#### Sample records for distribution apparent mass

1. Theoretical Pressure Distribution, Apparent Mass, and Moment of Inertia of a Disk Pendulum Oscillating at Low Frequency. M.S. Thesis - George Washington Univ., Washington, D. C.

NASA Technical Reports Server (NTRS)

Dunning, R. S.

1973-01-01

Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.

2. Apparent mass in viscous, vortical flows

NASA Astrophysics Data System (ADS)

Noca, Flavio

2001-11-01

The concept of added, virtual, apparent, or additional mass is well known in potential flow theory. It is added mass (or more exactly, the time derivative of virtual momentum) that wholly contributes to fluid dynamic forces in unsteady, potential flow configurations. While the force contribution from added mass can be easily evaluated in potential flows, it has always been thought that in real (vortical and viscous) flows, the contribution of added mass to the fluid dynamic force is intertwined in a complex way with the force resulting from wake and boundary layer vorticity. Recently, Shiels, Leonard, and Roshko (Journal of Fluids and Structures, vol 15, pp 3-21, 2001) [henceforth SLR] showed that the fluid dynamic lift force on a circular cylinder performing transverse oscillations in a steady stream can actually be decomposed into a lift force due to apparent mass (as evaluated from potential theory) and a wake'' force resulting from frictional as well as altered pressure forces caused by the boundary layer and wake growth in viscous flow. Through a rigorous formalism analogous to SLR’s, we will confirm that the SLR decomposition is correct and valid for any body shape in arbitrary motion. The SLR decomposition is a seminal discovery in the science of unsteady aero/hydrodynamics, as it allows to clearly distinguish the force contributions from added mass and from the wake''. The result is particularly important for understanding the flight and swimming mechanics of animals.

3. Mass density at geostationary orbit and apparent mass refilling

NASA Astrophysics Data System (ADS)

Denton, R. E.; Takahashi, Kazue; Amoh, Justice; Singer, H. J.

2016-04-01

We used the inferred equatorial mass density ρm,eq based on measurements of Alfvén wave frequencies measured by the GOES satellites during 1980-1991 in order to construct a number of different models of varying complexity for the equatorial mass density at geostationary orbit. The most complicated models are able to account for 66% of the variance with a typical variation from actual values of a factor of 1.56. The factors that influenced ρm,eq in the models were, in order of decreasing importance, the F10.7 EUV index, magnetic local time, the solar wind dynamic pressure Pdyn, the phase of the year, and the solar wind BZ (GSM Z direction). During some intervals, some of which were especially geomagnetically quiet, ρm,eq rose to values that were significantly higher than those predicted by our models. For 10 especially quiet intervals, we examined long-term (>1 day) apparent refilling, the increase in ρm,eq at a fixed location. We found that the behavior of ρm,eq varies for different events. In some cases, there is significant apparent refilling, whereas in other cases ρm,eq stays the same or even decreases slightly. Nevertheless, we showed that on average, ρm,eq increases exponentially during quiet intervals. There is variation of apparent refilling with respect to the phase of the solar cycle. On the third day of apparent refilling, ρm,eq has on average a similar value at solar maximum or solar minimum, but at solar maximum, ρm,eq begins with a larger value and rises relatively less than at solar minimum.

4. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

NASA Astrophysics Data System (ADS)

Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

2006-05-01

The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

5. Apparent brightness distribution of GRB host galaxies

NASA Astrophysics Data System (ADS)

Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Horváth, István; Tóth, L. Viktor

We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies (HGs) data and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescope. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the GRB's data. Finally, we compared the HGs distribution with standard galaxies distribution of the DEEP2 redshift survey and checked the result with the VIPERS catalogue too.

6. Apparent brightness distribution of GRB host galaxies

NASA Astrophysics Data System (ADS)

Bagoly, Zsolt; Racz, Istvan; Gyorgy Balazs, Lajos; Toth, Viktor; Horvath, Istvan

2015-08-01

We studied the relationship between the Swift GRB data and the optical brightness of the host galaxy measured by the Keck telescope. We calculated the unbiased distribution of the host's optical brightness by making use the survival analysis. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we studied also the dependence of this distribution on the GRB's data.

7. White Dwarf Mass Distribution

NASA Astrophysics Data System (ADS)

Kepler, S. O.; Koester, D.; Romero, A. D.; Ourique, G.; Pelisoli, I.

2017-03-01

We present the mass distribution for all S/N ≥ 15 DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12 in 2015, fitted with Koester models for ML2/α=0.8 (Teff≥ 10000 K), and for DBs with S/N ≥ 10, fitted with ML2/α=1.25, for Teff >16 000 K. These mass distributions are for logg≥6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 M ⊙ but very distinct shapes.

8. Effect of lensing magnification on the apparent distribution of black hole mergers

NASA Astrophysics Data System (ADS)

Dai, Liang; Venumadhav, Tejaswi; Sigurdson, Kris

2017-02-01

The recent detection of gravitational waves indicates that stellar-mass black hole binaries are likely to be a key population of sources for forthcoming observations. With future upgrades, ground-based detectors could detect merging black hole binaries out to cosmological distances. Gravitational-wave bursts from high redshifts (z ≳1 ) can be strongly magnified by gravitational lensing due to intervening galaxies along the line of sight. In the absence of electromagnetic counterparts, the mergers' intrinsic mass scale and redshift are degenerate with the unknown magnification factor μ . Hence, strongly magnified low-mass mergers from high redshifts appear as higher-mass mergers from lower redshifts. We assess the impact of this degeneracy on the mass-redshift distribution of observable events for generic models of binary black hole formation from normal stellar evolution, Pop III star remnants, or a primordial black hole population. We find that strong magnification (μ ≳3 ) generally creates a heavy tail of apparently massive mergers in the event distribution from a given detector. For LIGO and its future upgrades, this tail may dominate the population of intrinsically massive, but unlensed mergers in binary black hole formation models involving normal stellar evolution or primordial black holes. Modeling the statistics of lensing magnification can help account for this magnification bias when testing astrophysical scenarios of black hole binary formation and evolution.

9. Identification of Stress Change Within a Rock Mass Through Apparent Stress of Local Seismic Events

NASA Astrophysics Data System (ADS)

Brown, Laura; Hudyma, Martin

2017-01-01

Mine blasting produces excavation geometry changes which induce stress change that can be observed in the seismic source parameter apparent stress calculated for local seismic events. Using high apparent stress as a proxy for increasing stress within a rock mass, areas experiencing increases in the local stress conditions can be determined. This paper presents the use of apparent stress of seismic events to identify areas within a rock mass experiencing local stress change. Examples from a deep Canadian mine, operating in excess of 2900 m below surface, are provided.

10. Apparent LFE Magnitude-Frequency Distributions and the Tremor Source

NASA Astrophysics Data System (ADS)

Rubin, A. M.; Bostock, M. G.

2015-12-01

Over a decade since its discovery, it is disconcerting that we know so little about the kinematics of the tremor source. One could say we are hampered by low signal-to-noise ratio, but often the LFE signal is large and the "noise" is just other LFEs, often nearly co-located. Here we exploit this feature to better characterize the tremor source. A quick examination of LFE catalogs shows, unsurprisingly, that detected magnitudes are large when the background tremor amplitude is large. A simple interpretation is that small LFEs are missed when tremor is loud. An unanswered question is whether, in addition, there is a paucity of small LFEs when tremor is loud. Because we have both the LFE Green's function (from stacks) and some minimum bound on the overall LFE rate (from our catalogs), tremor waveforms provide a consistency check on any assumed magnitude-frequency (M-f) distribution. Beneath southern Vancouver Island, the magnitudes of >10^5 LFEs range from about 1.2-2.4 (Bostock et al. 2015). Interpreted in terms of a power-law distribution, the b-value is >5. But missed small events make even this large value only a lower bound. Binning by background tremor amplitude, and assuming a time-invariant M-f distribution, the b-value increases to >7, implying (e.g.) more than 10 million M>1.2 events for every M=2.2 event. Such numbers are inconsistent with the observed modest increase in tremor amplitude with LFE magnitude, as well as with geodetically-allowable slips. Similar considerations apply to exponential and log-normal moment-frequency distributions. Our preliminary interpretation is that when LFE magnitudes are large, the same portion of the fault is producing larger LFEs, rather than a greater rate of LFEs pulled from the same distribution. If correct, this distinguishes LFEs from repeating earthquakes, where larger background fault slip rates lead not to larger earthquakes but to more frequent earthquakes of similar magnitude. One possible explanation, that LFEs

11. Apparent mass of the human body in the vertical direction: Inter-subject variability

NASA Astrophysics Data System (ADS)

Toward, Martin G. R.; Griffin, Michael J.

2011-02-01

The biodynamic responses of the seated human body to whole-body vibration vary considerably between people, but the reasons for the variability are not well understood. This study was designed to determine how the physical characteristics of people affect their apparent mass and whether inter-subject variability is influenced by the magnitude of vibration and the support of a seat backrest. The vertical apparent masses of 80 seated adults (41 males and 39 females aged 18-65) were measured at frequencies between 0.6 and 20 Hz with four backrest conditions (no backrest, upright rigid backrest, reclined rigid backrest, reclined foam backrest) and with three magnitudes of random vibration (0.5, 1.0 and 1.5 m s -2 rms). Relationships between subject physical characteristics (age, gender, weight, and anthropometry) and subject apparent mass were investigated with multiple regression models. The strongest predictor of the modulus of the vertical apparent mass at 0.6 Hz, at resonance, and at 12 Hz was body weight, with other factors having only a marginal effect. After correction for other variables, the principal resonance frequency was most consistently associated with age and body mass index. As age increased from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz, and when the body mass index was increased from 18 to 34 kg m -2 the resonance frequency decreased by up to 1.7 Hz. These changes were greater than the 0.9-Hz increase in resonance frequency between sitting without a backrest and sitting with a reclined rigid backrest, and greater than the 1.0-Hz reduction in resonance frequency when the magnitude of vibration increased from 0.5 to 1.5 m s -2 rms. It is concluded that the effects of age, body mass index, posture, vibration magnitude, and weight should be taken into account when defining the vertical apparent mass of the seated human body.

12. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

NASA Astrophysics Data System (ADS)

MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

2001-11-01

Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

13. Seated Occupant Apparent Mass Characteristics Under Automotive Postures and Vertical Vibration

NASA Astrophysics Data System (ADS)

RAKHEJA, S.; HARU, I.; BOILEAU, P.-É.

2002-05-01

The biodynamic apparent mass response characteristics of 24 human subjects (12 males and 12 females) seated under representative automotive postures with hands-in-lap (passengers) and hands-on-steering wheel (drivers) are reported. The measurements were carried out under white noise vertical excitations of 0·25, 0·5 and 1·0m/s2r.m.s. acceleration magnitudes in the 0·5-40Hz frequency range and a track measured input (1·07m/s2). The measured data have been analyzed to study the effects of hands position, body mass, magnitude and type of vibration excitation, and feet position, on the biodynamic response expressed in terms of apparent mass. A comparison of the measured response of subjects assuming typical automotive postures involving inclined cushion, inclined backrest and full use of backrest support with data determined under different postural conditions and excitation levels revealed considerable differences. The biodynamic response of automobile occupants seated with hands in lap, peaks in the 6·5-8·6Hz frequency range, which is considerably higher than the reported range of fundamental frequencies (4·5-5Hz) in most other studies involving different experimental conditions. The peak magnitude tends to decrease considerably for the driving posture with hands-on-steering wheel, while a second peak in the 8-12 Hz range becomes more apparent for this posture. The results suggest that biodynamic response of occupants seated in automotive seats and subject to vertical vibration need to be characterized, as a minimum, by two distinct functions for passenger and driving postures. A higher body mass, in general, yields higher peak magnitude response and lower corresponding frequency for both postures. The strong dependence of the response on the body mass is further demonstrated by grouping the measured data into four different mass ranges: less than 60 kg, between 60·5 and 70 kg, between 70·5 and 80 kg, and above 80 kg. From the results, it is concluded that

14. Mass distributions in disk galaxies

NASA Astrophysics Data System (ADS)

Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

2017-03-01

We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to become the dominant contributor. Unexpectedly, we find the total baryon to dark-matter fraction within a galaxy stays nearly constant with radius from 1hR out to at least 6hR , with a baryon fraction of 15-50% among galaxies. On average, only one third of the mass within 2.2hR in a disk galaxy is baryonic and these baryons appear to have had only a minor effect on the distribution of the dark matter.

15. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert

PubMed Central

Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

2015-01-01

Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745

16. Time Varying Apparent Volume of Distribution and Drug Half-Lives Following Intravenous Bolus Injections

PubMed Central

Wesolowski, Carl A.; Wesolowski, Michal J.; Babyn, Paul S.

2016-01-01

We present a model that generalizes the apparent volume of distribution and half-life as functions of time following intravenous bolus injection. This generalized model defines a time varying apparent volume of drug distribution. The half-lives of drug remaining in the body vary in time and become longer as time elapses, eventually converging to the terminal half-life. Two example fit models were substituted into the general model: biexponential models from the least relative concentration error, and gamma variate models using adaptive regularization for least relative error of clearance. Using adult population parameters from 41 studies of the renal glomerular filtration marker 169Yb-DTPA, simulations of extracellular fluid volumes of 5, 10, 15 and 20 litres and plasma clearances of 40 and 100 ml/min were obtained. Of these models, the adaptively obtained gamma variate models had longer times to 95% of terminal volume and longer half-lives. PMID:27403663

17. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants.

PubMed

Liu, Guangliang; Cai, Yong

2010-11-01

The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. LogKD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH=9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. LogKs for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1-2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, logKs decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3- and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3.

18. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord

SciTech Connect

Wells, Simon; Conran, John G.; Tamme, Richard; Gaudin, Arnaud; Webb, Jonathan; Lardelli, Michael

2010-11-15

The molecules and mechanisms involved in patterning the dorsoventral axis of the developing vertebrate spinal cord have been investigated extensively and many are well known. Conversely, knowledge of mechanisms patterning cellular distributions along the rostrocaudal axis is relatively more restricted. Much is known about the rostrocaudal distribution of motoneurons and spinal cord cells derived from neural crest but there is little known about the rostrocaudal patterning of most of the other spinal cord neurons. Here we report data from our analyses of the distribution of dorsal longitudinal ascending (DoLA) interneurons in the developing zebrafish spinal cord. We show that, although apparently distributed irregularly, these cells have cryptic organisation. We present a novel cell-labelling technique that reveals that DoLA interneurons migrate rostrally along the dorsal longitudinal fasciculus of the spinal cord during development. This cell-labelling strategy may be useful for in vivo analysis of factors controlling neuron migration in the central nervous system. Additionally, we show that DoLA interneurons persist in the developing spinal cord for longer than previously reported. These findings illustrate the need to investigate factors and mechanisms that determine 'irregular' patterns of cell distribution, particularly in the central nervous system but also in other tissues of developing embryos.

19. Apparent power-law distributions in animal movements can arise from intraspecific interactions

PubMed Central

Breed, Greg A.; Severns, Paul M.; Edwards, Andrew M.

2015-01-01

Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. PMID:25519992

20. Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?

PubMed Central

Monk, Jacquomo; Ierodiaconou, Daniel; Harvey, Euan; Rattray, Alex; Versace, Vincent L.

2012-01-01

Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change – particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability

1. Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel

NASA Astrophysics Data System (ADS)

Toward, M. G. R.; Griffin, M. J.

2010-04-01

The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s -2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the 'steering wheel' and the footrest were also investigated as well as a 'no backrest' condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic

2. Modelling the fore-and-aft apparent mass of the human body and the transmissibility of seat backrests

NASA Astrophysics Data System (ADS)

Qiu, Yi; Griffin, Michael J.

2011-05-01

A combined lumped-parameter and multi-body system dynamic model of the human body-seat system has been constructed with masses and moments of inertia and with linear translational and rotational springs and dampers. The model was developed in four steps by minimising the sum-of-least-squares error between laboratory measurements and model predictions of the fore-and-aft driving point apparent mass and the fore-and-aft transmissibility of a car backrest. Good agreement was achieved between model predictions and both the median measured driving-point apparent mass and the median measured backrest transmissibility with six subjects. The model was capable of representing the measured apparent masses and predicting the backrest transmissibility with the individual subjects. It was also capable of predicting the backrest transmissibilities of two different car seats. A sensitivity study was conducted and the effects of the model parameters on the peak moduli and corresponding frequencies of the apparent mass and the backrest transmissibility are presented.

3. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES

SciTech Connect

Farr, Will M.; Sravan, Niharika; Kalogera, Vicky; Cantrell, Andrew; Kreidberg, Laura; Bailyn, Charles D.; Mandel, Ilya E-mail: niharika.sravan@gmail.com E-mail: andrew.cantrell@yale.edu E-mail: charles.bailyn@yale.edu

2011-11-10

We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically-as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution-and non-parametrically-as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a 'gap' between the most massive neutron stars and the least massive black holes by considering the value, M{sub 1%}, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M{sub 1%}; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M{sub 1%}>4.3 M{sub sun} with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M{sub 1%}>4.5 M{sub sun} with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the

4. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements

NASA Astrophysics Data System (ADS)

Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing

2016-04-01

Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite

5. THE MASS DISTRIBUTION OF SUBGIANT PLANET HOSTS

SciTech Connect

Lloyd, James P.

2013-09-01

High mass stars are hostile to Doppler measurements due to rotation and activity on the main-sequence, so RV searches for planets around massive stars have relied on evolved stars. A large number of planets have been found around evolved stars with M > 1.5 M{sub Sun }. To test the robustness of mass determinations, Lloyd compared mass distributions of planet hosting subgiants with distributions from integrating isochrones and concluded that it is unlikely the subgiant planet hosts are this massive, but rather that the mass inferences are systematically in error. The conclusions of Lloyd have been called in to question by Johnson et al., who show TRILEGAL-based mass distributions that disagree with the mass distributions in Lloyd, which they attribute to Malmquist bias. Johnson et al. argue that the very small spectroscopic observational uncertainties favor high masses, and there are a large number of high mass sub giants in RV surveys. However, in this Letter, it is shown that Malmquist bias does not impact the mass distributions, but the mass distribution is sensitive to Galaxy model. The relationship needed to reconcile the subgiant planet host masses with any model of the Galactic stellar population is implausible, and the conclusion of Lloyd that spectroscopic mass determinations of subgiants are likely to have been overestimated is robust.

6. The Field White Dwarf Mass Distribution

NASA Astrophysics Data System (ADS)

Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.

2017-03-01

We study the white dwarf mass distributions for the volume-complete survey within 20 pc and the SDSS magnitude-limited sample. The observed mass distributions are modelled with Monte Carlo simulations. We find that under fixed standard assumptions for Galactic and stellar evolution, the predicted masses are in good qualitative agreement with the observed values. Nevertheless, the number of massive white dwarfs is overpredicted and we find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution.

7. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

SciTech Connect

Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

2012-09-20

We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

8. Effect of backrest and torso twist on the apparent mass of the seated body exposed to vertical vibration.

PubMed

Mansfield, Neil J; Maeda, Setsuo

2005-07-01

Occupational exposure to whole-body vibration is often combined with a requirement to perform twisting actions. This paper reports a study where the effect of twisting on the biomechanical response of the seated person was investigated. Twelve male subjects were exposed to vertical random whole-body vibration at 0.4 m/s2 r.m.s. Each subject sat in four different postures: 'back-on', 'back-off', 'twist' (where subjects were required to twist the torso by 90 degrees) and 'move' (where subjects were required to performing a moving task with extended arms). Similar apparent masses were measured for the 'back-on', 'back-off' and 'twist' conditions, where a peak occurred at about 6 Hz. For the 'move' condition, the peak in the apparent mass was attenuated indicating a different biomechanical response in this posture. The 6 Hz peak in fore-and-aft cross-axis apparent mass was eliminated in the 'move' condition. It is suggested that the change in biomechanical response is due to either the extended arms acting as a passive vibration absorber or that the twisting action interferes with the usual acceleration-muscle feedback system. Further work will be required to test these hypotheses.

9. Periodic Patterns in Distributions of Peptide Masses

PubMed Central

Hubler, Shane L.; Craciun, Gheorghe

2015-01-01

We are investigating the distribution of the number of peptides for given masses, and especially the observation that peptide density reaches a local maximum approximately every 14 Daltons. This wave pattern exists across species (e.g. human or yeast) and enzyme digestion techniques. To analyze this phenomenon we have developed a mathematical method for computing the mass distributions of peptides, and we present both theoretical and empirical evidence that this 14-Dalton periodicity does not arise from species selection of peptides but from the number-theoretic properties of the masses of amino acid residues. We also describe other, more subtle periodic patterns in the distribution of peptide masses. We also show that these periodic patterns are robust under a variety of conditions, including the addition of amino acid modifications and selection of mass accuracy scale. The method used here is also applicable to any family of sequential molecules, such as linear hydrocarbons, RNA, single- and double-stranded DNA. PMID:22579741

10. Mass distribution and mass resolved angular distribution of fission products in 28Si+232Th

NASA Astrophysics Data System (ADS)

Sodaye, Suparna; Tripathi, R.; John, B. V.; Ramachandran, K.; Pujari, P. K.

2017-01-01

Background: Fission process with heavier projectiles and actinide targets has contributions from processes, such as compound nucleus fission, transfer-induced fission, and noncompound nucleus fission. Mass distribution and mass-dependent anisotropy can be used to identify and delineate the contributions due to these different processes. Purpose: Mass distribution in 28Si+232Th has been studied at beam energies of 180 and 158 MeV to investigate the nature of mass distribution arising from complete and incomplete momentum-transfer fission events. Mass-dependent angular anisotropy has been measured at 166 MeV to investigate the dominant noncompound nucleus process contributing to the fission. Method: Mass distribution and mass resolved angular distribution of fission products were measured by the recoil catcher method followed by off-line γ -ray spectrometry. Results: Mass distributions for full momentum-transfer fission processes were found to be symmetric, and those for transfer-induced fission were found to be asymmetric at both beam energies. The relative contribution from transfer-induced fission was found to be higher at lower beam energy. The anisotropy of the fission product angular distribution was found to increase with decreasing mass asymmetry. Conclusions: The mass distribution indicates that, apart from the full momentum-transfer fission process, there is a significant contribution due to transfer-induced fission. The mass dependence of angular anisotropy indicated that preequilibrium fission is the dominant noncompound nucleus process in the present reaction system at near barrier energy (Ec .m ./VC=1.06 ) .

11. Value of apparent diffusion coefficient measurement for discrimination of focal benign and malignant hepatic masses.

PubMed

Kilickesmez, O; Bayramoglu, S; Inci, E; Cimilli, T

2009-02-01

The purpose of our study was to investigate the value of diffusion-weighted magnetic resonance imaging (DW-MRI) to discriminate benign and malignant focal lesions of the liver using parallel imaging technique. A total of 77 patients and 65 healthy controls were enrolled in the study. DW-MRI was performed with b-factors of 0, 500 and 1000 s/mm(2), and the apparent diffusion coefficients (ADC) values of the normal liver and the lesions were calculated. The mean ADC value of the focal liver lesions were as follows: simple cysts (3.16 +/- 0.18 x 10(-3) mm(2)/s), hydatid cysts (2.58 +/- 0.53 x 10(-3) mm(2)/s), hemangiomas (1.97 +/- 0.49 x 10(-3) mm(2)/s), metastases (1.14 +/- 0.41 x 10(-3) mm(2)/s) and hepatocellular carcinomas (HCC) (1.15 +/- 0.36 x 10(-3) mm(2)/s). The mean ADC values of all the disease groups were statistically significant when compared with the mean ADC value of the normal liver (1.56 +/- 0.14 x 10(-3) mm(2)/s), (P < 0.01). There were also statistically significant differences among the ADC values of hemangiomas and HCC metastases (P < 0.01), and simple and hydatid cysts (P < 0.008). However, there was no statistically significant difference between HCC and metastases. The present study showed that ADC measurement has the potential to differentiate benign and malignant focal hepatic lesions. We propose to add DW sequence in the MR protocol for the detection and quantitative discrimination of hepatic pathologies.

12. An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest

NASA Astrophysics Data System (ADS)

Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

2011-12-01

During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.

13. Apparent Transition in the Human Height Distribution Caused by Age-Dependent Variation during Puberty Period

NASA Astrophysics Data System (ADS)

Iwata, Takaki; Yamazaki, Yoshihiro; Kuninaka, Hiroto

2013-08-01

In this study, we examine the validity of the transition of the human height distribution from the log-normal distribution to the normal distribution during puberty, as suggested in an earlier study [Kuninaka et al.: J. Phys. Soc. Jpn. 78 (2009) 125001]. Our data analysis reveals that, in late puberty, the variation in height decreases as children grow. Thus, the classification of a height dataset by age at this stage leads us to analyze a mixture of distributions with larger means and smaller variations. This mixture distribution has a negative skewness and is consequently closer to the normal distribution than to the log-normal distribution. The opposite case occurs in early puberty and the mixture distribution is positively skewed, which resembles the log-normal distribution rather than the normal distribution. Thus, this scenario mimics the transition during puberty. Additionally, our scenario is realized through a numerical simulation based on a statistical model. The present study does not support the transition suggested by the earlier study.

14. Mass Distributions of Linear Chain Polymers

PubMed Central

Hubler, Shane L.; Craciun, Gheorghe

2012-01-01

Biochemistry has many examples of linear chain polymers, i.e., molecules formed from a sequence of units from a finite set of possibilities; examples include proteins, RNA, single-stranded DNA, and paired DNA. In the field of mass spectrometry, it is useful to consider the idea of weighted alphabets, with a word inheriting weight from its letters. We describe the distribution of the mass of these words in terms of a simple recurrence relation, the general solution to that relation, and a canonical form that explicitly describes both the exponential form of this distribution and its periodic features, thus explaining a wave pattern that has been observed in protein mass databases. Further, we show that a pure exponential term dominates the distribution and that there is exactly one such purely exponential term. Finally, we illustrate the use of this theorem by describing a formula for the integer mass distribution of peptides and we compare our theoretical results with mass distributions of human and yeast peptides. PMID:23024448

15. The field white dwarf mass distribution

NASA Astrophysics Data System (ADS)

Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

2016-09-01

We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

16. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic

PubMed Central

Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J.; Nedachi, Munetomo

2012-01-01

The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm. PMID:23129649

17. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic.

PubMed

Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J; Nedachi, Munetomo

2012-11-20

The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm.

18. Measurement and modelling of the y-direction apparent mass of sitting human body-cushioned seat system

NASA Astrophysics Data System (ADS)

Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph

2009-04-01

Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.

19. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

EPA Science Inventory

We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

20. c-myc protein in normal tissue. Effects of fixation on its apparent subcellular distribution.

PubMed Central

Loke, S. L.; Neckers, L. M.; Schwab, G.; Jaffe, E. S.

1988-01-01

The c-myc protein is thought to be a DNA-associated nuclear protein. However, immunohistochemical studies on normal or tumor tissues have shown conflicting findings on its subcellular distribution. By using various fixation procedures on cytospin preparations of HL60 cells, the authors found the subcellular distribution of the c-myc protein to be dependent on the method of fixation. When studying mouse tissues in frozen sections using a biotinylated monoclonal antibody against the c-myc protein, they found the protein to be widely distributed in various normal adult mouse tissues, in most cases localized to the nucleus. However, when these tissues were studied after formalin fixation and paraffin embedding, a loss of nuclear staining was observed concurrent with the appearance of c-myc protein immunoreactivity in the cytoplasm. It is concluded that immunohistochemical studies on the expression of this oncogene should take into consideration the effects of fixation when its subcellular distribution is being examined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3281469

1. Simple mass distribution for the lunar potential.

NASA Technical Reports Server (NTRS)

Levie, S. L., Jr.

1971-01-01

A set of twenty-one point masses gravitationally equivalent to the L1 lunar potential model is presented. By construction, the equivalence is valid only in a region of space 'sampled' by Apollo spacecraft. That region is taken to be a finite, torus-shaped shell. When used in place of the L1 model for Apollo 12 lunar orbit determination, the solution set gives spacecraft positions identical to within about 100 m. The solution is developed in two steps: first the L1 potential is examined to determine favorable mass locations, and then the mass values are computed to force an optimum matching of the L1 potential. Therefore the solution set is 'artificial.' It is related to the moon's actual mass distribution only in its similar gravitational effects in a limited region of space.

2. Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis

NASA Astrophysics Data System (ADS)

Titov, O.; Malkin, Z.

2009-11-01

3. Preliminary results on an x-direction apparent mass model of human body sitting in a cushioned, suspended seat

NASA Astrophysics Data System (ADS)

Stein, George Juraj; Múčka, Peter; Chmúrny, Rudolf

2006-12-01

For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of seated human body have been developed and standardised by the international organisation for standardisation. No such models currently exist for human body sitting in an upright or slightly inclined position in a cushioned "armchair" type seat upper part, mounted on a mechanical, pneumatic or other type vertical suspension system. The interaction with the steering wheel and/or pedals has to be taken into consideration, as well as the variable position of the upper part of the human body in respect to the cushioned back-support of a driver's seat (full back contact to no contact at all), as observed in real driving conditions. This complex problem has to be simplified first to arrive at a manageable simpler mechano-mathematical model which still reflects the main problem features. A simple linear model of the human body apparent mass in the x-direction was designed and analysed. The model accounts for the reaction from the steering wheel and contact with the cushioned back-support of the seat "armchair" part. Model parameters were identified on basis of laboratory measurements. Out of three possible variant the most appropriate was singled out. The proposed model describes the measured apparent mass curve, and also gives indicative prediction of vibration transmissibility across the fore-and-aft ( x-direction) suspension system, if mounted and enabled. The proposed model can be a starting point for a further research in this field.

4. Space Technology 7 : Micropropulsion and Mass Distribution

NASA Technical Reports Server (NTRS)

Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; Connolly, W.; O'Donnell, J.; Markley, F.; Maghami, P.; Hsu, O.

2007-01-01

The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass

5. On the mass distribution of neutron stars

NASA Astrophysics Data System (ADS)

Valentim, R.; Rangel, E.; Horvath, J. E.

2011-06-01

The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M⊙ and a much wider second peak at 1.73 M⊙. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to 'label' the systems has been made here). They also accommodate the recent findings of ˜M⊙ masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M⊙, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.

6. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

NASA Astrophysics Data System (ADS)

Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

2015-12-01

sector the apparent trend of mass changes caused by the GIA fast mantle flow is more than 15 Gt/yr, which is 11.5% of to the -130 Gt/yr altimetry derived trend. Therefore, previous GRACE derived mass changes in Amundsen sector have been systematically underestimated.

7. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

NASA Astrophysics Data System (ADS)

Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

2014-12-01

sector the apparent trend of mass changes caused by the GIA fast mantle flow is more than 15 Gt/yr, which is 11.5% of to the -130 Gt/yr altimetry derived trend. Therefore, previous GRACE derived mass changes in Amundsen sector have been systematically underestimated.

8. Measurement and modelling of x-direction apparent mass of the seated human body-cushioned seat system.

PubMed

Stein, George Juraj; Múcka, Peter; Chmúrny, Rudolf; Hinz, Barbara; Blüthner, Ralph

2007-01-01

For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of the seated human body have been developed and standardized by the ISO. No such models exist hitherto for human body sitting in an upright position in a cushioned seat upper part, used in industrial environment, where the fore-and-aft vibrations play an important role. The interaction with the steering wheel has to be taken into consideration, as well as, the position of the human body upper torso with respect to the cushioned seat back as observed in real driving conditions. This complex problem has to be simplified first to arrive at manageable simpler models, which still reflect the main problem features. In a laboratory study accelerations and forces in x-direction were measured at the seat base during whole-body vibration in the fore-and-aft direction (random signal in the frequency range between 0.3 and 30 Hz, vibration magnitudes 0.28, 0.96, and 2.03 ms(-2) unweighted rms). Thirteen male subjects with body masses between 62.2 and 103.6 kg were chosen for the tests. They sat on a cushioned driver seat with hands on a support and backrest contact in the lumbar region only. Based on these laboratory measurements a linear model of the system-seated human body and cushioned seat in the fore-and-aft direction has been developed. The model accounts for the reaction from the steering wheel. Model parameters have been identified for each subject-measured apparent mass values (modulus and phase). The developed model structure and the averaged parameters can be used for further bio-dynamical research in this field.

9. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

NASA Astrophysics Data System (ADS)

Concettoni, Enrico; Griffin, Michael

2009-08-01

Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

10. Mass Distribution in Galaxy Cluster Cores

NASA Astrophysics Data System (ADS)

Hogan, M. T.; McNamara, B. R.; Pulido, F.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.; Edge, A. C.; Main, R. A.

2017-03-01

Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar (M *), gas (M gas), and dark matter (M DM) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular Hα emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r 1.1 expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r 0.67 down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”

11. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

PubMed

DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

2012-04-05

We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

12. Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs.

PubMed

Kavouras, Stavros A; Magkos, Faidon; Yannakoulia, Mary; Perraki, Maria; Karipidou, Melina; Sidossis, Labros S

2006-06-01

The bone response to exercise is site-specific and load-dependent. Recent evidence suggests that an inverse relationship may exist between loaded and unloaded sites, such that the former may benefit at the expense of the latter. The present study examined this possibility in 48 males (21 water polo players, 12 handball players, and 15 sedentary controls). Water polo and handball are alike with respect to the active loading of the upper limbs during overhead throwing; however, the weight-supporting environment of water polo removes the weight-bearing effect from the lower limbs. Bone mineral content (BMC), bone projected area (Ap), and areal bone mineral density (aBMD) of the total body and of various subregions were determined by dual-energy X-ray absorptiometry. After adjusting for age, height, and weight, water polo players had higher arms BMC, Ap, and aBMD (by 22.2, 11.1, and 10.5%, respectively; P<0.05), but lower legs aBMD (-6.3%; P<0.05) relative to controls. On the contrary, compared to controls, handball players had higher BMC (from 11.8 to 24.3%), Ap (from 5.2 to 11.7%), and aBMD (from 6.4 to 11.9%) for the total body at all sites. Water polo athletes had increased arms and decreased legs aBMD ratios (regional-to-total) than either handball players or sedentary subjects (P<0.001). Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs, with no major effects on the rest of the body.

13. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts.

PubMed

Tourell, Monique C; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P; Poh, Patrina S P; Loessner, Daniela; Momot, Konstantin I

2017-02-21

Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution ("maximum ADC") exhibited a strong correlation with the tumour size (r(2) = 0.90) and with the inverse of the elastic modulus (r(2) = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours' ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour's response to treatment.

14. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts

PubMed Central

Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.

2017-01-01

Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment. PMID:28220831

15. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts

NASA Astrophysics Data System (ADS)

Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.

2017-02-01

Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.

16. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

USGS Publications Warehouse

Baker, Edward; Christophe Hémond,; Anne Briais,; Marcia Maia,; Scheirer, Daniel S.; Sharon L. Walker,; Tingting Wang,; Yongshun John Chen,

2014-01-01

Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65–71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ∼350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

17. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

NASA Astrophysics Data System (ADS)

Baker, Edward T.; Hémond, Christophe; Briais, Anne; Maia, Marcia; Scheirer, Daniel S.; Walker, Sharon L.; Wang, Tingting; Chen, Yongshun John

2014-08-01

geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65-71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ˜350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

18. Vertical and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in transmissibility and apparent mass

NASA Astrophysics Data System (ADS)

Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

2012-12-01

The vertical apparent mass of the human body exhibits nonlinearity, with the principal resonance frequency reducing as the vibration magnitude increases. Measures of the transmission of vibration to the spine and the pelvis have suggested complex modes are responsible for the dominant resonance during vertical excitation, but the modes present with dual-axis excitation have not been investigated. This study was designed to examine how the apparent mass and transmissibility of the human body depend on the magnitude of vertical excitation and the addition of fore-and-aft excitation, and the relation between the apparent mass and the transmissibility of the body. The movement of the body (over the first, fifth and twelfth thoracic vertebrae, the third lumbar vertebra, and the pelvis) in the fore-and-aft and vertical directions (and in pitch at the pelvis) was measured in 12 male subjects sitting with their hands on their laps during random vertical vibration excitation (over the range 0.25-20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 m s-2 rms). At the highest magnitude of vertical excitation (1.0 m s-2 rms) the effect of adding fore-aft vibration (at 0.25, 0.5, and 1.0 m s-2 rms) was investigated. The forces in the vertical and fore-and-aft directions on the seat surface were also measured so as to calculate apparent masses. Resonances in the apparent mass and transmissibility to the spine and pelvis in the fore-and-aft and vertical directions, and pitch transmissibility to the pelvis, shifted to lower frequencies as the magnitude of vertical excitation increased and as the magnitude of the additional fore-and-aft excitation increased. The nonlinear resonant behaviour of the apparent mass and transmissibility during dual-axis vibration excitation suggests coupling between the principal mode associated with vertical excitation and the cross-axis influence of fore-and-aft excitation. The transmissibility measures are consistent with complex modes

19. MEASURING THE MASS DISTRIBUTION IN GALAXY CLUSTERS

SciTech Connect

Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Serra, Ana Laura E-mail: diaferio@ph.unito.it E-mail: serra@to.infn.it

2013-02-10

Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing, and the caustic technique are independent of the assumption of dynamical equilibrium. Both techniques enable the determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within {approx}30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the extrapolated Navarro, Frenk and White fit to the lensing mass profile exceeds the caustic mass profile. Contamination of the lensing profile by unrelated structures within the lensing kernel may be an issue in some cases; we highlight the clusters MS0906+11 and A750, superposed along the line of sight, to illustrate the potential seriousness of contamination of the weak lensing signal by these unrelated structures.

20. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.

PubMed

Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen

2015-04-01

This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor.

1. Prediction of maximum P- and S-wave amplitude distributions incorporating frequency- and distance-dependent characteristics of the observed apparent radiation patterns

NASA Astrophysics Data System (ADS)

Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo

2016-10-01

Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P- and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent P- and S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P- and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P- and S-wave amplitudes over a wide frequency and distance ranges successfully.[Figure not available: see fulltext.

2. Apparent Disk-mass Reduction and Planetisimal Formation in Gravitationally Unstable Disks in Class 0/I Young Stellar Objects

NASA Astrophysics Data System (ADS)

Tsukamoto, Y.; Okuzumi, S.; Kataoka, A.

2017-04-01

We investigate the dust structure of gravitationally unstable disks undergoing mass accretion from the envelope, envisioning its application to Class 0/I young stellar objects (YSOs). We find that the dust disk quickly settles into a steady state and that, compared to a disk with interstellar medium (ISM) dust-to-gas mass ratio and micron-sized dust, the dust mass in the steady state decreases by a factor of 1/2 to 1/3, and the dust thermal emission decreases by a factor of 1/3 to 1/5. The latter decrease is caused by dust depletion and opacity decrease owing to dust growth. Our results suggest that the masses of gravitationally unstable disks in Class 0/I YSOs are underestimated by a factor of 1/3 to 1/5 when calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of disks in Class 0/I YSOs is gravitationally unstable than was previously believed. We also investigate the orbital radius {r}{{P}} within which planetesimals form via coagulation of porous dust aggregates and show that {r}{{P}} becomes ∼20 au for a gravitationally unstable disk around a solar mass star. Because {r}{{P}} increases as the gas surface density increases and a gravitationally unstable disk has maximum gas surface density, {r}{{P}}∼ 20 {au} is the theoretical maximum radius for planetesimal formation. We suggest that planetesimal formation in the Class 0/I phase is preferable to that in the Class II phase because a large amount of dust is supplied by envelope-to-disk accretion.

3. Mass of nonrelativistic meson from leading twist distribution amplitudes

NASA Astrophysics Data System (ADS)

Braguta, V. V.

2011-01-01

In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.

4. Effects of mass-transfer resistance on apparent stability and performance of fixed-bed immobilized enzyme reactors: theory and experiments with immobilized invertase

SciTech Connect

Ooshima, H.; Harano, Y.

1983-01-01

Taking the hydrolysis of sucrose by invertase immobilized on anion-exchange resin as an example, the effects of mass-transfer resistance on the apparent stability of immobilized enzyme (IME) and the optimal policy for an IME reaction in a fixed-bed reactor have been studied theoretically and experimentally. The following results were obtained: 1) The effect of mass-transfer resistance on the effective deactivation rate of IME is summarized in two parameters concerning the intraparticle diffusion alphap and the interparticle alphaf. 2) At a constant processed amount of raw materials, there exists an optimal flow rate of reaction fluid to enhance the reactor performance while the mass-transfer resistance shifts the optimal point. 3) The intrinsic deactivation rate of IME has been estimated from the relationship between the fractional conversion at the reactor outlet and the operation time. (Refs. 12).

5. Dynamic Distribution of the Gut Microbiota and the Relationship with Apparent Crude Fiber Digestibility and Growth Stages in Pigs

PubMed Central

Niu, Qing; Li, Pinghua; Hao, Shuaishuai; Zhang, Yeqiu; Kim, Sung Woo; Li, Huizhi; Ma, Xiang; Gao, Shuo; He, Lichun; Wu, WangJun; Huang, Xuegen; Hua, Jindi; Zhou, Bo; Huang, Ruihua

2015-01-01

The gut microbiota plays an important role in nutrient digestibility in animals. To examine changes in the pig gut microbiota across growth stages and its effects on nutrient digestion, the gut microbiota population in pigs at 28 days (before weaning), and 60, 90, and 150 days of age was assessed by 16S rDNA gene sequencing. The apparent digestibility of crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP) and ether extract (EE) was also assessed in these pigs. A total of 19,875 operational taxonomic units (OTUs) were identified from all samples. Both bacterial abundance and diversity increased with age. A total of 22 phyla and 249 genera were identified from all fecal samples; Firmicutes and Bacteroidetes were the most dominant phyla in all samples. With increasing age, the proportion of TM7 and Tenericutes increased, whereas the proportion of Lentisphaerae and Synergistetes decreased. The abundance of 36 genera varied with age, and the apparent digestibility of CF increased with age. Three phyla, Proteobacteria, Tenericutes and TM7, and 11 genera, including Anaeroplasma, Campylobacter, and Clostridium, were correlated with apparent CF digestibility. PMID:25898122

6. Neutron Star Mass Distribution in Binaries

NASA Astrophysics Data System (ADS)

Lee, Chang-Hwan; Kim, Young-Min

2016-05-01

Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

7. Relationship Not Found Between Blood and Urine Concentrations and Body Mass Index in Humans With Apparently Adequate Boron Status.

PubMed

Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin

2016-06-01

The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.

8. Effect of Muscle Tension on Non-Linearities in the Apparent Masses of Seated Subjects Exposed to Vertical Whole-Body Vibration

NASA Astrophysics Data System (ADS)

MATSUMOTO, Y.; GRIFFIN, M. J.

