 2300 km3, and classification of the OTT eruption as a super-eruption.
Occurrence of Somma-Vesuvio fine ashes in the tephrostratigraphic record of Panarea, Aeolian Islands
NASA Astrophysics Data System (ADS)
Donatella, De Rita; Daniela, Dolfi; Corrado, Cimarelli
2008-10-01
Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.
Kazi, T G; Jalbani, N; Arain, M B; Jamali, M K; Afridi, H I; Sarfraz, R A; Shah, A Q
2009-04-15
It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.
Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland
Gudmundsson, Magnús T.; Thordarson, Thorvaldur; Höskuldsson, Ármann; Larsen, Gudrún; Björnsson, Halldór; Prata, Fred J.; Oddsson, Björn; Magnússon, Eyjólfur; Högnadóttir, Thórdís; Petersen, Guðrún Nína; Hayward, Chris L.; Stevenson, John A.; Jónsdóttir, Ingibjörg
2012-01-01
The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe. PMID:22893851
Wet-dry cycles effect on ash water repellency. A laboratory experiment.
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio
2014-05-01
In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences among wet-dry cycles (Chi Sqr = 184.13 p <0.001) and among temperatures, immediately after treatments (Kruskal-Wallis test: H = 13.64, p<0.01) and after first wet-dry cycle (Kruskal-Wallis test: H =13.85 p<0.01). In the second (Kruskal-Wallis test: =5.80, p >0.05), third (Kruskal-Wallis test: H =3.07, p>0.05), fourth (Kruskal-Wallis test: H=0.75, p>0.05) and fifth (Kruskal-Wallis test: H =0.199, p<0.05) wet-dry cycles, ash water repellency did not show significant differences. After wetting, ash water repellency decreased substantially in the first cycle. These results suggest that wet-dry cycles have important impacts in the reduction of ash water repellency. Nevertheless, this reduction at least in the first cycle is different according to the temperature/severity. Black ash (200 ºC) water repellency was significantly higher than the other temperatures/severities. Further research will be carried out using burned soils and different species. References Bodi, M.B., Doerr, S., Cerda, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 161, 14-23, 2011. DOI: 10.1016/j.geoderma.2012.01.006. Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A. (2011). The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. DOI:10.1016/j.geoderma.2010.11.009. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2013a) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development. DOI: 10.1002/ldr.2195. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013b) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. DOI: 10.5194/se-4-153-2013.
NASA Astrophysics Data System (ADS)
Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.
2010-12-01
Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse events at Monowai and one at NW Rota-1, as well as constructional deposits extending down the flanks of these volcanoes. Acoustic records at Monowai and NW Rota-1 suggest sector collapse events are infrequent while eruptions, and the resulting supply of depositional material, have been nearly continuous. The sector collapse events occurred at times remote from our plume surveys, so, large landslide events are not a prerequisite for the presence of deep ash plumes. Despite a wide range of summit depths (<10 m at Kavachi to 1500 m at W Mata), lava types (basaltic-andesite, boninite, and basalt), and eruptive styles (Surtseyan, Strombolian, and effusive flows with active pillow formation), the deep particle plumes at each of these volcanoes are remarkably similar in their widespread distribution (to 10’s of km from the summit and at multiple depths down the flanks) and composition (dominantly fresh volcanic ash). Moderate eruption rates, lava-seawater interaction and steep slopes below an eruptive vent may be sufficient to initiate the transport of fine ash into the ocean environment and distal sediments via these types of plumes.
Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang
2010-05-01
Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.