2002-05-01

In subjects exposed to whole-body vibration, the cause of non-linear dynamic characteristics with changes in vibration magnitude is not understood. The effect of muscle tension on the non-linearity in apparent mass has been investigated in this study. Eight seated male subjects were exposed to random and sinusoidal vertical vibration at five magnitudes (0·35-1·4 m/s2 r.m.s.). The random vibration was presented for 60 s over the frequency range 2·0-20 Hz; the sinusoidal vibration was presented for 10 s at five frequencies (3·15, 4·0, 5·0, 6·3 and 8·0 Hz). Three sitting conditions were adopted such that, in two conditions, muscle tension in the buttocks and the abdomen was controlled. It was assumed that, in these two conditions, involuntary changes in muscle tension would be minimized. The force and acceleration at the seat surface were used to obtain apparent masses of subjects. With both sinusoidal and random vibration, there was statistical support for the hypothesis that non-linear characteristics were less clear when muscle tension in the buttocks and the abdomen was controlled. With increases in the magnitude of random vibration from 0·35 to 1·4 m/s2 r.m.s., the apparent mass resonance frequency decreased from 5·25 to 4·25 Hz with normal muscle tension, from 5·0 to 4·38 Hz with the buttocks muscles tensed, and from 5·13 to 4·5 Hz with the abdominal muscles tensed. Involuntary changes in muscle tension during whole-body vibration may be partly responsible for non-linear biodynamic responses.

9. Molar mass distribution and solubility modeling of asphaltenes

SciTech Connect

Yarranton, H.W.; Masliyah, J.H.

1996-12-01

Attempts to model asphaltene solubility with Scatchard-Hildebrand theory were hampered by uncertainty in molar volume and solubility parameter distribution within the asphaltenes. By considering asphaltenes as a series of polyaromatic hydrocarbons with randomly distributed associated functional groups, molar volume and solubility parameter distributions are calculated from experimental measurements of molar mass and density. The molar mass distribution of Athabasca asphaltenes is determined from interfacial tension and vapor pressure osmometry measurements together with plasma desorption mass spectrometry determinations from the literature. Asphaltene densities are calculated indirectly from mixtures of known concentration of asphaltene in toluene. Asphaltene density, molar volume, and solubility parameter are correlated with molar mass. Solid-liquid equilibrium calculations based on solubility theory and the asphaltene property correlations successfully predict experimental data for both the precipitation point and the amount of precipitated asphaltenes in toluene-hexane solvent mixtures.

10. Mass distributions in elliptical galaxies at large radii

NASA Technical Reports Server (NTRS)

Sarazin, Craig L.

1987-01-01

Recently, X-ray observations have shown that elliptical galaxies generally contain large quantities of hot gas. Central dominant cluster ellipticals have even more gas, which they have accreted from the surrounding clusters. The mass distributions in these galaxies can be derived from the condition of hydrostatic equilibrium. M87, the best studied central dominant galaxy, has a massive, dark halo with a total mass of about 4 x 10 to the 12th solar masses within a radius of 300 kpc. The total mass-to-light ratio within this radius is at least 150 solar mass/solar luminosity. The X-ray observations of normal ellipticals also strongly suggest that they have heavy halos, although the distribution of the mass is much less certain than in M87.

11. Effect of dietary coarsely ground corn on broiler live performance, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and digesta particle size distribution and retention time

PubMed Central

Xu, Y.; Stark, C. R.; Ferket, P. R.; Williams, C. M.; Pacheco, W. J.; Brake, J.

2015-01-01

Dietary structural material has been reported to improve broiler live performance and gastrointestinal tract (GIT) function. In this 50 d cage study, the effects of coarsely ground corn (CC) inclusion on broiler live performance, GIT development, apparent ileal digestibility (AID) of energy and nitrogen (N), and digesta particle size distribution and retention time were investigated. This study included 3 CC inclusions (0, 25, and 50% fine corn [FC] replaced by CC), with 6 replicate cages of 10 birds per treatment. The feed conversion ratio (FCR) at 35 and 42 d was improved (P < 0.01) as the dietary inclusion of CC increased without effect on feed intake. The 50% CC diet increased absolute and relative gizzard weight at 42 d of age as compared to diets with 0 and 25% CC (P < 0.01). Dietary CC increased absolute proventriculus weight at 28 d of age (P < 0.05). A numerically lower gizzard digesta pH (P < 0.08) was observed at 28 d but not 42 d of age, and there was no difference in proventriculus, jejunum, or ileum digesta pH at 28 or 42 d of age. The 25 and 50% CC treatments increased the digesta retention time at 30 and 45 d of age (P < 0.05 and P < 0.01, respectively). The 25 and 50% CC treatments improved AID of energy by 7.1 and 8.2%, respectively, when compared with the 0% CC treatment, and they improved AID of N by 12.2 and 12.4%, respectively (P < 0.01). The digesta particles in the jejunum exhibited a similar distribution, with a dgw (geometric mean diameter by mass) of 218, 204, and 181 μm when 0, 25, of 50% CC diets were consumed, respectively. In conclusion, birds fed pelleted and screened diets that contained 25 and 50% CC exhibited increased BW, improved FCR, and increased AID of energy and N, which was probably due to enhanced gizzard development and greater digesta retention time. PMID:25568134

12. Optimal shield mass distribution for space radiation protection

NASA Technical Reports Server (NTRS)

Billings, M. P.

1972-01-01

Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

13. Lg wave propagation in a laterally varying crust and the distribution of the apparent quality factor in central France

NASA Astrophysics Data System (ADS)

Campillo, Michel

1987-11-01

The aim of this study is to evaluate the sensitivity of Lg waves to lateral changes of the earth's structure. Considering a simple model of uplift of the Moho, numerical simulations show that the geometrical attenuation of Lg is not much affected by a smooth anomaly of the Moho depth. On the other hand, the passing of the Lg wave through the region of the Moho uplift results in a clear deterioration of the wave shapes, which confirms the occurrence of mode conversions. The presence of an overlying sedimentary basin causes a local amplification of Lg above the basin itself and the appearance, behind the basin, of a secondary surface wave guided in the sediments. The effect of the basin on the Lg wave is found to be reasonably taken into account by applying a local amplification function to the data. We use a data set consisting of records of Lg phases in France to test the conclusions of our numerical study. The mapping of the apparent quality factor, computed from Lg at different frequencies, confirms the interpretation of the strong attenuation of S waves around 1 Hz in terms of scattering and shows the weak sensitivity of the amplitude of Lg to smooth changes in the depth of the Moho.

14. Distributed Capacitive Sensor for Sample Mass Measurement

NASA Technical Reports Server (NTRS)

Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey

2011-01-01

Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass

15. Mass Load Distribution Dependence of Mass Sensitivity of Magnetoelastic Sensors under Different Resonance Modes

PubMed Central

Zhang, Kewei; Zhang, Lin; Chai, Yuesheng

2015-01-01

Magnetoelastic sensors as an important type of acoustic wave sensors have shown great promise for a variety of applications. Mass sensitivity is a key parameter to characterize its performance. In this work, the effects of mass load distribution on the mass sensitivity of a magnetoelastic sensor under different resonance modes were theoretically investigated using the modal analysis method. The results show that the mass sensitivity and “nodal point” positions are related to the point displacement, which is determined by the motion patterns. The motion patterns are affected by resonance modes and mass load distribution. Asymmetrical mass load distribution causes the motion patterns lose symmetry and leads to the shift of “nodal point”. The mass sensitivity changing with mass load distribution behaves like a sine wave with decaying amplitude and the minimum mass sensitivity appears at the first valley. This study provides certain theoretical guidance for optimizing the mass sensitivity of a magnetoelastic sensor or other acoustic wave based sensors. PMID:26295233

16. Equilibrium models of mass distribution and collisional lifetimes of asteroids

NASA Technical Reports Server (NTRS)

Williams, David R.; Wetherill, George

1993-01-01

An understanding of the steady state distribution expected in the present day asteroid belt is important to our understanding of the collisional evolution of the asteroids and their physical properties. We have extended earlier work to show that, in the absence of gravity, a simple power law distribution as a function of mass with constant exponent will give an equilibrium distribution of asteroids for all bodies much smaller than the largest asteroids. This result holds for realistic fragmentation mechanisms and is independent of the physical properties of the asteroids. Inclusion of the effects of gravity on disruption and fragmentation of asteroids precludes an analytic solution to this problem, and rules out a simple power law distribution. We are currently calculating numerical solutions in order to determine the expected steady state mass distribution in the asteroid belt.

17. Is the Binary Mass Ratio Distribution Separation-Dependent?

NASA Astrophysics Data System (ADS)

Gullikson, Kevin; Kraus, Adam L.

2016-01-01

Recent discoveries of planets orbiting retired A-stars on close orbits and young A-stars on very wide orbits have renewed interest in the properties of nearby intermediate-mass stars. Especially interesting are the young stars because directly-imaged planets orbiting them may be bright enough for characterization (e.g. HR 8799, Beta Pictoris, etc). However, intermediate-mass stars and especially young intermediate mass stars are part of multiple systems more often than not. Close stellar companions may affect the formation and orbital evolution of any planets, and the properties of the companions can help constrain the binary formation mechanism. The mass ratio distribution of a population of binary stars, especially if the distribution for close companions is significantly different from that of wide companions, is helpful to distinguish companions that were born in or affected by the circumstellar disk from those which formed through fragmentation of the molecular core. Previous imaging surveys have found that binary systems with A-type primary stars tend to have cool companions with extreme mass ratios. There are hints at a much flatter mass ratio distribution for close companions, but strong completeness effects complicate the picture. We have conducted a spectroscopic survey of ~400 nearby main sequence A- and B-type stars, aimed at detecting stellar companions as late as M4 for all orbital separations <100 AU. We have searched for companions to the stars by cross-correlating the spectra against model templates for F-M type stars; a significant peak in the cross-correlation function indicates a detection. Our cross-correlation technique can detect low-mass companions with orbits that are too wide to detect with radial velocity monitoring and too small to detect with imaging techniques, making it complementary to work already done. We will present results from our survey and compare the mass ratio distribution we measure to the corresponding distribution for

18. Halo mass distribution reconstruction across the cosmic web

NASA Astrophysics Data System (ADS)

Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

2015-08-01

We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

19. Relationship between obesity and several cardiovascular disease risk factors in apparently healthy Korean individuals: comparison of body mass index and waist circumference.

PubMed

Sung, Ki Chul; Ryu, Seungho; Reaven, Gerald M

2007-03-01

Recent versions of the criteria for diagnosing the metabolic syndrome have emphasized the superiority of abdominal obesity, as measured by waist circumference (WC), in identifying individuals at increased risk for cardiovascular disease (CVD). On the other hand, there is evidence that body mass index (BMI), an estimate of overall obesity, fulfills this function as effectively as does WC. The present analysis was performed to compare the relative use of these 2 indices of obesity to identify multiple CVD risk factors. The study population consisted of 19584 apparently healthy men and women of Korean ethnicity, and the CVD risk factors measured included fasting plasma concentrations of the following variables: glucose, insulin, total, low-density lipoprotein, and high-density lipoprotein cholesterol, triglycerides, apolipoproteins A-I and B, and high-sensitivity C-reactive protein. The univariate relationships between the 2 indices of obesity and the 9 CVD risk factors were relatively modest (the highest r value was 0.45), but they were all statistically significant, and the magnitude of the relationships between the CVD risk factors and BMI and WC were comparable. When multivariate analysis was performed, adjusting for age and either BMI or WC, each index of obesity continued to have an independent relationship, albeit reduced in magnitude, with the CVD risk factors. These findings suggest that measurements of BMI provide as much clinical insight as do determinations of WC in identifying multiple CVD risk factors in a large population of apparently healthy Korean men and women, and that the use of both indices would provide the most information.

20. Bayesian Analysis of the Mass Distribution of Neutron Stars

NASA Astrophysics Data System (ADS)

Valentim, Rodolfo; Horvath, Jorge E.; Rangel, Eraldo M.

The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of two a priori gaussian peaks distribution by using fifty-five measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.35M⊙ ± 0.06M⊙ and a much wider second peak at 1.73M⊙ ± 0.36M⊙. We compared the two gaussian's model centered at 1.35M⊙ and 1.55M⊙ against a "single gaussian" model with 1.50M⊙ ± 0.11M⊙ using 3σ that provided a wide peak covering objects the full range of observed of masses. In order to compare models, BIC (Baysesian Information Criterion) can be used and a strong evidence for two distributions model against one peak model was found. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (in spite that no attempt to "label" the systems has been made). However, the recently claimed low-mass group, possibly related to O - Mg - Ne core collapse events, has a monotonically decreasing likelihood and has not been identified within this sample.

1. Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions

NASA Astrophysics Data System (ADS)

Zubairi, Omair; Weber, Fridolin

2013-04-01

In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.

2. Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution

NASA Astrophysics Data System (ADS)

Reggiani, Maddalena M.; Meyer, Michael R.

2011-09-01

We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2/M 1, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dqvpropq β, with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ~1% probability

3. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS

SciTech Connect

Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.

2014-12-20

Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M ≲ 0.45 M {sub ☉}) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μ{sub WD} = 0.74 M {sub ☉}, with a standard deviation σ{sub WD} = 0.24 M {sub ☉}. Our model constrains the NS companion fraction f {sub NS} to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.

4. The Close Companion Mass-ratio Distribution of Intermediate-mass Stars

NASA Astrophysics Data System (ADS)

Gullikson, Kevin; Kraus, Adam; Dodson-Robinson, Sarah

2016-08-01

Binary stars and higher-order multiple systems are a ubiquitous outcome of star formation, especially as the system mass increases. The companion mass-ratio distribution is a unique probe into the conditions of the collapsing cloud core and circumstellar disk(s) of the binary fragments. Inside a˜ 1000 {{A}}{{U}} the disks from the two forming stars can interact, and additionally companions can form directly through disk fragmentation. We should, therefore, expect the mass-ratio distribution of close companions (a≲ 100 AU) to differ from that of wide companions. This prediction is difficult to test using traditional methods, in particular, with intermediate-mass primary stars, for a variety of observational reasons. We present the results of a survey searching for companions to A- and B-type stars using the direct spectral detection method, which is sensitive to late-type companions within ˜ 1\\prime\\prime of the primary and which has no inner working angle. We estimate the temperatures and surface gravity of most of the 341 sample stars and derive their masses and ages. We additionally estimate the temperatures and masses of the 64 companions we find, 23 of which are new detections. We find that the mass-ratio distribution for our sample has a maximum near q˜ 0.3. Our mass-ratio distribution has a very different form than in previous works, where it is usually well-described by a power law, and indicates that close companions to intermediate-mass stars experience significantly different accretion histories or formation mechanisms than wide companions.

5. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

NASA Astrophysics Data System (ADS)

Montoya, M.; Rojas, J.; Lobato, I.

2008-12-01

The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

6. Mass size distributions of elemental aerosols in industrial area.

PubMed

Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

2015-11-01

Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m(3)/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m(3) (for Ba) to 89.62 ng/m(3) (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources.

7. Mass flow velocity distribution in the solar chromosphere

NASA Technical Reports Server (NTRS)

Tripp, D. A.

1981-01-01

A study of chromospheric lines (those of Si-II and Si-III) was made using the data from high resolution telescope and spectrograph (HRTS). The optically thick line profiles such as lambda 1206 due to Si-III and lambda 1265 and lambda 1533 due to Si-II were to be investigated in detail using the techniques of spectrum synthesis in an attempt to model the mass flow velocity distribution in the region of the solar atmosphere.

8. NASA Langley Research Center's distributed mass storage system

NASA Technical Reports Server (NTRS)

Pao, Juliet Z.; Humes, D. Creig

1993-01-01

There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

9. Tidal Densities of Globular Clusters and the Galactic Mass Distribution

NASA Astrophysics Data System (ADS)

Lee, Hyung Mok

1990-12-01

The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink(1985), we find that such reduction from observed values would make the tidal density(the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

10. Gravitational and mass distribution effects on stationary superwinds

NASA Astrophysics Data System (ADS)

Añorve-Zeferino, G. A.

2016-11-01

Here, we model the effect of non-uniform dynamical mass distributions and their associated gravitational fields on the stationary galactic superwind solution. We do this by considering an analogue injection of mass and energy from stellar winds and SNe. We consider both compact dark-matter and baryonic haloes that does not extend further from the galaxies optical radii Ropt as well as extended gravitationally interacting ones. We consider halo profiles that emulate the results of recent cosmological simulations and coincide also with observational estimations from galaxy surveys. This allows us to compare the analytical superwind solution with outflows from different kinds of galaxies. We give analytical formulae that establish when an outflow is possible and also characterize distinct flow regimes and enrichment scenarios. We also constraint the parameter space by giving approximate limits above which gravitation, self-gravitation and radiative cooling can inhibit the stationary flow. We obtain analytical expressions for the free superwind hydrodynamical profiles. We find that the existence or inhibition of the superwind solution highly depends on the steepness and concentration of the dynamical mass and the mass and energy injection rates. We compare our results with observational data and a recent numerical work. We put our results in the context of the mass-metallicity relationship to discuss observational evidence related to the selective loss of metals from the least massive galaxies and also discuss the case of massive galaxies.

11. Estimating groundwater recharge on a temperate humid to semiarid volcanic island (Jeju, Korea) from water table fluctuations, Cl mass balance, apparent CFC-12 ages and 3H renewal

NASA Astrophysics Data System (ADS)

Hagedorn, K. B.; El-Kadi, A. I.; Mair, A.; Whittier, R.

2010-12-01

Groundwater table fluctuations, Chloride mass balance, apparent groundwater Chlorofluorocarbon (CFC-12) ages and tritium (3H) renewal rates were used to assess recharge on Jeju Island (Korea), where groundwater is the main source of potable water. Given the limitations of various techniques and the respective data, the methods yield highly variable results of 10 to 1,991 mm/yr, with an average of 780 mm/yr that represents about 40% of the average annual rainfall over the island. The magnitude of recharge has not changed significantly over the past 50 years as indicated by an overall agreement of estimates for recent inter-seasonal recharge from the water table fluctuation method, and the long term average values from the geochemical techniques and the detailed water budget. Heterogeneity of recharge at the catchment scale is caused by spatially and temporally variable rainfall and evapotranspiration as well as the wide range in effective porosity and specific yield values of the aquifer lithologies. A Piston Flow model with negligible dispersion and diffusion fits 3H values for most groundwater samples. This implies that the mafic to intermediate volcanics exhibit fracture-hosted groundwater flow and that rapid recharge may be occurring in zones of interconnected porosity that represent a fraction of the total porosity. Calculated recharge rates that are generally highest (>1,000 mm/yr) in southern and eastern catchments and decrease with altitude indicate a strong control of topography and rainfall. However, since high recharge may occur across broad areas, attempts to protect groundwater from surface contamination require management of the landscape as a whole, not just the uplands. Increased recharge in western catchments (i.e., Hallim and Hangyeong) has not lowered groundwater nitrate contents due to the low effective porosities of the aquifers, where older nitrate-rich water is trapped in massive lava blocks within the unsaturated zone and is slowly mixed with

12. Waist Circumference as a Marker of Obesity Is More Predictive of Coronary Artery Calcification than Body Mass Index in Apparently Healthy Korean Adults: The Kangbuk Samsung Health Study

PubMed Central

Park, Jongsin; Lee, Eun Seo; Lee, Da Young; Kim, Jihyun; Park, Se Eun; Park, Cheol-Young; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo

2016-01-01

Background We aimed to assess the risk for coronary artery calcification (CAC) according to groups subdivided by body mass index (BMI) and waist circumference (WC) in apparently healthy Korean adults. Methods Thirty-three thousand four hundred and thirty-two participants (mean age, 42 years) in a health screening program were divided into three groups according to BMI: <23 kg/m2 (normal), 23 to 25 kg/m2 (overweight), and >25 kg/m2 (obese). In addition, the participants were divided into two groups according to WC. Coronary artery calcium score (CACS) was measured with multi-detector computed tomography in all participants. Presence of CAC was defined as CACS >0. Results When logistic regression analysis was performed with the presence of CAC as the dependent variable, the risk for CAC increased as BMI increased after adjusting for confounding variables (1.102 [95% confidence interval (CI), 1.000 to 1.216]; 1.284 [95% CI, 1.169 to 1.410]; in the overweight and obese groups vs. the normal weight group). When the participants were divided into six groups according to BMI and WC, the subjects with BMI and WC in the obese range showed the highest risk for CAC (1.321 [95% CI, 1.194 to 1.461]) and those with BMI in the overweight range and WC in the obese range showed the second highest risk for CAC (1.235 [95% CI, 1.194 to 1.461]). Conclusion Participants with obesity defined by both BMI and WC showed the highest risk for CAC. Those with BMIs in the overweight range but with WC in the obese range showed the second highest risk for CAC, suggesting that WC as a marker of obesity is more predictive of CAC than BMI. PMID:28029026

13. Lensing measurements of the mass distribution in SDSS voids

NASA Astrophysics Data System (ADS)

Clampitt, Joseph; Jain, Bhuvnesh

2015-12-01

We measure weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). We find voids using an algorithm designed to maximize the lensing signal by dividing the survey volume into 2D slices, and then finding holes in this 2D distribution of LRGs. We perform a stacked shear measurement on about 20 000 voids with radii between 15 and 55 Mpc h-1, and redshifts between 0.16 and 0.37. We measure the characteristic radial shear signal of voids with a signal to noise of 7. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. We compare our measured shape and amplitude with the predictions of Krause et al. Voids in the galaxy distribution have been extensively modelled using simulations and measured in the SDSS. We discuss how the addition of void mass profiles can enable studies of galaxy formation and cosmology.

14. Mass Distribution in Plumes: constraints from gravity waves

NASA Astrophysics Data System (ADS)

Sacks, S. I.; Baines, P. G.

2012-12-01

The Soufriere Hills volcano on Montserrat Island in the Caribbean has been active for more than 15 years. A small network, consisting of 4 sites, 5 - 10 km distant from the Soufriere Hills Volcano, was installed early in 2003. Each site has borehole strainmeters as well as micro-barographs and gave clear data from all volcanic events. A number of vulcanian explosions followed the major dome collapse on 13th July, 2003 and have continued until at least January 2008.. The plumes from these fragmentation events gave rise to an ~800 second period atmospheric pressure signal of 20 - 50 pascal amplitude propagating at about 30 m/sec. The onset is rarefaction. The data are consistent with a gravity wave confined to the troposphere. Note that plumes penetrating the stratosphere have a very different air pressure character. Initial modeling indicated that the coda of these waves was sensitive to the mass distribution in the plume. Since only the data beyond about 1000 seconds are found to yield information about mass distribution, we can use a simple impulsive source. The data, and particularly the coda, are best satisfied if most of the effective mass is at mid-plume, with reduced amounts near the surface and high in the troposphere. This suggests that the heavier ash particles fall as the plume rises. Since particle size impacts the event's hazard, this type of observation may have predictive capability.

15. Probing the Mass Distribution and Stellar Populations of M82

NASA Astrophysics Data System (ADS)

Greco, Johnny; Martini, P.; Thompson, T. A.

2012-01-01

M82 is often considered the archetypical starburst galaxy because of its spectacular starbust-driven superwind. Its close proximity of 3.6 Mpc and nearly edge-on geometry make it a unique laboratory for studying the physics of rapid star formation and violent galactic winds. In addition, there is evidence that it has been tidally-truncated by its interaction with M81 and therefore has essentially no dark matter halo. The mass distribution of this galaxy is needed to estimate the power of its superwind, as well as determine if a dark matter halo is still present. Numerous studies have used stellar and gas dynamics to estimate the mass distribution, yet the substantial dust attenuation has been a significant challenge. We have measured the stellar kinematics in the near-infrared K-band with the LUCI-1 spectrograph at the Large Binocular Telescope. We used the '2CO stellar absorption bandhead at 2.29µm to measure the stellar rotation curve out to ˜4kpc, and our results confirm that the dark matter halo is still present. This is in stark contrast with the nearly Keplerian gas dynamics measured with HI and CO emission from the interstellar medium. We estimate M82's dynamical mass to be ˜1010 M⊙. We have also measured the equivalent width of the 12CO bandhead to provide new constraints on the spatial extent of the red supergiant population. The variation in the CO equivalent width with radius clearly shows that supergiants dominate the light within 0.5kpc radius. The superwind is likely launched from this region, where we estimate the enclosed mass is 2×109 M⊙.

16. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

PubMed

Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

2014-11-07

We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

17. Generalised Extreme Value Distributions Provide a Natural Hypothesis for the Shape of Seed Mass Distributions

PubMed Central

2015-01-01

Among co-occurring species, values for functionally important plant traits span orders of magnitude, are uni-modal, and generally positively skewed. Such data are usually log-transformed “for normality” but no convincing mechanistic explanation for a log-normal expectation exists. Here we propose a hypothesis for the distribution of seed masses based on generalised extreme value distributions (GEVs), a class of probability distributions used in climatology to characterise the impact of event magnitudes and frequencies; events that impose strong directional selection on biological traits. In tests involving datasets from 34 locations across the globe, GEVs described log10 seed mass distributions as well or better than conventional normalising statistics in 79% of cases, and revealed a systematic tendency for an overabundance of small seed sizes associated with low latitudes. GEVs characterise disturbance events experienced in a location to which individual species’ life histories could respond, providing a natural, biological explanation for trait expression that is lacking from all previous hypotheses attempting to describe trait distributions in multispecies assemblages. We suggest that GEVs could provide a mechanistic explanation for plant trait distributions and potentially link biology and climatology under a single paradigm. PMID:25830773

18. Mass and charge distributions in chlorine-induced nuclear reactions

SciTech Connect

Marchetti, A.A.

1991-12-31

Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions {sup 37}Cl on {sup 40}Ca and {sup 209}Bi at E/A = 7.3 MeV, and {sup 35}Cl, on {sup 209}Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the {sup 31}Cl on {sup 209}Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system {sup 37}Cl on {sup 40}Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction {sup 37}Cl on {sup 40}Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids.

19. Gravitational lensing by clusters of galaxies - Constraining the mass distribution

NASA Technical Reports Server (NTRS)

Miralda-Escude, Jordi

1991-01-01

The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).

20. Large-scale mass distribution in the Illustris simulation

NASA Astrophysics Data System (ADS)

Haider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Hernquist, L.

2016-04-01

Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 per cent of the dark matter and 23 per cent of the baryons are within haloes more massive than the resolution limit of 2 × 108 M⊙. The filaments of the cosmic web host a further 45 per cent of the dark matter and 46 per cent of the baryons. The remaining 31 per cent of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 per cent of them are in a condensed state, 21.6 per cent are present as cold, diffuse gas, and 53.9 per cent are found in the state of a warm-hot intergalactic medium.

1. Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk

PubMed Central

Yuan, Han; Amin, Ripal; Ye, Xin; De La Motte, Carol A.; Cowman, Mary K.

2015-01-01

Hyaluronan (HA) in human milk mediates host responses to microbial infection, via TLR4- and CD44-dependent signaling. Signaling by HA is generally size-specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low M component. Here we report the size distribution of HA in human milk samples from twenty unique donors. A new method for HA analysis, employingion exchange (IEX) chromatography to fractionate HA by size, and specific quantification of each size fraction by competitive Enzyme Linked Sorbent Assay (ELSA), was developed. When separated into four fractions, milk HA with M ≤ 20 kDa, M ≈20-60 kDa, and M ≈ 60-110 kDa comprised an average of 1.5%, 1.4% and 2% of the total HA, respectively. The remaining 95% was HA with M≥110 kDa. Electrophoretic analysis of the higher M HA from thirteen samples showed nearly identical M distributions, with an average M of ∼440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low M HA components. PMID:25579786

2. Field line distribution of mass density at geostationary orbit

NASA Astrophysics Data System (ADS)

Denton, R. E.; Takahashi, Kazue; Lee, Jimyoung; Zeitler, C. K.; Wimer, N. T.; Litscher, L. E.; Singer, H. J.; Min, Kyungguk

2015-06-01

The distribution of mass density along the field lines affects the ratios of toroidal (azimuthally oscillating) Alfvén frequencies, and given the ratios of these frequencies, we can get information about that distribution. Here we assume the commonly used power law form for the field line distribution, ρm = ρm,eq(LRE/R)α, where ρm,eq is the value of the mass density ρm at the magnetic equator, L is the L shell, RE is the Earth's radius, R is the geocentric distance to a point on the field line, and α is the power law coefficient. Positive values of α indicate that ρm increases away from the magnetic equator, zero value indicates that ρm is constant along the magnetic field line, and negative α indicates that there is a local peak in ρm at the magnetic equator. Using 12 years of observations of toroidal Alfvén frequencies by the Geostationary Operational Environmental Satellites, we study the typical dependence of inferred values of α on the magnetic local time (MLT), the phase of the solar cycle as specified by the F10.7 extreme ultraviolet solar flux, and geomagnetic activity as specified by the auroral electrojet (AE) index. Over the mostly dayside range of the observations, we find that α decreases with respect to increasing MLT and F10.7, but increases with respect to increasing AE. We develop a formula that depends on all three parameters, α3Dmodel=2.2+1.3·cos(MLT·15°)+0.0026·AE·cos((MLT-0.8)·15°)+2.1·10-5·AE·F10.7-0.010·F10.7, that models the binned values of α within a standard deviation of 0.3. While we do not yet have a complete theoretical understanding of why α should depend on these parameters in such a way, we do make some observations and speculations about the causes. At least part of the dependence is related to that of ρm,eq; higher α, corresponding to steeper variation with respect to magnetic latitude, occurs when ρm,eq is lower.

3. The Photometric Amplitude and Mass Ratio Distributions of Contact Binary Stars

NASA Astrophysics Data System (ADS)

Rucinski, Slavek M.

2001-08-01

The distribution of the light variation amplitudes A(a), in addition to determining the number of undiscovered contact binary systems falling below photometric detection thresholds and thus lost to statistics, can serve as a tool in determination of the mass ratio distribution Q(q), which is very important for understanding of the evolution of contact binaries. Calculations of the expected A(a) show that it tends to converge to a mass ratio dependent constant value for a-->0. Strong dependence of A(a) on Q(q) can be used to determine the latter distribution, but the technique is limited by the presence of unresolved visual companions and by blending in crowded areas of the sky. The bright-star sample to 7.5 mag is too small for an application of the technique, while the Baade's window sample from the OGLE project may suffer stronger blending; thus the present results are preliminary and illustrative only. Estimates based on the Baade's window data from the OGLE project, for amplitudes a>0.3 mag, where the statistics appear to be complete allowing determination of Q(q) over 0.12<=q<=1, suggest a steep increase of Q(q) with q-->0. The mass ratio distribution can be approximated by a power law, either Qa(q)~(1-q)a1 with a1=6+/-2 or Qb(q)~qb1 with b1=-2+/-0.5, with a slight preference for the former form. While both forms would predict very large numbers of small mass ratio systems, these predictions must be modified by the theoretically expected cutoff caused by a tidal instability at qmin~=0.07-0.1. A maximum in Q(q), due to the interplay of a steep power-law increase in Q(q) for q-->0 and of the cutoff at qmin, is expected to be mapped into a local maximum in A(a) around a~=0.2-0.25 mag. When better statistics of the amplitudes are available, the location of this maximum will shed light on the currently poorly known value of qmin. The correction factor linking the apparent, inclination-uncorrected frequency of W UMa-type systems to the true spatial frequency remains

4. THE EFFECTS OF VIEWING ANGLE ON THE MASS DISTRIBUTION OF EXOPLANETS

SciTech Connect

Lopez, S.; Jenkins, J. S.

2012-09-10

We present a mathematical method to statistically decouple the effects of unknown inclination angles on the mass distribution of exoplanets that have been discovered using radial-velocity (RV) techniques. The method is based on the distribution of the product of two random variables. Thus, if one assumes a true mass distribution, the method makes it possible to recover the observed distribution. We compare our prediction with available RV data. Assuming that the true mass function is described by a power law, the minimum mass function that we recover proves a good fit to the observed distribution at both mass ends. In particular, it provides an alternative explanation for the observed low-mass decline, usually explained as sample incompleteness. In addition, the peak observed near the low-mass end arises naturally in the predicted distribution as a consequence of imposing a low-mass cutoff in the true distribution. If the low-mass bins below 0.02 M{sub J} are complete, then the mass distribution in this regime is heavily affected by the small fraction of lowly inclined interlopers that are actually more massive companions. Finally, we also present evidence that the exoplanet mass distribution changes form toward low mass, implying that a single power law may not adequately describe the sample population.

5. Multi-component Erlang distribution of plant seed masses and sizes

NASA Astrophysics Data System (ADS)

Fan, San-Hong; Wei, Hua-Rong

2012-12-01

The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.

6. Mass Distribution and Bar Formation in Growing Disk Galaxy Models

NASA Astrophysics Data System (ADS)

Berrier, Joel C.; Sellwood, J. A.

2016-11-01

We report idealized simulations that mimic the growth of galaxy disks embedded in responsive halos and bulges. The disks manifested an almost overwhelming tendency to form strong bars that we found very difficult to prevent. We found that fresh bars formed in growing disks after we had destroyed the original, indicating that bar formation also afflicts continued galaxy evolution, and not just the early stages of disk formation. This behavior raises still more insistently the previously unsolved question of how some galaxies avoid bars. Since our simulations included only collisionless star and halo particles, our findings may apply to gas-poor galaxies only; however, the conundrum persists for the substantial unbarred fraction of those galaxies. Our original objective was to study how internal dynamics rearranged the distribution of mass in the disk as a generalization of our earlier study with rigid spherical components. With difficulty, we were able to construct some models that were not strongly influenced by bars, and found that halo compression and angular momentum exchange with the disk did not alter our earlier conclusion that spiral activity is largely responsible for creating smooth density profiles and rotation curves.

7. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action.

PubMed

Szymanski, R; Sosnowski, S; Maślanka, Ł

2016-03-28

Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is higher than the chemical one (observed in a macroscopic-large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.

8. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action

NASA Astrophysics Data System (ADS)

Szymanski, R.; Sosnowski, S.; Maślanka, Ł.

2016-03-01

Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is higher than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.

9. Relation between meteor head echo mass-velocity selection effects, shower mass distribution indices, and mass threshold of the MU radar

NASA Astrophysics Data System (ADS)

Kero, Johan

2014-01-01

Observations are described that led to a study of the relationship between the head echo mass-velocity selection effect, the mass distribution indices of the Geminid and Orionid meteor showers, and the mass threshold of the MU radar, published by Kero et al. (2013).

10. Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses

NASA Astrophysics Data System (ADS)

Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique

2014-12-01

Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.

11. The Distribution of Mass Surface Densities in a High-mass Protocluster

NASA Astrophysics Data System (ADS)

Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael J.

2016-09-01

We study the probability distribution function (PDF) of mass surface densities, Σ, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields, and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 pc, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a “super star cluster.” We study Σ in two ways. First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to Σ ˜ 1 g cm-2(A V ≃ 200 mag). Second, we study the FIR and submillimeter dust continuum emission from the cloud utilizing Herschel-PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We find that the PDFs from both methods, applied over a ˜20‧(30 pc)-sized region that contains ≃1.5 × 105 M ⊙ and enclosing a minimum closed contour with Σ ≃ 0.013 g cm-2 (A V ≃ 3 mag), shows a lognormal shape with the peak measured at Σ ≃ 0.021 g cm-2 (A V ≃ 4.7 mag). There is tentative evidence for the presence of a high-Σ power-law tail that contains from ˜3% to 8% of the mass of the cloud material. We discuss the implications of these results for the physical processes occurring in this cloud.

12. Penrose inequality and apparent horizons

SciTech Connect

Ben-Dov, Ishai

2004-12-15

A spherically symmetric spacetime is presented with an initial data set that is asymptotically flat, satisfies the dominant energy condition, and such that on this initial data M<{radical}(A/16{pi}), where M is the total mass and A is the area of the apparent horizon. This provides a counterexample to a commonly stated version of the Penrose inequality, though it does not contradict the true Penrose inequality.

13. Measurement of mass distribution of chemical species in aerosol particles

NASA Technical Reports Server (NTRS)

Sinha, M. P.; Friedlander, S. K.

1984-01-01

Aerosols may be generated through the nebulizing of solutions and the evaporation of their solvent, leaving the dry solute particles. Attention is presently given to a method for the direct determination of the masses of chemical species in individual aerosol particles on a continuous, real-time basis, using mass spectrometry. After the aerosol particles are introduced into the ion source of a quadrupole mass spectrometer, the particles impinge on a hot rhenium filament in the mass spectrometer's ion source. The resulting vapor plume is ionized by electron bombardment, and a pulse of ions is generated by each particle. The intensities of different masses in the ion pulses can then be measured by the mass spectrometer.

14. The Spatial Resolution of Mass Distributions Required For Forward Gravity Field Modelling

NASA Astrophysics Data System (ADS)

Kuhn, M.

In forward gravity field modelling all parameters can be derived from the Earth's mass distribution using Newton's law of gravitation. Now more and more information on the Earth's mass distribution is available such, as fine digital elevation models, dig- ital density models and models of the crustal thickness. Apart from the theoretical restriction that the Earth's mass distribution will never be completely known, this con- tribution studies the spatial resolution of different mass distributions of the Earth's crust in view of deriving gravity field quantities in a forward model with a given accu- racy. Here the influence of the topographic masses, mass anomalies above the geoid, compensation masses and crustal mass anomalies below the geoid will be studied by the spherical harmonic expansion of their corresponding potential effect. Using New- ton's law, these spherical harmonic expansions can be expressed directly by that of height, depth or density of the corresponding mass distributions. This representation is well suited to study the spectral sensitivity of different mass distributions on gravity field quantities. Numerical results will be presented in order to give an optimal data spacing required to forward model the gravity field of the Earth to a desired accuracy.

15. Comparing the Effects of Massed and Distributed Practice on Skill Acquisition for Children with Autism

ERIC Educational Resources Information Center

Haq, Shaji S.; Kodak, Tiffany; Kurtz-Nelson, Evangeline; Porritt, Marilynn; Rush, Kristin; Cariveau, Tom

2015-01-01

We replicated and extended the findings of Haq and Kodak (2015) by evaluating the efficiency of massed and distributed practice for teaching tacts and textual and intraverbal behavior to 3 children with autism. Massed practice included all practice opportunities conducted on 1 day during each week, and distributed practice included practice…

16. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

ERIC Educational Resources Information Center

Sein, Lawrence T., Jr.

2006-01-01

The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

17. Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm

SciTech Connect

Moller, Peter; Ickhikawa, Takatoshi; Iwamoto, Akira

2008-01-01

We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

18. The distribution of mass and angular momentum in the solar system

SciTech Connect

Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

1989-01-01

This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

19. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

NASA Astrophysics Data System (ADS)

Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

2014-01-01

In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

20. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

SciTech Connect

Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

2011-03-15

The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

1. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

EPA Science Inventory

We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

2. No Apparent Reduction in Schistosome Burden or Genetic Diversity Following Four Years of School-Based Mass Drug Administration in Mwea, Central Kenya, a Heavy Transmission Area

PubMed Central

Lelo, Agola E.; Mburu, David N.; Magoma, Gabriel N.; Mungai, Ben N.; Kihara, Jimmy H.; Mwangi, Ibrahim N.; Maina, Geoffrey M.; Kinuthia, Joseph M.; Mutuku, Martin W.; Loker, Eric S.; Mkoji, Gerald M.; Steinauer, Michelle L.

2014-01-01

Background Schistosomiasis is a debilitating neglected tropical disease that infects over 200 million people worldwide. To combat this disease, in 2012, the World Health Organization announced a goal of reducing and eliminating transmission of schistosomes. Current control focuses primarily on mass drug administration (MDA). Therefore, we monitored transmission of Schistosoma mansoni via fecal egg counts and genetic markers in a typical school based MDA setting to ascertain the actual impacts of MDA on the targeted schistosome population. Methods For 4 years, we followed 67 children enrolled in a MDA program in Kenya. Infection status and egg counts were measured each year prior to treatment. For 15 of these children, for which there was no evidence of acquired resistance, meaning they became re-infected following each treatment, we collected microsatellite genotype data from schistosomes passed in fecal samples as a representation of the force of transmission between drug treatments. We genotyped a total of 4938 parasites from these children, with an average of 329.2 parasites per child for the entire study, and an average of 82.3 parasites per child per annual examination. We compared prevalence, egg counts, and genetic measures including allelic richness, gene diversity (expected heterozygosity), adult worm burdens and effective number of breeders among time points to search for evidence for a change in transmission or schistosome populations during the MDA program. Findings We found no evidence of reduced transmission or schistosome population decline over the course of the program. Although prevalence declined in the 67 children as it did in the overall program, reinfection rates were high, and for the 15 children studied in detail, schistosome egg counts and estimated adult worm burdens did not decline between years 1 and 4, and genetic diversity increased over the course of drug treatment. Interpretation School based control programs undoubtedly improve the

3. Measuring distributional inequality: relative body mass index distributions by gender, race/ethnicity, and education, United States (1999-2006).

PubMed

Houle, Brian C

2010-01-01

Few studies consider obesity inequalities as a distributional property. This study uses relative distribution methods to explore inequalities in body mass index (BMI; kg/m(2)). Data from 1999-2006 from the National Health and Nutrition Examination Survey were used to compare BMI distributions by gender, Black/White race, and education subgroups in the United States. For men, comparisons between Whites and Blacks show a polarized relative distribution, with more Black men at increased risk of over or underweight. Comparisons by education (overall and within race/ethnic groups) effects also show a polarized relative distribution, with more cases of the least educated men at the upper and lower tails of the BMI distribution. For women, Blacks have a greater probability of high BMI values largely due to a right-shifted BMI distribution relative to White women. Women with less education also have a BMI distribution shifted to the right compared to the most educated women.

4. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

NASA Astrophysics Data System (ADS)

Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

2016-02-01

Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3–4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages.

5. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

PubMed Central

Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

2016-01-01

Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3–4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages. PMID:26924271

6. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction

PubMed Central

Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

2014-01-01

A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior. PMID:24563557

7. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction.

PubMed

Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

2013-10-01

A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior.

8. Gravitational lensing by a smoothly variable three-dimensional mass distribution

NASA Technical Reports Server (NTRS)

Lee, Man Hoi; Paczynski, Bohdan

1990-01-01

A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.

9. The supernova progenitor mass distributions of M31 and M33: further evidence for an upper mass limit

SciTech Connect

Jennings, Zachary G.; Weisz, Daniel R.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

2014-11-10

Using Hubble Space Telescope photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form dN/dM∝M {sup –α}. Our new larger sample of M31 progenitors follows a distribution with α=4.4{sub −0.4}{sup +0.4}, and the M33 sample follows a distribution with α=3.8{sub −0.5}{sup +0.4}. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives α=4.2{sub −0.3}{sup +0.3}. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function, which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix α = 2.35 and treat the maximum mass as a free parameter, we find M {sub max} ∼ 35-45 M {sub ☉}, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.

10. The Distribution of Black Hole Masses in X-ray Transients

NASA Astrophysics Data System (ADS)

Bailyn, C. D.; Jain, R. K.; Coppi, P.; Orosz, J. A.

1996-12-01

Measuring the mass functions in soft X-ray transient binary systems has provided some of the strongest evidence for the existence of black holes in nature. This evidence comes in the form of a lower limit on the mass of the compact object, which in six cases is at or above the maximum mass of a neutron star. To determine the true mass (rather than a lower limit) of the black hole, one needs to determine the orbital inclination, and either the mass ratio or the mass of the secondary star. A variety of methods have been employed to determine these parameters, in particular modelling the ellipsoidal variability of the secondary star. Here we assess the results of these efforts, and employ Baysian statistical techniques to explore the mass distribution of the black holes in these systems. We find that the mass distribution encompasses a surprisingly small range of masses, from 6-8 times solar. There is one exception, namely V404 Cyg, which has a black hole with M>10M_⊙. V404 Cyg is also unique in having a highly evolved secondary star. We find that it is statistically improbable that the mass of the black hole in V404 Cyg is drawn from the same distribution as the other systems. The concentration of black hole masses near 7M_⊙ may pose interesting constraints on the supernova events which produced them.

11. The Distribution of Black Hole Masses in X-ray Transients

NASA Astrophysics Data System (ADS)

Bailyn, C. D.; Jain, R. K.; Coppi, P.; Orosz, J. A.

1997-05-01

Measuring the mass functions in soft X-ray transient binary systems has provided some of the strongest evidence for the existence of black holes in nature. This evidence comes in the form of a lower limit on the mass of the compact object, which in six cases is at or above the maximum mass of a neutron star. To determine the true mass (rather than a lower limit) of the black hole, one needs to determine the orbital inclination, and either the mass ratio or the mass of the secondary star. A variety of methods have been employed to determine these parameters, in particular modelling of ellipsoidal variability of the secondary star. Here we assess the results of these efforts, and employ Baysian statistical techniques to explore the mass distribution of the black holes in these systems. We find that the mass distribution encompasses a surprisingly small range of masses, from 6-8 times solar. There is one exception, namely V404 Cyg, which has a black hole with M>10M_⊙. V404 Cyg is also unique in having a highly evolved secondary star. We find that it is statistically improbable that the mass of the black hole in V404 Cyg is drawn from the same distribution as the other systems. The concentration of black hole masses near 7M_⊙ may pose interesting constraints on the supernova events which produced them.

12. Hydrothermal plumes along the East Pacific Rise, 8 deg 40 min to 11 deg 50 min N: Plume distribution and relationship to the apparent magmatic budget

NASA Astrophysics Data System (ADS)

Baker, E. T.; Feely, R. A.; Mottl, M. J.; Sansone, F. T.; Wheat, C. G.; Resing, J. A.; Lupton, J. E.

1994-11-01

The interactions between hydrothermal circulation and large-scale geological and geophysical characteristics of the mid-ocean ridge cannot be ascertained without large-scale views of the pattern of hydrothermal venting. Such multi-ridge-segment surveys of venting are accomplished most efficiently by mapping the distribution and intensity of hydrothermal plumes. In November 1991, we mapped hydrothermal temperature (Delta(theta)) and light attenuation (Delta(c)) anomalies above the East Pacific Rise (EPR) continuously from 8 deg 40 min to 11 deg 50 min N, a fast spreading ridge crest portion bisected by the Clipperton Transform Fault. Plume distributions show a precise correlation with the distribution of active vents where video coverage of the axial caldera is exhaustive. Elsewhere in the study area the sketchy knowledge of vent locations gleaned from scattered camera tows predicts only poorly the large-scale hydrothermal pattern revealed by our plume studies. Plumes were most intense between 9 deg 42 min and 9 deg 54 min N, directly over a March/April, 1991, seafloor eruption. These plumes had exceptionally high Delta(c)/Delta(theta) ratios compared to the rest of the study area; we suggest that the phase-separated gas-rich vent fluids discharging here fertilize an abundant population of bacteria. Hydrothermal plume distributions define three categories: intense and continuous, weak and discontinuous and negligible. The location of each category is virtually congruent with areas that are, respectively, magmatically robust, magmatically weak and magmatically starved, as inferred from previous measurements of axial bathymetric undulations, cross-axis inflation and magma chamber depth and continuity. This congruency implies a fine-scale spatial and temporal connection between magmatic fluctuations and hydrothermal venting. We thus speculate that, at least along this fast spreading section of the EPR, cyclic replenishment, eruption and freezing of the thin axial melt

13. The stellar mass distribution of S4G disk galaxies

NASA Astrophysics Data System (ADS)

Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija

2017-03-01

We use 3.6 μm imaging from the S4G survey to characterize the typical stellar density profiles (Σ*) and bars as a function of fundamental galaxy parameters (e.g. the total stellar mass M *), providing observational constraints for galaxy simulation models to be compared with. We rescale galaxy images to a common frame determined by the size in physical units, by their disk scalelength, or by their bar size and orientation. We stack the resized images to obtain statistically representative average stellar disks and bars. For a given M * bin (>= 109 M ⊙), we find a significant difference in the stellar density profiles of barred and non-barred systems that gives evidence for bar-induced secular evolution of disk galaxies: (i) disks in barred galaxies show larger scalelengths and fainter extrapolated central surface brightnesses, (ii) the mean surface brightness profiles of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation, and (iii) the central mass concentration of barred galaxies is larger (by almost a factor 2 when T < 5) than in their non-barred counterparts. We also show that early- and intermediate-type spirals (0 <= T < 5) host intrinsically narrower bars than the later types and S0s, whose bars are oval-shaped. We show a clear correlation between galaxy family and bar ellipticity.

14. Multiplicity Distributions from Antiproton-Proton Collisions at 1.8 Tev Center of Mass Energy

NASA Astrophysics Data System (ADS)

Wang, Chi-Ho.

Charged-particle multiplicity distributions from antiproton-proton collisions at 1800 GeV center of mass energy, obtained with the E735 detector multiplicity hodoscope, are presented and discussed. A simple iteration method is used for conversion from number of observed hodoscope hits to true charged-particle multiplicity. The first four moments of the distribution are compared with distributions from lower energies. The distributions are also fit to KNO-G and negative binomial functions.

15. The small domain of cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile Chlamydomonas reinhardtii.

PubMed

Gudynaite-Savitch, Loreta; Loiselay, Christelle; Savitch, Leonid V; Simmonds, John; Kohalmi, Susanne E; Choquet, Yves; Hüner, Norman P A

2007-10-01

Cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 has a lower thermostability of its c-type heme and an apparent molecular mass that is 7 kDa lower than that of the model mesophilic green alga Chlamydomonas reinhardtii. We combined chloroplast transformation, site-directed mutagensis, and the creation of chimeric fusion constructs to assess the contribution of specific domains and (or) amino acids residues to the structure, stability, and accumulation of cytochrome f, as well as its function in photosynthetic intersystem electron transport. We demonstrate that differences in the amino acid sequence of the small domain and specific charged amino acids in the large domain of cytochrome f alter the physical properties of this protein but do not affect either the thermostability of the c-type heme, the apparent half-life of cytochrome f in the presence of the chloroplastic protein synthesis inhibitor chloramphenicol, or the capacity for photosynthetic intersystem electron transport, measured as e-/P700. However, pulse-labeling with [14C]acetate, combined with immunoblotting, indicated that the negative autoregulation of cytochrome f accumulation observed in mesophilic C. reinhardtii transformed with chimeric constructs from the psychrophile was likely the result of the defective association of the chimeric forms of cytochrome f with the other subunits of the cytochrome b6/f complex native to the C. reinhardtii wild type. These results are discussed in terms of the unique fatty acid composition of the thylakoid membranes of C. raudensis UWO 241 adapted to cold environments.

16. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

SciTech Connect

Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

2012-08-01

The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

17. Constrained invariant mass distributions in cascade decays. The shape of the “mqll-threshold” and similar distributions

NASA Astrophysics Data System (ADS)

Lester, Christopher G.

2007-10-01

Considering the cascade decay D → cC → cbB → cbaA in which D, C, B, A are massive particles and c, b, a are massless particles, we determine for the shape of the distribution of the invariant mass of the three massless particles mabc for the sub-set of decays in which the invariant mass mab of the last two particles in the chain is (optionally) constrained to lie inside an arbitrary interval, mab ∈ [mabcut min, mabcut max]. An example of an experimentally important distribution of this kind is the “mqll threshold”—which is the distribution of the combined invariant mass of the visible Standard Model particles radiated from the hypothesised decay of a squark to the lightest neutralino via successive two body decay: q˜ → qχ˜20 → qll˜ → qllχ˜10, in which the experimenter requires additionally that mll be greater than mllmax /√{ 2}. The location of the “foot” of this distribution is often used to constrain sparticle mass scales. The new results presented here permit the location of this foot to be better understood as the shape of the distribution is derived. The effects of varying the position of the mll cut(s) may now be seen more easily.

18. The mass distribution and gravitational potential of the Milky Way

NASA Astrophysics Data System (ADS)

McMillan, Paul J.

2017-02-01

We present mass models of the Milky Way created to fit observational constraints and to be consistent with expectations from theoretical modelling. The method used to create these models is that demonstrated in our previous study, and we improve on those models by adding gas discs to the potential, considering the effects of allowing the inner slope of the halo density profile to vary, and including new observations of maser sources in the Milky Way amongst the new constraints. We provide a best-fitting model, as well as estimates of the properties of the Milky Way. Under the assumptions in our main model, we find that the Sun is R0 = 8.20 ± 0.09 kpc from the Galactic Centre, with the circular speed at the Sun being v0 = 232.8 ± 3.0 km s-1; and that the Galaxy has a total stellar mass of (54.3 ± 5.7) × 109 M⊙, a total virial mass of (1.30 ± 0.30) × 1012 M⊙ and a local dark-matter density of 0.40 ± 0.04 GeV cm-3, where the quoted uncertainties are statistical. These values are sensitive to our choice of priors and constraints. We investigate systematic uncertainties, which in some cases may be larger. For example, if we weaken our prior on R0, we find it to be 7.97 ± 0.15 kpc and that v0 = 226.8 ± 4.2 km s-1. We find that most of these properties, including the local dark-matter density, are remarkably insensitive to the assumed power-law density slope at the centre of the dark-matter halo. We find that it is unlikely that the local standard of rest differs significantly from that found under assumptions of axisymmetry. We have made code to compute the force from our potential, and to integrate orbits within it, publicly available.

19. Exponential and power-law mass distributions in brittle fragmentation

NASA Astrophysics Data System (ADS)

Åström, J. A.; Linna, R. P.; Timonen, J.; Møller, Peder Friis; Oddershede, Lene

2004-08-01

Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s-(2D-1)/Df1(-(2/λ)Ds)+f2(-s0-1(λ+s1/D)D) , where D is the Euclidean dimension of the space, λ is the penetration depth, and f1 and f2 can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s0 was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1 , L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

20. Rack Distribution Effects on MPLM Center of Mass

NASA Technical Reports Server (NTRS)

Tester, John T.

2005-01-01

This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.

1. Fast Track to Molar-Mass Distributions of Technical Lignins.

PubMed

Sulaeva, Irina; Zinovyev, Grigory; Plankeele, Jean-Michel; Sumerskii, Ivan; Rosenau, Thomas; Potthast, Antje

2017-02-08

Technical lignins (waste products obtained from wood pulping or biorefinery processes) have so far required lengthy analysis procedures and different eluents for molar-mass analysis by gel permeation chromatography (GPC). This challenge has become more pressing recently since attempts to utilize lignins have increased, leading to skyrocketing numbers of samples to be analyzed. A new approach, which uses the eluent DMSO/LiBr (0.5 % w/v) and converts lignosulfonate salts into their acidic form before analysis, overcomes these limitations by enabling measurement of all kinds of lignins (kraft, organosolv, soda, lignosulfonates) in the same size-exclusion chromatography (SEC) system without the necessity of prior time-consuming derivatization steps. In combination with ultra-performance liquid chromatography (UPLC), analysis times are shortened to one tenth of classical lignin GPC. The new approach is presented, along with a comparison of GPC and UPLC methods and a critical discussion of the analytical parameters.

2. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

PubMed

Chirchir, Habiba

2015-05-01

Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running.

3. Optimization of orthotropic distributed-mode loudspeaker using attached masses and multi-exciters.

PubMed

Lu, Guochao; Shen, Yong; Liu, Ziyun

2012-02-01

Based on the orthotropic model of the plate, the method to optimize the sound response of the distributed-mode loudspeaker (DML) using the attached masses and the multi-exciters has been investigated. The attached masses method will rebuild the modes distribution of the plate, based on which multi-exciter method will smooth the sound response. The results indicate that the method can be used to optimize the sound response of the DML.

4. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

PubMed Central

Olcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.

2015-01-01

Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators. PMID:25963304

5. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters.

PubMed

Howard, Andrew W; Marcy, Geoffrey W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru

2010-10-29

The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

6. Mass and spatial distribution of carbonaceous component in Comet Halley

NASA Technical Reports Server (NTRS)

Fomenkova, M.; Chang, S.

1993-01-01

Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

7. Mass and spatial distribution of carbonaceous component in Comet Halley

NASA Astrophysics Data System (ADS)

Fomenkova, M.; Chang, S.

1993-03-01

Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

8. Friedmann equations and thermodynamics of apparent horizons.

PubMed

Gong, Yungui; Wang, Anzhong

2007-11-23

With the help of a masslike function which has a dimension of energy and is equal to the Misner-Sharp mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon dE=T(A)dS(A) can be derived from the Friedmann equation in various theories of gravity, including the Einstein, Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple coincidence, but rather a more profound physical connection.

9. Massed versus Distributed Repeated Reading: A Case of Forgetting Helping Recall?

ERIC Educational Resources Information Center

Krug, Damon; And Others

1990-01-01

Repeated reading of a passage at 1 sitting (massed) was compared with repeated reading with a delay between readings (distributed) for effects on recall in 3 experiments with 125 college undergraduates and 45 high school students. Advantages of distributed repeated reading are discussed in terms of a deactivation hypothesis. (SLD)

10. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

NASA Technical Reports Server (NTRS)

Mcmahan, Robert K.

1989-01-01

A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

11. Volume and mass distribution in selected asteroid families

NASA Astrophysics Data System (ADS)

Włodarczyk, I.; Leliwa-Kopystyński, J.

2014-10-01

The main focus of this paper is calculation of the diameters of asteroids belonging to five families (Vesta, Eos, Eunomia, Koronis, and Themis). To do that, we used the HCM algorithm applied for a data set containing 292,003 numbered asteroids, and a numerical procedure for choosing the crucial parameter of the HCM, called "the cutting velocity" vcut. It was established with a precision as high as 1 m s-1. Thereafter, we used the WISE (Wide-field Infrared Survey Explorer) catalog to set a range of albedo for the largest members of each family considered. The albedo data were supported by the data concerning color classification (SDSS MOC4). The asteroids with albedo out of this range were classified as interlopers and were therefore disqualified as family members. Sizes were calculated for the asteroids with albedo within the acceptable range. For the other asteroids (those chosen by means of the HCM, but with albedo not listed in the WISE), the value of albedo of the largest member of the family was adopted. Results are given in a set of figures showing the families on the planes (a, e), (a, i), (e, i). Diameters and volumes of the asteroids that are the individual members of a family were calculated on the basis of their known or assumed albedo and on their absolute magnitude. Volumes of the parent bodies of the families were found on the basis of the cumulative volume distribution of these families. We also studied the secular resonances of the family members. We have shown that the locations of members of the considered asteroid families are related to the lines of secular resonances z1, z2, and z3 with Saturn.

12. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

NASA Astrophysics Data System (ADS)

Greene, J. E.; Seth, A.; Kim, M.; Läsker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

2016-08-01

We use new precision measurements of black hole (BH) masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive BH mass. The megamaser-derived BH masses span 106-108 {M}⊙ , while all the galaxy properties that we examine (including total stellar mass, central mass density, and central velocity dispersion) lie within a narrower range. Thus, no galaxy property correlates tightly with {M}{BH} in ˜L* spiral galaxies as traced by megamaser disks. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed {σ }* the mean megamaser {M}{BH} are offset by -0.6 ± 0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not appear to show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to an inability to resolve their spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

13. On the detection of a cometary mass distribution. [by perturbations on space probe orbits

NASA Technical Reports Server (NTRS)

Boss, A. P.; Peale, S. J.

1976-01-01

The problem of detecting a possible cometary distribution on the fringes of the solar system is examined. The acceleration of a space probe due to a hypothetical cometary mass distribution with the surface density rising to a maximum and subsequently falling off with increasing distance from the sun is analyzed. The total minimum detectable cometary mass for the Pioneer and Mariner spacecraft is estimated on the basis of this model to be on the order of 1000 earth masses. Precision tracking of deep space probes is less sensitive by three orders of magnitude for the detection of an unseen cometary mass distribution at the fringes of the solar system than are the secular perturbations of long-period comets.

14. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

NASA Astrophysics Data System (ADS)

Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

2015-08-01

Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

15. Does Mass Azithromycin Distribution Impact Child Growth and Nutrition in Niger? A Cluster-Randomized Trial

PubMed Central

Amza, Abdou; Yu, Sun N.; Kadri, Boubacar; Nassirou, Baido; Stoller, Nicole E.; Zhou, Zhaoxia; West, Sheila K.; Bailey, Robin L.; Gaynor, Bruce D.; Keenan, Jeremy D.; Porco, Travis C.; Lietman, Thomas M.

2014-01-01

Background Antibiotic use on animals demonstrates improved growth regardless of whether or not there is clinical evidence of infectious disease. Antibiotics used for trachoma control may play an unintended benefit of improving child growth. Methodology In this sub-study of a larger randomized controlled trial, we assess anthropometry of pre-school children in a community-randomized trial of mass oral azithromycin distributions for trachoma in Niger. We measured height, weight, and mid-upper arm circumference (MUAC) in 12 communities randomized to receive annual mass azithromycin treatment of everyone versus 12 communities randomized to receive biannual mass azithromycin treatments for children, 3 years after the initial mass treatment. We collected measurements in 1,034 children aged 6–60 months of age. Principal Findings We found no difference in the prevalence of wasting among children in the 12 annually treated communities that received three mass azithromycin distributions compared to the 12 biannually treated communities that received six mass azithromycin distributions (odds ratio = 0.88, 95% confidence interval = 0.53 to 1.49). Conclusions/Significance We were unable to demonstrate a statistically significant difference in stunting, underweight, and low MUAC of pre-school children in communities randomized to annual mass azithromycin treatment or biannual mass azithromycin treatment. The role of antibiotics on child growth and nutrition remains unclear, but larger studies and longitudinal trials may help determine any association. PMID:25210836

16. Attitude dynamics and control of a spacecraft using shifting mass distribution

NASA Astrophysics Data System (ADS)

Ahn, Young Tae

Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

17. Controls on space-time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain)

NASA Astrophysics Data System (ADS)

Ezquerro, L.; Moretti, M.; Liesa, C. L.; Luzón, A.; Pueyo, E. L.; Simón, J. L.

2016-10-01

This work describes soft-sediment deformation structures (clastic dykes, load structures, diapirs, slumps, nodulizations or mudcracks) identified in three sections (Concud, Ramblillas and Masada Cociero) in the Iberian Range, Spain. These sections were logged from boreholes and outcrops in Upper Pliocene-Lower Pleistocene deposits of the Teruel-Concud Residual Basin, close to de Concud normal fault. Timing of the succession and hence of seismic and non-seismic SSDSs, covering a time span between 3.6 and 1.9 Ma, has been constrained from previous biostratigraphic and magnetostratigraphic information, then substantially refined from a new magnetostratigraphic study at Masada Cociero profile. Non-seismic SSDSs are relatively well-correlated between sections, while seismic ones are poorly correlated except for several clusters of structures. Between 29 and 35 seismic deformed levels have been computed for the overall stratigraphic succession. Factors controlling the lateral and vertical distribution of SSDSs are their seismic or non-seismic origin, the distance to the seismogenic source (Concud Fault), the sedimentary facies involved in deformation and the observation conditions (borehole core vs. natural outcrop). In the overall stratigraphic section, seismites show an apparent recurrence period of 56 to 108 ka. Clustering of seismic SSDSs levels within a 91-ka-long interval records a period of high paleoseismic activity with an apparent recurrence time of 4.8 to 6.1 ka, associated with increasing sedimentation rate and fault activity. Such activity pattern of the Concud Fault for the Late Pliocene-Early Pliocene, with alternating periods of faster and slower slip, is similar to that for the most recent Quaternary (last ca. 74 ka BP). Concerning the research methods, time occurrence patterns recognized for peaks of paleoseismic activity from SSDSs in boreholes are similar to those inferred from primary evidence in trenches. Consequently, apparent recurrence periods

18. Distributed low-mass star formation in the IRDC G34.43+00.24

SciTech Connect

Foster, Jonathan B.; Arce, Héctor G.; Offner, Stella; Kassis, Marc; Sanhueza, Patricio; Jackson, James M.; Finn, Susanna C.; Sakai, Takeshi; Sakai, Nami; Yamamoto, Satoshi; Guzmán, Andrés E.; Rathborne, Jill M.

2014-08-20

We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine the column density structure of the cloud. In combination with an empirically verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in the K band, which comes from excited H{sub 2} in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow line-width SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.

19. Investigation of the mass distribution of a detailed seated male finite element model.

PubMed

Vavalle, Nicholas A; Thompson, A Bradley; Hayes, Ashley R; Moreno, Daniel P; Stitzel, Joel D; Gayzik, F Scott

2014-06-01

Accurate mass distribution in computational human body models is essential for proper kinematic and kinetic simulations. The purpose of this study was to investigate the mass distribution of a 50th percentile male (M50) full body finite element model (FEM) in the seated position. The FEM was partitioned into 10 segments, using segment planes constructed from bony landmarks per the methods described in previous research studies. Body segment masses and centers of gravity (CGs) of the FEM were compared with values found from these studies, which unlike the present work assumed homogeneous body density. Segment masses compared well to literature while CGs showed an average deviation of 6.0% to 7.0% when normalized by regional characteristic lengths. The discrete mass distribution of the FEM appears to affect the mass and CGs of some segments, particularly those with low-density soft tissues. The locations of the segment CGs are provided in local coordinate systems, thus facilitating comparison with other full body FEMs and human surrogates. The model provides insights into the effects of inhomogeneous mass on the location of body segment CGs.

20. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

NASA Astrophysics Data System (ADS)

Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

2015-12-01

We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

1. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

SciTech Connect

Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

2009-08-03

We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

2. The Stellar Populations of Deeply Embedded Young Clusters: Near-Infrared Spectroscopy and Emergent Mass Distributions

NASA Astrophysics Data System (ADS)

Meyer, Michael R.

1996-04-01

The goal of this thesis is to test the following hypothesis: the initial distribution of stellar masses from a single "episode" of star formation is independent of the local physical conditions of the region. In other words, is the initial mass function (IMF) strictly universal over spatial scales d < 1 \\ pc and over time intervals Delta-tau << 3 x 10^6 yrs? We discuss the utility of embedded clusters in addressing this question. Using a combination of spectroscopic and photometric techniques, we seek to characterize emergent mass distributions of embedded clusters in order to compare them both with each other and with the field star IMF. Medium resolution (R=1000) near-infrared spectra obtainable with the current generation of NIR grating spectrographs can provide estimates of the photospheric temperatures of optically-invisible stars. Deriving these spectral types requires a three--step process; i) setting up a classification scheme based on near-infrared spectra of spectral standards; ii) understanding the effects of accretion on this classification scheme by studying optically-visible young stellar objects; and iii) applying this classification technique to the deeply embedded clusters. Combining near-infrared photometry with spectral types, accurate stellar luminosities can be derived for heavily reddened young stars thus enabling their placement in the H-R diagram. From their position in the H-R diagram, masses and ages of stars can be estimated from comparison with theoretical pre-main sequence evolutionary models. Because it is not practical to obtain complete spectroscopic samples of embedded cluster members, a technique is developed based solely on near-IR photometry for estimating stellar luminosities from flux--limited surveys. We then describe how spectroscopic surveys of deeply embedded clusters are necessary in order to adopt appropriate mass-luminosity relationships. Stellar luminosity functions constructed from complete extinction-limited samples

3. Using Theoretical Protein Isotopic Distributions to Parse Small-Mass-Difference Post-Translational Modifications via Mass Spectrometry

NASA Astrophysics Data System (ADS)

Rhoads, Timothy W.; Williams, Jared R.; Lopez, Nathan I.; Morré, Jeffrey T.; Bradford, C. Samuel; Beckman, Joseph S.

2013-01-01

Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.

4. Sensitivity bias in the mass-radius distribution from transit timing variations and radial velocity measurements

NASA Astrophysics Data System (ADS)

Steffen, Jason H.

2016-04-01

Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses - radial velocities (RVs) and transit timing variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable - as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This sensitivity bias' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in the sensitivity of the two methods with orbital period and system architecture, which may compound the discrepancies between them (e.g. short-period planets detectable by RVs may be more dense due to atmospheric loss). We advocate for continued mass measurements using both approaches as a means both to measure the masses of more planets and to identify potential differences in planet structure that may result from their dynamical and environmental histories.

5. Cluster Mass Distribution of the Hubble Frontier Fields - What have we learned?

NASA Astrophysics Data System (ADS)

Jean-Paul, Kneib

2016-07-01

The Hubble Frontier Fields have provided the deepest imaging of six of the most massive clusters in the Universe. Using strong lensing and weak lensing techniques, we have investigated with a record high precision the mass models of these clusters. First we identified the multiples images that are then confronted to an evolving model to best match the strong lensing observable constraints. We then include weak lensing and flexion to investigate the mass distribution in the outer region. By investigating the accuracy of the model we show that we can constrain the small scale mass distribution, thus investigating the relation between the cluster galaxy stellar mass and its dark matter halo. On larger scale combining with weak lensing and X-ray measurement we can probe the assembly scenario of these cluster, which confirm that massive clusters are at the crossroads of filamentary structures.

6. Search for Z' --> e+ e- using dielectron mass and angular distribution.

PubMed

Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

2006-06-02

We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios.

7. Search for Z' ---> e+ e- using dielectron mass and angular distribution

SciTech Connect

Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

2006-02-01

The authors search Z{prime} bosons in dielectron events produced in p{bar p} collisions at {radical}s = 1.96 TeV, using a 0.45 fb{sup -1} dataset accumulated with the CDF II detector at the Fermilab Tevatron. To identify the Z{prime} {yields} e{sup +}e{sup -} signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z{prime} mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z{prime}, as well as on the contact interaction mass scales for different helicity structure scenarios.

8. Asymmetry distributions and mass effects in dijet events at a polarized HERA

NASA Astrophysics Data System (ADS)

Maul, M.; Schäfer, A.; Mirkes, E.; Rädel, G.

1998-09-01

The asymmetry distributions for several kinematic variables are considered for finding a systematic way to maximize the signal for the extraction of the polarized gluon density. The relevance of mass effects for the corresponding dijet cross section is discussed and the different approximations for including mass effects are compared. We also compare via the programs Pepsi and Mepjet two different Monte Carlo (MC) approaches for simulating the expected signal in the dijet asymmetry at a polarized HERA.

9. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

NASA Technical Reports Server (NTRS)

Ahrens, T. J.; Okeefe, J. D.

1978-01-01

The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

10. Collisional evolution - an analytical study for the non steady-state mass distribution.

NASA Astrophysics Data System (ADS)

Vieira Martins, R.

1999-05-01

To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the

11. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

NASA Astrophysics Data System (ADS)

Bülow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

2001-07-01

In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker.

12. Time-Resolved Mass Sensing of a Molecular Adsorbate Nonuniformly Distributed Along a Nanomechnical String

NASA Astrophysics Data System (ADS)

Biswas, T. S.; Xu, Jin; Miriyala, N.; Doolin, C.; Thundat, T.; Davis, J. P.; Beach, K. S. D.

2015-06-01

We show that the particular distribution of mass deposited on the surface of a nanomechanical resonator can be estimated by tracking the evolution of the device's resonance frequencies during the process of desorption. The technique, which relies on analytical models we have developed for the multimodal response of the system, enables mass sensing at much higher levels of accuracy than is typically achieved with a single frequency-shift measurement and no rigorous knowledge of the mass profile. We report on a series of demonstration experiments, in which the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) is vapor deposited along the length of a silicon nitride nanostring to create a dense, random covering of RDX crystallites on the surface. In some cases, the deposition is biased to produce distributions with a slight excess or deficit of mass at the string midpoint. The added mass is then allowed to sublimate away under vacuum conditions, with the device returning to its original state over about 4 h (and the resonance frequencies, measured via optical interferometry, relaxing back to their pre-mass-deposition values). Our claim is that the detailed time trace of observed frequency shifts is rich in information—not only about the quantity of RDX initially deposited but also about its spatial arrangement along the nanostring. The data also reveal that sublimation in this case follows a nontrivial rate law, consistent with mass loss occurring at the exposed surface area of the RDX crystallites.

13. Stellar Populations of Deeply Embedded Young Clusters: Near--Infrared Spectroscopy and Emergent Mass Distributions

NASA Astrophysics Data System (ADS)

Meyer, Michael R.

1996-02-01

The goal of this thesis is to test the following hypothesis: the initial distribution of stellar masses from a single episode'' of star formation is independent of the local physical conditions of the region. In other words, is the initial mass function (IMF) strictly universal over spatial scales d < 1 pc and over time intervals Δ τ << 3 × 106yrs? We discuss the utility of embedded clusters in addressing this question. Using a combination of spectroscopic and photometric techniques, we seek to characterize emergent mass distributions of embedded clusters in order to compare them both with each other and with the field star IMF. Medium resolution (R = 1000) near--infrared spectra obtainable with the current generation of NIR grating spectrographs can provide estimates of the photospheric temperatures of optically--invisible stars. Deriving these spectral types requires a three--step process; i) setting up a classification scheme based on near--infrared spectra of spectral standards; ii) understanding the effects of accretion on this classification scheme by studying optically--visible young stellar objects; and iii) applying this classification technique to the deeply embedded clusters. Combining near--infrared photometry with spectral types, accurate stellar luminosities can be derived for heavily reddened young stars thus enabling their placement in the H--R diagram. From their position in the H--R diagram, masses and ages of stars can be estimated from comparison with theoretical pre--main sequence evolutionary models. Because it is not practical to obtain complete spectroscopic samples of embedded cluster members, a technique is developed based solely on near--IR photometry for estimating stellar luminosities from flux--limited surveys. We then describe how spectroscopic surveys of deeply embedded clusters are necessary in order to adopt appropriate mass--luminosity relationships. Stellar luminosity functions constructed from complete extinction

14. Mass distribution of meteoroids obtained by a meteor forward-scatter (MFS) radar method.

NASA Astrophysics Data System (ADS)

Cevolani, G.; Gabucci, M. F.

1996-04-01

The cumulative distributions of the number vs. duration of echoes belonging to main meteor showers (Lyrids, η-Aquarids, δ-Aquarids, Perseids, Orionids, Leonids, Geminids) and sporadic background were investigated using a forward-scatter (FS) continuous-wave meteor radar link operational during 1992 - 95 over the long baseline Bologna-Lecce in Italy. The trend of the mass distribution of particles in the quoted meteoroid streams was derived, and the values of the mass index s were compared for each meteor population with the steady-state condition. It was found that the mass index s generally increases towards long-duration echoes, but many of the observed meteor streams appear to have unstable populations. The values of the mass index of the sporadic complex are generally higher than the corresponding ones of meteor showers in the range of echo durations 0.1 ≤ T ≤ 10 s. This is a possible consequence of longer-lasting FS signals, indicating a shift of the mass distribution function vs. higher echo durations. Moreover, non-gravitational forces in connection with solar radiation pressure, Poynting-Robertson effect, solar-wind particle streaming, mutual collisions, etc., appear to be responsible for the observed widespread radiants and for unstable populations in the meteoroid streams.

15. Body mass index distribution affects discrepancies in weight classifications in children

Technology Transfer Automated Retrieval System (TEKTRAN)

The aim of the present study was to investigate the effect of body mass index (BMI) distribution, ethnicity, and age at menarche on the consistency in the prevalence of underweight and overweight as defined by the Centers for Disease Control and Prevention (CDC) and the International Obesity Task Fo...

16. Two-Year-Olds Learn Novel Nouns, Verbs, and Conventional Actions from Massed or Distributed Exposures.

ERIC Educational Resources Information Center

Childers, Jane B.; Tomasello, Michael

2002-01-01

Examined 2-year-olds' comprehension and production of novel nouns, verbs, or actions at 3 intervals after training conducted in massed or distributed exposures. Found that for comprehension, children learned all item types in all training conditions at all retention intervals. Production was better for nonverbal actions than for either word type…

17. Imaging distributed and massed repetitions of natural scenes: Spontaneous retrieval and maintenance

PubMed Central

Bradley, Margaret M.; Costa, Vincent D.; Ferrari, Vera; Codispoti, Maurizio; Fitzsimmons, Jeffrey R.; Lang, Peter J.

2015-01-01

Repetitions that are distributed (spaced) across time prompt enhancement of a memory-related event-related potential, compared to when repetitions are massed (contiguous). Here, we employed fMRI to investigate neural enhancement and suppression effects during free viewing of natural scenes that were either novel or repeated four times with massed or distributed repetitions. Distributed repetition was uniquely associated with a repetition enhancement effect in a bilateral posterior parietal cluster that included the precuneus and posterior cingulate and which has previously been implicated in episodic memory retrieval. Unique to massed repetition, on the other hand, was enhancement in a right dorsolateral prefrontal cluster that has been implicated in short-term maintenance. Repetition suppression effects for both types of spacing were widespread in regions activated during novel picture processing. Taken together, the data are consistent with a hypothesis that distributed repetition prompts spontaneous retrieval of prior occurrences, whereas massed repetitions prompts short-term maintenance of the episodic representation, due to contiguous presentation. These processing differences may mediate the classic spacing effect in learning and memory. PMID:25504854

18. On the Fine Isotopic Distribution and Limits to Resolution in Mass Spectrometry

NASA Astrophysics Data System (ADS)

Dittwald, Piotr; Valkenborg, Dirk; Claesen, Jürgen; Rockwood, Alan L.; Gambin, Anna

2015-08-01

Mass spectrometry enables the study of increasingly larger biomolecules with increasingly higher resolution, which is able to distinguish between fine isotopic variants having the same additional nucleon count, but slightly different masses. Therefore, the analysis of the fine isotopic distribution becomes an interesting research topic with important practical applications. In this paper, we propose the comprehensive methodology for studying the basic characteristics of the fine isotopic distribution. Our approach uses a broad spectrum of methods ranging from generating functions—that allow us to estimate the variance and the information theory entropy of the distribution—to the theory of thermal energy fluctuations. Having characterized the variance, spread, shape, and size of the fine isotopic distribution, we are able to indicate limitations to high resolution mass spectrometry. Moreover, the analysis of "thermorelativistic" effects (i.e., mass uncertainty attributable to relativistic effects coupled with the statistical mechanical uncertainty of the energy of an isolated ion), in turn, gives us an estimate of impassable limits of isotopic resolution (understood as the ability to distinguish fine structure peaks), which can be moved further only by cooling the ions. The presented approach highlights the potential of theoretical analysis of the fine isotopic distribution, which allows modeling the data more accurately, aiming to support the successful experimental measurements.

19. Chain length distributions in linear polyaddition proceeding in nano-scale small volumes without mass transfer

NASA Astrophysics Data System (ADS)

Szymanski, R.; Sosnowski, S.

2017-01-01

Computer simulations (Monte Carlo and numerical integration of differential equations) and theoretical analysis show that the statistical nature of polyaddition, both irreversible and reversible one, affects the way the macromolecules of different lengths are distributed among the small volume nano-reactors (droplets in this study) at any reaction time. The corresponding droplet distributions in respect to the number of reacting chains as well as the chain length distributions depend, for the given reaction time, on rate constants of polyaddition kp and depolymerization kd (reversible process), and the initial conditions: monomer concentration and the number of its molecules in a droplet. As a model reaction, a simple polyaddition process (M)1+(M)1 ⟶ ⟵ (M)2 , (M)i+(M)j ⟶ ⟵ (M)i+j was chosen, enabling to observe both kinetic and thermodynamic (apparent equilibrium constant) effects of a small number of reactant molecules in a droplet. The average rate constant of polymerization is lower than in a macroscopic system, depending on the average number of reactant molecules in a droplet. The apparent equilibrium constants of polymerization Ki j=[(M)i +j] ¯ /([(M)i] ¯ [(M)j] ¯ ) appear to depend on oligomer/polymer sizes as well as on the initial number of monomer molecules in a droplet. The corresponding equations, enabling prediction of the equilibrium conditions, were derived. All the analyzed effects are observed not only for ideally dispersed systems, i.e. with all droplets containing initially the same number of monomer (M)1 molecules, but also when initially the numbers of monomer molecules conform the Poisson distribution, expected for dispersions of reaction mixtures.

20. The spatial distribution of neutral hydrogen as traced by low H I mass galaxies

NASA Astrophysics Data System (ADS)

Kim, Han-Seek; Wyithe, J. Stuart. B.; Baugh, C. M.; Lagos, C. d. P.; Power, C.; Park, Jaehong

2017-02-01

The formation and evolution of galaxies with low neutral atomic hydrogen (H I) masses, M_{H I} < 108 h-2 M⊙, are affected by host dark matter halo mass and photoionization feedback from the UV background after the end of reionization. We study how the physical processes governing the formation of galaxies with low H I mass are imprinted on the distribution of neutral hydrogen in the Universe using the hierarchical galaxy formation model, GALFORM. We calculate the effect on the correlation function of changing the H I mass detection threshold at redshifts 0 ≤ z ≤ 0.5. We parametrize the clustering as ξ(r) = (r/r0)-γ and we find that including galaxies with M_{H I} < 108 h-2 M⊙ increases the clustering amplitude r0 and slope γ compared to samples of higher H I masses. This is due to these galaxies with low H I masses typically being hosted by haloes with masses greater than 1012 h-1 M⊙, and is in contrast to optically selected surveys for which the inclusion of faint, blue galaxies lowers the clustering amplitude. We show the H I mass function for different host dark matter halo masses and galaxy types (central or satellite) to interpret the values of r0 and γ of the clustering of H I-selected galaxies. We also predict the contribution of low H I mass galaxies to the 21 cm intensity mapping signal. We calculate that a dark matter halo mass resolution better than ˜1010 h-1 M⊙ at redshifts higher than 0.5 is required in order to predict converged 21 cm brightness temperature fluctuations.

1. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

SciTech Connect

Rader, D.J.; Benson, D.A.

1995-05-01

This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

2. A Renaissance study of Am stars. I. The mass ratio distribution

NASA Astrophysics Data System (ADS)

Boffin, H. M. J.

2010-12-01

Aims: Triggered by the study of Carquillat & Prieur (2007, MNRAS, 380, 1064) of Am binaries, I reanalyse their sample of 60 orbits to derive the mass ratio distribution (MRD), assuming as they did a priori functional forms, i.e. a power law or a Gaussian. The sample is then extended using orbits published by several groups and a full analysis of the MRD is made, without any assumption on the functional form. Methods: I derive the MRD using a Richardson-Lucy inversion method, assuming a fixed mass of the Am primary and randomly distributed orbital inclinations. Using the large sub-sample of double-lined spectroscopic binaries, I show that this methodology is indeed perfectly adequate. Results: I first derive new parameters of the functional form for the Carquillat & Prieur sample. Using the inversion method, applied to my extended sample of 162 systems, I find that the final MRD can be approximated by a uniform distribution.

3. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy

NASA Astrophysics Data System (ADS)

Łokas, Ewa L.; Mamon, Gary A.

2003-08-01

We study velocity moments of elliptical galaxies in the Coma cluster using Jeans equations. The dark matter distribution in the cluster is modelled by a generalized formula based upon the results of cosmological N-body simulations. Its inner slope (cuspy or flat), concentration and mass within the virial radius are kept as free parameters, as well as the velocity anisotropy, assumed independent of position. We show that the study of line-of-sight velocity dispersion alone does not allow us to constrain the parameters. By a joint analysis of the observed profiles of velocity dispersion and kurtosis, we are able to break the degeneracy between the mass distribution and velocity anisotropy. We determine the dark matter distribution at radial distances larger than 3 per cent of the virial radius and we find that the galaxy orbits are close to isotropic. Due to limited resolution, different inner slopes are found to be consistent with the data and we observe a strong degeneracy between the inner slope α and concentration c; the best-fitting profiles have the two parameters related with c= 19-9.6α. Our best-fitting Navarro-Frenk-White profile has concentration c= 9, which is 50 per cent higher than standard values found in cosmological simulations for objects of similar mass. The total mass within the virial radius of 2.9h-170 Mpc is 1.4 × 1015h-170 Msolar (with 30 per cent accuracy), 85 per cent of which is dark. At this distance from the cluster centre, the mass-to-light ratio in the blue band is 351h70 solar units. The total mass within the virial radius leads to estimates of the density parameter of the Universe, assuming that clusters trace the mass-to-light ratio and baryonic fraction of the Universe, with Ω0= 0.29 +/- 0.1.

4. The Extended H I Rotation Curve and Mass Distribution of M31

NASA Astrophysics Data System (ADS)

Carignan, Claude; Chemin, Laurent; Huchtmeier, Walter K.; Lockman, Felix J.

2006-04-01

New H I observations of Messier 31 (M31) obtained with the Effelsberg and Green Bank 100 m telescopes make it possible to measure the rotation curve of that galaxy out to ~35 kpc. Between 20 and 35 kpc, the rotation curve is nearly flat at a velocity of ~226 km s-1. A model of the mass distribution shows that at the last observed velocity point, the minimum dark-to-luminous mass ratio is ~0.5 for a total mass of 3.4×1011 Msolar at R<35 kpc. This can be compared to the estimated Milky Way mass of 4.9×1011 Msolar for R<50 kpc.

5. Free vibrations of a cantilevered SWCNT with distributed mass in the presence of nonlocal effect.

PubMed

De Rosa, M A; Lippiello, M; Martin, H D

2015-01-01

The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT) in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

6. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

SciTech Connect

Ramanathan Sampath

2006-06-30

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period January 01, 2006 to June 30, 2006 which covers the fourth six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse completed obtaining additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in a previous reporting period. Simultaneously, REM, our subcontractor, has completed obtaining raw data for surface area, volume, and drag coefficient to mass ratio (Cd/m) information for 9 more biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated before in this project. Results of the mean mass data obtained to date are reported here, and analysis of the raw data collected by REM is in progress.

7. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

SciTech Connect

Ramanathan Sampath

2006-01-01

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2005 to December 31, 2005 which covers the third six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse continued to obtain additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in the last reporting period. Simultaneously, REM, our subcontractor, has obtained raw data for surface area, volume, and drag coefficient to mass ratio (C{sub d}/m) information for several biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated in the last reporting period. Preliminary results of the mean mass and the shape data obtained are reported here, and more data collection is in progress.

8. The Distribution of Stellar Mass-To Ratio in the Local Universe

NASA Astrophysics Data System (ADS)

Li, Cheng

We have used the final data release of the Sloan Digital Sky Survey (SDSS) to estimate the projected autocorrelation function, wp(rp), for the stellar mass of galaxies, as well as their stellar light in the SDSS five photometric bands. All these quantities are robustly and precisely determined over scales 10h-1 kpc < rp < 30h-1 Mpc. Ratios of wp(rp) between two given wavebands are proportional to the mean color of correlated stars at rp from a randomly chosen star, while the ratio of stellar mass to luminosity autocorrelations measures an analogous mean stellar mass-to-light ratio (M*/L). These measurements provide a precise quantitative characterization of the well-known dependence of stellar populations on environment, which, when combined with accurate luminosity and stellar mass functions, is expected to provide a compact way to constrain Halo Occupation Distribution models that try to represent all the correlations in detail.

9. Estimation of particle number size distributions from mass based model simulations and comparison to observations

NASA Astrophysics Data System (ADS)

Engler, Christa; Heinold, Bernd; Tegen, Ina

2014-05-01

The atmospheric Chemistry Transport Model system COSMO-MUSCAT was used to determine the particle mass concentrations of dust and anthropogenically emitted aerosol particles over Europe. The model system consists of the online coupled code of the operational forecast model COSMO (Schättler et al., 2009) and the chemistry-transport model MUSCAT (Wolke et al., 2012). For a four-months-period in 2008 (May to August), the dust and anthropogenic aerosol mass concentrations for six different species (sulfate, nitrate, ammonium, organic and elemental carbon and sea salt) were simulated. For the dust, five different size bins were used and a representative particle size and density were assumed for each size bin. Afterwards, the number concentration was calculated. For the anthropogenic aerosol, lognormal modes were assumed with a representative mode diameter, sigma and density for each component. These parameters were then used to convert the simulated mass concentrations to number concentrations and number size distributions for each component. Those individual size distributions can then be summed up to a total particle number size distribution. A first comparison with measurement data from the Cape Verde Islands showed a good agreement between observed and simulated dust particle size distributions. Both, the shape of the number size distributions and the order of magnitude of the particle number concentrations compared well. Only for the smallest size bin, observed numbers were occasionally higher, which can be explained by anthropogenic or biomass burning aerosol, which is included in the measurements of the total particle size distributions but was not included in the model runs. Comparisons of measured and simulated size distributions of the anthropogenic aerosol will be available soon. In case the data are available, we will also present an estimation of the particle number concentrations with the aerosol microphysical aerosol module ext-M7 for the duration of a

10. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT

SciTech Connect

Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao

2011-04-10

In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.

11. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

PubMed

Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

2015-10-06

Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI.

12. Teacher candidates' mastery of phoneme-grapheme correspondence: massed versus distributed practice in teacher education.

PubMed

Sayeski, Kristin L; Earle, Gentry A; Eslinger, R Paige; Whitenton, Jessy N

2017-04-01

Matching phonemes (speech sounds) to graphemes (letters and letter combinations) is an important aspect of decoding (translating print to speech) and encoding (translating speech to print). Yet, many teacher candidates do not receive explicit training in phoneme-grapheme correspondence. Difficulty with accurate phoneme production and/or lack of understanding of sound-symbol correspondence can make it challenging for teachers to (a) identify student errors on common assessments and (b) serve as a model for students when teaching beginning reading or providing remedial reading instruction. For students with dyslexia, lack of teacher proficiency in this area is particularly problematic. This study examined differences between two learning conditions (massed and distributed practice) on teacher candidates' development of phoneme-grapheme correspondence knowledge and skills. An experimental, pretest-posttest-delayed test design was employed with teacher candidates (n = 52) to compare a massed practice condition (one, 60-min session) to a distributed practice condition (four, 15-min sessions distributed over 4 weeks) for learning phonemes associated with letters and letter combinations. Participants in the distributed practice condition significantly outperformed participants in the massed practice condition on their ability to correctly produce phonemes associated with different letters and letter combinations. Implications for teacher preparation are discussed.

13. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

NASA Astrophysics Data System (ADS)

Gómez, L.; Wyrowski, F.; Schuller, F.; Menten, K. M.; Ballesteros-Paredes, J.

2014-01-01

Aims: We present an analysis of the dust continuum emission at 870 μm in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). Methods: We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of σrms = 28-44 mJy beam-1. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N2H+ (3-2) line toward selected positions to obtain kinematic information. Results: The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 M⊙ (Gaussclumps) and 7-4254 M⊙ (Clumpfind), and the ranges in effective radius are ~0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM ∝ Mα, with an index (α) of -1.60 ± 0.06, consistent with the CO mass distribution and other high-mass star-forming regions. Based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A148

14. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

PubMed Central

de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

2014-01-01

Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

15. Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems

NASA Astrophysics Data System (ADS)

Rueda, Marta; Rebollo, Salvador; Rodríguez, Miguel Á.

2010-07-01

Herbivores are expected to influence grassland ecosystems by modifying root biomass and root spatial distribution of plant communities. Studies in perennial dominated grasslands suggest that grazing intensity and primary productivity may be strong determinants of the vertical distribution of subterranean biomass. However, no studies have addressed this question in annual dominated pastures. In this study we assess the effect of grazing and habitat productivity on the vertical distribution of root mass in an annual dominated Mediterranean pasture grazed by free-ranging sheep and wild rabbits. We evaluate the effects of grazing on total root mass and vertical root distribution (0-4, 4-8 and 8-12 cm depths) in two neighboring topographic sites (uplands and lowlands) with different productivity using a replicated fence experiment which excludes sheep and sheep plus rabbits. We found evidences that grazing affected root biomass and vertical distribution at lowlands (high productivity habitats), where places grazed by sheep plus rabbits exhibit more root mass and a higher concentration of it towards the soil surface than only rabbits and ungrazed places. In contrast, grazing did not affect root biomass and vertical distribution at uplands (low productivity habitats). We suggest that higher nitrogen and organic matter found in lowlands permit a plant adjustment for nitrogen acquisition by increasing biomass allocation to root production which would allow plant regrowth and the quick completion of the annual life cycle. Contrary, soil resources scarcity at uplands do not permit plants modify their root growth patterns in response to grazing. Our study emphasizes the importance of primary productivity in predicting grazing effect on belowground processes in Mediterranean environments dominated by annuals.

16. The mass distribution of the strong lensing cluster SDSS J1531+3414

SciTech Connect

Sharon, Keren; Johnson, Traci L.; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Bayliss, Matthew B.; Florian, Michael K.; Dahle, Håkon

2014-11-01

We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.

17. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

NASA Astrophysics Data System (ADS)

Singh, Pardeep; Kaur, Harjeet

2016-11-01

The fission-fragment mass distribution is analysed for the 208Pb(18O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schrödinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process.

18. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

DOE PAGES

Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

2016-01-20

We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both tomore » the dissipation in collective motion and to adiabatic fission characteristics.« less

19. Modal structure of chemical mass size distribution in the high Arctic aerosol

NASA Astrophysics Data System (ADS)

Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

2001-11-01

Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

20. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

PubMed

Roussis, Stilianos G; Proulx, Richard

2003-03-15

A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

1. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

SciTech Connect

Acosta, D.; The CDF Collaboration TITLE=Measuremen

2005-03-13

Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

2. THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS

SciTech Connect

Sadavoy, Sarah I.; Di Francesco, James; Bontemps, Sylvain; Megeath, S. Thomas; Allgaier, Erin; Rebull, Luisa M.; Carey, Sean; McCabe, Caer-Eve; Noriega-Crespo, Alberto; Padgett, Deborah; Gutermuth, Robert; Hora, Joe; Huard, Tracy; Muzerolle, James; Terebey, Susan

2010-02-20

Using data from the SCUBA Legacy Catalogue (850 {mu}m) and Spitzer Space Telescope (3.6-70 {mu}m), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by Submillimeter Common-User Bolometer Array (SCUBA) as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best-fit slopes to the high-mass end of the CMFs of -1.26 +- 0.20, -1.22 +- 0.06, -0.95 +- 0.20, and -1.67 +- 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the -1.35 power-law slope of the Salpeter initial mass function at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A{sub V} >= 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.

3. Predicting apparent Sherwood numbers for fluidized beds

SciTech Connect

Groenewold, H.; Tsotsas, E.

1999-09-01

Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.

4. The Bivariate Luminosity--HI Mass Distribution Function of Galaxies based on the NIBLES Survey

NASA Astrophysics Data System (ADS)

Butcher, Zhon; Schneider, Stephen E.; van Driel, Wim; Lehnert, Matt

2016-01-01

We use 21cm HI line observations for 2610 galaxies from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) to derive a bivariate luminosity--HI mass distribution function. Our HI survey was selected to randomly probe the local (900 < cz < 12,000 km/s) galaxy population in each 0.5 mag wide bin for the absolute z-band magnitude range of -13.5 < Mz < -24 without regard to morphology or color. This targeted survey allowed more on-source integration time for weak and non-detected sources, enabling us to probe lower HI mass fractions and apply lower upper limits for non-detections than would be possible with the larger blind HI surveys. Additionally, we obtained a factor of four higher sensitivity follow-up observations at Arecibo of 90 galaxies from our non-detected and marginally detected categories to quantify the underlying HI distribution of sources not detected at Nançay. Using the optical luminosity function and our higher sensitivity follow up observations as priors, we use a 2D stepwise maximum likelihood technique to derive the two dimensional volume density distribution of luminosity and HI mass in each SDSS band.

5. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

NASA Astrophysics Data System (ADS)

Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

2017-01-01

With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

6. Distribution of nanoflagellates in five water masses of the East China Sea in autumn and winter

NASA Astrophysics Data System (ADS)

Lin, Shiquan; Huang, Lingfeng; Zhu, Zhisheng; Xiong, Yuan; Lu, Jiachang

2016-02-01

The variations of abundance, biomass and trophic structure of nanoflagellates (NF) among five typical water masses in the East China Sea were investigated in autumn (November 19-December 23, 2006) and winter (February 22-March 11, 2007). It was found that water mass had a significant impact on the distribution of NF. Either in autumn or in winter, the highest abundance and biomass of NF were recorded in the East China Sea Shelf Mixing Water (ECSSMW), and the lowest in the Kuroshio Subsurface Water (KSSW). While in the East China Sea Coastal Water (ECSCW), the abundance and biomass of both heterotrophic nanoflagellates (HNF) and pigmented phototrophic nanoflagellates (PNF) were only slightly higher than that in Taiwan Strait Water (TSW) and Kuroshio Surface Water (KSW). In respect to the seasonal variation, the abundance and biomass of NF in TSW declined in winter, while in other 4 water masses, they showed an increasing trend from autumn to winter, mainly due to the decrease (in TSW) or increase (in ECSCW, ECSSMW, KSW and KSSW) of HNF. The distribution pattern of abundance- or biomass-based PNF/HNF ratio was found to be correlated to the nutrient level of the water mass. Results of Pearson correlation analysis and principle component analysis indicated that PNF was mainly constrained by nutrient supply, and HNF was controlled by food availability in the East China Sea.

7. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

PubMed

Sprigle, Stephen; Huang, Morris

2015-01-01

Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

8. Mass transfer in cataclysmic variables - Clues from the dwarf nova period distribution

NASA Technical Reports Server (NTRS)

Shafter, A. W.; Wheeler, J. C.; Cannizzo, J. K.

1986-01-01

Evidence is presented in support of the hypothesis that the mean mass-transfer rate at a given orbital period is not continuous across the 2-3 hr gap in the orbital period distribution for cataclysmic variables. It is pointed out that although dwarf novae comprise nearly half (48 percent) of all disk systems with orbital periods less than 10 hr, only three systems out of the 22 with periods between 3 and 4 hr appear to be dwarf novae. The overall orbital period distribution for dwarf novae in conjunction with the predictions from current theories of dwarf nova eruptions are used to argue that mass-transfer rates must be generally higher for systems with orbital periods greater than 3 hr relative to systems with periods less than 2 hr. It is further argued that the mean mass-transfer rate at a given orbital period cannot increase more steeply than P exp 1.7 unless the white dwarf mass is positively correlated with orbital period.

9. Mass distribution and Dynamical State of Galaxy Clusters in the LZLS Sample

NASA Astrophysics Data System (ADS)

Campusano, L. E.; Cypriano, E. S.; Sodré, L., Jr.; Kneib, J.-P.

We use the weak gravitational lensing effect to study the mass distribution of a sample of 50 southern Abell clusters (0.05 5 × 1044 erg s-1 observed with ESO-VLT under uniform sky conditions and subarsecond (0.6'') image quality. Their dynamical equibrium is assesed through comparison of the clusters mass estimates made by weak-lensing, velocity-dispersions and X-ray techniques. So far, for 24 clusters (Cypriano et al. 2004), we find: a) the center of their mass and light distributions are coincident for 77% of the sample; b) the elongations of the fitted mass profiles and of the light of the cD galaxies generally match with each other; c) although most of the clusters are found to be in dynamical equilibrium, those with TX ≥ 8 keV (or σv ≥ 1120 km s-1) are the discordant ones. The preliminary bright arc statistics for our whole sample (LZLS) suggests the presence of a cut-off at z˜0.07 which is qualitatively consistent with predictions done in a ΛCDM cosmology (Meneghetti et al. 2003).

10. Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling

PubMed Central

2013-01-01

Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software “Least Square Mass Isotopomer Analyzer” (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman’s least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations. PMID:23837681

11. Origin of the narrow, single peak in the fission-fragment mass distribution for {sup 258}Fm

SciTech Connect

Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter

2009-01-15

We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

12. The effect of gas double-dynamic on mass distribution in solid-state fermentation.

PubMed

Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang

2014-05-10

The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products.

13. Effect of mass-addition distribution and injectant on heat transfer and transition criteria.

NASA Technical Reports Server (NTRS)

Bertin, J. J.; Mccloskey, M. H.; Stalmach, C. J., Jr.; Wright, R. L.

1972-01-01

Surface pressures, heat-transfer rates, and transition locations for a sharp cone (whose semivertex angle is 12 deg) were obtained in a hypervelocity wind tunnel at a free-stream Mach number of 12 and a free-stream Re/ft range of 3,000,000 to 6,000,000. The effects of injecting either methane, nitrogen, or Freon-22 (at rates up to 2.1% of free-stream rate) were studied for a uniform injection-distribution and for a variable injection-distribution. Gaseous injection had little effect on the surface pressure measurements. For a given mass injection distribution, the laminar region heat-transfer decreases as the injection rate increases or as the molecular weight of the injectant decreases. For a given mass-injection rate (integrated over the surface of the entire cone), the transition location and heat-transfer rates were sensitive to the injection distribution. The transition Reynolds numbers were significantly greater when the local injection rate was constant over the surface of the cone.

14. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

NASA Astrophysics Data System (ADS)

Maenhaut, Willy; Ptasinski, Jacek; Cafmeyer, Jan

1999-04-01

As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.

15. Cluster mass fraction and size distribution determined by fs-time-resolved measurements

NASA Astrophysics Data System (ADS)

Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

2009-11-01

Characterization of supersonic gas jets is important for accurate interpretation and control of laser-cluster experiments. While average size and total atomic density can be found by standard Rayleigh scatter and interferometry, cluster mass fraction and size distribution are usually difficult to measure. Here we determine the cluster fraction and the size distribution with fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The fs-time-resolved refractive index measured with frequency domain interferometer (FDI) shows different contributions from monomer plasma and cluster plasma in the time domain, enabling us to determine the cluster fraction. The fs-time-resolved absorption measured by a delayed probe shows the contribution from clusters of various sizes, allowing us to find the size distribution.

16. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets

NASA Astrophysics Data System (ADS)

Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Wright, Jason T.; Fischer, Debra A.

2008-05-01

We analyze 8 years of precise radial velocity measurements from the Keck Planet Search, characterizing the detection threshold, selection effects, and completeness of the survey. We first carry out a systematic search for planets, by assessing the false-alarm probability associated with Keplerian orbit fits to the data. This allows us to understand the detection threshold for each star in terms of the number and time baseline of the observations, and the underlying “noise” from measurement errors, intrinsic stellar jitter, or additional low-mass planets. We show that all planets with orbital periods P < 2000 days, velocity amplitudes K > 20 m s-1, and eccentricities e ≲ 0.6 have been announced, and we summarize the candidates at lower amplitudes and longer orbital periods. For the remaining stars, we calculate upper limits on the velocity amplitude of a companion. For orbital periods less than the duration of the observations, these are typically 10 m s-1 and increase ∝ P2 for longer periods. We then use the nondetections to derive completeness corrections at low amplitudes and long orbital periods and discuss the resulting distribution of minimum mass and orbital period. We give the fraction of stars with a planet as a function of minimum mass and orbital period and extrapolate to long-period orbits and low planet masses. A power-law fit for planet masses >0.3 MJ and periods < 2000 days gives a mass-period distribution dN = CMα Pβ d ln Md ln P with α = -0.31 ± 0.2, β = 0.26 ± 0.1, and the normalization constant C such that 10.5% of solar type stars have a planet with mass in the range 0.3–10 MJ and orbital period 2–2000 days. The orbital period distribution shows an increase in the planet fraction by a factor of ≈5 for orbital periods ≳300 days. Extrapolation gives 17%–20% of stars having gas giant planets within 20 AU. Finally, we constrain the occurrence rate of planets orbiting M dwarfs compared to FGK dwarfs, taking into account

17. Collisional evolution - an analytical study for the nonsteady-state mass distribution

NASA Astrophysics Data System (ADS)

Martins, R. Vieira

1999-05-01

To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution

18. Surface-level fine particle mass concentrations: from hemispheric distributions to megacity sources.

PubMed

Hidy, George M

2009-07-01

Since 1990, basic knowledge of the "chemical climate" of fine particles, has greatly improved from Junge's compilation from the 1960s. A worldwide baseline distribution of fine particle concentrations on a synoptic scale of approximately 1000 km can be estimated at least qualitatively from measurements. A geographical distribution of fine particle characteristics is deduced from a synthesis of a variety of disparate data collected at ground level on all continents, especially in the northern hemisphere. On the average, the regional mass concentrations range from 1 to 80 microg/m3, with the highest concentrations in regions of high population density and industrialization. Fine particles by mass on a continental and hemispheric spatial scale are generally dominated by non-sea salt sulfate (0.2 to approximately 20 microg/m3, or approximately 25%) and organic carbon (0.2-> 10 microg/m3, or approximately 25%), with lesser contributions of ammonium, nitrate, elemental carbon, and elements found in sea salt or soil dust. The crustal and trace metal elements contribute a varied amount to fine particle mass depending on location, with a larger contribution in marine conditions or during certain events such as dust storms or volcanic disturbances. The average distribution of mass concentration and major components depends on the proximity to areal aggregations of sources, most of which are continental in origin, with contributions from sea salt emissions in the marine environment. The highest concentrations generally are within or near very large population and industrial centers, especially in Asia, including parts of China and India, as well as North America and Europe. Natural sources of blowing dust, sea salt, and wildfires contribute to large, intermittent spatial-scale particle loadings beyond these ranges. A sampling of 10 megacities illustrates a range of characteristic particle composition, dependent on local and regional sources. Long-range transport of pollution

19. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

NASA Technical Reports Server (NTRS)

Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

2010-01-01

In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

20. Derivation from first principles of the statistical distribution of the mass peak intensities of MS data.

PubMed

Ipsen, Andreas

2015-02-03

Despite the widespread use of mass spectrometry (MS) in a broad range of disciplines, the nature of MS data remains very poorly understood, and this places important constraints on the quality of MS data analysis as well as on the effectiveness of MS instrument design. In the following, a procedure for calculating the statistical distribution of the mass peak intensity for MS instruments that use analog-to-digital converters (ADCs) and electron multipliers is presented. It is demonstrated that the physical processes underlying the data-generation process, from the generation of the ions to the signal induced at the detector, and on to the digitization of the resulting voltage pulse, result in data that can be well-approximated by a Gaussian distribution whose mean and variance are determined by physically meaningful instrumental parameters. This allows for a very precise understanding of the signal-to-noise ratio of mass peak intensities and suggests novel ways of improving it. Moreover, it is a prerequisite for being able to address virtually all data analytical problems in downstream analyses in a statistically rigorous manner. The model is validated with experimental data.

1. Vertical distribution of dry mass in cereals straw and its loss during harvesting

NASA Astrophysics Data System (ADS)

Zajaç, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Macuda, J.

2013-01-01

The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.

2. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

NASA Astrophysics Data System (ADS)

Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

2014-02-01

The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

3. Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging

PubMed Central

Giordano, Silvia; Zucchetti, Massimo; Decio, Alessandra; Cesca, Marta; Fuso Nerini, Ilaria; Maiezza, Marika; Ferrari, Mariella; Licandro, Simonetta Andrea; Frapolli, Roberta; Giavazzi, Raffaella; Maurizio, D’Incalci; Davoli, Enrico; Morosi, Lavinia

2016-01-01

The penetration of anticancer drugs in solid tumors is important to ensure the therapeutic effect, so methods are needed to understand drug distribution in different parts of the tumor. Mass spectrometry imaging (MSI) has great potential in this field to visualize drug distribution in organs and tumor tissues with good spatial resolution and superior specificity. We present an accurate and reproducible imaging method to investigate the variation of drug distribution in different parts of solid tumors. The method was applied to study the distribution of paclitaxel in three ovarian cancer models with different histopathological characteristics and in colon cancer (HCT116), breast cancer (MDA-MB-231) and malignant pleural mesothelioma (MPM487). The heterogeneous drug penetration in the tumors is evident from the MALDI imaging results and from the images analysis. The differences between the various models do not always relate to significant changes in drug content in tumor homogenate examined by classical HPLC analysis. The specificity of the method clarifies the heterogeneity of the drug distribution that is analyzed from a quantitative point of view too, highlighting how marked are the variations of paclitaxel amounts in different part of solid tumors. PMID:28000726

4. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.

PubMed

Hiraoki, Ryoya; Ono, Yuko; Saito, Tsuguyuki; Isogai, Akira

2015-02-09

Native wood cellulose was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and the fibrous TEMPO-oxidized celluloses (TOCs) thus obtained were disintegrated in water to prepare TOC nanofibrils (TOCNs). The carboxyl groups of TOCs and TOCNs were methyl-esterified, and the methylated samples were dissolved in 8% LiCl/N,N-dimethylacetamide for size-exclusion chromatography/multiangle laser-light scattering (SEC-MALLS) analysis to obtain their molecular-mass (MM) values and MM distributions (MMDs). The results showed that remarkable depolymerization occurred in TOCs and TOCNs and depended on the oxidation and sonication conditions. Because single peaks without bimodal patterns were observed in the MMDs for all of the TOC and TOCN samples, depolymerization may have randomly occurred on whole cellulose molecules and oxidized cellulose molecules in the microfibrils during these treatments. Compared with the MM values obtained by SEC-MALLS, the intrinsic viscosities of TOCs dissolved in 0.5 M copper ethylenediamine solution provided lower MM values owing to depolymerization during the dissolution and postreduction processes.

5. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.

PubMed

Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H

2015-12-17

The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

6. Impact of Climatic Variability on Atmospheric Mass Distribution and GRACE-Derived Gravity Fields

NASA Technical Reports Server (NTRS)

Salstein, David A.; Rosen, Richard D.; Ponte, Rui M.; Frey, Herbert (Technical Monitor)

2003-01-01

During the period we calculated the atmospheric data sets related to its mass and angular momentum distribution. For mass, we determined the various harmonics from the NCEP-NCAR reanalysis, especially the low-order harmonics that are useful in studying the gravitation distribution as will be determined from the GRACE mission. Atmospheric mass is also related to the atmospheric loading on the solid Earth; we cooperated with scientists who needed the atmospheric mass information for understanding its contributions to the overall loading, necessary for vertical and horizontal coordinate estimation. We calculated atmospheric angular momentum from the NCEP-NCAR reanalyses and 4 operational meteorological centers, based on the motion (wind) terms and the mass (surface pressure) terms. These are associated with motions of the planet, including its axial component causing changes in the length of day, more related to the winds, and the equatorial component related to motions of the pole, more related to the mass. Tasks related to the ocean mass and angular momentum were added to the project as well. For these we have noted the ocean impact on motions of the pole as well as the torque mechanisms that relate the transfer of angular momentum between oceans and solid earth. The activities of the project may be summarized in the following first manuscript written in December 2002, for a symposium that Dr. Salstein attended on Geodynamics. We have continued to assess ocean angular momentum (OAM) quantities derived from bottom pressure and velocity fields estimated with our finite-difference barotropic (single layer) model. Three years of output (1993-95) from a run without any data constraints was compared to output from a corresponding run that was constrained by altimeter data using a Kalman filter and smoother scheme. Respective OAM time series were combined with corresponding atmospheric series and compared to observed polar motion. The constrained OAM series provided

7. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

NASA Astrophysics Data System (ADS)

Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.

2015-12-01

The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

8. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

NASA Astrophysics Data System (ADS)

Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

2011-02-01

Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

9. Mass cytometry panel optimization through the designed distribution of signal interference.

PubMed

Takahashi, Chikara; Au-Yeung, Amelia; Fuh, Franklin; Ramirez-Montagut, Teresa; Bolen, Chris; Mathews, William; O'Gorman, William E

2017-01-01

Mass cytometry is capable of measuring more than 40 distinct proteins on individual cells making it a promising technology for innovating biomarker discovery. However, in order for this potential to be fully realized, best practices in panel design need to be further defined in order to achieve consistency and reproducibility in data analysis. Of particular importance are controls that reveal, and panel design principles that mitigate the effects of signal interference or overlap. We observed a disparity between the staining profiles of two noncompeting anti- integrin β7 mAbs and hypothesized that signal interference was responsible. A mass-minus-one (MMO) control was applied and demonstrated that signal overlap caused the perceived interclonal discrepancy in β7 expression. Panel redesign in consideration of mass-cytometry specific interference dynamics dramatically improved concordance between both mAbs by redistributing background signals caused by overlap. These studies visualize how signal overlap can complicate mass cytometry data interpretation and demonstrate how the rational distribution of interference can greatly improve panel design and data quality. © 2016 International Society for Advancement of Cytometry.

10. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

SciTech Connect

Gilbert, Holly; Kilper, Gary; Kucera, Therese; Alexander, David

2011-01-20

In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda} < 504 A), and finally at wavelengths where H{sup 0}, He{sup 0}, and He{sup +} are all ionized ({lambda} < 228 A). This approach, first suggested by Kucera et al., permits the separation of the contributions of neutral hydrogen and helium to the total column density in prominences. Additionally, an enhancement of the technique allowed the calculation of the two-dimensional (2D) spatial distribution of the column density from the continuum absorption in each extreme-ultraviolet observation. We find the total prominence mass is consistently lower in the 625 A observations compared to lines in the other wavelength regimes. There is a significant difference in total mass between the 625 A and 195 A lines, indicating the much higher opacity at 625 A is causing a saturation of the continuum absorption and thus, a potentially large underestimation of mass.

11. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

NASA Astrophysics Data System (ADS)

Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

12. Effects of internal mass distribution and its isolation on the acoustic characteristics of a submerged hull

NASA Astrophysics Data System (ADS)

Peters, Herwig; Kinns, Roger; Kessissoglou, Nicole

2014-03-01

The primary aim of machinery isolation in marine vessels is to isolate structural vibration of the onboard machinery from the hull and to reduce far-field radiation of underwater noise. A substantial proportion of the total submarine mass is on flexible mounts that isolate supported masses from the hull at frequencies above the mounting system resonant frequency. This reduces the dynamically effective mass of the hull and affects the signature of the marine vessel due to propeller excitation. A fully coupled finite element/boundary element (FE/BE) model has been developed to investigate the effect of mass distribution and isolation in a submerged hull. The finite element model of the structure includes internal structures to represent the machinery and other flexibly mounted components. Changes in the radiated sound power demonstrate the effect of machinery isolation on the acoustic signature of the submerged hull due to the external propeller forces. Results are also presented to show how the arrangement of flexible mounts for a large internal structure can influence the radiation due to machinery forces.

13. Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles

SciTech Connect

Ramanathan Sampath

2007-06-30

This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to June 30, 2007 which covers the entire performance period of the project. 25 individual biomass particles (hardwood sawdust AI14546 in the size range of 100-200 microns) were levitated in an electrodynamic balance (EDB) and their external surface area, volume, and drag coefficient/mass (C{sub d}/m) ratios were characterized applying highly specialized video based and high-speed diode array imaging systems. Analysis methods were employed using shape and drag information to calculate mass and density distributions for these particles. Results of these measurements and analyses were validated by independent mass measurements using a particle weighing and counting technique. Similar information for 28 PSOC 1451D bituminous coal particles was retrieved from a previously published work. Using these two information, density correlations for coal/biomass blends were developed. These correlations can be used to estimate the density of the blend knowing either the volume fraction or the mass fraction of coal in the blend. The density correlations presented here will be useful in predicting the burning rate of coal/biomass blends in cofiring combustors. Finally, a discussion on technological impacts and economic projections of burning biomass with coal in US power plants is presented.

14. Mass Spectrometry Data from the Biological MS Data and Software Distribution Center

DOE Data Explorer

Anderson, Gordon

The mass spectrometry capabilities at Pacific Northwest National Laboratory (PNNL) are primarily applied to biological research, with an emphasis on proteomics and metabolomics. Many of these cutting-edge mass spectrometry capabilities and bioinformatics methods are housed in the Department of Energy's Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility operated by PNNL. These capabilities have been developed and acquired through cooperation between the EMSL national scientific user program and PNNL programmatic research. At the website of the Biological MS Data and Software Distribution Center, the following resources are made available: PNNL-developed software tools and source code, PNNL-generated raw data and processed results, links to publications that used the data and results available on this site, and tutorials and user manuals. [taken from http://omics.pnl.gov/

15. Equilibrium quality and mass flux distributions in an adiabatic three-subchannel test section

SciTech Connect

Yadigaroglu, G.; Maganas, A.

1995-12-01

An experiment was designed to measure the fully developed quality and mass flux distributions in an adiabatic three-subchannel test section. The three subchannels had the geometrical characteristics of the corner, side, and interior subchannels of a boiling water reactor (BWR-5) rod bundle. Data collected with Refrigerant-114 at pressures ranging from 7 to 14 bars, simulating operation with water in the range 55 to 103 bars are reported. The average mass flux and quality in the test section were in the ranges 1,300 to 1,750 kg/m{sup 2} {center_dot} s and {minus}0.03 to 0.25, respectively. The data are analyzed and presented in various forms.

16. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

NASA Astrophysics Data System (ADS)

Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

17. Implementation of a Campuswide Distributed Mass Storage Service: the Dream Versus Reality

NASA Technical Reports Server (NTRS)

Prahst, Stephen; Armstead, Betty Jo

1996-01-01

In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro- wide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup services for critical data dw resides on workstations and personal computers. Because of software availability and budgets, the total service was phased in over dm years. During the process of building the service from the commercial technologies available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occurred. We also enhanced some technologies to better meet the needs of users and system administrators. This report describes our team's journey from dream to reality, outlines some of the problem areas that still exist, and suggests some solutions.

18. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials

NASA Astrophysics Data System (ADS)

Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Wan, Qiongqiong; Hou, Jian; He, Qing; Badu-Tawiah, Abraham; Nie, Zongxiu

2015-02-01

Label and label-free methods to image carbon-based nanomaterials exist. However, label-based approaches are limited by the risk of tag detachment over time, and label-free spectroscopic methods have slow imaging speeds, weak photoluminescence signals and strong backgrounds. Here, we present a label-free mass spectrometry imaging method to detect carbon nanotubes, graphene oxide and carbon nanodots in mice. The large molecular weights of nanoparticles are difficult to detect using conventional mass spectrometers, but our method overcomes this problem by using the intrinsic carbon cluster fingerprint signal of the nanomaterials. We mapped and quantified the sub-organ distribution of the nanomaterials in mice. Our results showed that most carbon nanotubes and nanodots were found in the outer parenchyma of the kidney, and all three materials were seen in the red pulp of the spleen. The highest concentrations of nanotubes in the spleen were found within the marginal zone.

19. Mass

SciTech Connect

Quigg, Chris

2007-12-05

In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

20. Methods for validation of the mass distribution of a full body finite element model - biomed 2011.

PubMed

Thompson, A Bradley; Rhyne, Ashley C; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

2011-01-01

Accurate mass distribution in computational human body models is essential for kinematic and kinetic validation. The purpose of this study was to validate the mass distribution of the 50th percentile male model (M50) developed as part of the Global Human Body Models Consortium (GHBMC) project. The body segment centers of gravity (CG) of M50 were compared against published data in two ways: using a homogeneous body surface CAD model, and a Finite Element Model (FEM). Both the CAD and FEM models were generated from image data collected from the same 50th percentile male subject. Each model was partitioned into 11 segments, using segment planes constructed from bony landmarks acquired from the subject. CGs of the CAD and FEA models were computed using commercially available software packages. Deviation between the literature data CGs and CGs of the FEM and CAD were 5.8% and 5.6% respectively when normalized by a regional characteristic length. Deviation between the FEM and CAD CGs averaged 2.4% when normalized in the same fashion. Unlike the CAD and literature which both assume homogenous mass distribution, the FEM CG data account for varying densities of anatomical structures by virtue of the assigned material properties. This analysis validates the CGs determined from each model by comparing them directly to well-known literature studies that rely only on anthropometric landmarks to determine the CGs measurements. The results of this study will help enhance the biofidelity of the GHBMC M50 model.

1. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

SciTech Connect

Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

2015-03-31

We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

2. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

SciTech Connect

Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

2015-03-31

We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1. (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

3. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

DOE PAGES

Melchior, P.; Suchyta, E.; Huff, E.; ...

2015-03-31

We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

4. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

SciTech Connect

Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

2015-03-31

We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

5. Selection effects on the orbital period distribution of Low Mass X-ray Binaries

NASA Astrophysics Data System (ADS)

Arur, Kavitha; Maccarone, Tom

2017-01-01

Observations show a lack of Low Mass Black Hole Binaries with orbital periods below 4 hours. While it is known that Black Hole Binaries (BHBs) tend to have lower peak luminosities in outburst compared to their Neutron Star counterparts, it is unclear if selection effects can account for the difference in the numbers. Studying the effect of these selection biases is important for binary population studies. Here we report on the implications for the inferred orbital period distribution of these BHBs after a simulation that accounts for extinction of the optical counterpart, absorption of X-ray counts and detectability of the outburst.

6. Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean.

PubMed

Kim, Hyunji; Soerensen, Anne L; Hur, Jin; Heimbürger, Lars-Eric; Hahm, Doshik; Rhee, Tae Siek; Noh, Seam; Han, Seunghee

2017-02-07

Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m(-2) yr(-1)). A higher upward diffusion in the North Pacific (12 nmol m(-2) yr(-1)) than in the Equatorial Pacific (1.8-5.7 nmol m(-2) yr(-1)) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.

7. Microlensing on extended structures having a spherically-symmetric mass distribution

NASA Astrophysics Data System (ADS)

Zhdanov, V.; Alexandrov, A.; Stashko, O.

2016-06-01

Different dark matter (DM) models predict various clustering properties, i.e. the possibility of DM to form massive objects on different scales. The lower mass limit of these objects according to [1, 2]. may be of the order of planetary masses. The gravitational microlensing can be used to confirm or to reject the existence of such structures and therefore to argue in favor or against concrete DM theories. There are observational programs (OGLE, EROS etc) yielding the light curves of a remote objects in high amplification events (HAE) due to microlensing on foreground masses of the Galaxy. In case when the foreground mass is an extended one, then the light curve in HAE must differ from the light curve due to ordinary microlensing on a point mass. However the question is: what is the value of this difference and is it possible to register this difference with modern observational facilities. This question has been studied elsewhere [3–5] by means of special model lens mappings. In this paper we study this problem starting directly from mass distribution of the extended structure. Namely, we consider microlensing on an extended DM clump with the cored spherically-symmetric mass profile (without a singularity in the center). We present examples of the amplification curves in both cases. Then we generate the amplification curves in case of the extended clump model for different values R, γ when the clump moves uniformly with respect to the line of sight with some impact parameter p and velocity V. These curves are then fitted with the point microlens model (with free parameters p and V) and we estimate the difference between the curves. The general outcome is that the amplification curves in case of the extended clumps are very similar to those in case of the point microlens (with appropriately chosen parameters p and V that cannot be derived from observations independently), and it would be difficult to distinguish them on the basis of observations if we deal with

8. Investigating the effect of mixing ratio on molar mass distributions of synthetic polymers determined by MALDI-TOF mass spectrometry using design of experiments.

PubMed

Brandt, Heike; Ehmann, Thomas; Otto, Matthias

2010-11-01

It is well known that the mixing ratio affects the molar mass distribution of synthetic polymers determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surely, the molar mixing ratio determines whether a mass spectrum will be obtained or not. However, depending on the mass range, several effects such as multimer formation occur, which might be a source of errors in molar mass distribution calculations. In this study, the effect of mixing ratio was investigated for several synthetic polymers, including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) using statistical designs of experiments. The 2(3) full factorial design was found to be suitable in the study of more than 1000 samples. The obtained MALDI mass spectra as well as the ANOVA statistics show that the mixing ratio affects the molar mass distribution. The optimal mixing ratio for a defined synthetic polymer depends on the studied combination (matrix, cationization reagent, solvent).

9. Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging.

PubMed

Nilsson, Anna; Goodwin, Richard J A; Swales, John G; Gallagher, Richard; Shankaran, Harish; Sathe, Abhishek; Pradeepan, Selvi; Xue, Aixiang; Keirstead, Natalie; Sasaki, Jennifer C; Andren, Per E; Gupta, Anshul

2015-09-21

Colistin and polymyxin B are effective treatment options for Gram-negative resistant bacteria but are used as last-line therapy due to their dose-limiting nephrotoxicity. A critical factor in developing safer polymyxin analogues is understanding accumulation of the drugs and their metabolites, which is currently limited due to the lack of effective techniques for analysis of these challenging molecules. Mass spectrometry imaging (MSI) allows direct detection of targets (drugs, metabolites, and endogenous compounds) from tissue sections. The presented study exemplifies the utility of MSI by measuring the distribution of polymyxin B1, colistin, and polymyxin B nonapeptide (PMBN) within dosed rat kidney tissue sections. The label-free MSI analysis revealed that the nephrotoxic compounds (polymyxin B1 and colistin) preferentially accumulated in the renal cortical region. The less nephrotoxic analogue, polymyxin B nonapeptide, was more uniformly distributed throughout the kidney. In addition, metabolites of the dosed compounds were detected by MSI. Kidney homogenates were analyzed using LC/MS/MS to determine total drug exposure and for metabolite identification. To our knowledge, this is the first time such techniques have been utilized to measure the distribution of polymyxin drugs and their metabolites. By simultaneously detecting the distribution of drug and drug metabolites, MSI offers a powerful alternative to tissue homogenization analysis and label or antibody-based imaging.

10. Low-Cost Micro Mass Spectrometers for Handheld Chemical Analysis and Distributed Networks for Space Flight Missions

NASA Astrophysics Data System (ADS)

van Amerom, F. H. W.; Chaudhary, A.; Short, R. T.

2012-06-01

Distributed networks of low-cost micro mass spectrometers, far smaller than presently available, will be powerful tools for safety of astronauts, enabling chemical monitoring throughout spacecrafts/habitats, surface vehicles and Mars deployments.

11. Radio relics tracing the projected mass distribution in CIZA J2242.8+5301*

NASA Astrophysics Data System (ADS)

Okabe, Nobuhiro; Akamatsu, Hiroki; Kakuwa, Jun; Fujita, Yutaka; Zhang, Yuying; Tanaka, Masayuki; Umetsu, Keiichi

2015-12-01

We present a weak-lensing analysis for a merging galaxy cluster, CIZA J2242.8+5301, which hosts double radio relics, using three-band Subaru/Suprime-Cam imaging (Br'z'). Since the lifetime of dark matter halos colliding into clusters is longer than that of X-ray emitting gas halos, weak-lensing analysis is a powerful method to constrain merger dynamics. Two-dimensional shear fitting using a clean background catalog suggests that the cluster undergoes a merger with a mass ratio of about 2 : 1. The main halo is located around the gas core in the southern region, while no concentrated gas core is associated with the northern sub-halo. We find that the projected cluster mass distribution resulting from an unequal-mass merger is in excellent agreement with the curved shapes of the two radio relics and the overall X-ray morphology, except for the lack of the northern gas core. The lack of a prominent radio halo enables us to constrain an upper limit of the fractional energy of magnetohydrodynamic turbulence of (δ B/B)^2<{O}(10^{-6}) at a resonant wavenumber, by finding a balance between the acceleration time and the time after the core passage or the cooling time, with an assumption of resonant acceleration by a second-order Fermi process.

12. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

SciTech Connect

Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

2008-10-15

A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

13. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.

PubMed

Waltman, Melanie J; Dwivedi, Prabha; Hill, Herbert H; Blanchard, William C; Ewing, Robert G

2008-10-19

A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H(2)O)(n)H(+) with (H(2)O)(2)H(+) as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO(3)(-), NO(3)(-), NO(2)(-), O(3)(-) and O(2)(-) of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.

14. Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry.

PubMed

Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric; Schafer, Olivier

2013-01-01

This study describes the use of hybrid mass spectrometry for the mapping, identification, and semi-quantitation of triacylglycerol regioisomers in fats and oils. The identification was performed based on the accurate mass and fragmentation pattern obtained by data-dependent fragmentation. Quantitation was based on the high-resolution ion chromatograms, and relative proportion of sn-1(3)/sn-2 regioisomers was calculated based on generalized fragmentation models and the relative intensities observed in the product ion spectra. The key performance features of the developed method are inter-batch mass accuracy < 1 ppm (n = 10); lower limit of detection (triggering threshold) 0.1 μg/ml (equivalent to 0.2 weight % in oil); lower limit of quantitation 0.2 μg/ml (equivalent to 0.4 weight % in oil); peak area precision 6.5% at 2 μg/ml concentration and 15% at 0.2 μM concentration; inter-batch precision of fragment intensities < 1% (n = 10) independent of the investigated concentration; and averaged accuracy using the generic calibration 3.8% in the 1-10 μg/ml range and varies between 1-23% depending on analytes. Inter-esterified fat, beef tallow, pork lard, and butter fat samples were used to show how well regioisomeric distribution of palmitic acid can be captured by this method.