The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Pereira, Paulo
2013-04-01
After forest fires, the ash and the remaining vegetation cover on the soil surface are the main protection against erosion agents. The control ash exert on runoff generation mechanism was researched during the 90's (Cerdà, 1998a; 1998b). This pioneer research demonstrated that after forest fires there is a short period of time that runoff and surface wash by water is controlled by the high infiltration rates achieved by the soil, which were high due to the effect of ash acting as a mulch. The research of Cerdà (1998a; 1998b) also contributed to demonstrate that runoff was enhanced four month later upon the wash of the ash by the runoff, but also due to the removal of ash due to dissolution and water infiltration. As a consequence of the ephemeral ash cover the runoff and erosion reached the peak after the removal of the ash (usually four month), and for two years the soil erosion reached the peak (Cerdà, 1998a). Research developed during the last decade shown that the ash and the litter cover together contribute to reduce the soil losses after the forest fire (Cerdà and Doerr, 2008). The fate of the ash is related to the climatic conditions of the post-fire season, as intense thunderstorms erode the ash layer and low intensity rainfall contribute to a higher infiltration rate and the recovery of the vegetation. Another, key factor found during the last two decades that determine the fate of the ash and the soil and water losses is the impact of the fauna (Cerdà and Doerr, 2010). During the last decade new techniques were developed to study the impact of ash in the soil system, such as the one to monitor the ash changes by means of high spatial resolution photography (Pérez Cabello et al., 2012), and laboratory approaches that show the impact of ash as a key factor in the soil hydrology throughout the control they exert on the soil water repellency (Bodí et al., 2012). Laboratory approaches also shown that the fire severity is a key factor on the ash chemical composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R., Palacios, V. 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76, 88-96.
Polished sample preparing and backscattered electron imaging and of fly ash-cement paste
NASA Astrophysics Data System (ADS)
Feng, Shuxia; Li, Yanqi
2018-03-01
In recent decades, the technology of backscattered electron imaging and image analysis was applied in more and more study of mixed cement paste because of its special advantages. Test accuracy of this technology is affected by polished sample preparation and image acquisition. In our work, effects of two factors in polished sample preparing and backscattered electron imaging were investigated. The results showed that increasing smoothing pressure could improve the flatness of polished surface and then help to eliminate interference of morphology on grey level distribution of backscattered electron images; increasing accelerating voltage was beneficial to increase gray difference among different phases in backscattered electron images.
Grimsvotn ash plume detection by ground-based elastic Lidar at Dublin Airport on May 2011
NASA Astrophysics Data System (ADS)
Lolli, S.; Martucci, G.; O'Dowd, C.; sauvage, L.; Nolan, P.
2011-12-01
Volcanic emissions comprising steam, ash, and gases are injected into the atmosphere and produce effects affecting Earth's climate. Volcanic ash is composed of non-spherical mineral and metal (particles spanning a large size range. The largest ones are likely to sediment quickly close to the eruption site. The ash component, and sulphate formed by subsequent oxidation of the SO2 occurring in clouds, poses a variety of hazards to humans and machinery on the ground, as well as damage to the aircrafts which fly through the ash layers. To mitigate such hazards the Irish Aviation Authority (IAA) equipped with an ALS Lidar, produced by LEOSPHERE, deployed at Dublin Airport, which provides real-time range-corrected backscatter signal and depolarization ratio profiles allowing the detection and monitoring of ash plumes. On May, 21st 2011, the Grimsvotn Icelandic volcano erupted, sending a plume of ash, smoke and steam 12 km into the air and causing flights to be disrupted at Iceland's main Keflavik airport and at a number of North European airports. Due to upper level global circulation, the ash plume moved from Iceland towards Ireland and North of Scotland, and was detected a number of times by the ALS Lidar above Dublin Airport between May, 21st and 25th. A preliminary analysis of the detected volcanic plume is presented here as well as a preliminary intercomparison of the microphysical and optical characteristics with the Eyjafjallajökull eruption in 2010.
Adsorption of Cu2+ to biomass ash and its modified product.
Xu, Lei; Cui, Hongbiao; Zheng, Xuebo; Liang, Jiani; Xing, Xiangyu; Yao, Lunguang; Chen, Zhaojin; Zhou, Jing
2017-04-01
Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu 2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu 2+ , and the Langmuir model could best represent the adsorption characteristics of Cu 2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu 2+ was spontaneous and endothermic in nature. The adsorptions of Cu 2+ onto the modified biomass ash followed pseudo-second-order kinetics.
Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle
2011-11-30
FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid...that is well-suited to provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating...provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating the technology at a DoD
Assessing urban forest effects and values, Chicago's urban forest
David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Cherie Leblanc Fisher
2010-01-01
An analysis of trees in Chicago, IL, reveals that this city has about 3,585,000 trees with canopies that cover 17.2 percent of the area. The most common tree species are white ash, mulberry species, green ash, and tree-of-heaven. Chicago's urban forest currently stores about 716,000 tons of carbon...
MINERAL AND BIOCHEMICAL ANALYSIS OF VARIOUS PARTS OF CISSUS QUADRANGULARIS LINN
Udayakumar, R.; Sundaran, M.; Krishna, Raghuram
2004-01-01
Ash, minerals and biochemical contents were determined in various parts of root, stem and leaf of Cissus quadrangularis. The maximum ash content was observed in the root. The maximum concentration of carbohydrate and protein in the root and phosphorus, iron, calcium and lipids in the stem were observed. PMID:22557157
USDA-ARS?s Scientific Manuscript database
A new egg parasitoid of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is described from the Vladivostok, Russia, Oobius primorskyensis Yao & Duan n. sp. Both morphological characters and analysis of DNA sequence divergence suggest that this species is different from t...
Damon J. Crook; Ashot Khrimian; Joseph A. Francese; Ivich Fraser; Therese M. Poland; Alan J. Sawyer; Victor C. Mastro
2008-01-01
Bark volatiles from green ash Fraxinus pennsylvanica were tested for electrophysiological activity by Agrilus planipennis using gas chromatographic-electroantennographic detection (GC-EAD) and for behavioral activity using baited purple traps in Michigan. GC-EAD analysis of the headspace volatiles of bark tissue samples from 0...
Comments on "Failures in detecting volcanic ash from a satellite-based technique"
Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.
2001-01-01
The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.
Ghosh, Rakesh K; Singh, Neera
2012-01-01
Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.
PHARMACOGNOSTICAL INVESTIGATIONS ON TRIPHALA CHURNAM
Ashokkumar, D.
2007-01-01
Pharmacognostical and preliminary phytochemical studies of Triphala churnam were carried out. The churnam of triphala consists of equal quantities of deseeded fruits of Terminalia chebula, Terminalia bellerica and Emblica officinalis. Triphala is exclusively used in more than 200 drug formulations in Indian system of Medicine. The present study involved the pharmacognostical evaluation of Triphala, in which morphological and powder microscopical characters were established. In addition, physico-chemical parameters such as ash values viz, total ash (10.21± 0.42), acid insoluble ash (2.54 ± 0.06), water-soluble ash (5.46±0.24) and sulphated ash (13.12 ± 0.63), extractive values viz, alcohol soluble extractive (11.20±0.18)) and water-soluble extractive (52.56±2.04), fluorescent analysis and microchmical tests were determined. The preliminary phytochemical study revealed the presence of carbohydrates, reducing sugar and tannins in aqueous extract and carbohydrates, flavonoids and tannins in alcoholic extract. This standardization would be very much helpful for the identification of Triphala churnam to differentiate from other powdered sources. PMID:22557240
NASA Astrophysics Data System (ADS)
Younesi, M.; Javadpour, S.; Bahrololoom, M. E.
2011-11-01
This article presents the effect of heat treating temperature on chemical composition of hydroxyapatite (HA) that was produced by burning bovine bone, and then heat treating the obtained bone ash at different temperatures in range of 600-1100 °C in air. Bone ash and the resulting white powder from heat treating were characterized by Fourier transformed infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD). The FT-IR spectra confirmed that heat treating of bone ash at temperature of 800 °C removed the total of organic substances. x-ray diffraction analysis showed that the white powder was HA and HA was the only crystalline phase indicated in heat treating product. x-ray fluorescence analyses revealed that calcium and phosphorous were the main elements and magnesium and sodium were minor impurities of produced powder at 800 °C. The results of the energy dispersive x-ray analysis showed that Ca/P ratio in produced HA varies in range of 1.46-2.01. The resulting material was found to be thermally stable up to 1100 °C.
Lidar observation of Eyjafjallajoekull ash layer evolution above the Swiss Plateau
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Dinoev, Todor; Parlange, Mark; Serikov, Ilya; Calpini, Bertrand; Wienhold, F.; Engel, I.; Brabec, M.; Crisian, A.; Peter, T.; Mitev, Valentin; Matthey, R.
2010-05-01
The Iceland volcano Eyjafjallajökull started to emit significant amounts of volcanic ash and SO2 on 15th April 2010, following the initial eruption on 20th March 2010. In the next days, the ash was dispersed over large parts of Europe resulting in the closure of the major part of the European airspace. Information about spatial and temporal evolution of the cloud was needed urgently to define the conditions for opening the airspace. Satellite, airborne and ground observations together with meteorological models were used to evaluate the cloud propagation and evolution. While the horizontal extents of the volcanic cloud were accurately captured by satellite images, it remained difficult to obtain accurate information about the cloud base and top height, density and dynamics. During this event lidars demonstrated that they were the only ground based instruments allowing monitoring of the vertical distribution of the volcanic ash. Here we present observational results showing the evolution of the volcanic layer over the Swiss plateau. The measurements were carried out by one Raman lidar located in Payerne, two elastic lidars located in Neuchatel and Zurich, and a backscatter sonde launched from Zurich. The observations by the lidars have shown very similar time evolution, coherent with the backscatter sonde profiles and characterized by the appearance of the ash layer on the evening of 16th, followed by descend to 2-3 km during the next day and final mixing with the ABL on 19th. Simultaneous water vapor data from the Payerne lidar show low water content of the ash layer. The CSEM and EPFL gratefully acknowledge the financial support by the European Commission under grant RICA-025991.
Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model
Riehle, J.R.; Miller, T.F.; Bailey, R.A.
1995-01-01
Previous models of degassing, cooling and compaction of rhyolitic ash flow deposits are combined in a single computational model that runs on a personal computer. The model applies to a broader range of initial and boundary conditions than Riehle's earlier model, which did not integrate heat and mass flux with compaction and which for compound units was limited to two deposits. Model temperatures and gas pressures compare well with simple measured examples. The results indicate that degassing of volatiles present at deposition occurs within days to a few weeks. Compaction occurs for weeks to two to three years unless halted by devitrification; near-emplacement temperatures can persist for tens of years in the interiors of thick deposits. Even modest rainfall significantly chills the upper parts of ash deposits, but compaction in simple cooling units ends before chilling by rainwater influences cooling of the interior of the sheet. Rainfall does, however, affect compaction at the boundaries of deposits in compound cooling units, because the influx of heat from the overlying unit is inadequate to overcome heat previously lost to vaporization of water. Three density profiles from the Matahina Ignimbrite, a compound cooling unit, are fairly well reproduced by the model despite complexities arising from numerous cooling breaks. Uncertainties in attempts to correlate in detail among the profiles may be the result of the non-uniform distribution of individual deposits. Regardless, it is inferred that model compaction is approximately valid. Thus the model should be of use in reconstructing the emplacement history of compound ash deposits, for inferring the depositional environments of ancient deposits and for assessing how long deposits of modern ash flows are capable of generating phreatic eruptions or secondary ash flows. ?? 1995 Springer-Verlag.
Edward Raja, Chellaiah; Omine, Kiyoshi
2013-08-01
Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.
Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata
2017-05-04
The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.
Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin
2012-12-01
Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L
2007-07-19
As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer.
Chen, Yigen; Ulyshen, Michael D; Poland, Therese M
2016-10-01
Many natural enemies employ plant- and/or herbivore-derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in North America. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y-tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with α-bisabolol, β-caryophyllene, (E)-2-hexenal, (Z)-3-hexenal, limonene, methyl benzoate, methyl indole-3-acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short-range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y-tube olfactometer assay employed. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Dust, volcanic ash, and the evolution of the South Pacific Gyre through the Cenozoic
NASA Astrophysics Data System (ADS)
Dunlea, Ann G.; Murray, Richard W.; Sauvage, Justine; Spivack, Arthur J.; Harris, Robert N.; D'Hondt, Steven
2015-08-01
We examine the 0-100 Ma paleoceanographic record retained in pelagic clay from the South Pacific Gyre (SPG) by analyzing 47 major, trace, and rare earth elements in bulk sediment in 206 samples from seven sites drilled during Integrated Ocean Drilling Program Expedition 329. We use multivariate statistical analyses (Q-mode factor analysis and multiple linear regression) of the geochemical data to construct a model of bulk pelagic clay composition and mass accumulation rates (MAR) of six end-members, (post-Archean average Australian shale, rhyolite, basalt, Fe-Mn-oxyhydroxides, apatite, and excess Si). Integrating the results with Co-based age models at Sites U1365, U1366, U1369, and U1370, we link changes in MAR of these components to global oceanographic, terrestrial, and climatic transformations through the Cenozoic. Our results track the spatial extent (thousands of kilometers) of dust deposition in the SPG during the aridification of Australia. Dispersed ash is a significant component of the pelagic clay, often comprising >50% by mass, and records episodes of Southern Hemisphere volcanism. Because both are transported by wind, the correlation of dust and ash MAR depends on the site's latitude and suggests meridional shifts in the position of atmospheric circulation cells. The hydrothermal MARs provide evidence for rapid deposition from the Osbourn Trough spreading ridge before it went extinct. Excess Si MARs show that the abrupt increase in siliceous productivity observed at Site U1371 also extended at least as far north as Sites U1369 and U1370, suggesting large-scale reorganizations of oceanic Si distributions 10-8 Ma in the southern SPG.
Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft
Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.
1980-01-01
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.
NASA Astrophysics Data System (ADS)
Arnason, Gylfi; Eliasson, Jonas; Weber, Konradin; Boehlke, Christoph; Palsson, Thorgeir; Rognvaldsson, Olafur; Thorsteinsson, Throstur; Platt, Ulrich; Tirpitz, Lukas; Jones, Roderic L.; Smith, Paul D.
2015-04-01
The Volcanic Ash Research (VAR) group is focused on airborne measurement of ash contamination to support safe air travel. In relations to the recent eruption, the group measured ash and several gaseous species in the plume 10-300 km from the volcano. The eruption emitted ash turned out to be mostly in the fine aerosol range (much less than 10 micrometers in diameter). Our highest measured concentrations were lower than 1 mg/m3 indicating that commercial air traffic was not threatened (greater than 2 mg/m3) by the ash contamination. But we measured sulfur dioxide (SO2 ) up to 90 mg/m3, which presented a potentially dangerous pollution problem. However, airborne measurements indicate that the sulfur concentration decays (probably due to scavenging) as the plume is carried by the wind from the volcano, which limits the area of immediate danger to the public. Here we present size distribution for particulate matter collected during flights, near and far from the crater at various times. The particle data is then compared with simultaneously collected sulfur dioxide data and the rate of decay of is estimated. Sulfur and particle concentration variations with height in the far plume are presented. Some airborne measurements for H2S, NO, NO2 and CO2 will also be presented. This includes correlation matrices for simultaneous measurements of these gases and comparison to National Air Quality Standards and background values.
Characterization of fly ash ceramic pellet for phosphorus removal.
Li, Shiyang; Cooke, Richard A; Wang, Li; Ma, Fang; Bhattarai, Rabin
2017-03-15
Phosphorus has been recognized as a leading pollutant for surface water quality deterioration. In the Midwestern USA, subsurface drainage not only provides a pathway for excess water to leave the field but it also drains out nutrients like nitrogen (N) and phosphorus (P). Fly ash has been identified as one of the viable materials for phosphorus removal from contaminated waters. In this study, a ceramic pellet was manufactured using fly ash for P absorption. Three types of pellet with varying lime and clay proportions by weight (type 1: 10% lime + 30% clay, type 2: 20% lime + 20% clay, and type 3: 30% lime + 10% clay) were characterized and evaluated for absorption efficiency. The result showed that type 3 pellet (60% fly ash with 30% lime and 10% clay) had the highest porosity (14%) and absorption efficiency and saturated absorption capacity (1.98 mg P/g pellet) compared to type 1 and 2 pellets. The heavy metal leaching was the least (30 μg/L of chromium after 5 h) for type 3 pellet compared to other two. The microcosmic structure of pellet from scanning electron microscope showed the type 3 pellet had the better distribution of aluminum and iron oxide on the surface compared other two pellets. This result indicates that addition of lime and clay can improve P absorption capacity of fly ash while reducing the potential to reduce chromium leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands
NASA Astrophysics Data System (ADS)
Diamond, J.; Mclaughlin, D. L.; Slesak, R.