15. Effects of fore-aft body mass distribution on acceleration in dogs.

PubMed

Walter, Rebecca M; Carrier, David R

2011-05-15

The ability of a quadruped to apply propulsive ground reaction forces (GRF) during rapid acceleration may be limited by muscle power, foot traction or the ability to counteract the nose-up pitching moment due to acceleration. Because the biomechanics of acceleration change, both throughout the stride cycle and over subsequent strides as velocity increases, the factors limiting propulsive force production may also change. Depending on which factors are limiting during each step, alterations in fore-aft body mass distribution may either increase or decrease the maximum propulsive GRF produced. We analyzed the effects of experimental alterations in the fore-aft body mass distribution of dogs as they performed rapid accelerations. We measured the changes in trunk kinematics and GRF as dogs accelerated while carrying 10% body mass in saddlebags positioned just in front of the shoulder girdle or directly over the pelvic girdle. We found that dogs applied greater propulsive forces in the initial hindlimb push-off and first step by the lead forelimb in both weighted conditions. During these steps dogs appear to have been limited by foot traction. For the trailing forelimb, propulsive forces and impulses were reduced when dogs wore caudally placed weights and increased when dogs wore cranially placed weights. This is consistent with nose-up pitching or avoidance thereof having limited propulsive force production by the trailing forelimb. By the second stride, the hindlimbs appear to have been limited by muscle power in their ability to apply propulsive force. Adding weights decreased the propulsive force they applied most in the beginning of stance, when limb retractor muscles were active in supporting body weight. These results suggest that all three factors: foot traction, pitching of the body, and muscle power play roles in limiting quadrupedal acceleration. Digging in to the substrate with claws or hooves appears to be necessary for maximizing propulsion in the initial

16. Low-frequency currents and water mass spatial distribution on the southern Brazilian shelf

NASA Astrophysics Data System (ADS)

Soares, Ivan; öller, Osmar

2001-10-01

The Southern Brazilian Shelf (SBS) circulation is discussed in terms of the water mass distribution observed in seasonal hydrography and the subtidal frequency oscillations observed in shelf current and coastal wind time series. Low-salinity water that originated from river runoff is demonstrated to be an important inner-shelf feature, participating in water mass formation and distribution, while Tropical and Sub-Tropical waters (transported by Brazil Current) are the main outer-shelf and slope waters. Cross-shelf transport on the SBS shelf is maximum in austral spring when Patos Lagoon runoff peaks and monthly mean winds are upwelling-favorable, and along-shelf transport is maximum in the austral autumn and winter periods when La Plata River runoff is driven toward the SBS by Argentina coastal winds and mean winds over the SBS are downwelling-favorable, creating near shore bands of low-salinity water. The intrusion of water from Uruguay and Argentina shelves creates a cold, less-saline mid-shelf water mass which, together with local river runoff and the Brazil Current, are responsible for well defined cross-shelf gradients. Subtidal currents, recorded during a 3-month-long mooring in the austral autumn of 1997, suggest an Ekman response to along-shelf wind forcing with a time lag of 14 h. Power spectra and coherence functions characterize wind influence as occurring primarily in the synoptic period band of 2-10 days, with most energetic peak at 4×10 -3 cph (10.4 days). The residual current, computed according to Mardia's directional data statistics ( Mardia, 1972. Statistics of Directional Data. Academic Press, New York), flows parallel to the coastline and equatorward, in agreement with a buoyancy-driven current.

17. Determination of the uncertainties in the theoretical mass isotopomer distribution of molecules.

PubMed

García Alonso, J Ignacio; Rodríguez-González, P; González-Gago, A; González-Antuña, A

2010-04-01

A procedure for the determination of the uncertainties in the theoretical mass isotopomer distribution of molecules due to natural variations in the isotope composition of their constituting elements is described here for the first time. For this purpose, a Visual Basic macro for Microsoft Excel was written by adapting the direct stepwise calculation algorithm published by Kubinyi (Anal. Chim. Acta 1991, 247, 107-119, Fig. 1). In our procedure no pruning threshold factors were used to eliminate round up errors for large molecules. Then, the Kragten procedure of uncertainty propagation (Analyst 1994, 119, 2161-2165) was applied taking into account the correlation coefficients between the isotope abundances of the corresponding atoms. For bi-isotopic elements (C, H, N, Cl, Br) the correlation coefficients were given the value of -1. For tri- and tetra-isotopic elements the correlation coefficients were calculated using the mass dependent fractionation law used in stable isotope geochemistry and values of +1 or -1 were obtained depending on the isotope system considered. It was observed that for small organic molecules of natural isotope abundances, such as phenol or polybrominated diphenylethers, the method provided relatively small propagated uncertainties similar in magnitude to those measured experimentally. For (13)C-labelled molecules the calculated uncertainties were mainly due to the uncertainties in the isotope enrichment of (13)C and were much larger than the experimental uncertainties. For large molecules of natural isotope abundances, such as peptide C(68)H(107)N(17)O(25) (NIST 8327 RM), the uncertainties in their mass isotopomer distributions were much larger and their source could be assigned mainly to the uncertainty of the natural isotope composition of carbon. When the size of the molecule was even larger, such as bovine insulin (C(254)H(377)N(65)O(75)S(6)), Kragten procedure provided a good estimate for the uncertainty when the most probable isotope

18. A CAD Approach to Developing Mass Distribution and Composition Models for Spaceflight Radiation Risk Analyses

NASA Astrophysics Data System (ADS)

Zapp, E.; Shelfer, T.; Semones, E.; Johnson, A.; Weyland, M.; Golightly, M.; Smith, G.; Dardano, C.

For roughly the past three decades, combinatorial geometries have been the predominant mode for the development of mass distribution models associated with the estimation of radiological risk for manned space flight. Examples of these are the MEVDP (Modified Elemental Volume Dose Program) vehicle representation of Liley and Hamilton, and the quadratic functional representation of the CAM/CAF (Computerized Anatomical Male/Female) human body models as modified by Billings and Yucker. These geometries, have the advantageous characteristics of being simple for a familiarized user to maintain, and because of the relative lack of any operating system or run-time library dependence, they are also easy to transfer from one computing platform to another. Unfortunately they are also limited in the amount of modeling detail possible, owing to the abstract geometric representation. In addition, combinatorial representations are also known to be error-prone in practice, since there is no convenient method for error identification (i.e. overlap, etc.), and extensive calculation and/or manual comparison may is often necessary to demonstrate that the geometry is adequately represented. We present an alternate approach linking materials -specific, CAD-based mass models directly to geometric analysis tools requiring no approximation with respect to materials , nor any meshing (i.e. tessellation) of the representative geometry. A new approach to ray tracing is presented which makes use of the fundamentals of the CAD representation to perform geometric analysis directly on the NURBS (Non-Uniform Rational BSpline) surfaces themselves. In this way we achieve a framework for- the rapid, precise development and analysis of materials-specific mass distribution models.

19. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

PubMed

Zuo, Xiaojun; Fu, Dafang; Li, He

2012-11-01

20. 3D Mass Spectrometry Imaging Reveals a Very Heterogeneous Drug Distribution in Tumors

PubMed Central

Giordano, S.; Morosi, L.; Veglianese, P.; Licandro, S. A.; Frapolli, R.; Zucchetti, M.; Cappelletti, G.; Falciola, L.; Pifferi, V.; Visentin, S.; D’Incalci, M.; Davoli, E.

2016-01-01

Mass Spectrometry Imaging (MSI) is a widespread technique used to qualitatively describe in two dimensions the distribution of endogenous or exogenous compounds within tissue sections. Absolute quantification of drugs using MSI is a recent challenge that just in the last years has started to be addressed. Starting from a two dimensional MSI protocol, we developed a three-dimensional pipeline to study drug penetration in tumors and to develop a new drug quantification method by MALDI MSI. Paclitaxel distribution and concentration in different tumors were measured in a 3D model of Malignant Pleural Mesothelioma (MPM), which is known to be a very heterogeneous neoplasm, highly resistant to different drugs. The 3D computational reconstruction allows an accurate description of tumor PTX penetration, adding information about the heterogeneity of tumor drug distribution due to the complex microenvironment. The use of an internal standard, homogenously sprayed on tissue slices, ensures quantitative results that are similar to those obtained using HPLC. The 3D model gives important information about the drug concentration in different tumor sub-volumes and shows that the great part of each tumor is not reached by the drug, suggesting the concept of pseudo-resistance as a further explanation for ineffective therapies and tumors relapse. PMID:27841316

1. Lunar rocks as meteoroid detectors. [meteoroid mass distribution estimates using microcrater population

NASA Technical Reports Server (NTRS)

Hartung, J. B.; Hoerz, F.; Gault, D. E.

1973-01-01

About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles. The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. The population of craters on such a surface is directly related to the total population of particles impacting that surface. Crater size distribution data together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of interplanetary dust at 1 AU.

2. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

SciTech Connect

Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

2014-10-10

Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

3. The generalized added mass revised

NASA Astrophysics Data System (ADS)

De Wilde, Juray

2007-05-01

The reformulation of the generalized or apparent added mass presented by De Wilde [Phys. Fluids 17, 113304 (2005)] neglects the presence of a drag-type force in the gas and solid phase momentum equations. Reformulating the generalized added mass accounting for the presence of a drag-type force, an apparent drag force appears next to the apparent distribution of the filtered gas phase pressure gradient over the phases already found by De Wilde in the above-cited reference. The reformulation of the generalized added mass and the evaluation of a linear wave propagation speed test then suggest a generalized added mass type closure approach to completely describe filtered gas-solid momentum transfer, that is, including both the filtered drag force and the correlation between the solid volume fraction and the gas phase pressure gradient.

4. A possible explanation for the inconsistency between the Giotto grain mass distribution and ground-based observations

NASA Technical Reports Server (NTRS)

Perry, C. H.; Green, S. F.; Mcdonnell, J. A. M.

1988-01-01

Giotto measured the in situ Halley dust grain mass distribution with 2 instruments, Particle Impact Analyzer and Dust Impact Detection System (DIDSY), as well as the total intercepted mass from the deceleration of the spacecraft (Giotto Radio-Science Experiment, GRE). Ground based observations made shortly before encounter have fluxes much higher than would be predicted from Giotto data. It is concluded that Giotto DIDSY and GRE data represent observations of dust originating from a narrow track along the nucleus. They are consistent with ground based data, if assumptions are made about the level of activity along this track. The actual size distribution that should be used for modeling of the whole coma should not include the large mass excess actually observed by Giotto. Extrapolation of the small grain data should be used, since for these grains the velocity dispersion is low and temporal changes at the nucleus would not affect the shape of the mass distribution.

5. From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay

NASA Astrophysics Data System (ADS)

Poenaru, D. N.; Ivascu, M.; Maruhn*, J. A.; Greiner*, W.

1987-12-01

The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like α-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For 234U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus 264Fm, leading to doubly magic products 132Sn. The most probable light fragments from cold fission of 234,236U, 239Np and 240Pu are 100Zr, 104,106,108Mo respectively, in good agreement with experimental data.

6. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

NASA Astrophysics Data System (ADS)

Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

2016-09-01

Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

7. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

SciTech Connect

Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto; Martinez-Gonzalez, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

2013-08-01

Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters, leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.

8. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

NASA Astrophysics Data System (ADS)

Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

2017-03-01

Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

9. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

NASA Technical Reports Server (NTRS)

James, P. B.

1985-01-01

The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

10. Mass influx obtained from low-light-level television observations of faint meteors. [for modeling meteoroid mass distribution

NASA Technical Reports Server (NTRS)

Naumann, R. J.; Clifton, K. S.

1973-01-01

Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources.

11. ATLASGAL - Kinematic distances and the dense gas mass distribution of the inner Galaxy

NASA Astrophysics Data System (ADS)

Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Csengeri, T.; Walmsley, C. M.; Bontemps, S.; Russeil, D.; Bronfman, L.; Koribalski, B. S.; Schuller, F.

2015-07-01

Context. The formation of high mass stars and clusters occurs in giant molecular clouds. Objects in evolved stages of massive star formation such as protostars, hot molecular cores, and ultracompact HII regions have been studied in more detail than earlier, colder objects. Further progress thus requires the analysis of the time before massive protostellar objects can be probed by their infrared emission. With this in mind, the APEX Telescope Large Area Survey of the whole inner Galactic plane at 870 μm (ATLASGAL) has been carried out to provide a global view of cold dust and star formation at submillimetre wavelengths. Aims: We derive kinematic distances to a large sample of massive cold dust clumps from their measured line velocities. We estimate masses and sizes of ATLASGAL sources, for which the kinematic distance ambiguity is resolved. Methods: The ATLASGAL sample is divided into groups of sources, which are located close together, mostly within a radius of 2 pc, and have velocities in a similar range with a median velocity dispersion of ~1 km s-1. We use NH3, N2H+, and CS velocities to calculate near and far kinematic distances to those groups. Results: We obtain 296 groups of ATLASGAL sources in the first quadrant and 393 groups in the fourth quadrant, which are coherent in space and velocity. We analyse HI self-absorption and HI absorption to resolve the kinematic distance ambiguity to 689 complexes of submm clumps. They are associated with 12CO emission probing large-scale structure and 13CO (1-0) line as well as the 870 μm dust continuum on a smaller scale. We obtain a scale height of ~28 ± 2 pc and displacement below the Galactic midplane of ~-7 ± 1 pc. Within distances from 2 to 18 kpc ATLASGAL clumps have a broad range of gas masses with a median of 1050 M⊙ as well as a wide distribution of radii with a median of 0.4 pc. Their distribution in galactocentric radii is correlated with spiral arms. Conclusions: Using a statistically significant

12. Mass size distributions for atmospheric trace elements at the Zeppelin background station in Ny Ålesund, Spitsbergen

NASA Astrophysics Data System (ADS)

Havránek, V.; Maenhaut, W.; Ducastel, G.; Hanssen, J. E.

1996-04-01

Since late 1990, size-fractionated aerosol samples are collected with 8-stage cascade impactors at the Zeppelin background station in Spitsbergen. All samples collected up to the end of 1993 were analyzed by PIXE. Raw mass size distributions were obtained for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Zn, Br and Pb, and used to calculate mass median aerodynamic diameters for these elements. The raw size data were also converted into smooth size distributions by an inversion technique, and lognormal curves were fitted to the inverted distributions, so that the elemental mass concentration, geometric mean aerodynamic diameter and standard deviation of the different contributing modes were obtained. The results are compared with data from cascade impactor samplings in southern Norway. Variations in the size distributions over the course of the year are also examined.

13. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

SciTech Connect

Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

2012-02-29

We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

14. The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems

NASA Astrophysics Data System (ADS)

Gubin, S. V.; Lupachev, A. V.; Shatilovich, A. V.; Myl'nikov, A. P.; Ryss, A. Yu.; Veremeeva, A. A.

2016-12-01

The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.

15. The mass distribution of the unusual merging cluster Abell 2146 from strong lensing

NASA Astrophysics Data System (ADS)

Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen R.; Canning, Rebecca E. A.; Leonard, Adrienne; Santana, Rebecca; White, Jacob A.; Baum, Stefi A.; Clowe, Douglas I.; Edge, Alastair; Fabian, Andrew C.; McNamara, Brian R.; O'Dea, Christopher P.

2017-01-01

Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky, and it is unique in showing two large shocks on Chandra X-ray Observatory images. With an early stage merger, shortly after first core passage, one would expect the cluster galaxies and the dark matter to be leading the X-ray emitting plasma. In this regard, the cluster Abell 2146-A is very unusual in that the X-ray cool core appears to lead, rather than lag, the brightest cluster galaxy (BCG) in their trajectories. Here we present a strong-lensing analysis of multiple-image systems identified on Hubble Space Telescope images. In particular, we focus on the distribution of mass in Abell 2146-A in order to determine the centroid of the dark matter halo. We use object colours and morphologies to identify multiple-image systems; very conservatively, four of these systems are used as constraints on a lens mass model. We find that the centroid of the dark matter halo, constrained using the strongly lensed features, is coincident with the BCG, with an offset of ≈2 kpc between the centres of the dark matter halo and the BCG. Thus from the strong-lensing model, the X-ray cool core also leads the centroid of the dark matter in Abell 2146-A, with an offset of ≈30 kpc.

16. THE MASS DISTRIBUTION AND ASSEMBLY OF THE MILKY WAY FROM THE PROPERTIES OF THE MAGELLANIC CLOUDS

SciTech Connect

Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel E-mail: pjm@slac.stanford.edu E-mail: aklypin@nmsu.edu

2011-12-10

We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7}{sub -0.4} (stat.){sup +0.3}{sub -0.3} (sys.) Multiplication-Sign 10{sup 12} M{sub Sun} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M{sub Sun} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

17. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

SciTech Connect

Sampath, Ramanathan

2004-05-01

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

18. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BOMASS PARTICLES

SciTech Connect

Ramanathan Sampath

2004-05-01

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

19. Parelectric spectroscopy of drug-carrier-systems--distribution of carrier masses or activation energies.

PubMed

Sivaramakrishnan, R; Kankate, L; Niehus, H; Kramer, K D

2005-04-22

The answer of a high-frequency electromagnetic wave to a sample as termination of an open-ended coaxial line gives the mobility and the density of permanent electric dipole moments in the substance under test. As long as these dipoles are attached to carrier molecules of well defined masses, both parameters can be extracted from the reflected wave in a quick manner giving unambiguous results. The corresponding algorithm has been applied to solid lipid nanoparticles with glucocorticoid molecules attached to or incorporated in the carrier molecules. The results from measurements in the frequency region (0.1-100) MHz have recently been published. As soon as we have to envisage a distribution in carrier masses and/or in activation energies of the attached molecules, we have to apply a more sophisticated evaluation algorithm. The need for a more generalised algorithm is clear as well, when we have to deal with more than one dipole-carrying constituent in the samples. All these evaluation algorithms shall be presented together with the mathematical basis in a short but exact form.

20. Peakbin selection in mass spectrometry data using a consensus approach with estimation of distribution algorithms.

PubMed

Armañanzas, Rubén; Saeys, Yvan; Inza, Iñaki; García-Torres, Miguel; Bielza, Concha; van de Peer, Yves; Larrañaga, Pedro

2011-01-01

Progress is continuously being made in the quest for stable biomarkers linked to complex diseases. Mass spectrometers are one of the devices for tackling this problem. The data profiles they produce are noisy and unstable. In these profiles, biomarkers are detected as signal regions (peaks), where control and disease samples behave differently. Mass spectrometry (MS) data generally contain a limited number of samples described by a high number of features. In this work, we present a novel class of evolutionary algorithms, estimation of distribution algorithms (EDA), as an efficient peak selector in this MS domain. There is a trade-of f between the reliability of the detected biomarkers and the low number of samples for analysis. For this reason, we introduce a consensus approach, built upon the classical EDA scheme, that improves stability and robustness of the final set of relevant peaks. An entire data workflow is designed to yield unbiased results. Four publicly available MS data sets (two MALDI-TOF and another two SELDI-TOF) are analyzed. The results are compared to the original works, and a new plot (peak frequential plot) for graphically inspecting the relevant peaks is introduced. A complete online supplementary page, which can be found at http://www.sc.ehu.es/ccwbayes/members/ruben/ms, includes extended info and results, in addition to Matlab scripts and references.

1. Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets

NASA Astrophysics Data System (ADS)

Bhattacharjee, A.; Guo, L.; Huang, Y.

2013-12-01

Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is resistive diffusion.

2. INFORMATION ON THE MILKY WAY FROM THE 2MASS ALL SKY STAR COUNT: BIMODAL COLOR DISTRIBUTIONS

SciTech Connect

Chang, Chan-Kao; Lai, Shao-Yu; Peng, Ting-Hung; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

2012-11-10

The J - K{sub s} color distributions (CDs) with a bin size of 0.05 mag has been carried out for the entire Milky Way using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, with a red peak at 0.8 < J - K{sub s} < 0.85 and a blue peak at 0.3 < J - K{sub s} < 0.4. The colors of the red peak are more or less the same for the whole sky, but those of the blue peak depend on Galactic latitude (J - K{sub s} {approx} 0.35 at low Galactic latitudes and 0.35 < J - K{sub s} < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all-sky 2MASS CDs, we assemble an empirical Hertzsprung-Russell (H-R) diagram, which is composed of observational-based near-infrared H-R diagrams and color-magnitude diagrams, and incorporate a Milky Way model. In the empirical H-R diagram, the main-sequence turn-off for stars in the thin disk is relatively bluer, (J - K{sub s} ){sub 0} = 0.31, compared with that of the thick disk which is (J - K{sub s} ){sub 0} = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main-sequence turn-off. In general, the 2MASS CDs can be treated as a tool to measure the age of the stellar population of the Milky Way in a statistical manner and to our knowledge it is the first attempt to do so.

3. Mass Transport Deposits in the Santaren Channel: Distribution, Characteristics, and Potential Triggering Mechanisms

NASA Astrophysics Data System (ADS)

Schnyder, J.

2015-12-01

Submarine slope failures are a likely cause for tsunami generation along the East U.S. coast. A possible source are the large slope failures along western Great Bahama Bank (GBB). Numerical models simulate tsunami generation and propagation through the Straits of Florida, caused by these Pleistocene mass wasting events. In order to estimate the likelihood and extent of future landslides, distribution, characteristics, and possible triggering mechanisms of previous failures and their associated mass transport deposits (MTD) have to be investigated. In 2013, the University of Hamburg acquired 2D high-resolution multichannel seismic data, multibeam data, and subbottom profiles inside the Santaren Channel, along the slopes of western GBB and Cay Sal Bank (CSB). The two platforms are different in two ways. CSB is part of the Cuban Fold and Thrust Belt while GBB is situated in a tectonically quiet zone. In addition, the slopes of western GBB are on the leeward side of the bank, while the eastern slopes of CSB are in a windward position. Differences in nature and size of mass wasting events between the Cay Sal side and the western GBB side of the dataset show how influential the tectonically active Cuban Fold and Thrust Belt is to the generation of large MTDs in this area. In the study area, the slope failures can be divided in two categories; small-scale in situ failures with high frequencies on the slopes, dominant on the western GBB side, and large landslides with a lower frequency, but higher volumes and transport distances on the toe of the slope and in the basin, dominant on the Cay Sal side. The distribution of in situ failures, such as slump and debris flow alternation, shows the interplay between high and low inner strength of the sediment, respectively. On the other hand, large MTDs caused by submarine landslides suggest movement in an unconfined manner. Internal sediment preconditions derived from sea level oscillations are suggested as triggering mechanisms

4. Automated anatomical interpretation of ion distributions in tissue: linking imaging mass spectrometry to curated atlases.

PubMed

Verbeeck, Nico; Yang, Junhai; De Moor, Bart; Caprioli, Richard M; Waelkens, Etienne; Van de Plas, Raf

2014-09-16

Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments.

5. Automated Anatomical Interpretation of Ion Distributions in Tissue: Linking Imaging Mass Spectrometry to Curated Atlases

PubMed Central

2015-01-01

Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments. PMID:25153352

6. Investigation of fine-structure dips in fission-fragment mass distribution: An asymmetric two centre shell model approach

NASA Astrophysics Data System (ADS)

Malik, Sham S.

2017-04-01

The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.

7. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

DOE PAGES

Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

2016-04-01

In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙),more » and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

8. Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT

NASA Technical Reports Server (NTRS)

2004-01-01

Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.

9. Normative data of body fat mass and its distribution as assessed by DXA in Indian adult population.

PubMed

Marwaha, Raman K; Tandon, Nikhil; Garg, M K; Narang, Archna; Mehan, Neena; Bhadra, Kuntal

2014-01-01

Dual-energy X-ray absorptiometry (DXA) assessment of body fat mass is precise and highly correlated with under water weighing. In view of ethnic differences, we undertook this study to prepare normative data for body fat mass in apparently healthy adult Indians and correlate it with body mass index (BMI). This cross-sectional population-based study included 2347 subjects (male: 924; female: 1423) aged >20 yr who participated in a general health examination. They were evaluated for anthropometry and body fat mass by DXA. All subjects were categorized as overweight and obese based on standard BMI criteria. Mean age and BMI were 49.1 ± 18.2yr and 25.0 ± 4.7kg/m(2), respectively. Mean percent total and regional fat (trunk, arm, and leg) reached maximum in the age group of 30-40yr in males and 50-60yr in females. Females had significantly higher total and regional fat mass compared with males. Fat mass was positively correlated with age (r = 0.224; p < 0.00001) and BMI (r = 0.668; p < 0.00001). Prevalence of overweight and obesity was seen in 2119 (46.1%) and 536 (13.8%), respectively, according to World Health Organization definition and 64.0% and 31.1%, respectively, as per Indian guidelines. Percent total body fat mass (PTBFM) of 25% in males and 30% in females corresponds to BMI of 22.0kg/m(2) with sensitivity of >80% and specificity of >70% in receiver operating characteristic curve analysis. Body fat mass in Indians is higher than that in Western populations for a given age and BMI. PTBFM of 25% in males and 30% in females corresponds to BMI of 22kg/m(2) in Indians.

10. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

PubMed

Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

2016-07-01

Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

11. Evidence for the inside-out growth of the stellar mass distribution in galaxy clusters since z ~ 1

NASA Astrophysics Data System (ADS)

van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Balogh, Michael L.; McGee, Sean L.

2015-05-01

We study the radial number density and stellar mass density distributions of satellite galaxies in a sample of 60 massive clusters at 0.04 masses, and then statistically subtract fore- and background sources using data from the COSMOS survey. We measure the galaxy number density and stellar mass density distributions in logarithmically spaced bins over 2 orders of magnitude in radial distance from the BCGs. For projected distances in the range 0.1 mass distribution is well-described by an NFW profile with a concentration of c = 2.03 ± 0.20. However, at smaller radii we measure a significant excess in the stellar mass in satellite galaxies of about 1011M⊙ per cluster, compared to these NFW profiles. We do obtain good fits to generalised NFW profiles with free inner slopes and to Einasto profiles. To examine how clusters assemble their stellar mass component over cosmic time, we compare this local sample to the GCLASS cluster sample at z ~ 1, which represents the approximate progenitor sample of the low-z clusters. This allows for a direct comparison, which suggests that the central parts (R< 0.4 Mpc) of the stellar mass distributions of satellites in local galaxy clusters are already in place at z ~ 1, and contain sufficient excess material for further BCG growth. Evolving towards z = 0, clusters appear to assemble their stellar mass primarily onto the outskirts, making them grow in an inside-out fashion. Appendix A is available in electronic form at http://www.aanda.org

12. A Detailed Study of the Mass Distribution of the Galaxy Cluster RXC J2248.7-4431

NASA Astrophysics Data System (ADS)

Caminha, G. B.; Rosati, P.; Grillo, C.; the CLASH-VLT Team

2016-02-01

In this work we use strong gravitational lensing techniques to constrain the total mass distribution of the galaxy cluster RXC J2248.7-4432 (RXC J2248, zlens = 0.348), also known as Abell S1063, observed within the Cluster Lensing And Supernova survey with Hubble (CLASH). Thanks to its strong lensing efficiency and exceptional data quality from the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope, we can build a parametric model for the total mass distribution. Using the positions of the multiple images generated by 7 multiply-lensed background sources with measured spectroscopic redshifs, we find that the best-fit parametrisation for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo, and of truncated pseudo-isothermal mass profiles for the cluster galaxies. This model is capable to predict the positions of the multiple images with an unprecedented precision of ≈ 0”.3. We also show that varying freely the cosmological parameters of the ΛCDM model, our strong lensing model can constrain the underlying geometry of the universe via the angular diameter distances between the lens and the sources and the observer and the sources.

13. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

NASA Astrophysics Data System (ADS)

Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

2016-05-01

The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

14. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

NASA Astrophysics Data System (ADS)

Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

2014-07-01

We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

15. Body mass index and body fat distribution in newly-arrived Vietnamese refugees in Sydney, Australia.

PubMed

Bermingham, M; Brock, K; Nguyen, D; Tran-Dinh, H

1996-10-01

Body mass index (BMI), body fat distribution and some behavioural variables were examined in an ethnic Vietnamese population newly arrived in Australia. The age range was 23 to 74 years for males (n = 246, mean = 38.8) and 24 to 66 for females (n = 165, mean = 36.4). Mean BMI was 20.62 +/- 2.65 (male) and 21.25 +/- 3.16 (female). Waist-to-hip ratio (WHR) was 0.844 (males) v 0.802 (females), p < 0.0001: waist was 73.7 cm (males) v 71.7 cm (females), (p = 0.007). Male smoking was 69%, female, 1%; the BMI of male non-smokers was higher than that of smokers 21.22 v 20.35 (p = 0.0017). Exercise patterns, diet or alcohol intake did not appear to affect BMI. The mean BMI of this refugee Vietnamese population is low by comparison with the Australian population. Vietnamese females although of lower mean BMI, have higher WHR than Australian females.

16. A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging

PubMed Central

Giordano, Silvia; Pifferi, Valentina; Morosi, Lavinia; Morelli, Melinda; Falciola, Luigi; Cappelletti, Giuseppe; Visentin, Sonja; Licandro, Simonetta A.; Frapolli, Roberta; Zucchetti, Massimo; Pastorelli, Roberta; Brunelli, Laura; D’Incalci, Maurizio; Davoli, Enrico

2017-01-01

The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice. PMID:28336905

17. Evaluation of Sparfloxacin Distribution by Mass Spectrometry Imaging in a Phototoxicity Model

NASA Astrophysics Data System (ADS)

Boudon, Stéphanie Marie; Morandi, Grégory; Prideaux, Brendan; Staab, Dieter; Junker, Ursula; Odermatt, Alex; Stoeckli, Markus; Bauer, Daniel

2014-10-01

Mass spectrometry imaging (MSI) was applied to samples from mouse skin and from a human in vitro 3D skin model in order to assess its suitability in the context of photosafety evaluation. MSI proved to be a suitable method for the detection of the model compound sparfloxacin in biological tissues following systemic administration (oral gavage, 100 mg/kg) and subsequent exposure to simulated sunlight. In the human in vitro 3D skin model, a concentration-dependent increase as well as an irradiation-dependent decrease of sparfloxacin was observed. The MSI data on samples from mouse skin showed high signals of sparfloxacin 8 h after dosing. In contrast, animals irradiated with simulated sunlight showed significantly lower signals for sparfloxacin starting already at 1 h postirradiation, with no measurable intensity at the later time points (3 h and 6 h), suggesting a time- and irradiation-dependent degradation of sparfloxacin. The acquisition resolution of 100 μm proved to be adequate for the visualization of the distribution of sparfloxacin in the gross ear tissue samples, but distinct skin compartments were unable to be resolved. The label-free detection of intact sparfloxacin was only the first step in an attempt to gain a deeper understanding of the phototoxic processes. Further work is needed to identify the degradation products of sparfloxacin implicated in the observed inflammatory processes in order to better understand the origin and the mechanism of the phototoxic reaction.

18. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

PubMed

Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

2016-10-01

We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two (13) C atoms ((13) C2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of (13) C2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% (13) C2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd.

19. Stereophotogrammetrie Mass Distribution Parameter Determination Of The Lower Body Segments For Use In Gait Analysis

NASA Astrophysics Data System (ADS)

Sheffer, Daniel B.; Schaer, Alex R.; Baumann, Juerg U.

1989-04-01

Inclusion of mass distribution information in biomechanical analysis of motion is a requirement for the accurate calculation of external moments and forces acting on the segmental joints during locomotion. Regression equations produced from a variety of photogrammetric, anthropometric and cadaeveric studies have been developed and espoused in literature. Because of limitations in the accuracy of predicted inertial properties based on the application of regression equation developed on one population and then applied on a different study population, the employment of a measurement technique that accurately defines the shape of each individual subject measured is desirable. This individual data acquisition method is especially needed when analyzing the gait of subjects with large differences in their extremity geo-metry from those considered "normal", or who may possess gross asymmetries in shape in their own contralateral limbs. This study presents the photogrammetric acquisition and data analysis methodology used to assess the inertial tensors of two groups of subjects, one with spastic diplegic cerebral palsy and the other considered normal.

20. Existence and differential geometric properties of continuous families of periodic three-body motions with non-uniform mass distributions

NASA Astrophysics Data System (ADS)

Khajeh Salehani, Mahdi

Using the method of analytic continuation in an equivariant differential geometric setting, we exhibit two interesting families of vanishing angular momentum periodic orbits for the Newtonian three-body problem with non-uniform mass distributions having two equal masses which connect at the celebrated figure-8 orbit, exhibited by A. Chenciner and R. Montgomery (2000) in the case of equal masses, and yield a continuous family of periodic three-body motions in the plane. At one end of the family, when the two equal masses are infinitesimal and the third one reaches the value of +1, we arrive at a solution of a double Kepler problem; at the other end of the family, when the third mass is infinitesimal, we have a special case of periodic solution of a restricted three-body problem.

1. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

NASA Astrophysics Data System (ADS)

Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

2014-02-01

The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

2. Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration

NASA Astrophysics Data System (ADS)

Imhoff, Paul T.; Jaffé, Peter R.

1994-09-01

Gas-water phase mass transfer was examined in a homogeneous sand with both the gas and water phase mobile: water was infiltrated from the top of the sand column while benzene-laden air flowed upward from the bottom. Mass-transfer limitations for this situation may be important for applications of bioventing, where water and nutrients are added at the ground surface simultaneously with induced air movement to carry oxygen and volatile organics to microbial populations. Gas- and water-phase samples indicate that gas-water phase mass transfer was sufficiently fast that equilibrium between gas and water phases was achieved at all sampling locations within the porous medium. Lower-bound estimates for the gas-water mass-transfer rate coefficient show that mass transfer was at least 10-40 times larger than predictions made from an empirical model developed for gas-water phase mass transfer in an identical porous medium. A water-phase tracer test demonstrates that water flow was much more uniform in this study than in those earlier experiments, which is a likely explanation for the differing rates of gas-water phase mass transfer. It is hypothesized that the liquid distribution in previous laboratory experiments was less uniform because of preferential flow paths due to wetting front instabilities. Gas-water phase mass-transfer rate coefficients reported in this investigation are for an ideal situation of uniform water infiltration: mass-transfer rates in field soils are expected to be significantly smaller.

3. Apparent Geocenter Variations from IGS Analysis

NASA Astrophysics Data System (ADS)

Ferland, R.

2001-12-01

Natural Resources Canada's (NRCan) Geodetic Survey Division (GSD), on behalf of the International GPS Service (IGS) and its Reference Frame Working Group, combines a consistent set of station coordinates, velocities, Earth Rotation Parameters (ERP) and apparent geocenter to produce the IGS official station position/ERP solutions in the Software Independent Exchange (SINEX) format The weekly Analysis Centers (AC) solutions include estimates of weekly station coordinates, apparent geocenter positions and daily ERPs. All the AC products are required to be in a consistent reference frame. The combination of station coordinates originating from different ACs involves removing all available constraints and re-scaling the covariance information. The weekly combination generally includes estimates of coordinates for 120 to 140 globally distributed stations. While the cumulative solution currently includes approximately 280 stations, about 215 of them have complete information and reliable velocity estimates. The IGS combined products are required to be consistent with the most recent realization of ITRF (currently ITRF97, soon in ITRF2000). This is done by transforming the weekly and cumulative solutions, respectively using 7 and 14 Helmert transformation parameters (3 translations, 3 rotations, 1 scale and their respective rates). The transformation parameters are determined from a subset of 51 high quality, globally distributed and generally collocated (with other space techniques) stations, also known as Reference Frame (RF) stations. The weekly estimated IGS apparent geocenter for the period between 99/08/01 (Wk 1012) and 01/08/04 (Wk 1025) has been analyzed. The apparent X, Y and Z geocenter components were estimated with respect to the realization of ITRF97. The estimated weekly geocenter positions relied on COD, ESA and JPL SINEX solutions for the period of interest. The formal error for the weekly geocenter is about 6-8mm for the XY components and 8-10mm for the Z

4. A method for estimating distributions of mass transfer rate coefficients with application to purging and batch experiments

NASA Astrophysics Data System (ADS)

Hollenbeck, K. J.; Harvey, C. F.; Haggerty, R.; Werth, C. J.

1999-04-01

Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding of pore-scale heterogeneity demonstrate that two (or even a few) rate coefficients are insufficient in many cases. Here, we investigate a piece-wise linear model for a continuous distribution of rate coefficients, that has several advantages over previously used statistical' distribution models (with functional form from gamma or lognormal PDF's): (1) distributions of arbitrary, even bimodal, shapes can be represented; (2) linear estimation methods can be applied to determine the distribution from experimental data; (3) the uncertainty in the distribution can be determined for each of its sections; and (4) the relationship between the time scales of available data and those of estimatable mass transfer processes can be investigated. A statistical model refinement algorithm is presented that reduces the number of parameters (sections of the piece-wise linear model) to the admissible minimum. We show that purging experiments allow estimation of a wider zone of the rate distribution than do batch experiments, and hence will provide predictions that are accurate over a wider range of time scales. Finally, in an application to TCE gas-purging desorption data, the piece-wise linear rate-distribution model has a higher probability of being adequate than those using a gamma or lognormal distribution or a single rate coefficient.

5. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto

PubMed Central

Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

2017-01-01

Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography–electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung. PMID:28272490

6. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto.

PubMed

Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

2017-03-08

Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography-electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.

7. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

NASA Technical Reports Server (NTRS)

Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; Yi, Donghui; Wang, Weili

2011-01-01

We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

8. The Planetary Nebula System and Dynamics of NGC 5128. III. Kinematics and Halo Mass Distributions

NASA Astrophysics Data System (ADS)

Hui, Xiaohui; Ford, Holland C.; Freeman, Kenneth C.; Dopita, Michael A.

1995-08-01

We present a study of the halo dynamics and mass distributions of the nearby giant elliptical galaxy NGC 5128 using planetary nebulae (PNs) as test particles. Radial velocities of 433 PNs were obtained with multifiber spectrographs on both the Anglo-Australian Telescope (AAT) and the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope. The velocities were measured from the [O III] λ5007 emission line with a typical 1 σ error of ±4 km s-1 and ±30 km s-1 for the AAT and the CTIO data, respectively. These PNs cover the entire galaxy to a radius of 10 kpc and extend along the photometric major axis out to 20 kpc. The PN velocity field shows the distinctive characteristics of a triaxial potential: the galaxy's rotation axis is offset from its photometric minor axis by 39°±10°. the rotation axis and the line of maximum rotation are likely not orthogonal. We also find that the ordered motions of the stars become more important with increasing radius compared to their random motions. The rotation reaches approximately 100 km s-1 and 50 km s-1 along the photometric major and minor axes, giving a local V/σ ratio of about 1.0 and 0.5, respectively. The aximuthal variation of the velocity dispersion appears to be modulated by rotation, i.e., it reaches a maximum where the largest rotation is observed and drops to a minimum at zero rotation. The amplitude of this modulation is about 20km s-1, compared to a mean dispersion velocity of 110 km s-1. The kinematics of the globular clusters depend on the metallicity Taking [Fe/H] = -1.0 as the dividing point, the metal-poor clusters do not show any significant rotation. However, the metal-rich clusters show both major and minor axis rotation, and the amplitudes of the rotation are similar to that of the PNs. The stellar velocity dispersion measured from absorption-line spectra together with an Hα rotation curve of the dust lane suggest that the stellar orbits are isotropic and the mass-to-light ratio (M/LB) is 3

9. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

PubMed

Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

2016-01-01

Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

10. Evaluating the Effects of Massed and Distributed Practice on Acquisition and Maintenance of Tacts and Textual Behavior with Typically Developing Children

ERIC Educational Resources Information Center

Haq, Shaji S.; Kodak, Tiffany

2015-01-01

This study evaluated the effects of massed and distributed practice on the acquisition of tacts and textual behavior in typically developing children. We compared the effects of massed practice (i.e., consolidating all practice opportunities during the week into a single session) and distributed practice (i.e., distributing all practice…

11. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer

NASA Astrophysics Data System (ADS)

Cvetkovic, V.; Fiori, A.; Dagan, G.

2016-12-01

The driving mechanism of tracer transport in aquifers is groundwater flow which is controlled by the heterogeneity of hydraulic properties. We show how hydrodynamics and mass transfer are coupled in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of residence time are illustrated assuming a log-normal hydraulic conductivity field and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity.

12. Non-thermal internal energy distribution of ions observed in an electrospray source interfaced with a sector mass spectrometer.

PubMed

Rondeau, David; Galland, Nicolas; Zins, Emilie-Laure; Pepe, Claude; Drahos, László; Vékey, Károly

2011-02-01

The internal energy distribution P(E(int)) of ions emitted in an electrospray (ESI) source interfaced with a sector mass spectrometer is evaluated by using the experimental survival yield (SY) method including the kinetic shift. This method is based on the relationship between the degree of fragmentation of an ion and its amount of internal energy and uses benzylpyridinium cations due to their simple fragmentation scheme. Quantum chemical calculations are performed, namely at G3(MP2)//B3LYP and QCISD/MP2 levels of theory. The results show that the internal energy distribution of the ions emitted in the ESI source interfaced with a sector analyzer is very narrow. The MassKinetics software is used to confirm these observations. The P(E(int)) is the parameter that allows to fit the experimental SY of each substituted benzylpyridinium cation with theoretical mass spectra generated by the MassKinetics software. The resulting internal energy distributions are similar to the ones obtained with the experimental SY method. This indicates that in the present experimental conditions, P(E(int)) cannot be compared with a 'thermal-like' Boltzmann distribution. In addition, it appears that with the sector analyzer, increasing the collision energy in the first pumping stage of the ESI source does not correspond to a warm-up of the produced ions.