2016-12-01
Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also indicate changes to the ET vs. water table relationship among treatments, with implications for ET feedbacks to favorable hydrologic regimes for growth. Finally, we present a conceptual model for these ecosystems and discuss how the model will be used to explore ecohydrologic feedbacks in upcoming years.
[Volatile ashes and their biological effect. 2. Fibrogenic effect of volatile ashes].
Woźniak, H; Wiecek, E; Lao, I; Wojtczak, J
1989-01-01
In experiments on white Wistar rats fibrogenic effects of 6 samples of fly-ashes collected from electric precipitators in power engineering plants have been evaluated. The coal came from different national deposits. All the ashes have been found to contain: quartz and mullite, 3 ashes contained additionally orthoclase, whereas 1, apart from quartz and mullite, contained kaolinite; naturally radioactive elements (Ra226, K40, Th228) and trace elements (As, Ba, Be, Cd, Ce, Cu, Fe, Pa, Mo, Ni, Pb, Se, U Zu). Experimental pneumoconiosis was induced through intratracheal administration of single doses of 50 mg of dust; the experiment was carried out at 3 time intervals of 3, 6 and 9 months. The fibrogenic activity was evaluated both qualitatively (histopathological methods) and quantitatively (lung weight, hydroxyproline content in lungs, dust elimination from lungs); control groups consisted of animals which obtained NaCl solution and quartz sands. Fly-ashes were found to exhibit different fibrogenic effects, yet, their fibrogenic activity was weaker, compared to quartz sands. No clear correlation was found between fibrogenic effects of ashes and test physico-chemical properties, such as the content of SiO2, trace elements or naturally radioactive elements. Analysis of occupational diseases (for the period section): (1979-1983) demonstrated occupational diseases of dust-related aetiology among power engineering workers, pneumoconioses, constituting 7.8% of 127 cases of occupational diseases.
Smitley, D R; Rebek, E J; Royalty, R N; Davis, T W; Newhouse, K F
2010-02-01
We conducted field trials at five different locations over a period of 6 yr to investigate the efficacy of imidacloprid applied each spring as a basal soil drench for protection against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Canopy thinning and emerald ash borer larval density were used to evaluate efficacy for 3-4 yr at each location while treatments continued. Test sites included small urban trees (5-15 cm diameter at breast height [dbh]), medium to large (15-65 cm dbh) trees at golf courses, and medium to large street trees. Annual basal drenches with imidacloprid gave complete protection of small ash trees for three years. At three sites where the size of trees ranged from 23 to 37 cm dbh, we successfully protected all ash trees beginning the test with <60% canopy thinning. Regression analysis of data from two sites reveals that tree size explains 46% of the variation in efficacy of imidacloprid drenches. The smallest trees (<30 cm dbh) remained in excellent condition for 3 yr, whereas most of the largest trees (>38 cm dbh) declined to a weakened state and undesirable appearance. The five-fold increase in trunk and branch surface area of ash trees as the tree dbh doubles may account for reduced efficacy on larger trees, and suggests a need to increase treatment rates for larger trees.
Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana
2017-02-15
Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan
The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. Themore » inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars were characterized with SEM and optical microscopy, while quantitative information on the ordered nature of chars was obtained through XRD on de-ashed chars. The inertinite-rich coal experienced limited fluidity during heat-treatment, resulting in slower devolatilization, limited growth in crystallite height (11.8 to 12.6Å), only rounding of particle edges, and producing > 40% of mixed-dense type chars. The vitrinite-char showed more significant structural transformations; producing mostly (80%) extensively swollen crassisphere, tenuisphere, and network-type chars, and XRD showed a large increase in crystallite height (4.3 to 11.7Å). Nitrogen adsorption and small-angle X-ray scattering (SAXS) were utilized to compare the nitrogen surface areas and pore size distributions. Both chars were mostly mesoporous but the inertinite-rich char had double the average pore size, which also resulted in a larger nitrogen surface area since nitrogen can only access surface areas in larger pores. The BET surface area was 3.9 and 2.7 m2/g for the inertinite- and vitrinite-rich chars respectively. SAXS data showed that the vitrinite-rich char had 60% higher frequencies of pores in the micropore range. Helium porosimetry indicated that the inertinite-rich coal and resultant char had higher densities than the vitrinite coal and char; 1.6 and 2.0 g/cm3, compared to 1.3 and 1.9 g/cm3 (dry basis). Non-isothermal TGA burnout profiles showed the inertinite-rich char had a burnout temperature of 680°C, slightly higher than the vitrinite-rich char’s 650 °C. This, along with the peak shape and position in the burnout profiles indicate that the vitrinite-rich char has a higher reactivity. The higher reactivity is due to a combination of factors likely including less organization, grater porosity and access to the reactive site, less ash blocking, and char morphology differences.« less
NASA Astrophysics Data System (ADS)
Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei
2018-01-01
The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.
McGimsey, Robert G.; Neal, Christina A.; Riley, Colleen M.
2001-01-01
The Crater Peak flank vent of Mount Spurr volcano erupted June 27, August 18, and September 16-17, 1992. The three eruptions were similar in intensity (vulcanian to subplinian eruption columns reaching up to 14 km Above Sea Level) and duration (3.5 to 4.0 hours) and produced tephra-fall deposits (12, 14, 15 x 106 m3 Dense Rock Equivalent [DRE]) discernible up to 1,000 km downwind. The June 27 ash cloud traveled north over the rugged, ice- and snow-covered Alaska Range. The August 18 ash cloud was carried southeastward over Anchorage, across Prince William Sound, and down the southeastern shoreline of the Gulf of Alaska. The September 16-17 ash plume was directed eastward over the Talkeetna and Wrangell mountains and into the Yukon Territory of Canada. Over 50 mass-per-unit-area (MPUA) samples were collected for each of the latter two fall deposits at distances ranging from about 2 km to 370 km downwind from the volcano. Only 10 (mostly proximal) samples were collected for the June fall deposit due to inaccessible terrain and funding constraints. MPUA data were plotted and contoured (isomass lines) to graphically display the distribution of each fall deposit. For the August and September eruptions, fallout was concentrated along a narrow (30 to 50 km wide) belt. The fallout was most concentrated (100,000 to greater than 250,000 g/m2) within about 80 km of the volcano. Secondary maxima occur at 200 km (2,620 g/m2) and 300 km (4,659 g/m2), respectively, down axis for the August and September deposits. The maxima contain bimodal grain size distributions (with peaks at 88.4 and 22.1 microns) indicating aggregation within the ash cloud. Combined tephra-volume for the 1992 Mount Spurr eruptions (41 x 106 m3 DRE) is comparable to that (tephra-fall only) of the 1989-90 eruptions of nearby Redoubt volcano (31-49 x 106 m3 DRE).
Nam, Sangchul; Namkoong, Wan
2012-01-15
Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of Cu form. Change in metal form was related to leaching potential of the metals. Concentration of heavy metal in leachate was positively related to the exchangeable form which is the most mobile. It may be feasible to treat fly ash by electron beam irradiation for selective recovery of valuable metals or for pretreatment prior to conventional processes. Copyright © 2011 Elsevier B.V. All rights reserved.
Buys, David J; Stojak, Amber R; Stiteler, William; Baker, Tyler F
2015-01-01
Benthic invertebrate communities were assessed after the December 2008 release of approximately 4.1 million m(3) coal fly ash from a disposal dredge cell at the Tennessee Valley Authority (TVA) Kingston Fossil Plant on Watts Bar Reservoir in Roane County, Tennessee, USA. Released ash filled the adjacent embayments and the main channel of the Emory River, migrating into reaches of the Emory, Clinch, and Tennessee Rivers. Dredging was completed in summer 2010, and the benthic community sampling was conducted in December 2010. This study is part of a series that supported an Ecological Risk Assessment for the Kingston site. Benthic invertebrate communities were sampled at transects spread across approximately 20 miles of river that includes both riverine and reservoirlike conditions. Community composition was assessed on a grab sample and transect basis across multiple cross-channel transects to gain an understanding of the response of the benthic community to a fly ash release of this magnitude. This assessment used invertebrate community metrics, similarity analysis, geospatial statistics, and correlations with sediment chemistry and habitat. The community composition was reflective of a reservoir system, with dominant taxa being insect larva, bivalves, and aquatic worms. Most community metric results were similar for ash-impacted areas and upstream reference areas. Variation in the benthic community was correlated more with habitat than with sediment chemistry or residual ash. Other studies have reported that a benthic community can take several years to a decade to recover from ash or ash-related constituents. Although released ash undoubtedly had some initial impacts on the benthic community in this study, the severity of these effects appears to be limited to the initial smothering of the organisms followed by a rapid response and the initial start of recovery postdredging. © 2014 SETAC.
How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes
Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis
2009-01-01
Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272
The future of volcanic ash-aircraft interactions from technical and policy perspectives
NASA Astrophysics Data System (ADS)
Casadevall, T. J.; Guffanti, M.
2010-12-01
Since the advent of jet-powered flight in the 1960s, the threat of volcanic ash to aviation operations has become widely recognized and the mitigation of this threat has received concerted international attention. At the same time the susceptibility to operational disruption has grown. Technical improvements to airframes, engines, and avionic systems have been made in response to the need for improved fuel efficiency and the demand for increased capacity for passenger and freight traffic. Operational demands have resulted in the growth of extended overseas flight operations (ETOPS), increased flight frequency on air traffic routes, and closer spacing of aircraft on heavily traveled routes. The net result has been great advances in flight efficiency, but also increased susceptibility to flight disruption, especially in heavily traveled regions such as North Atlantic-Europe, North America, and the North Pacific. Advances in ash avoidance procedures, pilot and air manager training, and in detection of ash-related damage and maintenance of aircraft and engines have been spurred by noteworthy eruptions such as Galunggung, Indonesia, 1982; Redoubt, Alaska, 1989-1990; and Pinatubo, Philippines, 1991. Comparable advances have been made in the detection and tracking of volcanic ash clouds using satellite-based remote sensing and numerical trajectory forecast models. Following the April 2010 eruption of Eyjafjallajökull volcano, Iceland, the global aviation community again focused attention on the issue of safe air operations in airspace affected by volcanic ash. The enormous global disruption to air traffic in the weeks after the Eyjafjallajökull eruption has placed added emphasis for the global air traffic management system as well as on the equipment manufacturers to reevaluate air operations in ash-affected airspace. Under the leadership of the International Civil Aviation Organization and the World Meteorological Organization, efforts are being made to address this growth in the risks facing aviation operation owing to volcanic ash hazard (http://www2.icao.int/en/anb/met-aim/met/ivatf/Documents/Final.Alltext.pdf) Modifications of international procedures for air traffic management, a new assessment of equipment vulnerability, and efforts to detect and to more precisely forecast the distribution and concentration of volcanic ash are underway. These efforts will result in modification and updating of current practices for advising and warning pilots and airspace managers about volcanic ash, and also in better understandings of the threat volcanic ash presents to aviation operations. While technical and policy changes will help improve flight safety, there continues to be a role for earth scientists to work with the aviation community to improve monitoring of volcanoes, especially in remote regions, and in understanding of explosive volcanic processes. A paramount need continues for improved communications amongst all of the scientific and technical parties to address and successfully mitigate the risks of volcanic ash to aviation operations.