13. Spatial and quantitative datasets of the pancreatic β-cell mass distribution in lean and obese mice

PubMed Central

Parween, Saba; Eriksson, Maria; Nord, Christoffer; Kostromina, Elena; Ahlgren, Ulf

2017-01-01

A detailed understanding of pancreatic β-cell mass distribution is a key element to fully appreciate the pathophysiology of models of diabetes and metabolic stress. Commonly, such assessments have been performed by stereological approaches that rely on the extrapolation of two-dimensional data and provide very limited topological information. We present ex vivo optical tomographic data sets of the full β-cell mass distribution in cohorts of obese ob/ob mice and their lean controls, together with information about individual islet β-cell volumes, their three-dimensional coordinates and shape throughout the volume of the pancreas between 4 and 52 weeks of age. These data sets offer the currently most comprehensive public record of the β-cell mass distribution in the mouse. As such, they may serve as a quantitative and topological reference for the planning of a variety of in vivo or ex vivo experiments including computational modelling and statistical analyses. By shedding light on intra- and inter-lobular variations in β-cell mass distribution, they further provide a powerful tool for the planning of stereological sampling assessments. PMID:28291266

14. Assessment of planar liquid-laser-induced fluorescence measurements for spray mass distributions of like-doublet injectors

NASA Astrophysics Data System (ADS)

Jung, Kihoon; Koh, Hyeonseok; Yoon, Youngbin

2003-08-01

The planar liquid-laser-induced fluorescence (PLLIF) technique has been known to be a useful tool for the measurement of the spray mass distributions for various spray injectors because it can obtain two-dimensional images with high spatial resolutions without any intrusion on the spray field. In the cases of dense sprays, however, it has been known that the extinctions of the incident laser beam or fluorescence signal and the secondary emission can cause errors in quantifying the spray mass distributions. Since a like-doublet injector, which is commonly used in liquid rocket engines, has a locally concentrated spray zone at the spray centre, we investigated the applicability of the PLLIF technique for this injector. From the experimental results, we found out that the extinctions of the incident laser beam and fluorescence signal are not significant because the concentrated spray zone is narrow. Also, we found out an optimal incident laser power which can avoid a nonlinear increase of fluorescence signal at the spray centre as well as obtain a high signal-to-noise ratio, and we measured the spray mass concentration of the like-doublet injector spray using the optimal laser power. In order to assess the accuracy of the PLLIF data, we converted the spray mass concentration into the mass flux distribution and compared it with the data obtained by a mechanical patternator and phase Doppler particle analyser. From the result that the PLLIF data showed good agreement with those of the mechanical patternator, we concluded that the PLLIF technique can be successfully applied to measuring the mass distributions of the like-doublet injectors.

15. Signatures Of A Putative Planetary Mass Solar Companion On The Orbital Distribution Of Tno's And Centaurs

NASA Astrophysics Data System (ADS)

Gomes, Rodney S.; Soares, J. S.

2012-05-01

Gomes et al. 2006 (Icarus 184, 589) show that a planetary mass solar companion (PMSC) can produce orbits in an inner Oort cloud that can account for Sedna's orbit. On the other hand, one should expect that this faraway planet would also produce some peculiar orbital distribution for distant TNO's and Centaurs. A pair of interesting orbits in this respect are those of 2006 SQ372 and 2000 OO67. These objects have very large semimajor axes and perihelion between Uranus and Neptune orbits. It has been claimed that a likely source for 2006 SQ372 is the Oort cloud. Yet a PMSC has an important effect on objects at inner Oort cloud distances, say between 300 AU and 2000 AU, to make their perihelion distances to continually oscillate with a large enough amplitude to account for objects both inside and outside Neptune's orbit. This naturally produces an extra amount of TNO's with semimajor axes between 300 and 2000 AU and perihelion inside Neptune's orbit, like 2006 SQ372 and 2000 OO67. This signature should be found in present observations. To deal with this problem we construct a numerical simulator and apply it to populations of distant TNO's produced by numerical integration of planetesimals and planets according to the Nice model, either including or not a PMSC. With the results from the numerical simulator we compare the model with and without the PMSC with observations. We conclude that a PMSC is compatible with the existence of 2006 SQ372 and 2000 OO67 and, in fact, although not conclusively, we can also claim that the observations of 2006 SQ372 and 2000 OO67, compared to all other scattered objects, would be lucky events if no PMSC exists.

16. Distributed modeling of snow cover mass and energy balance in the Rheraya watershed (High Atlas, Morocco)

NASA Astrophysics Data System (ADS)

Marchane, Ahmed; Gascoin, Simon; Jarlan, Lionel; Hanich, Lahoucine

2016-04-01

The mountains of the High Moroccan Atlas represent an important source of water for the neighboring arid plains. Despite the importance of snow in the regional water balance, few studies were devoted to the modeling of the snow cover at the watershed scale. This type of modeling is necessary to characterize the contribution of snowmelt to water balance and understanding its sensitivity to natural and human-induced climate fluctuations. In this study, we applied a spatially-distributed model of the snowpack evolution (SnowModel, Liston & Elder 2006) on the Rheraya watershed (225 km²) in the High Atlas in order to simulate the mass and energy balance of the snow cover and the evolution of snow depth over a full season (2008-2009). The model was forced by 6 meteorological stations. The model was evaluated locally at the Oukaimeden meteorological station (3230 m asl) where snow depth is recorded continuously. To evaluate the model at the watershed scale we used the daily MODIS snow cover products and a series of 15 cloud-free optical images acquired by the FORMOSAT-2 satellite at 8-m resolution from February to June 2009. The results showed that the model is able to simulate the snow depth in the Oukaimeden station for the 2008-2009 season, and also to simulate the spatial and temporal variation of of the snow cover area in the watershed Rheraya. Based on the model output we examine the importance of the snow sublimation on the water balance at the watershed scale.

17. The effect of pre-evaporation on ion distributions in inductively coupled plasma mass spectrometry

NASA Astrophysics Data System (ADS)

Liu, Shulan; Beauchemin, Diane

2006-02-01

The connecting tube (2 or 5-mm i. d., 11-cm long) between the spray chamber and the torch was heated (to 400 °C) to investigate the effect of pre-evaporation on the distribution of ions in inductively coupled plasma mass spectrometry (ICP-MS). Axial and radial profiles of analyte ions (Al +, V +, Cr +, Ni +, Zn +, Mn +, Zn +, As +, Se +, Mo +, Cd +, Sb +, La +, Pb +) in 1% HNO 3 as well as some polyatomic ions (LaO +, ArO +, ArN +, CO 2+) were simultaneously obtained on a time-of-flight ICP-MS instrument. Upon heating the connecting tube, the optimal axial position of all elements shifted closer to the load coil. Without the heated tube, 3.5 mm was the compromise axial position for multielemental analysis, which was optimal for 6 analytes. With the heated tube, this position became 1.5 mm, which was then optimal for 9 of the 14 analytes. Furthermore, the radial profiles, which were wide with a plateau in their middle without heating, became significantly narrower and Gaussian-like with a heated tube. This narrowing, which was most important for the 5-mm tube, slightly (by a factor of two at the most) yet significantly (at the 95% confidence level) improved the sensitivity of all elements but Mn upon optimisation of the axial position for compromise multi-element analysis. Furthermore, a concurrent decrease in the standard deviation of the blank was significant at the 95% confidence level for 9 of the 14 analytes. For most of the analytes, this translated into a two-fold to up to an order of magnitude improvement in detection limit, which is commensurate with a reduction of noise resulting from the smaller droplets entering the plasma after traversing the pre-evaporation tube.

18. The Spatial Distribution of Organics toward the High-mass YSO NGC 7538 IRS9

NASA Astrophysics Data System (ADS)

Öberg, Karin I.; Boamah, Mavis D.; Fayolle, Edith C.; Garrod, Robin T.; Cyganowski, Claudia J.; van der Tak, Floris

2013-07-01

Complex molecules have been broadly classified into three generations dependent on the mode of formation and the required formation temperature (<25, 25-100 K, and >100 K). Around massive young stellar objects (MYSOs), icy grain mantles and gas are exposed to increasingly higher temperatures as material accretes from the outer envelope in toward the central hot region. The combination of this temperature profile and the generational chemistry should result in a changing complex molecular composition with radius around MYSOs. We combine IRAM 30 m and Submillimeter Array observations to explore the spatial distribution of organic molecules around the high-mass young stellar object NGC 7538 IRS9, whose weak complex molecule emission previously escaped detection. We find that emission from N-bearing organics and CH3OH present substantial increases in emission around 8000 AU and R < 3000 AU, while unsaturated O-bearing molecules and hydrocarbons do not. The increase in line flux for some complex molecules in the envelope, around 8000 AU or 25 K, is consistent with recent model predictions of an onset of complex ice chemistry at 20-30 K. The emission increase for many of the same molecules at R < 3000 AU suggests the presence of a weak hot core, where thermal ice evaporation and hot gas-phase reactions drive the chemistry. Complex organics thus form at all radii and temperatures around this protostar, but the composition changes dramatically as the temperature increases, which is used together with an adapted gas-grain astrochemical model to constrain the chemical generation(s) to which different classes of molecules belong.

19. THE SPATIAL DISTRIBUTION OF ORGANICS TOWARD THE HIGH-MASS YSO NGC 7538 IRS9

SciTech Connect

Oeberg, Karin I.; Boamah, Mavis D.; Fayolle, Edith C.; Garrod, Robin T.; Cyganowski, Claudia J.; Van der Tak, Floris

2013-07-10

Complex molecules have been broadly classified into three generations dependent on the mode of formation and the required formation temperature (<25, 25-100 K, and >100 K). Around massive young stellar objects (MYSOs), icy grain mantles and gas are exposed to increasingly higher temperatures as material accretes from the outer envelope in toward the central hot region. The combination of this temperature profile and the generational chemistry should result in a changing complex molecular composition with radius around MYSOs. We combine IRAM 30 m and Submillimeter Array observations to explore the spatial distribution of organic molecules around the high-mass young stellar object NGC 7538 IRS9, whose weak complex molecule emission previously escaped detection. We find that emission from N-bearing organics and CH{sub 3}OH present substantial increases in emission around 8000 AU and R < 3000 AU, while unsaturated O-bearing molecules and hydrocarbons do not. The increase in line flux for some complex molecules in the envelope, around 8000 AU or 25 K, is consistent with recent model predictions of an onset of complex ice chemistry at 20-30 K. The emission increase for many of the same molecules at R < 3000 AU suggests the presence of a weak hot core, where thermal ice evaporation and hot gas-phase reactions drive the chemistry. Complex organics thus form at all radii and temperatures around this protostar, but the composition changes dramatically as the temperature increases, which is used together with an adapted gas-grain astrochemical model to constrain the chemical generation(s) to which different classes of molecules belong.

20. Gas chromatographic simulated distillation-mass spectrometry for the determination of the boiling point distributions of crude oils

PubMed

Roussis; Fitzgerald

2000-04-01

The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.

1. The Differential cross section distribution of Drell-Yan dielectron pairs in the z boson mass region

SciTech Connect

Han, Jiyeon

2008-01-01

We report on a measurement of the rapidity distribution, dσ/dy, for Z=Drell-Yan → ee events produced in p$\\bar{p}$ collisions at √s = 1.96 TeV. The data sample consists of 2.13 fb-1 corresponding to about 160,000 Z/Drell-Yan → ee candidates in the Z boson mass region collected by the Collider Detector at Fermilab. The dσ/dy distribution, which is measured over the full kinematic range for e+e- pairs in the invariant mass range 66 < Mee < 116 GeV/c2, is compared with theory predictions. There is good agreement between the data and predictions of Quantum Chromodynamics in Next to Leading Order with the CTEQ6.1M Parton Distribution Functions.

2. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

NASA Technical Reports Server (NTRS)

VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Haussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.

2014-01-01

Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

3. Prediction of the size distributions of methanol-ethanol clusters detected in VUV laser/time-of-flight mass spectrometry.

PubMed

Liu, Yi; Consta, Styliani; Shi, Yujun; Lipson, R H; Goddard, William A

2009-06-25

The size distributions and geometries of vapor clusters equilibrated with methanol-ethanol (Me-Et) liquid mixtures were recently studied by vacuum ultraviolet (VUV) laser time-of-flight (TOF) mass spectrometry and density functional theory (DFT) calculations (Liu, Y.; Consta, S.; Ogeer, F.; Shi, Y. J.; Lipson, R. H. Can. J. Chem. 2007, 85, 843-852). On the basis of the mass spectra recorded, it was concluded that the formation of neutral tetramers is particularly prominent. Here we develop grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) frameworks to compute cluster size distributions in vapor mixtures that allow a direct comparison with experimental mass spectra. Using the all-atom optimized potential for liquid simulations (OPLS-AA) force field, we systematically examined the neutral cluster size distributions as functions of pressure and temperature. These neutral cluster distributions were then used to derive ionized cluster distributions to compare directly with the experiments. The simulations suggest that supersaturation at 12 to 16 times the equilibrium vapor pressure at 298 K or supercooling at temperature 240 to 260 K at the equilibrium vapor pressure can lead to the relatively abundant tetramer population observed in the experiments. Our simulations capture the most distinct features observed in the experimental TOF mass spectra: Et(3)H(+) at m/z = 139 in the vapor corresponding to 10:90% Me-Et liquid mixture and Me(3)H(+) at m/z = 97 in the vapors corresponding to 50:50% and 90:10% Me-Et liquid mixtures. The hybrid GCMC scheme developed in this work extends the capability of studying the size distributions of neat clusters to mixed species and provides a useful tool for studying environmentally important systems such as atmospheric aerosols.

4. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

SciTech Connect

Sterner, R.W.; Lahey, R.T. Jr.

1983-07-01

Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

5. THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY

SciTech Connect

Lopez, Eric D.; Fortney, Jonathan J.

2013-10-10

We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ⊕} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.

6. Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging

NASA Astrophysics Data System (ADS)

Hesse, Markus C.; Salehi, Leili; Schmitz, Georg

2013-09-01

In diagnostic ultrasound imaging, the image reconstruction quality is crucial for reliable diagnosis. Applying reconstruction algorithms based on the acoustic wave equation, the obtained image quality depends significantly on the physical material parameters accounted for in the equation. In this contribution, we extend a proposed iterative nonlinear one-parameter compressibility reconstruction algorithm by the additional reconstruction of the object’s inhomogeneous mass density distribution. The improved iterative algorithm is able to reconstruct inhomogeneous maps of the object’s compressibility and mass density simultaneously using only one conventional linear transducer array at a fixed location for wave transmission and detection. The derived approach is based on an acoustic wave equation including spatial compressibility and mass density variations, and utilizes the Kaczmarz method for iterative material parameter reconstruction. We validate our algorithm numerically for an unidirectional pulse-echo breast imaging application, and thus generate simulated measurements acquired from a numerical breast phantom with realistic compressibility and mass density values. Applying these measurements, we demonstrate with two reconstruction experiments the necessity to calculate the mass density in case of tissues with significant mass density inhomogeneities. When reconstructing spatial mass density variations, artefacts in the breast’s compressibility image are reduced resulting in improved spatial resolution. Furthermore, the compressibility relative error magnitude within a diagnostically significant region of interest (ROI) decreases from 3.04% to 2.62%. Moreover, a second image showing the breast’s inhomogeneous mass density distribution is given to provide additional diagnostic information. In the compressibility image, a spatial resolution moderately higher than the classical half-wavelength limit is observed.

7. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

SciTech Connect

Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

2016-04-01

In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

8. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

SciTech Connect

Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

2016-04-10

We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

9. Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters.

PubMed

Zhou, Xiao-Xia; Liu, Jing-Fu; Jiang, Gui-Bin

2017-04-04

Accurate characterization, quantification, and identification of nanoparticles (NPs) are essential to fully understand the environmental processes and effects of NPs. Herein, the elemental mass size distribution (EMSD), which measures particle size, mass, and composition, is proposed for the direct size characterization, mass quantification, and composition identification of trace NPs in complex matrixes. A one-step method for the rapid measurement of EMSDs in 8 min was developed through the online coupling of size-exclusion chromatography (SEC) with inductively coupled plasma mass spectrometry (ICP-MS). The use of a mobile phase with a relatively high ionic strength (a mixture of 2% FL-70 and 2 mM Na2S2O3) ensured the complete elution of different-sized NPs from the column and, therefore, a size-independent response. After application of a correction for instrumental broadening by a method developed in this study, the size distribution of NPs by EMSD determination agreed closely with that obtained from transmission electron microscopy (TEM) analysis. Compared with TEM, EMSD allows a more rapid determination with a higher mass sensitivity (1 pg for gold and silver NPs) and comparable size discrimination (0.27 nm). The proposed EMSD-based method was capable of identifying trace Ag2S NPs and core-shell nanocomposite Au@Ag, as well as quantitatively tracking the dissolution and size transformation of silver nanoparticles in serum and environmental waters.

10. Global distribution of soil organic carbon - Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world

NASA Astrophysics Data System (ADS)

Köchy, M.; Hiederer, R.; Freibauer, A.

2015-04-01

The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

11. Nucleon transverse momentum-dependent parton distributions from domain wall fermion calculations at 297 MeV pion mass

DOE PAGES

Engelhardt, M.; Musch, B.; Bhattacharya, T.; ...

2014-06-23

Here, lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297 MeV, on a lattice with spacing 0.084 fm, selected TMD observables are accessed and compared to previous exploration at heavier pion masses on coarser lattices.

12. Nucleon transverse momentum-dependent parton distributions from domain wall fermion calculations at 297 MeV pion mass

SciTech Connect

Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram

2014-12-01

Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.

13. Investigation of influence of friction stir welding regimes on the features of mass transfer and temperature distribution in forming welds

NASA Astrophysics Data System (ADS)

Astafurov, S. V.; Shilko, E. V.; Kolubaev, E. A.; Psakhie, S. G.

2015-10-01

Computer simulation by the movable cellular automaton method was performed to study the influence of friction stir welding regimes on the features of intensive mass transfer and temperature distribution in forming welded joints. The calculation results showed that there is a range of optimal values of the ratio of the angular velocity to the welding speed which provides sufficient mass transfer to form a welded joint with a minimum volume content of defects. The use of the optimal FSW regimes allows to obtain joints without significant overheating of the welded materials.

14. Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2

NASA Astrophysics Data System (ADS)

Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon

2017-03-01

We study the history from z∼ 2 to z∼ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}ȯ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z∼ 2 to z∼ 0 by a factor of ∼ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ∼2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z∼ 2 to z∼ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}ȯ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.

15. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

PubMed

Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

2008-02-01

We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

16. Feinberg-Horodecki states of a time-dependent mass distribution harmonic oscillator

NASA Astrophysics Data System (ADS)

Eshghi, M.; Sever, R.; Ikhdair, S. M.

2016-07-01

The solution of the Feinberg-Horodecki (FH) equation for a time-dependent mass (TDM) harmonic oscillator quantum system is studied. A certain interaction is applied to a mass m(t) to provide a particular spectrum of stationary energies. The related spectrum of the harmonic oscillator potential V(t) acting on the TDM m(t) oscillators is found. We apply the time version of the asymptotic iteration method (AIM) to calculate analytical expressions of the TDM stationary state energies and their wave functions. It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the time-dependent mass reduces to m0.

17. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis.

PubMed

Liang, Kang; Liu, Jingfu

2016-02-15

Although organophosphate esters (OPEs) in the ambient environment are from sewage treatment plants due to the discharge of effluent and application of sludge, the distribution, degradation and fate of OPEs in advanced municipal sewage treatment plants remain unclear. This work focused on the use of mass flow and mass balance analysis to understand the behaviors and fate of 14 OPEs in an advanced municipal sewage treatment plant. OPEs were detected in all sewage water and sludge samples with total OPEs (ΣOPEs) concentrations of 1399 ± 263 ng/L in raw sewage aqueous phase, 833 ± 175 ng/L in tertiary effluent aqueous phase, and 315 ± 89 ng/g dry weight in dewatered sludge. The dissolved concentrations of ΣOPEs significantly decreased during biological treatment, whereas negligible decrease was observed in mechanical and physical-chemical treatments. For individual OPE, the chlorinated tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP) did not decrease but increased during both biological treatment and physical-chemical treatment. Mass flow analysis indicated the total removal efficiency of ΣOPEs in aqueous phase was 40.5%, and the polarity-specific removal efficiencies for individual OPE were positively related to their solid-water partition coefficients (Kd). Furthermore, mass balance results showed that 53.1% and 6.3% of the initial OPE mass flow were eventually transferred to the effluents and dewatered sludge, respectively, while the remaining 39.9% and 0.7% were lost due to biodegradation and physical-chemical treatment, respectively. It was indicated that the activated sludge treatment system with anaerobic/anoxic/aerobic bioreactors was a major factor in the removal of OPEs from the raw sewage, while transfer to dewatered sludge governed by hydrophobic interactions was limited during the sewage treatment. Meanwhile, the degradation difference of OPEs in activated sludge treatment was more related with their molecular

18. The relationship between distribution of body fat mass and carotid artery intima-media thickness in Korean older adults

PubMed Central

Park, Jin-Kee; Park, Hyuntae; Kim, Kwi-Baek

2015-01-01

[Purpose] The aim of this study was to examine the relationships between the amount and distribution of body fat and the carotid intima-media thickness to explore whether coronary artery disease risk may be mediated through effects on the amount of fat mass in older adults. [Subjects and Methods] A total of 200 elderly females was participated. The percentage of body fat mass was measured by the bioelectrical impedance analysis method, and the carotid intima-media thickness was measured by B-mode ultrasound. Analysis of covariance was performed to assess independent associations between the four categories of percentage of body fat mass and the carotid intima-media thickness after multivariate adjustment. Logistic regression analyses were utilized to calculate odds ratios and 95% confidence intervals for examining independent associations between percentage of body fat mass and the estimated risk of coronary artery disease. [Results] Analysis of covariance showed that the carotid intima-media thickness was significantly thick in both obesity and overweight groups. When multivariate-adjusted OR for the estimated risk of coronary artery disease, the odds ratios for the obesity and overweight groups were 3.0 (95% confidence interval, 1.1 to 8.7) and 2.5 (95% confidence interval, 1.0 to 6.1), respectively. [Conclusion] This study demonstrates that elderly females with a high body fat mass are more likely to have the estimated risk of CAD than who fit body fat mass in elderly female. PMID:26633917

19. The relationship between distribution of body fat mass and carotid artery intima-media thickness in Korean older adults.

PubMed

Park, Jin-Kee; Park, Hyuntae; Kim, Kwi-Baek

2015-10-01

[Purpose] The aim of this study was to examine the relationships between the amount and distribution of body fat and the carotid intima-media thickness to explore whether coronary artery disease risk may be mediated through effects on the amount of fat mass in older adults. [Subjects and Methods] A total of 200 elderly females was participated. The percentage of body fat mass was measured by the bioelectrical impedance analysis method, and the carotid intima-media thickness was measured by B-mode ultrasound. Analysis of covariance was performed to assess independent associations between the four categories of percentage of body fat mass and the carotid intima-media thickness after multivariate adjustment. Logistic regression analyses were utilized to calculate odds ratios and 95% confidence intervals for examining independent associations between percentage of body fat mass and the estimated risk of coronary artery disease. [Results] Analysis of covariance showed that the carotid intima-media thickness was significantly thick in both obesity and overweight groups. When multivariate-adjusted OR for the estimated risk of coronary artery disease, the odds ratios for the obesity and overweight groups were 3.0 (95% confidence interval, 1.1 to 8.7) and 2.5 (95% confidence interval, 1.0 to 6.1), respectively. [Conclusion] This study demonstrates that elderly females with a high body fat mass are more likely to have the estimated risk of CAD than who fit body fat mass in elderly female.

20. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

NASA Technical Reports Server (NTRS)

Mirels, Harold

1959-01-01

A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

1. Scanning ultraviolet two-step laser mass spectroscopy of polycyclic aromatic hydrocarbon distributions on creosote-contaminated soil particles.

PubMed

Fye, J L; Nelson, H H; Mowery, R L; Baronavski, A P; Callahan, J H

2002-07-01

The distribution of polycyclic aromatic hydrocarbons (PAHs) on creosote-contaminated soil has been examined with scanning ultraviolet two-step laser desorption/laser ionization mass spectroscopy (UV-L2MS). The instrument has been constructed in-house by modifying a reflectron time-of-flight mass spectrometer. Two-dimensional chemical maps were accurately generated from model patterned PAH distributions. From examination of three-dimensional substrates, the depth of field of the experiment allows surfaces with roughness of up to 120 microm to be treated as a two-dimensional system and still achieve an accurate representation of the surface deposits. Soil was obtained from a former wood treatment facility. Individual particles of 100-1000 microm were mounted on indexed sample plates and examined by reflectance infrared microscopy, optical microscopy, and imaging UV-L2MS. The most intense PAH signals were associated with regions on the particles where clay/organic carbon deposits were found.

2. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

SciTech Connect

Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

2016-01-20

We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

3. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

NASA Astrophysics Data System (ADS)

Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; Wang, Y.

2015-12-01

Fine particle (PM2.5) affects human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific meanings (such as, quantifying of air quality and its variability, and improving air quality forecast and assessment). But so far, it is difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar and a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5 mass concentration is proportional to aerosol extinction coefficient, and then the specific coefficient can be calculated. Using this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristic of PM2.5 mass concentration profile in near-ground during these three nights' cases in the western suburb of Hefei city was discussed. The PM2.5 air pollutant concentration is comparatively large in close surface varying with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile in near-ground.

4. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

NASA Astrophysics Data System (ADS)

Tao, Zongming; Wang, Zhenzhu; Yang, Shijun; Shan, Huihui; Ma, Xiaomin; Zhang, Hui; Zhao, Sugui; Liu, Dong; Xie, Chenbo; Wang, Yingjian

2016-04-01

Fine particles (PM2.5) affect human life and activities directly; the detection of PM2.5 mass concentration profile is very essential due to its practical and scientific significance (such as the quantification of air quality and its variability as well as the assessment of improving air quality forecast). But so far, it has been difficult to detect PM2.5 mass concentration profile. The proposed methodology to study the relationship between aerosol extinction coefficient and PM2.5 mass concentration is described, which indicates that the PM2.5 mass concentration profile could be retrieved by combining a charge-coupled device (CCD) side-scatter lidar with a PM2.5 sampling detector. When the relative humidity is less than 70 %, PM2.5, mass concentration is proportional to the aerosol extinction coefficient, and then the specific coefficient can be calculated. Through this specific coefficient, aerosol extinction profile is converted to PM2.5 mass concentration profile. Three cases of clean night (on 21 September 2014), pollutant night (on 17 March 2014), and heavy pollutant night (on 13 February 2015) are studied. The characteristics of PM2.5 mass concentration profile at the near-ground level during the cases of these 3 nights in the western suburb of Hefei city were discussed. The PM2.5 air pollutant concentration is comparatively large close to the surface and varies with time and altitude. The experiment results show that the CCD side-scatter lidar combined with a PM2.5 detector is an effective and new method to explore pollutant mass concentration profile at the near-ground level.

5. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

PubMed

Wohlin, Åsa

2015-03-21

The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system.

6. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag+ electrospray ionization mass spectrometry.

PubMed

Roussis, Stilianos G; Proulx, Richard

2004-01-01

This work explores the possibility of Ag+ electrospray ionization mass spectrometry (ESI-MS) to determine the molecular weight distributions of non-boiling petroleum fractions. Information about the molecular weight distributions is needed for fundamental studies on the nature of heavy crude oils and bitumens and for the development of novel recovery and processing methods. The method does not depend on thermal processes for the introduction of the fractions into the gas phase of the mass spectrometer, which is a considerable advantage over most other ionization methods. The Ag+ electrospray mass spectra of the fractions analyzed by using a toluene/methanol/cyclohexane (60:28:12%) solvent system display bimodal distributions in the ranges m/z approximately 300 to approximately 3000 and m/z 3000 to approximately 20,000. The abundances of the high molecular weight peak distributions can be reduced by in-source collisional activation experiments. Comparisons with the results obtained for model heteroatom-containing compounds (molecular weight < 600 Da) and high molecular weight polystyrene standards (up to one million Da) indicate that the majority of the structures in the saturate, naphthenoaromatic and polar aromatic fractions, and a significant portion of the asphaltenes, are small molecules. However, a considerable portion of the asphaltenes and some portion of the other fractions contain high molecular weight structures bound by covalent or strong non-covalent bonds. The results obtained by the Ag+ ESI method in this study for the saturate, aromatic, and polar fractions in a bitumen are in qualitative agreement with published molecular weight average results obtained for Cold Lake bitumen fractions analyzed by conventional gel permeation chromatography and field desorption mass spectrometry. Further work is needed to study the nature of the bonds and the interactions of the molecules in the asphaltene fractions by Ag+ ESI-MS.

7. Fitness in animals correlates with proximity to discontinuities in body mass distributions.

USGS Publications Warehouse

Angeler, David G.; Allen, Craig R.; Vila-Gispert, Anna; Almeida, David

2014-01-01

Discontinuous structure in landscapes may cause discontinuous, aggregated species body-mass patterns, reflecting the scales of structure available to animal communities within a landscape. Empirical analyses have shown that the location of species within body mass aggregations, which reflect this scale-specific organization, is non-random with regard to several ecological phenomena, including species extinctions. The propensity of declining species to have body masses proximate to discontinuities suggests that transition zones between scaling regimes ultimately decreases the ecological fitness for some species. We test this proposition using vulnerable and unthreatened fish species in Mediterranean streams with differing levels of human impact. We show that the proximity to discontinuities in body mass aggregations (“distance-to-edge”) of more vs. less fit individuals within vulnerable and unthreatened populations differs. Specifically, regression analysis between the scaled mass index, a proxy of animal fitness, and distance-to-edge reveals negative and positive relationships for vulnerable and unthreatened species, respectively. That is, fitness is higher close to discontinuities in vulnerable populations and toward the center of body mass aggregation groups in unthreatened populations. Our results demonstrate the suitability of the discontinuity framework for scrutinizing non-random patterns of environmental impact in populations. Further exploration of the usefulness of this method across other ecosystems and organism groups is warranted.

8. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

NASA Astrophysics Data System (ADS)

Leung, Andrew; Gough, William

2016-08-01

The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

9. Foliation dependence of black hole apparent horizons in spherical symmetry

NASA Astrophysics Data System (ADS)

Faraoni, Valerio; Ellis, George F. R.; Firouzjaee, Javad T.; Helou, Alexis; Musco, Ilia

2017-01-01

Numerical studies of gravitational collapse to black holes make use of apparent horizons, which are intrinsically foliation dependent. We expose the problem and discuss possible solutions using the Hawking-Hayward quasilocal mass. In spherical symmetry, we present a physically sensible approach to the problem by restricting to spherically symmetric spacetime slicings. In spherical symmetry, the apparent horizons enjoy a restricted gauge independence in any spherically symmetric foliation, but physical quantities associated with them, such as surface gravity and temperature, are fully gauge dependent. The widely used comoving and Kodama foliations, which are of particular interest, are discussed in detail as examples.

10. Effects of meteor head plasma distribution on radar cross sections and derived meteoroid masses

NASA Astrophysics Data System (ADS)

Marshall, R. A.; Close, S.; Brown, P.; Dimant, Y.

2016-01-01

We present calculations that relate meteor head echo radar cross sections to the meteor head plasma distribution. We use a forward model of radar scattering from meteor plasma using a finite-difference time-domain (FDTD) model of the electromagnetic wave interaction with the plasma. This model computes the meteor head RCS for a given meteor plasma distribution, specified with a peak plasma density and a characteristic size. We then relate measured RCS values to the input size and density parameters to better characterize the meteor plasma. We present simulation results that show that the RCS is directly related to the overdense meteor area; that is, the cross-section area of the meteor inside which the plasma frequency exceeds the radar frequency. This provides a direct estimate of the meteor plasma size from a given RCS measurement. Next we investigate the effect of the assumed plasma distribution. We study the RCS resulting from Gaussian, parabolic exponential and 1/r2 distributions. Comparing the different calculated RCS from these different distributions to three-frequency head echo data from the CMOR radar, we show that the 1/r2 distribution provides the best fit to the data. However, given uncertainties in the data, we cannot conclude that any distribution is the most valid. In addition, we show that the choice of distribution assumed can alter the resulting line density q by an order of magnitude for the same data.

11. Model optimization of orthotropic distributed-mode loudspeaker using attached masses.

PubMed

Lu, Guochao; Shen, Yong

2009-11-01

The orthotropic model of the plate is established and the genetic simulated annealing algorithm is developed for optimization of the mode distribution of the orthotropic plate. The experiment results indicate that the orthotropic model can simulate the real plate better. And optimization aimed at the equal distribution of the modes in the orthotropic model is made to improve the corresponding sound pressure responses.

12. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires

NASA Astrophysics Data System (ADS)

Okoshi, Rintaro; Rasheed, Abdur; Chen Reddy, Greeshma; McCrowey, Clinton J.; Curtis, Daniel B.

2014-06-01

Biomass burning emits large amounts of aerosol particles globally, influencing human health and climate, but the number and size of the particles is highly variable depending on fuel type, burning and meteorological conditions, and secondary reactions in the atmosphere. Ambient measurements of aerosol during wildfire events can therefore improve our understanding of particulate matter produced from biomass burning. In this study, time-resolved sub-micrometer ambient aerosol size and mass distributions of freshly emitted aerosol were measured for three biomass burning wildfire events near Northridge, California, located in the highly populated San Fernando Valley area of Los Angeles. One fire (Marek) was observed during the dry Santa Ana conditions that are typically present during large Southern California wildfires, but two smaller fires (Getty and Camarillo) were observed during the more predominant non-Santa Ana weather conditions. Although the fires were generally small and extinguished quickly, they produced particle number concentrations as high as 50,000 cm-3 and mass concentrations as large as 150 μg cm-3, well above background measurements and among the highest values observed for fires in Southern California. Therefore, small wildfires can have a large impact on air quality if they occur near urban areas. Particle number distributions were lognormal, with peak diameters in the accumulation mode at approximately 100 nm. However, significant Aitken mode and nucleation mode particles were observed in bimodal distributions for one fire. Significant variations in the median diameter were observed over time, as particles generally became smaller as the fires were contained. The results indicate that it is likely that performing mass measurements alone could systematically miss detection of the smaller particles and size measurements may be better suited for studies of ambient biomass burning events. Parameters of representative unimodal and bimodal lognormal

13. The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters

NASA Astrophysics Data System (ADS)

Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.

2017-01-01

Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with

14. CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS

SciTech Connect

Umetsu, Keiichi; Koch, Patrick M.; Lin, Kai-Yang; Medezinski, Elinor; Nonino, Mario; Zitrin, Adi; Molino, Alberto; Grillo, Claudio; Carrasco, Mauricio; Donahue, Megan; Mahdavi, Andisheh; Coe, Dan; Postman, Marc; Koekemoer, Anton; Czakon, Nicole; Sayers, Jack; Golwala, Sunil; Molnar, Sandor M.; and others

2012-08-10

We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z = 0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVR{sub c} I{sub c} z' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble program. We find good agreement in the regions of overlap between several weak- and strong-lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large-scale structure with the major axis running approximately northwest-southeast (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a {approx}2: 1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dln {Sigma}/dln R {approx} -1 at cluster outskirts (R {approx}> 1 Mpc h{sup -1}), whereas the mass distribution excluding the NW-SE excess regions steepens farther out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M{sub vir} = (1.1 {+-} 0.2 {+-} 0.1) Multiplication-Sign 10{sup 15} M{sub Sun} h{sup -1} and a halo concentration c{sub vir} = 6.9 {+-} 1.0 {+-} 1.2 (c{sub vir} {approx} 5.7 when the central 50 kpc h{sup -1} is excluded), which falls in the range 4 {approx}< (c) {approx}< 7 of average c(M, z) predictions for relaxed clusters from recent {Lambda} cold dark matter simulations. Our full-lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, they yield a cumulative gas mass fraction of 13.7{sup +4.5}{sub -3.0}% at 0.7 Mpc h{sup -1}( Almost-Equal-To 1.7 r{sub 2500}), a typical value observed for high-mass clusters.

15. Spectral energy distributions and masses of 304 M31 old star clusters

SciTech Connect

Ma, Jun; Wang, Song; Wu, Zhenyu; Zhang, Tianmeng; Zou, Hu; Nie, Jun dan; Zhou, Zhiming; Zhou, Xu; Wu, Jianghua; Du, Cuihua; Yuan, Qirong

2015-02-01

This paper presents CCD multicolor photometry for 304 old star clusters in the nearby spiral galaxy M31, from which the photometry of 55 star clusters is first obtained. The observations were carried out as a part of the Beijing–Arizona–Taiwan–Connecticut Multicolor Sky Survey from 1995 February to 2008 March, using 15 intermediate-band filters covering 3000–10000 Å. Detailed comparisons show that our photometry is in agreement with previous measurements. Based on the ages and metallicities from Caldwell et al. and the photometric measurements here, we estimated the clusters’ masses by comparing their multicolor photometry with stellar population synthesis models. The results show that the sample clusters have masses between ∼3×10{sup 4}M{sub ⊙} and ∼10{sup 7}M{sub ⊙} with a peak of ∼4×10{sup 5}M{sub ⊙}. The masses here are in good agreement with those in previous studies. Combined with the masses of young star clusters of M31 from Wang et al., we find that the peak mass of the old clusters is 10 times that of young clusters.

16. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

SciTech Connect

Swindle, R.; Gal, R. R.; La Barbera, F.; De Carvalho, R. R.

2011-10-15

We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fits to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the

17. Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer

NASA Astrophysics Data System (ADS)

Ning, Zhi; Chan, K. L.; Wong, K. C.; Westerdahl, Dane; Močnik, Griša; Zhou, J. H.; Cheung, C. S.

2013-12-01

Black carbon (BC) is the dominant component of the light absorbing aerosols in the atmosphere, changing earth's radiative balance and affecting the climate. The mixing state and size distribution of atmospheric BC are largely unknown and cause uncertainties in climate models. BC is also a major component of diesel PM emissions, recently classified by World Health Organization as Category I Carcinogen, and has been associated with various adverse health effects. This study presents a novel approach of direct and continuous measurement of BC mass size distribution by tandem operation of a differential mobility spectrometry and a refined Aethalometer. A condensation particle counter was deployed in parallel with the Aethalometer to determine particle number size distribution. A wide range of particle sizes (20-600 nm) was investigated to determine the BC modal characteristics in fresh diesel engine tailpipe emissions and in different urban environments including a typical urban ambient site and a busy roadside. The study provided a demonstration of a new analytic approach and showed the evolution of BC mass size distribution from fresh engine emissions to the aged aerosols in the roadside and ambient environments. The results potentially can be used to refine the input for climate modeling to determine the effect of particle-bound atmospheric BC on the global climate.

18. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

SciTech Connect

Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

2011-08-01

The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

19. Sex differences in whole body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults

PubMed Central

Abe, T; Kearns, C; Fukunaga, T

2003-01-01

Objectives: To determine sex differences in the distribution of regional and total skeletal muscle (SM) using contiguous whole body magnetic resonance imaging (MRI) data, and to examine the relations between fat free mass (FFM) and total and regional SM masses. Methods: A total of 20 Japanese college students (10 women and 10 men) volunteered for the study. FFM was measured by two compartment densitometry. Whole body MRI images were prepared using a 1.5 T scanner. Contiguous transverse images with 1.0 cm slice thickness were obtained from the first cervical vertebra to the ankle joints. All MRI scans were segmented into four components (SM, subcutaneous adipose tissue, bone, and residual tissues). In each slice, the SM tissue cross sectional areas (CSAs) were digitised, and the muscle tissue volume per slice was calculated by multiplying muscle CSA by slice thickness. SM volume units (litres) were converted into mass units (kg) by multiplying the volumes by the assumed constant density (1.041 mg/ml) for SM. Results: The SM distribution pattern (shape of curve) from the contiguous whole body slices was essentially similar for the two sexes, with two large peaks and three smaller peaks (arms excluded). However, the largest peak was observed at the upper portion of the thigh for women and at the level of the shoulder for men. Men had larger (p<0.01) total and regional SM mass than women. All regional SM masses correlated highly (r = 0.90–0.99, p<0.01) with total SM mass. A strong positive correlation was observed between FFM and total and regional SM masses in both sexes (women, r = 0.95; men, r = 0.90; all p<0.01). As FFM increased, there was a corresponding increase in SM/FFM ratio for all subjects (r = 0.86, p<0.01). Conclusions: Sex differences in total SM/FFM ratio and regional SM distributions are associated with the degree of absolute FFM accumulation in men and women. PMID:14514537

20. Strong and Weak Lensing United III: Measuring the Mass Distribution of the Merging Galaxy Cluster 1E0657-56

SciTech Connect

Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine; Markevitch, Maxim; Randall, Scott; Schrabback, Tim; Zaritsky, Dennis; /KIPAC, Menlo Park /Bonn, Inst. Astrophys. /Arizona U., Astron. Dept. - Steward Observ. /Florida U. /Harvard-Smithsonian Ctr. Astrophys.

2006-09-27

The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.

1. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen

PubMed Central

Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

2017-01-01

Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya–Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle’s elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya–Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide. PMID:28339461

2. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen.

PubMed

Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

2017-01-01

Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya-Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle's elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya-Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide.

3. Dynamical modelling of the galactic bulge and bar: the Milky Way's pattern speed, stellar and dark matter mass distribution

NASA Astrophysics Data System (ADS)

Portail, Matthieu; Gerhard, Ortwin; Wegg, Christopher; Ness, Melissa

2017-02-01

We construct a large set of dynamical models of the galactic bulge, bar and inner disc using the made-to-measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS Survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of 39.0 ± 3.5 km s- 1 kpc- 1, placing the bar corotation radius at 6.1 ± 0.5 kpc and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be Mbar/bulge = 1.88 ± 0.12 × 1010 M⊙, larger than the mass of disc in the bar region, Minner disc = 1.29 ± 0.12 × 1010 M⊙. The total dynamical mass in the bulge volume is 1.85 ± 0.05 × 1010 M⊙. Thanks to more extended kinematic data sets and recent measurement of the bulge initial mass function, our models have a low dark matter fraction in the bulge of 17 ± 2 per cent. We find a dark matter density profile which flattens to a shallow cusp or core in the bulge region. Finally, we find dynamical evidence for an extra central mass of ∼ 0.2 × 1010 M⊙, probably in a nuclear disc or discy pseudo-bulge.

4. New approach using lidar measurements to characterize spatiotemporal aerosol mass distribution in an underground railway station in Paris

NASA Astrophysics Data System (ADS)

Raut, J.-C.; Chazette, P.; Fortain, A.

For the first time eye safe lidar measurements were performed at 355 nm simultaneously to in situ measurements in an underground station so as to test the potential interest of active remote sensing measurements to follow the spatiotemporal evolution of aerosol content inside such a confined microenvironment. The purpose of this paper is to describe different methods enabling the conversion of lidar-derived aerosol extinction coefficient into aerosol mass concentrations (PM 2.5 and PM 10). A theoretical method based on a well marked linear regression between mass concentrations simulated from the size distribution and extinction coefficients retrieved from Mie calculations provides averaged mass to optics' relations over the campaign for traffic (6.47 × 10 5 μg m -2) or no traffic conditions (3.73 × 10 5 μg m -2). Two empirical methods enable to significantly reduce CPU time. The first one is based upon the knowledge of size distribution measurements and scattering coefficients from nephelometer and allows retrieving mass to optics' relations for well determined periods or particular traffic conditions, like week-ends, with a good accuracy. The second method, that is more direct, is simply based on the ratio between TEOM concentrations and extinction coefficients obtained from nephelometer. This method is easy to set up but is not suitable for nocturnal measurements where PM stabilization time is short. Lidar signals thus converted into PM concentrations from those approaches with a fine accuracy (30%) provide a spatiotemporal distribution of concentrations in the station. This highlights aerosol accumulation in one side of the station, which can be explained by air displacement from the tunnel entrance. Those results allow expecting a more general use of lidar measurement to survey indoor air quality.

5. Angular Distributions of High-Mass Dilepton Production in Hadron Collisions

SciTech Connect

McClellan, Randall Evan

2016-01-01

The SeaQuest experiment is a fixed-target dimuon experiment currently running at the Fermi National Accelerator Laboratory (FNAL). By utilizing the high-intensity, 120 GeV proton beam delivered by the FNAL Main Injector (MI), SeaQuest is able to measure proton-induced Drell-Yan dimuon production off of various nuclear targets in kinematic regions inaccessible to previous similar experiments. A suitably large fraction of the final dataset has been recorded, reconstructed, and analyzed. Very preliminary results from light-sea flavor asymmetry, nuclear dependence, and partonic energy loss analyses have been presented at numerous international conferences. A novel, FPGA-based trigger system has been designed, implemented, and optimized for the SeaQuest experiment. By implementing the trigger decision logic in FPGA firmware, it is more adaptable to changing experimental conditions. Additionally, the peripheral tasks of timing alignment, “trigger matrix” generation, and firmware uploading have been mostly automated, reducing the likelihood of user error in the maintenance and operation of the trigger system. Significant upgrades to hardware and firmware have greatly improved the performance of the trigger system since the 2012 commissioning run of SeaQuest. Four additional v1495 modules were added to facilitate thorough pulser testing of the firmware designs and in-situ pulser tests of all compiled firmware. These pulser tests proved crucial for diagnosing many errors that may have otherwise gone unnoticed. A significant change to the internal clocking of the trigger system eliminated a subtle source of rate-dependent trigger efficiency. With this upgrade, the trigger finally meets the “dead-time free” design specification. Drell-Yan dimuon data have been collected and analyzed for central θCS , with nearly flat acceptance in φCS , in the mass range 5.0 GeV < Mγ* < 10.0 GeV at forward xF with the SeaQuest spectrometer at FNAL. A very preliminary extraction of

6. PAH distribution and mass fluxes in the Three Gorges Reservoir after impoundment of the Three Gorges Dam.

PubMed

Deyerling, Dominik; Wang, Jingxian; Hu, Wei; Westrich, Bernhard; Peng, Chengrong; Bi, Yonghong; Henkelmann, Bernhard; Schramm, Karl-Werner

2014-09-01

Mass fluxes of polycyclic aromatic hydrocarbons (PAHs) were calculated for the Three Gorges Reservoir (TGR) in China, based on concentration and discharge data from the Yangtze River. Virtual Organisms (VOs) have been applied during four campaigns in 2008, 2009 (twice) and 2011 at sampling sites distributed from Chongqing to Maoping. The total PAH mass fluxes ranged from 110 to 2,160 mg s(-1). Highest loads were determined at Chongqing with a decreasing trend towards Maoping in all four sampling campaigns. PAH remediation capacity of the TGR was found to be high as the mass flux reduced by more than half from upstream to downstream. Responsible processes are thought to be adsorption of PAH to suspended particles, dilution and degradation. Furthermore, the dependence of PAH concentration upon water depth was investigated at Maoping in front of the Three Gorges Dam. Although considerable differences could be revealed, there was no trend observable. Sampling of water with self-packed filter cartridges confirmed more homogenous PAH depth distribution. Moreover, PAH content of suspended particles was estimated from water concentrations gathered by VOs based on a water-particle separation model and subsequently compared to PAH concentration measured in water and in filter cartridges. It could be shown that the modeled data predicts the concentration caused by particle-bound PAHs to be about 6 times lower than PAHs dissolved in water. Besides, the model estimates the proportions of 5- and 6-ring PAHs being higher than in water phase.

7. Bringing modeling to the masses: A web based system to predict potential species distributions

USGS Publications Warehouse

Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul

2010-01-01

Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.

8. Reflection and transmission at the apparent horizon during gravitational collapse

SciTech Connect

Vaz, Cenalo; Wijewardhana, L. C. R.

2010-10-15

We examine the wave functionals describing the collapse of a self-gravitating dustball in an exact quantization of the gravity-dust system. We show that ingoing (collapsing) dust shell modes outside the apparent horizon must necessarily be accompanied by outgoing modes inside the apparent horizon, whose amplitude is suppressed by the square root of the Boltzmann factor at the Hawking temperature. Likewise, ingoing modes in the interior must be accompanied by outgoing modes in the exterior, again with an amplitude suppressed by the same factor. A suitable superposition of the two solutions is necessary to conserve the dust probability flux across the apparent horizon; thus, each region contains both ingoing and outgoing dust modes. If one restricts oneself to considering only the modes outside the apparent horizon then one should think of the apparent horizon as a partial reflector, the probability for a shell to reflect being given by the Boltzmann factor at the Hawking temperature determined by the mass contained within it. However, if one considers the entire wave function, the outgoing wave in the exterior is seen to be the transmission through the horizon of the interior outgoing wave that accompanies the collapsing shells. This transmission could allow information from the interior to be transferred to the exterior.

9. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. I. Mass Distribution and Gas-to-dust Mass Ratio

NASA Astrophysics Data System (ADS)

Krüger, Harald; Strub, Peter; Grün, Eberhard; Sterken, Veerle J.

2015-10-01

In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of “big” interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of {v}{ISM∞ }=23.2 {km} {{{s}}}-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of {R}{{g}/{{d}}}={193}-57+85, and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 {km} {{{s}}}-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local ISM contains “big” (i.e., ≈1 μm sized) interstellar grains. We find a dust density in the local ISM that is a

10. Deep-sea spherules from Pacific clay: mass distribution and influx rate

USGS Publications Warehouse

Murrell, M.T.; Davis, P.A.; Nishiizumi, K.; Millard, H.T.

1980-01-01

From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 ??m were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of both optical and electron microscopy as well as atomic absorption elemental analysis. The integral number (N) of stony particles from this sediment in the mass (M) range 20-300 ??g is given by N( > M(g)) = 5.13 ?? 10-6 ?? M-1.65. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but as yet the question remains unanswered. ?? 1980.

11. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

NASA Astrophysics Data System (ADS)

Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

2016-10-01

It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

12. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis.

PubMed

Mata, S A; Bottjer, D J

2012-01-01

Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia.

13. Effects of Pipe Wall Mass Distribution in Line-of-Sight Nuclear Tests.

DTIC Science & Technology

1978-08-01

helical lead ribbon ( spiral asymmetry) was placed around the pipe , the tar- get plate suffered only negligible damage. No conclusive ex- planation has been...the third calculation, a mass of iron equal to that used in the spiral case was placed symmetrically around the pipe . In slab geometry this corresponds...demonstrated that for explosively collapsed pipes , spiral asymmetries appear to significantly reduce the jetting down the pipe . In the "no pipe flow

14. Probabilistic distributions of M/L values for ultrafaint dwarf spheroidal galaxies: stochastic samplings of the initial mass function

NASA Astrophysics Data System (ADS)

Hernandez, X.

2012-02-01

We explore the ranges and distributions which will result for the intrinsic stellar mass-to-light ratio (M/L) values of single stellar populations, at fixed initial mass function (IMF), age and metallicity, from the discrete stochastic sampling of a probabilistic IMF. As the total mass of a certain stellar population tends to infinity, the corresponding M/L values quickly converge to fixed numbers associated with the particulars of the IMF, age, metallicity and star formation histories in question. When going to small stellar populations, however, a natural inherent spread will appear for the M/L values, which will become probabilistic quantities. For the recently discovered ultrafaint local dwarf spheroidal galaxies, with total luminosities dropping below 103LV/L⊙, it is important to asses the amplitude of the probabilistic spread in inherent M/L values mentioned above. The total baryonic masses of these systems are usually estimated from their observed luminosities, and the assumption of a fixed, deterministic M/L value, suitable for the infinite population limit of the assumed ages and metallicities of the stellar populations in question. This total baryonic masses are crucial for testing and calibrating of structure formation scenarios, as the local ultrafaint dwarf spheroidals represent the most extreme galactic scales known. Also, subject to reliable M/L values is the use of these systems as possible discriminants between dark matter and modified gravity theories. By simulating large collections of stellar populations, each consisting of a particular collection of individual stars, we compute statistical distributions for the resulting M/L values. We find that for total numbers of stars in the range of what is observed for the local ultrafaint dwarf spheroidals, the inherent M/L values of stellar populations can be expected to vary by factors of upwards of 3, interestingly, systematically skewed towards higher values than what is obtained for the

15. Apparent anisotropy in inhomogeneous isotropic media

NASA Astrophysics Data System (ADS)

Lin, Fan-Chi; Ritzwoller, Michael H.

2011-09-01

Surface waves propagating through a laterally inhomogeneous medium undergo wavefield complications such as multiple scattering, wave front healing, and backward scattering. Unless accounted for accurately, these effects will introduce a systematic isotropic bias in estimates of azimuthal anisotropy. We demonstrate with synthetic experiments that backward scattering near an observing station will introduce an apparent 360° periodicity into the azimuthal distribution of anisotropy near strong lateral variations in seismic wave speeds that increases with period. Because it violates reciprocity, this apparent 1ψ anisotropy, where ψ is the azimuthal angle, is non-physical for surface waves and is, therefore, a useful indicator of isotropic bias. Isotropic bias of the 2ψ (180° periodicity) component of azimuthal anisotropy, in contrast, is caused mainly by wave front healing, which results from the broad forward scattering part of the surface wave sensitivity kernel. To test these predictions, we apply geometrical ray theoretic (eikonal) tomography to teleseismic Rayleigh wave measurements across the Transportable Array component of USArray to measure the directional dependence of phase velocities between 30 and 80 s period. Eikonal tomography accounts for multiple scattering (ray bending) but not finite frequency effects such as wave front healing or backward scattering. At long periods (>50 s), consistent with the predictions from the synthetic experiments, a significant 1ψ component of azimuthal anisotropy is observed near strong isotropic structural contrasts with fast directions that point in the direction of increasing phase speeds. The observed 2ψ component of azimuthal anisotropy is more weakly correlated with synthetic predictions of isotropic bias, probably because of the imprint of intrinsic structural anisotropy. The observation of a 1ψ component of azimuthal anisotropy is a clear indicator of isotropic bias in the inversion caused by unmodelled

16. Spatial and temporal variability in distribution of water masses in Hornsund, Spitsbergen

NASA Astrophysics Data System (ADS)

Promińska, Agnieszka; Falck, Eva; Walczowski, Waldemar; Sundfjord, Arild

2016-04-01

Arctic fjords constitute an important part of many recent investigations because this is the place where different water masses meet, mix, and transform, influencing the stability of glaciers. Hornsund, the southernmost fjord of West Spitsbergen, has been studied during the past 15 years. Observations were based primarily on high resolution measurements of water temperature and salinity along fixed sections, that have been performed every July between 2001-2015. Research carried out in years 2010 - 2015 under Polish - Norwegian projects AWAKE and AWAKE-2 allowed for expansion of the database with data covering the period from spring to autumn. During this time measurements were also conducted from a small boat in the vicinity of glaciers with a time resolution of 1-2 weeks in addition to a mooring system deployed in the fjord and on the shelf just outside Hornsund. Synthesis of our measurements give an overview of water masses observed in the fjord. From summer to summer observations reveal high variability in water temperature and salinity giving a distinct division into an area influenced by oceanic factors (Main Basin) and an area which is more influenced by local factors (Brepollen). The chronology of water mass transformation has been obtained indicating a time of transition between winter (Arctic type), additionally interrupted by temporary inflow of waters of Atlantic origin, and summer (Atlantic type) conditions.

17. SUBGRID PARAMETERIZATION OF SNOW DISTRIBUTION FOR AN ENERGY AND MASS BALANCE SNOW COVER MODEL. (R824784)

EPA Science Inventory

Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...

18. Effect of projectile breakup on fission-fragment mass distributions in the Li,76 + 238U reactions

NASA Astrophysics Data System (ADS)

Santra, S.; Pal, A.; Rath, P. K.; Nayak, B. K.; Singh, N. L.; Chattopadhyay, D.; Behera, B. R.; Singh, Varinderjit; Jhingan, A.; Sugathan, P.; Golda, K. S.; Sodaye, S.; Appannababu, S.; Prasad, E.; Kailas, S.

2014-12-01

Background: Detailed studies on the effect of the breakup of weakly bound projectile on fission are scarce. Distinguishing the events of compound nuclear (CN) fission from the breakup or transfer induced fission to understand the properties of measured fission fragments is difficult but desirable. Purpose: To investigate the effect of projectile breakup and its breakup threshold energy on fission-fragment (FF) mass distributions and folding angle distributions for Li,76 + 238U reactions and find out the differences in the properties of the fission events produced by complete fusion (CF) from the total fusion (TF). Methods: The FF mass and folding angle distributions have been measured at energies around the Coulomb barrier using gas detectors by time-of-flight technique. The results are compared with the ones involving tightly bound projectiles as well as predictions from systematics to bring out the effect of the breakup. Results: A sharp increase in the peak to valley (P:V) ratio of FF mass distribution with the decrease in bombarding energy for Li,76 + 238U reactions is observed when all events are assumed to be CN fission. As the beam energy falls through the fusion barrier, the full width half maximum (FWHM) of the FF folding angle distribution is found to increase at sub-barrier energies, unlike the reactions involving tightly bound projectiles where a linear decrease in FWHM is expected. By selecting pure CN events from the scatter plot of the velocity components of the composite nuclei, the energy dependence of the deduced FWHM is found to be consistent with the ones involving tightly bound projectiles. Similarly, the P:V ratio obtained for the selected CN events is consistent with the theoretical calculations as well as the experimental data for the proton induced reaction forming similar CN. Conclusions: The presence of projectile breakup induced fission and a relatively low breakup threshold for 6Li compared to 7Li explains the observed differences in

19. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

SciTech Connect

Montoya, M.; Rojas, J.; Lobato, I.

2010-08-04

The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

20. Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring

NASA Astrophysics Data System (ADS)

Machguth, Horst; Paul, Frank; Hoelzle, Martin; Haeberli, Wilfried

Modern concepts of worldwide glacier monitoring include numerical models for (1) interconnecting the different levels of observations (local mass balance, representative length change, glacier inventories for global coverage) and (2) extrapolations in space (coupling with climate models) and time (backward and forward). In this context, one important new tool is distributed mass-balance modelling in complex mountain topography. This approach builds on simplified energy-balance models and can be applied for investigating the spatio-temporal representativity of the few mass-balance measurements, for estimating balance values at the tongue of unmeasured glaciers in order to derive long-term average balance values from a great number of glaciers with known length change, and for assessing special effects such as the influence of Sahara dust falls on the albedo and mass balance or autocorrelation effects due to surface darkening of glaciers with strongly negative balances. Experience from first model runs in the Swiss Alps and from applications to the extreme conditions in summer 2003 provides evidence about the usefulness of this approach for glacier monitoring and analysis of glacier changes in high-mountain regions. The main difficulties concern the spatial variability of the input parameters (e.g. precipitation, snow cover and surface albedo) and the uncertainties in the parameterizations of the components of the energy balance. Field measurements remain essential to tie the models to real ground conditions.

1. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

NASA Astrophysics Data System (ADS)

Montoya, M.; Rojas, J.; Lobato, I.

2010-08-01

The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

2. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

NASA Astrophysics Data System (ADS)

Coral, W.; Rossi, C.; Curet, O. M.

2015-12-01

This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

3. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.

PubMed

Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

2014-07-15

The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings.

4. Fragment mass and kinetic-energy distributions from spontaneous fission of the neutron-deficient isotopes, 1. 2-s /sup 246/Fm and 38-s /sup 248/Fm

SciTech Connect

Hoffman, D.; Lee, D.; Ghiorso, A.; Nurmia, M.; Aleklett, K.

1980-10-01

We have measured the mass and kinetic-energy distributions for fragments from the spontaneous fission of 1.2-s /sup 246/Fm and 38-s /sup 248/Fm. The mass distributions are highly asymmetric and the average total kinetic energies of 199 +- 4 MeV and 198 +- 4 MeV, respectively, are consistent with systematics for lower Z actinides. Their properties are in contrast to those of /sup 258/Fm and /sup 259/Fm, whose spontaneous fission results in narrowly symmetric mass distributions accompanied by unusually high total kinetic energies.

5. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets

NASA Astrophysics Data System (ADS)

Ida, S.; Lin, D. N. C.

2004-03-01

In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of

6. Measuring Changes in the Distribution, Mass, and Composition of Dust in the Eruptive LBV Eta Carinae

NASA Astrophysics Data System (ADS)

Morris, Patrick

The luminous, massive binary system eta Carinae is both one of the nearest and most unstable objects in a class of evolved massive stars, near the end of its lifetime before expected destruction in a supernova. It experienced a major outburst in 1843, producing the well-known Homunculus nebula, containing some 15 to 40 Msun in warm ( 170 K) and cool (90-110 K) dust and gas, according to mid-infrared ISO spectroscopy. The location of these thermal components has been uncertain due to large apertures. In Cycle 3 we were approved for 10 hours to use the FORCAST imager with long wavelength filters to better locate and estimate the mass in thermal components of this material that may be resolved, constraining it to the interior regions or bipolar lobes of the Homunculus nebula, or in outer ejecta that would support the hypothesis of a major event prior to the 1843 eruption. About 40% of the program is planned for completion in Cycle 4. We are proposing in Cycle 5 to carry out spectroscopy of the dusty Homunculus nebula at two positions and one reference sky position, using the FORCAST grism with all four filters, in order to characterize changes in mass, composition, and grain properties of especially the cool dust containing >80% of the dust mass, and comparing the results to our spatially integrated ISO spectra taken in 1996/1997, and to 8-13.5 micron data of the warm dust obtained with VLTI/MIDI in 2002/2003 by Chesneau et al. (2005) . These changes may result from the ongoing production of dust in the colliding winds of the 5.5 year period eccentric binary system, particularly during periastron which has occurred three times since 1997. The proposed spectroscopy of especially the cool dust cannot be accomplished from the ground.

7. Seasonal water mass distribution in the Indonesian throughflow entering the Indian Ocean

NASA Astrophysics Data System (ADS)

Coatanoan, C.; Metzl, N.; Fieux, M.; Coste, B.

1999-09-01

A multiparametric approach is used to analyze the seasonal properties of water masses in the eastern Indian Ocean. The data were measured during two cruises of the Java Australia Dynamic Experiment (JADE) program carried out during two opposite seasons: August 1989 (SE monsoon) and February-March 1992 (NW monsoon). These cruises took place at the end of a La Niña event and during an El Niño episode, respectively. Seven sources have been identified in the studied region for the 200-800 m layer: the Subtropical Indian Water, the Indian Central Water, the modified Antarctic Intermediate Water, the Indonesian Subsurface Water, the Indonesian Intermediate Water, the Arabian Sea-Persian Gulf Water (AS-PGW), and the Arabian Sea-Red Sea Water (AS-RSW). The selected tracers are potential temperature, salinity and oxygen with mass conservation and positive mixing coefficients as constraints. The analysis indicates the proportion of each water source along the Australia-Bali section and into the Indonesian channels. Although no large changes are observed for Indonesian waters, significant seasonal variations are found for the southern and northern Indian Ocean water. During the NW monsoon, the contribution of the AS-RSW increases at the entrance of the Indonesian archipelago whereas the contribution of the south Indian waters decreases in the northwest Australia basin. In a complementary study, nutrients are introduced into the multiparametric analysis in order to more clearly separate the signature of the north Indian waters (AS-PGW, AS-RSW) and to provide supplementary information on the biological history of the water masses, which is compared to large-scale primary production estimates.

8. Calculating distributed glacier mass balance for the Swiss Alps from RCM output: Development and testing of downscaling and validation methods

NASA Astrophysics Data System (ADS)

Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.

2009-04-01

Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to

9. Distribution and mass inventory of polycyclic aromatic hydrocarbons in the sediments of the south Bohai Sea, China.

PubMed

Qin, Yanwen; Zheng, Binghui; Lei, Kun; Lin, Tian; Hu, Limin; Guo, Zhigang

2011-02-01

Recent occurrence, distribution and mass inventories of 16 priority polycyclic aromatic hydrocarbons (PAHs) proposed by USEPA in the south Bohai Sea (BS) were studied based on the analytical data of 71 surface sediment samples. The concentrations of 16 PAHs varied from 37 to 537 ngg⁻¹ (dry weight). A clear difference was observed between the coastal Bohai Bay (CBB) and its adjacent BS (ABS) in the distribution and compositions of PAHs. The petrogenic source of phenanthrene in CBB was attributable to the industrial wastewater, fugitive fuel leakages from ships and offshore oil production. Four to six ring PAHs were predominantly from the coal and wood combustions in the whole area. The estimated PAH input to the south BS (43,000 km², 56% of BS in area) was 36.6 ton yr⁻¹, indicating that the study area was one of the important reservoirs of PAHs in world.

10. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

NASA Technical Reports Server (NTRS)

Chao, Benjamin F.

2004-01-01

The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

11. Combining Kepler and HARPS Exoplanet Occurrence Rates to Infer the Period-Mass-Radius Distribution of Super-Earths/Sub-Neptunes

NASA Astrophysics Data System (ADS)

Wolfgang, A.; Laughlin, G.

2011-12-01

The ongoing High Accuracy Radial velocity Planet Search (HARPS) has found that 30-50% of FGK stars in the solar neighborhood host planets with Mpl < MNep in orbits of P < 50 days. At first glance, this high overall occurrence rate seems at best to be marginally consistent with the planet frequency measured during Q0-Q2 of the Kepler Mission, whose 1235 detected planetary candidates imply that ˜ 15% of main sequence dwarfs harbor a short-period planet with Rpl < 4 R⊕ . A rigorous comparison between the two surveys is difficult, however, as they observe different stellar populations, measure different planetary physical properties, and are subject to radically different sampling plans. In this article, we report the results of a Monte Carlo study which seeks to partially overcome this apparent discrepancy by identifying plausible planetary population distributions which can jointly conform to the results of the two surveys. We find that a population concurrently consisting of (1) dense silicate-iron planets and (2) low-density volatile and gas-dominated worlds provides a natural fit to the current data. In this scenario, the fraction of dense planets decreases with increasing mass, from frocky = 90% at M = 1 M⊕ to frocky = 10% at M = MNep. Our best fit population has a total occurrence rate of 40% for 2 ≤ P ≤ 50 days and 1 ≤ M ≤ 17 M⊕ , and is characterized by simple power-law indices of the form N(M)dM ∝ Mα dM and N(P)dP ∝ Pβ dP with α = -1.0 and β = 0.0. Our model population therefore contains four free parameters and is readily testable with future observations. Furthermore, our model's insistence that at least two distinct types of planets must exist in the survey data indicates that multiple formation mechanisms are at work to produce the population of planets commonly referred to as super-Earths".

12. IMPROVED MODELING OF THE MASS DISTRIBUTION OF DISK GALAXIES BY THE EINASTO HALO MODEL

SciTech Connect

Chemin, Laurent; De Blok, W. J. G.; Mamon, Gary A. E-mail: edeblok@ast.uct.ac.za

2011-10-15

Analysis of the rotation curves (RCs) of spiral galaxies provides an efficient diagnostic for studying the properties of dark matter halos and their relations with baryonic material. Since the cored pseudo-isothermal (Iso) model usually provides a better description of observed RCs than does the cuspy Navarro-Frenk-White (NFW) model, there have been concerns that the {Lambda}CDM primordial density fluctuation spectrum may not be the correct one. We have modeled the RCs of galaxies from The H I Nearby Galaxy Survey (THINGS) with the Einasto halo model, which has emerged as the best-fitting model of the halos arising in dissipationless cosmological N-body simulations. We find that the RCs are significantly better fit with the Einasto halo than with either Iso or NFW halo models. In our best-fit Einasto models, the radius of density slope -2 and the density at this radius are highly correlated. The Einasto index, which controls the overall shape of the density profile, is near unity on average for intermediate and low mass halos. This is not in agreement with the predictions from {Lambda}CDM simulations. The indices of the most massive halos are in rough agreement with those cosmological simulations and appear correlated with the halo virial mass. We find that a typical Einasto density profile declines more strongly in its outermost parts than any of the Iso or NFW models whereas it is relatively shallow in its innermost regions. The core nature of those regions of halos thus extends the cusp-core controversy found for the NFW model with low surface density galaxies to the Einasto halo with more massive galaxies like those of THINGS. The Einasto concentrations decrease as a function of halo mass, in agreement with trends seen in numerical simulations. However, they are generally smaller than values expected for simulated Einasto halos. We thus find that, so far, the Einasto halo model provides the best match to the observed RCs and can therefore be considered as a new

13. Direct imaging of elemental distributions in tissue sections by laser ablation mass spectrometry.

PubMed

Shariatgorji, Mohammadreza; Nilsson, Anna; Bonta, Maximilian; Gan, Jinrui; Marklund, Niklas; Clausen, Fredrik; Källback, Patrik; Loden, Henrik; Limbeck, Andreas; Andrén, Per E

2016-07-15

We present a strategy for imaging of elements in biological tissues using laser ablation (LA) mass spectrometry (MS), which was compared to laser ablation inductively coupled plasma (LA-ICP) MS. Both methods were adopted for quantitative imaging of elements in mouse kidney, as well as traumatic brain injury model tissue sections. MS imaging (MSI) employing LA provides quantitative data by comparing signal abundances of sodium from tissues to those obtained by imaging quantitation calibration standards of the target element applied to adjacent control tissue sections. LA-ICP MSI provided quantitative data for several essential elements in both brain and kidney tissue sections using a dried-droplet approach. Both methods were used to image a rat model of traumatic brain injury, revealing accumulations of sodium and calcium in the impact area and its peripheral regions. LA MSI is shown to be a viable option for quantitative imaging of specific elements in biological tissue sections.

14. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

PubMed

Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

2013-09-01

To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

15. Developments in triple quadrupole mass spectrometry. I. Distributed processing control system. II. Screening applications for fuel analysis

SciTech Connect

Myerholtz, C.A.

1984-01-01

A data acquisition and control system for a triple quadrupole mass spectrometer has been developed using several microprocessors in a distributed processing system. This system includes four processors, one acting as the system master controlling three slave processors. In such a distributed processing system each processor is assigned a specific task. Critical to this application is the allocation of the task of data acquisition, ion path control, and peak finding to separate slave processors. This modular approach leads to a system where each major section of the instrument has it's own dedicated intelligence. This parallel processing system allows operations that are often implemented in hardware (for speed considerations) to be performed in software. The use of triple quadrupole mass spectrometry, and MS/MS technique, to detect selected species in middle distillate fuels was examined. Collision-activated dissociation (CAD) spectra were obtained for reference compounds from several heteroatom-containing compound classes. The CAD results were used to select screening reactions for each compound class. The effectiveness of these screening reactions was demonstrated by identifying the presence of various species in samples of Jet A aviation fuel, a shale oil derived fuel and No. 2 diesel fuel.

16. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

SciTech Connect

Durand, O.; Soulard, L.

2015-04-28

The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

17. Procedure for estimating salinity distribution based on resistivity data for a rock mass

NASA Astrophysics Data System (ADS)

Mizuno, T.; Iwatsuki, T.; Matsuzaki, T.

2012-12-01

Site characterization work will be conducted to understand the geological environment around any site of possible interest for geological disposal of HLW. An approach to reduce uncertainty in the understanding of a geological environment is to increase the investigation density. However, it can be costly and time consuming. Therefore, any increase in investigation density should be done as effectively as possible. Hydrochemical properties, essential characteristics of any geological environment, are developed using hydrochemical data. The data are generally obtained by chemical analyses of groundwater samples from boreholes. However, hydrochemical samples, though taken selectively are not continuous and thus hydrochemical data are point data. On the other hand, the resistivity data, determined using continuous borehole geophysical logging, can be used to estimate the hydrochemical (salinity) distribution. Therefore, if salinity distributions can be estimated from resistivity data, investigation density would be effectively higher. This study has aimed to develop the methodology for estimation of salinity distribution by resistivity data of the boreholes drilled around the Horonobe URL in Hokkaido, northern Japan. JAEA has established the URL as a part of the national R&D program for geological disposal of HLW. In addition, the technical knowledge and know-how learnt through this study are summarized as a "case-base (data base of investigation examples)" to incorporate into the Information Synthesis and Interpretation System (ISIS) that has been developed by JAEA for the Ministry of Economy, Trade and Industry, as a part of its supporting program in 2007. The procedure for estimation of salinity is as follows; (1) Confirmation the applicability of the data of resistivity logging, (2) Conversion of resistivity data to salinity, (3) Comparison of the results of chemical analyses and the calculated results in (2). This study shows that calculated salinity agree well

18. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

PubMed

Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

2013-01-04

Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

19. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment.

PubMed

Yoshinaga, Arata; Kamitakahara, Hiroshi; Takabe, Keiji

2016-05-01

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to detect monolignol glucosides in differentiating normal and compression woods of two Japanese softwoods, Chamaecyparis obtusa and Cryptomeria japonica Comparison of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry collision-induced dissociation fragmentation analysis and structural time-of-flight (MALDI-TOF CID-FAST) spectra between coniferin and differentiating xylem also confirmed the presence of coniferin in differentiating xylem. However, as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF CID-FAST spectra of sucrose were similar to those of coniferin, it was difficult to distinguish the distribution of coniferin and sucrose using MALDI-MSI and collision-induced dissociation measurement only. To solve this problem, osmium tetroxide vapor was applied to sections of differentiating xylem. This vapor treatment caused peak shifts corresponding to the introduction of two hydroxyl groups to the C=C double bond in coniferin. The treatment did not cause a peak shift for sucrose, and therefore was effective in distinguishing coniferin and sucrose. Thus, it was found that MALDI-MSI combined with osmium tetroxide vapor treatment is a useful method to detect coniferin in differentiating xylem.

20. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation

NASA Astrophysics Data System (ADS)

Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

2012-11-01

Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are important factors in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde, and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (<200 Da) analyte signals were suppressed. The optimum approach depended on the analyte being studied; the approaches evaluated included rinsing with water and cell stabilization with glycerol and 4 % paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast.

1. Reconstruction of energy and angle distribution function of surface-emitted negative ions in hydrogen plasmas using mass spectrometry

NASA Astrophysics Data System (ADS)

Kogut, D.; Achkasov, K.; Dubois, J. P. J.; Moussaoui, R.; Faure, J. B.; Layet, J. M.; Simonin, A.; Cartry, G.

2017-04-01

A new method involving mass spectrometry and modeling is described in this work, which may highlight the production mechanisms of negative ions (NIs) on surface in low pressure plasmas. Positive hydrogen ions from plasma impact a sample which is biased negatively with respect to the plasma potential. NIs are produced on the surface through the ionization of sputtered and backscattered particles and detected according to their energy and mass by a mass spectrometer (MS) placed in front of the sample. The shape of the measured negative-ion energy distribution function (NIEDF) strongly differs from the NIEDF of the ions emitted by the sample because of the limited acceptance angle of the MS. The reconstruction method proposed here allows to compute the distribution function in energy and angle (NIEADF) of the NIs emitted by the sample based on the NIEDF measurements at different tilt angles of the sample. The reconstruction algorithm does not depend on the NI surface production mechanism, so it can be applied to any type of surface and/or NI. The NIEADFs for highly oriented pyrolitic graphite (HOPG) and gadolinium (low work-function metal) are presented and compared with the SRIM modeling. HOPG and Gd show comparable integrated NI yields, however the key differences in mechanisms of NI production can be identified. While for Gd the major process is backscattering of ions with the peak of NIEDF at 36 eV, in case of HOPG the sputtering contribution due to adsorbed H on the surface is also important and the NIEDF peak is found at 5 eV.

2. KAT-7 Science Verification: Using H I Observations of NGC 3109 to Understand its Kinematics and Mass Distribution

NASA Astrophysics Data System (ADS)

Carignan, C.; Frank, B. S.; Hess, K. M.; Lucero, D. M.; Randriamampandry, T. H.; Goedhart, S.; Passmoor, S. S.

2013-09-01

H I observations of the Magellanic-type spiral NGC 3109, obtained with the seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass distribution. Our results are compared to those obtained using Very Large Array (VLA) data. KAT-7 is a pathfinder of the Square Kilometer Array precursor MeerKAT, which is under construction. The short baselines and low system temperature of the telescope make it sensitive to large-scale, low surface brightness emission. The new observations with KAT-7 allow the measurement of the rotation curve (RC) of NGC 3109 out to 32', doubling the angular extent of existing measurements. A total H I mass of 4.6 × 108 M ⊙ is derived, 40% more than what is detected by the VLA observations. The observationally motivated pseudo-isothermal dark matter (DM) halo model can reproduce the observed RC very well, but the cosmologically motivated Navarro-Frenk-White DM model gives a much poorer fit to the data. While having a more accurate gas distribution has reduced the discrepancy between the observed RC and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense of having to use unrealistic mass-to-light ratios for the stellar disk and/or very large values for the MOND universal constant a 0. Different distances or H I contents cannot reconcile MOND with the observed kinematics, in view of the small errors on these two quantities. As with many slowly rotating gas-rich galaxies studied recently, the present result for NGC 3109 continues to pose a serious challenge to the MOND theory.

3. KAT-7 Science Verification: Using HI Observations of NGC 3109 to Understand its Kinematics and Mass Distribution

NASA Astrophysics Data System (ADS)

Lucero, Danielle M.; Carignan, C.; Hess, K. M.; Frank, B. S.; Randriamampandry, T. H.; Goedhart, S.; Passmoor, S. S.

2014-01-01

HI observations of the Magellanic-type spiral NGC 3109, obtained with the seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass distribution. Our results are compared to those obtained using Very Large Array (VLA) data. KAT-7 is a pathfinder of the Square Kilometer Array precursor MeerKAT, which is under construction. The short baselines and low system temperature of the telescope make it sensitive to large-scale, low surface brightness emission. The new observations with KAT-7 allow the measurement of the rotation curve (RC) of NGC 3109 out to 32', doubling the angular extent of existing measurements. A total HI mass of 4.6×108 M⊙ is derived, 40% more than what is detected by the VLA observations. The observationally motivated pseudo-isothermal dark matter halo model can reproduce the observed RC very well, but the cosmologically motivated Navarro-Frenk-White DM model gives a much poorer fit to the data. While having a more accurate gas distribution has reduced the discrepancy between the observed RC and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense of having to use unrealistic mass-to-light ratios for the stellar disk and/or very large values for the MOND universal constant a0. Different distances or HI contents cannot reconcile MOND with the observed kinematics, in view of the small errors on these two quantities. As with many slowly rotating gas-rich galaxies studied recently, the present result for NGC 3109 continues to pose a serious challenge to the MOND theory.

4. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity

NASA Astrophysics Data System (ADS)

Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.

2016-05-01

We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.

5. KAT-7 SCIENCE VERIFICATION: USING H I OBSERVATIONS OF NGC 3109 TO UNDERSTAND ITS KINEMATICS AND MASS DISTRIBUTION

SciTech Connect

Carignan, C.; Frank, B. S.; Hess, K. M.; Lucero, D. M.; Randriamampandry, T. H.; Goedhart, S.; Passmoor, S. S.

2013-09-15

H I observations of the Magellanic-type spiral NGC 3109, obtained with the seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass distribution. Our results are compared to those obtained using Very Large Array (VLA) data. KAT-7 is a pathfinder of the Square Kilometer Array precursor MeerKAT, which is under construction. The short baselines and low system temperature of the telescope make it sensitive to large-scale, low surface brightness emission. The new observations with KAT-7 allow the measurement of the rotation curve (RC) of NGC 3109 out to 32', doubling the angular extent of existing measurements. A total H I mass of 4.6 Multiplication-Sign 10{sup 8} M{sub Sun} is derived, 40% more than what is detected by the VLA observations. The observationally motivated pseudo-isothermal dark matter (DM) halo model can reproduce the observed RC very well, but the cosmologically motivated Navarro-Frenk-White DM model gives a much poorer fit to the data. While having a more accurate gas distribution has reduced the discrepancy between the observed RC and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense of having to use unrealistic mass-to-light ratios for the stellar disk and/or very large values for the MOND universal constant a{sub 0}. Different distances or H I contents cannot reconcile MOND with the observed kinematics, in view of the small errors on these two quantities. As with many slowly rotating gas-rich galaxies studied recently, the present result for NGC 3109 continues to pose a serious challenge to the MOND theory.

6. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at √s= 1.96 TeV

DOE PAGES

Aaltonen, T

2011-04-28

We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

7. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution

Code of Federal Regulations, 2012 CFR

2012-07-01

... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

8. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

Code of Federal Regulations, 2013 CFR

2013-07-01

... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

9. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

Code of Federal Regulations, 2012 CFR

2012-07-01

... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Estimated Mass Concentration... Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

10. 40 CFR Table F-4 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution

Code of Federal Regulations, 2014 CFR

2014-07-01

... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Coarse Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

11. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

Code of Federal Regulations, 2013 CFR

2013-07-01

... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m 3)...

12. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution

Code of Federal Regulations, 2014 CFR

2014-07-01

... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Estimated Mass Concentration... Concentration Measurement of PM 2.5 for Idealized Fine Aerosol Size Distribution Particle Aerodynamic Diameter (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

13. Seaweed allelopathy against coral: surface distribution of a seaweed secondary metabolite by imaging mass spectrometry.

PubMed

Andras, Tiffany D; Alexander, Troy S; Gahlena, Asiri; Parry, R Mitchell; Fernandez, Facundo M; Kubanek, Julia; Wang, May D; Hay, Mark E

2012-10-01

Coral reefs are in global decline, with seaweeds increasing as corals decrease. Although seaweeds inhibit coral growth, recruitment, and survivorship, the mechanism of these interactions is poorly understood. Here, we used field experiments to show that contact with four common seaweeds induces bleaching on natural colonies of Porites rus. Controls in contact with inert, plastic mimics of seaweeds did not bleach, suggesting seaweed effects resulted from allelopathy rather than shading, abrasion, or physical contact. Bioassay-guided fractionation of the hydrophobic extract from the red alga Phacelocarpus neurymenioides revealed a previously characterized antibacterial metabolite, neurymenolide A, as the main allelopathic agent. For allelopathy of lipid-soluble metabolites to be effective, the compounds would need to be deployed on algal surfaces where they could transfer to corals on contact. We used desorption electrospray ionization mass spectrometry (DESI-MS) to visualize and quantify neurymenolide A on the surface of P. neurymenioides, and we found the molecule on all surfaces analyzed, with highest concentrations on basal portions of blades.

14. The dynamics and internal mass distribution of rich galaxy cluster cores

NASA Astrophysics Data System (ADS)

Laporte, Chervin Fabien Pierre; White, Simon

2015-08-01

It has often been argued that the findings of shallow dark matter density profiles in galaxy clusters may be a source of tension between observations and benign expectations in LCDM. In this talk I will present cosmological N-body resimulations of the assembly of the Brightest Cluster Galaxies (BCGs) in rich clusters within LCDM. At z=2, I populate dark matter subhalos with self-gravitating stellar systems whose abundance and structure match observed high-redshift galaxies. I then follow their evolution in the build of the final clusters. By z=0, the dark matter density profiles are shallower than in corresponding dark-matter-only simulations, but their total mass density profiles (stars + dark matter) are quite similar. Differences are found only at radii where the effects of central black holes may be significant. Dark matter density slopes shallower than gamma=1.0 occur for r/r200<0.015, close to the half-light radii of the BCGs. I will illustrate how this solution occurs and how this ties in strongly with the accretion history of the central BCG through mergers. Based on the accretion history in the simulations I will also argue that supermassive black hole mergers could create BCG cores as large as rc~3kpc.Finally I will introduce some new re-simulations which are being currently used to study the evolution of the tidal truncation radii of cluster galaxies and making predictions on the kinematics of BCGs to large radii.

15. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

NASA Astrophysics Data System (ADS)

Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

2016-01-01

The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

16. Isotopologue Distributions of Peptide Product Ions by Tandem Mass Spectrometry: Quantitation of Low Levels of Deuterium Incorporation1

PubMed Central

Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.

2007-01-01

Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791

17. Pharmacokinetics, tissue distribution, and excretion studies of l-isocorypalmine using ultra high performance liquid chromatography with tandem mass spectrometry.

PubMed

Wang, Weihui; Liu, Jing; Zhao, Xiaoning; Peng, Yan; Wang, Nannan; Lee, David Y W; Dai, Ronghua

2017-03-01

l-Isocorypalmine is a newly identified metabolite of l-tetrahydropalmatine with a unique dual pharmacological profile as a partial dopamine receptor 1 agonist and dopamine receptor 2 antagonist properties for treating cocaine use disorder. The purpose of this study was to explore the pharmacokinetic profiles, tissue distribution, and excretion of l-isocorypalmine in Sprague-Dawley rats. A sensitive and reliable ultra high performance liquid chromatography with tandem mass spectrometry method was developed and validated for determination of l-isocorypalmine in biological samples. The biological samples were extracted by liquid-liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm, 2.7 μm, Agela) with gradient mobile phase at the flow rate of 0.2 mL/min. The detection was performed by positive electrospray ionization with multiple reaction monitoring mode. Satisfactory linearity, precision, accuracy, extraction recovery, and acceptable matrix effect were achieved. The quantitative method was successfully applied to the pharmacokinetics, tissue distribution, and excretion study of l-isocorypalmine. The results showed that l-isocorypalmine was rapidly distributed, and eliminated from rat plasma and manifested linear dynamics in a dose range of 7.5-15 mg/kg. In addition, the results would be helpful for further clinical reference of l-isocorypalmine as a potential candidate drug for the treatment of cocaine addiction.

18. Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea

NASA Astrophysics Data System (ADS)

Tamburini, Christian; Garel, Marc; Al Ali, Badr; Mérigot, Bastien; Kriwy, Pascal; Charrière, Bruno; Budillon, Giorgio

2009-05-01

This study examines the abundance of the Bacteria, Crenarchaeota and Euryarchaeota and bulk activities (phosphatase and aminopeptidase activities, heterotrophic prokaryotic production and dark CO 2 fixation) in the major water masses of the Tyrrhenian Sea (from surface to bottom: Modified Atlantic Water (MAW); Levantine Intermediate Water (LIW) and Tyrrhenian Deep Water (TDW)) in July and December 2005. Data from the catalyzed reporter deposition coupled with fluorescence in situ hybridization (CARD-FISH) analyses indicate that the percentage of Bacteria was always higher than the percentage of Crenarchaeota and Euryarchaeota throughout the water column. While the percentage of Euryarchaeota was relatively homogeneous (˜10%) through the water column, the percentage of Crenarchaeota increased with depth (from 5% to 14% in July and from 7% to 17% in December in MAW and TDW, respectively). Regarding differences between July and December 2005, the percentage of Bacteria in the MAW was lower in July than in December (25% versus 43%, respectively) while quite constant (˜40%) in the TDW. The pattern of phosphatase and aminopeptidase activity varied according to the stations considered, but both ectoenzyme activities showed higher maximum velocity rates in July than in December in the deep-sea waters. Particularly, specific activity of phosphatase in the deep-sea waters (TDW) was 7 times higher (median value) than in surface waters (MAW). Prokaryotic production, aminopeptidase and phosphatase activity measurements were always higher under in situ pressure conditions than after decompression. For the first time, the measurement of the dark CO 2 fixation was investigated under in situ pressure conditions and its decompressed counterparts. These data give new information to understanding the role of prokaryotes (Bacteria and Archaea) in biogeochemical cycles of the meso- and batypelagic waters of the oceans.

19. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a cape cod, mass., aquifer

USGS Publications Warehouse

Harvey, R.W.; Smith, R.L.; George, L.

1984-01-01

Bacterial abundance, distribution, and heterotrophic uptake in a freshwater aquifer contaminated by treated sewage were determined from analyses of groundwater and sediment-core samples. The number of free-living (unattached) bacteria in contaminated groundwater declined steadily with increasing distance from the source of sewage infiltration, from 1.94 ?? (?? 0.20) x 106 ml-1 at 0.21 km to 0.25 (?? 0.02) x 106 ml-1 at 0.97 km. Bacterial abundance in groundwater sampled at 0.31 km correlated strongly with specific conductance and increased sharply from 4.0 (?? 0.3) x 104 ml-1 at a depth of 6 m to 1.58 (?? 0.12) x 106 ml-1 at 14 m, then declined at 20 and 31 m to 1.29 (?? 0.12) x 106 and 0.96 (?? 0.12) x 106 ml-1, respectively. A majority of the bacteria in contaminated and uncontaminated zones of the aquifer were bound to the surfaces of particulates, <60 ??m in diameter. The glucose uptake rate, assayed at in situ and 5 ??M concentrations, declined steadily in contaminated groundwater sampled along a transect. A preparative wet-sieving technique for use in processing core samples for bacterial enumeration is described and evaluated.

20. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer.

PubMed Central

Harvey, R W; Smith, R L; George, L

1984-01-01

Bacterial abundance, distribution, and heterotrophic uptake in a freshwater aquifer contaminated by treated sewage were determined from analyses of groundwater and sediment-core samples. The number of free-living (unattached) bacteria in contaminated groundwater declined steadily with increasing distance from the source of sewage infiltration, from 1.94 (+/- 0.20) X 10(6) ml-1 at 0.21 km to 0.25 (+/- 0.02) X 10(6) ml-1 at 0.97 km. Bacterial abundance in groundwater sampled at 0.31 km correlated strongly with specific conductance and increased sharply from 4.0 (+/- 0.3) X 10(4) ml-1 at a depth of 6 m to 1.58 (+/- 0.12) X 10(6) ml-1 at 14 m, then declined at 20 and 31 m to 1.29 (+/- 0.12) X 10(6) and 0.96 (+/- 0.12) X 10(6) ml-1, respectively. A majority of the bacteria in contaminated and uncontaminated zones of the aquifer were bound to the surfaces of particulates, less than 60 micron in diameter. The glucose uptake rate, assayed at in situ and 5 microM concentrations, declined steadily in contaminated groundwater sampled along a transect. A preparative wet-sieving technique for use in processing core samples for bacterial enumeration is described and evaluated. Images PMID:6517587

1. Chemical composition and mass size distribution of PM1 at an elevated site in central east China

NASA Astrophysics Data System (ADS)

Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Hu, G. Y.; Shen, X. J.; Wang, Y. Q.; Wang, T. T.; Wang, D. Z.; Zhao, Y.

2014-11-01

Size-resolved aerosol chemical compositions were measured continuously for 1.5 years from June 2010 to January 2012 with an aerosol mass spectrometer (AMS) to characterize the mass and size distributions (MSDs) of major chemical components in submicron particles (approximately PM1) at Mountain Tai (Mt. Tai), an elevated site in central east China. The annual mean mass concentrations of organic, sulfate, nitrate, ammonium, and chloride were 11.2, 9.2, 7.2, 5.8, and 0.95 μg m-3, respectively, which are much higher than those at most mountain sites in the USA and Europe, but lower than those at the nearby surface rural sites in China. A clear seasonality was observed for all major components throughout the study, with low concentration in fall and high in summer, and is believed to be caused by seasonal variations in planetary boundary layer (PBL) height, near surface pollutant concentrations and regional transport processes. Air masses were classified into categories impacted by PBL, lower free troposphere (LFT), new particle formation (NPF), in-cloud processes, and polluted aerosols. Organics dominated the PM1 mass during the NPF episodes, while sulfate contributed most to PM1 in cloud events. The average MSDs of particles between 30 and 1000 nm during the entire study for organics, sulfate, nitrate, and ammonium were approximately log-normal with mass median diameters (MMDs) of 539, 585, 542, and 545 nm, respectively. These values are slightly larger than those observed at ground sites within the North China Plain (NCP), likely due to the relative aged and well-mixed aerosol masses at Mt. Tai. There were no obvious differences in MMDs during the PBL, LFT, in-cloud and polluted episodes, but smaller MMDs, especially for organics, were observed during the NPF events. During the PBL, NPF, and polluted episodes, organics accounted for major proportions at smaller modes, and reached 70% at 100-200 nm particles in the polluted events. In cloud episodes, inorganics

2. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

NASA Astrophysics Data System (ADS)

Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

2016-05-01

Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

3. Distribution of mesoscale elastic properties and mass density in the human femoral shaft.

PubMed

Rohrbach, Daniel; Grimal, Quentin; Varga, Peter; Peyrin, Francoise; Langer, Max; Laugier, Pascal; Raum, Kay

2015-04-01

Cortical bone properties are determined by tissue composition and structure at several hierarchical length scales. In this study, the spatial distribution of micro- and mesoscale elastic properties within a human femoral shaft has been investigated. Microscale tissue degree of mineralization (DMB), cortical vascular porosity Ct.Po and the average transverse isotropic stiffness tensor C(Micro) of cylindrical-shaped samples (diameter: 4.4 mm, N = 56) were obtained from cortical regions between 20 and 85% of the total femur length and around the periphery (anterior, medial, posterior and lateral quadrants) by means of synchrotron radiation µCT (SRµCT) and 50-MHz scanning acoustic microscopy (SAM). Within each cylinder, the volumetric bone mineral density (vBMD) and the mesoscale stiffness tensor C(Meso) were derived using a numerical homogenization approach. Moreover, microelastic maps of the axial elastic coefficient c33 measured by SAM at distinct cross-sectional locations along the femur were used to construct a 3-D multiscale elastic model of the femoral shaft. Variations of vBMD (6.1%) were much lower than the variations of mesoscale elastic coefficients (11.1-21.3%). The variation of DMB was only a minor predictor for variations of the mesoscale elastic properties (0.05 ≤ R(2) ≤ 0.34). Instead, variations of the mesoscale elastic properties could be explained by variations of cortical porosity and microscale elastic properties. These data were suitable inputs for numerical evaluations and may help to unravel the relations between structure and composition on the elastic function in cortical bone.

4. Distribution study of cisplatin in rat kidney and liver cancer tissues by using liquid chromatography electrospray ionization tandem mass spectrometry.

PubMed

Bandu, Raju; Ahn, Hyun Soo; Lee, Joon Won; Kim, Yong Woo; Choi, Seon Hee; Kim, Hak Jin; Kim, Kwang Pyo

2015-06-01

A sensitive and rapid liquid chromatography positive ion electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method has been developed and validated for the quantitative determination and distribution of cisplatin (CP) in kidney and liver tissues after intravenous administration of drug to adult male Sprague Dawley rats. Oxaliplatin (OXP) was used as an internal standard. The tissue samples were homogenized and extracted using conventional liquid-liquid extraction method with phosphate buffer containing ethyl acetate and then subjected to LC-MS analysis. The chromatographic separation was achieved on an Agilent ZORBAX SB C-18 column (50 × 2.1 mm, 1.8 µm) using the mobile phase consisting of 0.1% formic acid in water (Solvent A) : methanol (Solvent B) (40 : 60; v/v) in an isocratic elution followed by detection with positive ion electrospray ionization tandem mass spectrometry using the transitions of m/z 301 > 265 for CP and m/z 398 > 310 for OXP in multiple reaction monitoring mode. The calibration curve was linear in the range of 5.0-7000 and 10.0-6000 ng/ml for kidney and liver tissue homogenates, respectively. The method revealed good performances in terms of within-batch, between-batch precision (1.31-5.70%) and accuracy (97.0-102.24%) for CP in both kidney and liver tissue homogenates including lower and upper limits of quantification. The recoveries from spiked control samples were >81.0% and >87.0 % for CP and OXP, respectively. Matrix effect was found to be negligible, and the stability data were within the acceptable limits. Further, the validated LC/ES-MS/MS method was successfully applied to investigate the distribution of CP in kidney and liver tissues after intravenous administration of CP to male Sprague Dawley rats. The results showed that the higher amount of CP was distributed in kidney followed by liver, which indicated that CP mainly accumulated in kidney tissues and renal excretion might be a primary and

5. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

SciTech Connect

Montoya, M.; Rojas, J.; Saetone, E.

2007-10-26

The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

6. Size distributions of mass and chemical components in street-level and rooftop PM 1 particles in Helsinki

NASA Astrophysics Data System (ADS)

Pakkanen, Tuomo A.; Kerminen, Veli-Matti; Loukkola, Kati; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Maenhaut, Willy

In June 1997, five pairs of simultaneous 24 h atmospheric aerosol samples were collected on working days using Berner low-pressure impactors at 3.5 and 20 m heights at an urban site in Helsinki, Finland. The weather was dry and sunny during the campaign. The results were compared to earlier observations made at the lower site. Average submicron masses were 11 μg/m 3 at both heights. Local vehicle exhaust emissions seemed to accumulate particulate mass especially in the 0.15-0.4 μm size range with the average mass concentration being 12% higher at street level for 0.24 μm particles. Long-range transport and sea salt were important for the 0.4-1.3 μm particles leading to slightly higher average mass concentration at the rooftop site for this size-range. Average concentrations of most components, including mass and sulphate, were higher at the rooftop site in the 0.07-0.15 μm size range suggesting that regional or long-range-transported particles and/or local high-level sources might have enhanced these concentrations at the rooftop site. Average submicron concentrations of Cu, Ba, Fe, Sb, Bi, Al and nitrate were higher at street level suggesting that local traffic and road dust were important sources for these components. Concentrations of Ca, Co, Li, Mo, Na, Ni, Pb, Rb, Se, Sr, Ti, Tl, V, MSA, pyruvate, succinate, malonate, SO 42-, Cl -, Na +, K + and Ca 2+ were similar at the two heights or higher at the rooftop site pointing to long-range transport and/or local high-level sources. Comparison of size distributions and concentrations revealed several groups of correlating chemical components: (1) SO 42-, oxalate, NH 4+ and methane sulphonate, (2) Tl, As, K +, Cd, B, glutarate, succinate and Pb, (3) V, Ni, and, to a lesser extent, Co and Mo, (4) Ba, Cu, Fe and Sb, and (5) Zn, Rb, Pb and Mo. The suggested principal sources for the above groups are (1) long-range transport, (2) mainly long-range transport with some local contribution, (3) local oil combustion, (4

7. Measurement of carbon distribution in nuclear fuel pin cladding specimens by means of a secondary ion mass spectrometer

NASA Astrophysics Data System (ADS)

Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs

1986-11-01

Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.

8. Proposal for a new mass distribution control system and its simulation for vibration reduction on rotating machinery

NASA Astrophysics Data System (ADS)

Enginoglu, Ozan; Ozturk, Hasan

2016-12-01

This study presents a new mass distribution control system (MDCS) along with its analysis and simulation. It is aimed to balance a system containing rotating parts in order to minimize the dynamic vibration on it. For this purpose, a test mechanism rotating with an angular velocity of ω is simulated. The mechanism consists of a pair of MDCS, each containing three flaps connected to the shaft. The flaps rotate in relation to the shaft's plane of rotation. The center of gravity (COG) of the MDCS is concentric with the shaft axis when all three flaps are stretched out but the COG changes as the flaps rotate. By adjusting the orientations of the flaps in both systems, it is possible to create a counterforce which suppresses the imbalance force, reducing the vibration to a minimum.

9. High temperature strain gage apparent strain compensation

NASA Technical Reports Server (NTRS)

Holmes, Harlan K.; Moore, T. C., Sr.

1992-01-01

Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

10. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

USGS Publications Warehouse

Rostad, C.E.; Leenheer, J.A.

2004-01-01

Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

11. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

NASA Astrophysics Data System (ADS)

Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

2014-08-01

Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

12. Observation of a resonancelike structure in the pi +- psi' mass distribution in exclusive B-->Kpi +- psi' decays.

PubMed

Choi, S-K; Olsen, S L; Adachi, I; Aihara, H; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Balagura, V; Bedny, I; Bitenc, U; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, P; Chao, Y; Chen, A; Chen, K-F; Chen, W T; Cheon, B G; Chistov, R; Choi, Y; Dalseno, J; Danilov, M; Dash, M; Eidelman, S; Gabyshev, N; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hoshi, Y; Hou, W-S; Hyun, H J; Iijima, T; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwasaki, M; Iwasaki, Y; Kah, D H; Kang, J H; Katayama, N; Kawai, H; Kawasaki, T; Kichimi, H; Kim, H O; Kim, S K; Kim, Y J; Kinoshita, K; Krizan, P; Krokovny, P; Kumar, R; Kuo, C C; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Limosani, A; Lin, S-W; Liu, Y; Liventsev, D; Mandl, F; Matyja, A; McOnie, S; Medvedeva, T; Mitaroff, W; Miyabayashi, K; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Moloney, G R; Nakano, E; Nakao, M; Nishida, S; Nitoh, O; Nozaki, T; Ogawa, S; Ohshima, T; Okuno, S; Ozaki, H; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Peak, L S; Pestotnik, R; Piilonen, L E; Sahoo, H; Sakai, Y; Schneider, O; Schwartz, A J; Senyo, K; Shapkin, M; Shen, C P; Shibuya, H; Shwartz, B; Singh, J B; Somov, A; Stanic, S; Staric, M; Sumiyoshi, T; Suzuki, S Y; Takasaki, F; Tamai, K; Tanaka, M; Teramoto, Y; Tikhomirov, I; Uehara, S; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Vervink, K; Villa, S; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Wedd, R; Won, E; Yabsley, B D; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhulanov, V; Zupanc, A; Zyukova, O

2008-04-11

A distinct peak is observed in the pi +/- psi' invariant mass distribution near 4.43 GeV in B-->K pi +/- psi' decays. A fit using a Breit-Wigner resonance shape yields a peak mass and width of M=4433+/-4(stat)+/-2(syst) MeV and Gamma=45-13+18(stat)-13+30(syst) MeV. The product branching fraction is determined to be B(B 0-->K -/+Z+/-(4430)) x B(Z+/-(4430)-->pi+/-psi')=(4.1+/-1.0(stat)+/-1.4(syst)) x 10(-5), where Z+/-(4430) is used to denote the observed structure. The statistical significance of the observed peak is 6.5 sigma. These results are obtained from a 605 fb(-1) data sample that contains 657 x 10(6) BB pairs collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+ e- collider.

13. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning

NASA Astrophysics Data System (ADS)

Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Škrdlíková, Lenka

2010-12-01

Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study gas-particle partitioning, aerosol mass size distributions and to explore the potential of a higher time resolution (4 h-sampling). In the particulate phase the mass median diameters of the PAHs were found almost exclusively in the accumulation mode (0.1-1.0 μm of size). These were larger for semivolatile PAHs than for non-volatile PAHs. Gas-particle partitioning of semivolatile PAHs was strongly influenced by temperature. The results suggest that the Junge-Pankow model is inadequate to explain the inter-species variation and another process must be significant for phase partitioning which is less temperature sensitive than adsorption. Care should be taken when interpreting slopes m of plots of the type log K p = m log p L0 + b based on 24 h means, as these are found sensitive to the time averaging, i.e. tend to be higher than when based on 12 h-mean samples.

14. The inner mass distribution of late-type spiral galaxies from SAURON stellar kinematic maps

NASA Astrophysics Data System (ADS)

Kalinova, Veselina; van de Ven, Glenn; Lyubenova, Mariya; Falcón-Barroso, Jesús; Colombo, Dario; Rosolowsky, Erik

2017-01-01

We infer the central mass distributions within 0.4-1.2 disc scalelengths of 18 late-type spiral galaxies using two different dynamical modelling approaches - the asymmetric drift correction (ADC) and axisymmetric Jeans anisotropic multi-Gaussian expansion (JAM) model. ADC adopts a thin-disc assumption, whereas JAM does a full line-of-sight velocity integration. We use stellar kinematics maps obtained with the integral-field spectrograph {SAURON} to derive the corresponding circular velocity curves from the two models. To find their best-fitting values, we apply the Markov Chain Monte Carlo (MCMC) method. ADC and JAM modelling approaches are consistent within 5 per cent uncertainty when the ordered motions are significant comparable to the random motions, i.e. overline{v_{φ }}/σ _R is locally greater than 1.5. Below this value, the ratio vc, JAM/vc, ADC gradually increases with decreasing overline{v_{φ }}/σ _R, reaching vc,JAM ≈ 2 × vc, ADC. Such conditions indicate that the stellar masses of the galaxies in our sample are not confined to their disc planes and likely have a non-negligible contribution from their bulges and thick discs.

15. Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality

PubMed Central

Korn, Vanessa; Fuller, Hubert; Forget, Frédéric; Mühldorfer, Kristin; Kurth, Andreas; Bogdanowicz, Wieslaw; Borel, Christophe; Bosch, Thijs; Cherezy, Thomas; Drebet, Mikhail; Görföl, Tamás; Haarsma, Anne-Jifke; Herhaus, Frank; Hallart, Guénael; Hammer, Matthias; Jungmann, Christian; Le Bris, Yann; Lutsar, Lauri; Masing, Matti; Mulkens, Bart; Passior, Karsten; Starrach, Martin; Wojtaszewski, Andrzej; Zöphel, Ulrich; Teeling, Emma C.

2011-01-01

Background The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by “white nose-syndrome” (WNS) continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. Methodology/Principal Findings We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. Conclusions/Significance G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and therefore, might

16. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

SciTech Connect

Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L.

2015-09-10

We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

17. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

DOE PAGES

Saro, A.

2015-10-12

In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnessesmore » λ to constrain the parameters. We find Bλ=1.14+0.21–0.18 and Cλ=0.73+0.77–0.75. The associated scatter in mass at fixed richness is σlnM|λ = 0.18+0.08–0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ε [4, 4.5].« less

18. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO

NASA Astrophysics Data System (ADS)

Clesse, Sébastien; García-Bellido, Juan

2017-03-01

The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5-200] M⊙ to 10% accuracy.

19. 3-D imaging mass spectrometry of protein distributions in mouse Neurofibromatosis 1 (NF1)-associated optic glioma.

PubMed

Anderson, David M G; Van de Plas, Raf; Rose, Kristie L; Hill, Salisha; Schey, Kevin L; Solga, Anne C; Gutmann, David H; Caprioli, Richard M

2016-10-21

Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder, in which affected individuals develop tumors of the nervous system. Children with NF1 are particularly prone to brain tumors (gliomas) involving the optic pathway that can result in impaired vision. Since tumor formation and expansion requires a cooperative tumor microenvironment, it is important to identify the cellular and acellular components associated with glioma development and growth. In this study, we used 3-D matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to measure the distributions of multiple molecular species throughout optic nerve tissue in mice with and without glioma, and to explore their spatial relationships within the 3-D volume of the optic nerve and chiasm. 3-D IMS studies often involve extensive workflows due to the high volume of sections required to generate high quality 3-D images. Herein, we present a workflow for 3-D data acquisition and volume reconstruction using mouse optic nerve tissue. The resulting 3-D IMS data yield both molecular similarities and differences between glioma-bearing and wild-type (WT) tissues, including protein distributions localizing to different anatomical subregions.

20. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

NASA Astrophysics Data System (ADS)

Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

2012-12-01

We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

1. Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation

NASA Astrophysics Data System (ADS)

Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas

2014-06-01

Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

2. Determination of carbon number distributions of complex phthalates by gas chromatography-mass spectrometry with ammonia chemical ionization.

PubMed

Di Sanzo, Frank P; Lim, Peniel J; Han, Wenning W

2015-01-01

An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers. The carbon number distributions are determined in the acceptable range of <0.1 mole percent to >85 mole percent (m/m). Several examples of analysis made on commercial DINP and DIDP are presented. The use of only 5% instead of 100% ammonia simplifies use of GC-MS-PCI-NH3 but still produces sufficient M + 1 ion intensities that are appropriate for the assay. In addition, use of low concentrations of ammonia mitigates potential safety aspects related to use of ammonia and provides less corrosion for the instrument hardware.

3. Education policies and health inequalities: evidence from changes in the distribution of Body Mass Index in France, 1981-2003.

PubMed

Etile, Fabrice

2014-03-01

This paper contributes to the debate over the effectiveness of education policies in reducing overall health inequalities as compared to public health actions directed at the less-educated. Recentered Influence Function (RIF) regressions are used to decompose the contribution of education to the changing distribution of Body Mass Index (BMI) in France, between 1981 and 2003, into a composition effect (the shift in population education due to a massive educational expansion), and a structure effect (a changing educational gradient in BMI). Educational expansion has reduced overall BMI inequality by 3.4% for women and 2.3% for men. However, the structure effect on its own has produced a 10.9% increase in overall inequality for women, due to a steeper education gradient starting from the second quartile of the distribution. This structure effect on overall inequality is also large (7.6%) for men, albeit insignificant as it remains concentrated in the last decile. Educational expansion policies can thus reduce overall BMI inequalities; but attention must still be paid to the BMI gradient in education even for policies addressing overall rather than socioeconomic health inequalities.

4. Pelvis width associated with bone mass distribution at the proximal femur in children 10-11 years old.

PubMed

Cardadeiro, Graça; Baptista, Fátima; Janz, Kathleen F; Rodrigues, Luís A; Sardinha, Luís B

2014-03-01

Differences in skeletal geometry may generate different patterns of mechanical loading to bone. Impact and muscle loading during physical activity have been shown to influence skeletal geometry. The purpose of this study was to compare geometric measures of the pelvis and proximal femur (PF) of young children and to analyze the contribution and potential interaction of these geometric measures with physical activity on PF bone mass distribution. Participants were 149 girls and 145 boys, aged 10-11 years. Total body and left hip DXA scans were used to derive pelvic and PF geometric measures and PF bone mineral density (BMD) at the femoral neck (FN), trochanter (TR), and intertrochanter (IT). These subregions were used to represent bone mass distribution via three BMD ratios: FN:PF, TR:PF, and IT:PF. Physical activity was objectively measured using accelerometry, and maturity was estimated as the years of distance from peak height velocity. When compared to boys, girls had a wider pelvic diameter and greater interacetabular distances (p < 0.001), lower BMD at FN, TR, and IT (p < 0.05), and higher TR:PF (p < 0.001). After controlling for maturity, body height, and lean body mass, the interacetabular distance in girls explained 21.1 % (β = 0.713, p < 0.001) in TR:PF and 2.9 % (β = -0.179, p = 0.031) in the IT:PF. Neck-shaft angle explained 5.6 % (β = -0.265, p = 0.001) of the IT:PF and 3.1 % (β = 0.194, p = 0.018) of the FN:PF. In boys, FN axis length explained 2.9 % (β = 0.195, p = 0.040) of TR:PF. There was no main effect of physical activity or interaction effect with pelvic geometry in explaining BMD differences among the subregions of the PF. Even before sexual dimorphism, girls have a wider pelvis than boys, which accounted for proportionally greater BMD of the TR than other subregions of the PF.

5. The K20 survey. VI. The distribution of the stellar masses in galaxies up to z ≃ 2

NASA Astrophysics Data System (ADS)

Fontana, A.; Pozzetti, L.; Donnarumma, I.; Renzini, A.; Cimatti, A.; Zamorani, G.; Menci, N.; Daddi, E.; Giallongo, E.; Mignoli, M.; Perna, C.; Salimbeni, S.; Saracco, P.; Broadhurst, T.; Cristiani, S.; D'Odorico, S.; Gilmozzi, R.

2004-09-01

We present a detailed analysis of the stellar mass content of galaxies up to z=2.5 as obtained from the K20 spectrophotometric galaxy sample. We have applied and compared two different methods to estimate the stellar mass M* from broad-band photometry: a Maximal Age approach, where we maximize the age of the stellar population to obtain the maximal mass compatible with the observed R-K color, and a Best Fit model, where the best-fitting spectrum to the complete UBVRIzJKs multicolor distribution is used. We find that the M*/L ratio decreases with redshift: in particular, the average M*/L ratio of early type galaxies decreases with z, with a scatter that is indicative of a range of star-formation time-scales and redshift of formation. More important, the typical M*/L ~ratio of massive early type galaxies is larger than that of less massive ones, suggesting that their stellar population formed at higher z. We show that the final K20 galaxy sample spans a range of stellar masses from M*=109 M⊙ to M*=1012 M⊙: massive galaxies (M*≥1011 M⊙) are common at 0.5Mass Function at various z, of which we observe only a mild evolution (i.e. by 20-30%) up to z≃ 1. At z>1, the evolution in the normalization of the GSMF appears to be much faster: at z≃ 2, about 35% of the present day stellar mass in objects with M* ≃ 1011 M⊙ appear to have assembled. We also detect a change in the physical nature of the most massive galaxies: at z ⪉ 0.7, all galaxies with M>1011 M⊙ are early type, while at higher z a population of massive star-forming galaxies progressively appears. We finally analyze our results in the framework of Λ-CDM hierarchical models. First, we show that the large number of massive galaxies detected at high z does not violate any fundamental Λ-CDM constraint based on the number of massive DM halos. Then, we compare our results with the predictions of several renditions of both

6. Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

PubMed

Kristiana, Ina; Heitz, Anna; Joll, Cynthia; Sathasivan, Arumugam

2010-09-17

Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatize sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography-mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L(-1). The method also demonstrated good precision (repeatability: 3-7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L(-1)) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected

7. The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization Orbitrap mass spectrometry.

PubMed

Rejšek, Jan; Vrkoslav, Vladimír; Hanus, Robert; Vaikkinen, Anu; Haapala, Markus; Kauppila, Tiina J; Kostiainen, Risto; Cvačka, Josef

2015-07-30

Many insects use chemicals synthesized in exocrine glands and stored in reservoirs to protect themselves. Two chemically defended insects were used as models for the development of a new rapid analytical method based on desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The distribution of defensive chemicals on the insect body surface was studied. Since these chemicals are predominantly nonpolar, DAPPI was a suitable analytical method. Repeatability of DAPPI-MS signals and effects related to non-planarity and roughness of samples were investigated using acrylic sheets uniformly covered with an analyte. After that, analytical figures of merit of the technique were determined. The spatial distribution of (E)-1-nitropentadec-1-ene, a toxic nitro compound synthesized by soldiers of the termite Prorhinotermes simplex, was investigated. Then, the spatial distribution of the unsaturated aldehydes (E)-hex-2-enal, (E)-4-oxohex-2-enal, (E)-oct-2-enal, (E,E)-deca-2,4-dienal and (E)-dec-2-enal was monitored in the stink bug Graphosoma lineatum. Chemicals present on the body surface were scanned along the median line of the insect from the head to the abdomen and vice versa, employing either the MS or MS(2) mode. In this fast and simple way, the opening of the frontal gland on the frons of termite soldiers and the position of the frontal gland reservoir, extending deep into the abdominal cavity, were localized. In the stink bug, the opening of the metathoracic scent glands (ostiole) on the ventral side of the thorax as well as the gland reservoir in the median position under the ventral surface of the anterior abdomen were detected and localized. The developed method has future prospects in routine laboratory use in life sciences.

8. On the distribution of stellar remnants around massive black holes: slow mass segregation, star cluster inspirals, and correlated orbits

SciTech Connect

Antonini, Fabio

2014-10-20

We use N-body simulations as well as analytical techniques to study the long-term dynamical evolution of stellar black holes (BHs) at the Galactic center (GC) and to put constraints on their number and mass distribution. Starting from models that have not yet achieved a state of collisional equilibrium, we find that timescales associated with cusp regrowth can be longer than the Hubble time. Our results cast doubts on standard models that postulate high densities of BHs near the GC and motivate studies that start from initial conditions that correspond to well-defined physical models. For the first time, we consider the distribution of BHs in a dissipationless model for the formation of the Milky Way nuclear cluster (NC), in which massive stellar clusters merge to form a compact nucleus. We simulate the consecutive merger of ∼10 clusters containing an inner dense sub-cluster of BHs. After the formed NC is evolved for ∼5 Gyr, the BHs do form a steep central cusp, while the stellar distribution maintains properties that resemble those of the GC NC. Finally, we investigate the effect of BH perturbations on the motion of the GC S-stars as a means of constraining the number of the perturbers. We find that reproducing the quasi-thermal character of the S-star orbital eccentricities requires ≳ 1000 BHs within 0.1 pc of Sgr A*. A dissipationless formation scenario for the GC NC is consistent with this lower limit and therefore could reconcile the need for high central densities of BHs (to explain the S-stars orbits) with the 'missing-cusp' problem of the GC giant star population.

9. Ectopic pregnancy in an apparently healthy bitch.

PubMed

Eddey, Philip D

2012-01-01

This case describes an extrauterine fetus that was discovered in an apparently healthy bitch 5 mo after whelping. The extrauterine fetus was surgically removed, and the bitch made a complete recovery. The topic of canine ectopic pregnancy is discussed, and a review of previously reported cases is presented.

10. Means for improving apparent resolution of television

NASA Technical Reports Server (NTRS)

Hilborn, E. H.

1967-01-01

Technique using short term temporal integration characteristics of the observers visual system improves the apparent resolution of television video presentations. The raster is displaced slightly on each frame so the eye can integrate the information in each raster grain. This phase shift uses a switching time delay.

11. Chemical composition and mass size distribution of PM1.0 at an elevated site in central east China

NASA Astrophysics Data System (ADS)

Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Hu, G. Y.; Shen, X. J.; Wang, Y. Q.; Wang, T. T.; Wang, D. Z.; Zhao, Y.

2014-06-01

Size-resolved aerosol chemical compositions were measured continuously for one and half years with an aerosol mass spectrometer (AMS) to characterize the mass and size distributions (MSDs) of each component in bulk, fresh and aged submicron particles (approximately PM1.0) at Mountain Tai, an elevated site in Central East China (CEC) from June 2010 to January 2012. The majority of the regionally-dispersed aerosols were found to be contributed from short distance mixed aerosol, mostly from its south with organics and sulfate as the major components. The annual mean mass concentrations of organics, sulfate, nitrate, ammonium and chloride were 11.2, 9.2, 7.2, 5.8 and 0.95 μg m-3, respectively, which are much lower for organics and sulfate, and slightly lower for nitrate, ammonium and chloride than those at the nearby surface rural sites. High organics were observed for all four seasons, and the relatively fresh organic aerosol (OA) containing high proportion of less-photo chemically OA, were found from long-range transported aerosol from northwest. Semi-volatile and low-volatile oxidized OAs together contributed approximately 49%, 55% in spring and 72% and 51% in winter of total OA, showing at least 50% of OA can be attributable to SOA. Seasonally, the chemical components at the elevated site showed a "winter high and autumn low" pattern, with organics, sulfate and ammonium peaking in summer. Though no obvious differences of MSDs were seen for various chemical components in the planetary boundary layer (PBL) and free troposphere (FT), the concentrations were a factor of 5-7 higher in PBL than in FT. The averaged MSDs of particles between 30-1000 nm for organics, sulfate, nitrate, and ammonium are approximately log-normal with similar mass median diameters (MMDs) of 539, 585, 542, and 545 nm, respectively, which were slightly larger than those in ground sites within North China Plain (NCP). Obvious differences in MMDs were found between fresh and aged aerosols for

12. Distributions.

ERIC Educational Resources Information Center

Bowers, Wayne A.

This monograph was written for the Conference of the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for students who have had an introductory college physics course. It seeks to provide an introduction to the idea of distributions in general, and to some aspects of the subject in…

13. Apparent Anisotropic Diffusion of SF6 in a Deep Arid Unsaturated Zone

NASA Astrophysics Data System (ADS)

Green, C. T.; Walvoord, M. A.; Andraski, B. J.; Striegl, R. G.; Stonestrom, D. A.

2014-12-01

Gas transport in the unsaturated zone affects contaminant dispersal, remediation, interpretation of groundwater travel times from atmospheric tracers, and mass-budgets of environmentally important gases. Although deep unsaturated zone transport of gases is commonly treated as dominated by Fickian diffusion, previous observations at the Amargosa Desert Research Site have shown that the transport rates of various gas phase contaminants are faster than expected from standard models of diffusive transport. In this study, we use a multi-model approach to analyze results of a gas-tracer (SF6) test to clarify factors affecting gas transport in a deep unsaturated zone. Thirteen separate models with distinct diffusivity structures were calibrated to the tracer-test data. Models were compared on the basis of Akaike Information Criteria estimates of posterior model probability. The greatest posterior probability occurred for a model with significant anisotropy of diffusivity in addition to varying apparent diffusivity among vertically distributed sampling locations. Some horizontal diffusivities were greater than expected for purely diffusive transport, with values approaching free-air diffusivity (tortuosity ≈ 0.6 to 1). The magnitudes of the high apparent diffusivities were consistent with advective oscillations propagating through unsaturated-zone strata based on an analysis of barometric and unsaturated-zone air pressure time series. These results indicate that point source gases in layered unsaturated zones can spread laterally more quickly, and produce higher peak concentrations, than predicted by isotropic Fickian diffusion models.

14. The impact of mass drug administration and long-lasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda

PubMed Central

2011-01-01

Background Lymphatic filariasis (LF) in Uganda is caused by Wuchereria bancrofti and transmitted by anopheline mosquitoes. The mainstay of elimination has been annual mass drug administration (MDA) with ivermectin and albendazole, targeted to endemic districts, but has been sporadic and incomplete in coverage. Vector control could potentially contribute to reducing W. bancrofti transmission, speeding up progress towards elimination. To establish whether the use of long-lasting insecticidal nets (LLINs) can contribute towards reducing transmission of W. bancrofti in a setting with ongoing MDA, a study was conducted in an area of Uganda highly endemic for both LF and malaria. Baseline parasitological and entomological assessments were conducted in 2007, followed by high-coverage LLIN distribution. Net use and entomological surveys were carried out after one year, and final parasitological and entomological evaluations were conducted in 2010. Three rounds of MDA had taken place before the study commenced, with a further three rounds completed during the course of the study. Results In 2007, rapid mapping indicated 22.3% of schoolchildren were W. bancrofti antigen positive, and a baseline survey during the same year found age-adjusted microfilaraemia prevalence was 3.7% (95% confidence interval (CI): 2.6-5.3%). In 2010, age-adjusted microfilaraemia prevalence had fallen to 0.4%, while antigenaemia rates were 0.2% in children < 5 years and 6.0% in ≥ 5 years. In 2010, universal coverage of mosquito nets in a household was found to be protective against W. bancrofti antigen (odds ratio = 0.44, 95% CI: 0.22-0.89). Prevalence of W. bancrofti larvae in anopheline mosquitoes had decreased significantly between the 2007 and 2010 surveys, but there was an apparent increase in vector densities. Conclusion A marked reduction in W. bancrofti infection and infectivity in humans was observed in the study area, where both MDA and LLINs were used to reduce transmission. The extent

15. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

NASA Astrophysics Data System (ADS)

Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

2012-06-01

The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

16. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

SciTech Connect

Saro, A.

2015-10-12

In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find Bλ=1.14+0.21–0.18 and Cλ=0.73+0.77–0.75. The associated scatter in mass at fixed richness is σlnM|λ = 0.18+0.08–0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ε [4, 4.5].

17. Apparent extended body motions in depth

NASA Technical Reports Server (NTRS)

Hecht, Heiko; Proffitt, Dennis R.

1991-01-01

Five experiments were designed to investigate the influence of three-dimensional (3-D) orientation change on apparent motion. Projections of an orientation-specific 3-D object were sequentially flashed in different locations and at different orientations. Such an occurrence could be resolved by perceiving a rotational motion in depth around an axis external to the object. Consistent with this proposal, it was found that observers perceived curved paths in depth. Although the magnitude of perceived trajectory curvature often fell short of that required for rotational motions in depth (3-D circularity), judgments of the slant of the virtual plane on which apparent motions occurred were quite close to the predictions of a model that proposes circular paths in depth.

18. Retrieval of ice crystals' mass from ice water content and particle distribution measurements: a numerical optimization approach

NASA Astrophysics Data System (ADS)

Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

2016-04-01

A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in

19. Determinants of Bed Net Use in Southeast Nigeria following Mass Distribution of LLINs: Implications for Social Behavior Change Interventions.

PubMed

Russell, Cheryl L; Sallau, Adamu; Emukah, Emmanuel; Graves, Patricia M; Noland, Gregory S; Ngondi, Jeremiah M; Ozaki, Masayo; Nwankwo, Lawrence; Miri, Emmanuel; McFarland, Deborah A; Richards, Frank O; Patterson, Amy E

2015-01-01

Millions of long-lasting insecticide treated nets (LLINs) have been distributed as part of the global malaria control strategy. LLIN ownership, however, does not necessarily guarantee use. Thus, even in the ideal setting in which universal coverage with LLINs has been achieved, maximal malaria protection will only be achieved if LLINs are used both correctly and consistently. This study investigated the factors associated with net use, independent of net ownership. Data were collected during a household survey conducted in Ebonyi State in southeastern Nigeria in November 2011 following a statewide mass LLIN distribution campaign and, in select locations, a community-based social behavior change (SBC) intervention. Logistic regression analyses, controlling for household bed net ownership, were conducted to examine the association between individual net use and various demographic, environmental, behavioral and social factors. The odds of net use increased among individuals who were exposed to tailored SBC in the context of a home visit (OR = 17.11; 95% CI 4.45-65.79) or who received greater degrees of social support from friends and family (ptrend < 0.001). Factors associated with decreased odds of net use included: increasing education level (ptrend = 0.020), increasing malaria knowledge level (ptrend = 0.022), and reporting any disadvantage of bed nets (OR = 0.39; 95% CI 0.23-0.78). The findings suggest that LLIN use is significantly influenced by social support and exposure to a malaria-related SBC home visit. The malaria community should thus further consider the importance of community outreach, interpersonal communication and social support on adoption of net use behaviors when designing future research and interventions.

20. Determinants of Bed Net Use in Southeast Nigeria following Mass Distribution of LLINs: Implications for Social Behavior Change Interventions

PubMed Central

Russell, Cheryl L.; Sallau, Adamu; Emukah, Emmanuel; Graves, Patricia M.; Noland, Gregory S.; Ngondi, Jeremiah M.; Ozaki, Masayo; Nwankwo, Lawrence; Miri, Emmanuel; McFarland, Deborah A.; Richards, Frank O.; Patterson, Amy E.

2015-01-01

Millions of long-lasting insecticide treated nets (LLINs) have been distributed as part of the global malaria control strategy. LLIN ownership, however, does not necessarily guarantee use. Thus, even in the ideal setting in which universal coverage with LLINs has been achieved, maximal malaria protection will only be achieved if LLINs are used both correctly and consistently. This study investigated the factors associated with net use, independent of net ownership. Data were collected during a household survey conducted in Ebonyi State in southeastern Nigeria in November 2011 following a statewide mass LLIN distribution campaign and, in select locations, a community-based social behavior change (SBC) intervention. Logistic regression analyses, controlling for household bed net ownership, were conducted to examine the association between individual net use and various demographic, environmental, behavioral and social factors. The odds of net use increased among individuals who were exposed to tailored SBC in the context of a home visit (OR = 17.11; 95% CI 4.45–65.79) or who received greater degrees of social support from friends and family (ptrend < 0.001). Factors associated with decreased odds of net use included: increasing education level (ptrend = 0.020), increasing malaria knowledge level (ptrend = 0.022), and reporting any disadvantage of bed nets (OR = 0.39; 95% CI 0.23–0.78). The findings suggest that LLIN use is significantly influenced by social support and exposure to a malaria-related SBC home visit. The malaria community should thus further consider the importance of community outreach, interpersonal communication and social support on adoption of net use behaviors when designing future research and interventions. PMID:26430747

1. Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer

SciTech Connect

Romano, C.; Danon, Y.; Block, R.; Thompson, J.; Blain, E.; Bond, E.

2010-01-15

A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41+-0.04 ng of {sup 252}Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3+-0.5 mug of {sup 235}U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model.

2. Comment: An Apparent Controversy in Auroral Physics

NASA Astrophysics Data System (ADS)

Haerendel, Gerhard

2007-03-01

In his article A turning point in auroral physics,'' Bryant argued against what he called the standard' theory of auroral acceleration, according to which the electrons `gain their energy from static electric fields,'' and offered wave acceleration as an alternative. Because of the importance of the process, not only for the aurora borealis but also for other cosmic plasmas, a clarification of this apparent controversy seems to be in place.

3. Accessing baryon to meson transition distribution amplitudes in meson production in association with a high invariant mass lepton pair at GSI-FAIR with P¯ANDA

NASA Astrophysics Data System (ADS)

Lansberg, J. P.; Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

2012-12-01

Nucleon-antinucleon annihilation into a near backward- (or forward-) produced meson and a high invariant mass lepton pair admits a factorized description in terms of antinucleon (or nucleon) distribution amplitudes and nucleon-to-meson (or antinucleon-to-meson) transition distribution amplitudes. We estimate the cross section of backward (and forward) pion and η-meson production in association with a high invariant mass lepton pair for the kinematical conditions of GSI-FAIR. The cross sections are found to be large enough to be measured with the P¯ANDA detector. Interesting phenomenological applications of the approach are thus expected.

4. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at √s= 1.96 TeV

SciTech Connect

Aaltonen, T

2011-04-28

We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

5. Computer programs for the interpretation of low resolution mass spectra: Program for calculation of molecular isotopic distribution and program for assignment of molecular formulas

NASA Technical Reports Server (NTRS)

Miller, R. A.; Kohl, F. J.

1977-01-01

Two FORTRAN computer programs for the interpretation of low resolution mass spectra were prepared and tested. One is for the calculation of the molecular isotopic distribution of any species from stored elemental distributions. The program requires only the input of the molecular formula and was designed for compatability with any computer system. The other program is for the determination of all possible combinations of atoms (and radicals) which may form an ion having a particular integer mass. It also uses a simplified input scheme and was designed for compatability with any system.

6. Invariant mass distribution of jet pairs produced in association with a W boson in pp collisions at sqrt[s]=1.96  TeV.

PubMed

Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksu