Science.gov

Sample records for distribution apparent mass

  1. On the Bartnik mass of apparent horizons

    NASA Astrophysics Data System (ADS)

    Mantoulidis, Christos; Schoen, Richard

    2015-10-01

    In this paper we characterize the intrinsic geometry of apparent horizons (outermost marginally outer trapped surfaces) in asymptotically flat spacetimes; that is, the Riemannian metrics on the two sphere which can arise. Furthermore we determine the minimal ADM mass of a spacetime containing such an apparent horizon. The results are conveniently formulated in terms of the quasi-local mass introduced by Bartnik (1989 Phys. Rev. Lett. 62 2346-8). The Hawking mass provides a lower bound for Bartnik’s quasilocal mass on apparent horizons by way of Penrose’s conjecture on time symmetric slices, proven in 1997 by Huisken and Ilmanen (2001 J. Differ. Geom. 59 353-437) and in full generality in 1999 by Bray (2001 J. Differ. Geom. 59 177-267). We compute Bartnik’s mass for all non-degenerate apparent horizons and show that it coincides with the Hawking mass. As a corollary we disprove a conjecture due to Gibbons in the spirit of Thorne’s hoop conjecture (Gibbons 2009 arXiv:0903.1580), and construct a new large class of examples of apparent horizons with the integral of the negative part of the Gauss curvature arbitrarily large.

  2. Theoretical Pressure Distribution, Apparent Mass, and Moment of Inertia of a Disk Pendulum Oscillating at Low Frequency. M.S. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Dunning, R. S.

    1973-01-01

    Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.

  3. Apparent mass in viscous, vortical flows

    NASA Astrophysics Data System (ADS)

    Noca, Flavio

    2001-11-01

    The concept of added, virtual, apparent, or additional mass is well known in potential flow theory. It is added mass (or more exactly, the time derivative of virtual momentum) that wholly contributes to fluid dynamic forces in unsteady, potential flow configurations. While the force contribution from added mass can be easily evaluated in potential flows, it has always been thought that in real (vortical and viscous) flows, the contribution of added mass to the fluid dynamic force is intertwined in a complex way with the force resulting from wake and boundary layer vorticity. Recently, Shiels, Leonard, and Roshko (Journal of Fluids and Structures, vol 15, pp 3-21, 2001) [henceforth SLR] showed that the fluid dynamic lift force on a circular cylinder performing transverse oscillations in a steady stream can actually be decomposed into a lift force due to apparent mass (as evaluated from potential theory) and a ``wake'' force resulting from frictional as well as altered pressure forces caused by the boundary layer and wake growth in viscous flow. Through a rigorous formalism analogous to SLR’s, we will confirm that the SLR decomposition is correct and valid for any body shape in arbitrary motion. The SLR decomposition is a seminal discovery in the science of unsteady aero/hydrodynamics, as it allows to clearly distinguish the force contributions from added mass and from the ``wake''. The result is particularly important for understanding the flight and swimming mechanics of animals.

  4. Mass density at geostationary orbit and apparent mass refilling

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, Kazue; Amoh, Justice; Singer, H. J.

    2016-04-01

    We used the inferred equatorial mass density ρm,eq based on measurements of Alfvén wave frequencies measured by the GOES satellites during 1980-1991 in order to construct a number of different models of varying complexity for the equatorial mass density at geostationary orbit. The most complicated models are able to account for 66% of the variance with a typical variation from actual values of a factor of 1.56. The factors that influenced ρm,eq in the models were, in order of decreasing importance, the F10.7 EUV index, magnetic local time, the solar wind dynamic pressure Pdyn, the phase of the year, and the solar wind BZ (GSM Z direction). During some intervals, some of which were especially geomagnetically quiet, ρm,eq rose to values that were significantly higher than those predicted by our models. For 10 especially quiet intervals, we examined long-term (>1 day) apparent refilling, the increase in ρm,eq at a fixed location. We found that the behavior of ρm,eq varies for different events. In some cases, there is significant apparent refilling, whereas in other cases ρm,eq stays the same or even decreases slightly. Nevertheless, we showed that on average, ρm,eq increases exponentially during quiet intervals. There is variation of apparent refilling with respect to the phase of the solar cycle. On the third day of apparent refilling, ρm,eq has on average a similar value at solar maximum or solar minimum, but at solar maximum, ρm,eq begins with a larger value and rises relatively less than at solar minimum.

  5. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  6. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Horváth, István; Tóth, L. Viktor

    We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies (HGs) data and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescope. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the GRB's data. Finally, we compared the HGs distribution with standard galaxies distribution of the DEEP2 redshift survey and checked the result with the VIPERS catalogue too.

  7. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Racz, Istvan; Gyorgy Balazs, Lajos; Toth, Viktor; Horvath, Istvan

    2015-08-01

    We studied the relationship between the Swift GRB data and the optical brightness of the host galaxy measured by the Keck telescope. We calculated the unbiased distribution of the host's optical brightness by making use the survival analysis. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we studied also the dependence of this distribution on the GRB's data.

  8. White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, D.; Romero, A. D.; Ourique, G.; Pelisoli, I.

    2017-03-01

    We present the mass distribution for all S/N ≥ 15 DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12 in 2015, fitted with Koester models for ML2/α=0.8 (Teff≥ 10000 K), and for DBs with S/N ≥ 10, fitted with ML2/α=1.25, for Teff >16 000 K. These mass distributions are for logg≥6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 M ⊙ but very distinct shapes.

  9. Effect of lensing magnification on the apparent distribution of black hole mergers

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Venumadhav, Tejaswi; Sigurdson, Kris

    2017-02-01

    The recent detection of gravitational waves indicates that stellar-mass black hole binaries are likely to be a key population of sources for forthcoming observations. With future upgrades, ground-based detectors could detect merging black hole binaries out to cosmological distances. Gravitational-wave bursts from high redshifts (z ≳1 ) can be strongly magnified by gravitational lensing due to intervening galaxies along the line of sight. In the absence of electromagnetic counterparts, the mergers' intrinsic mass scale and redshift are degenerate with the unknown magnification factor μ . Hence, strongly magnified low-mass mergers from high redshifts appear as higher-mass mergers from lower redshifts. We assess the impact of this degeneracy on the mass-redshift distribution of observable events for generic models of binary black hole formation from normal stellar evolution, Pop III star remnants, or a primordial black hole population. We find that strong magnification (μ ≳3 ) generally creates a heavy tail of apparently massive mergers in the event distribution from a given detector. For LIGO and its future upgrades, this tail may dominate the population of intrinsically massive, but unlensed mergers in binary black hole formation models involving normal stellar evolution or primordial black holes. Modeling the statistics of lensing magnification can help account for this magnification bias when testing astrophysical scenarios of black hole binary formation and evolution.

  10. Apparent LFE Magnitude-Frequency Distributions and the Tremor Source

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bostock, M. G.

    2015-12-01

    Over a decade since its discovery, it is disconcerting that we know so little about the kinematics of the tremor source. One could say we are hampered by low signal-to-noise ratio, but often the LFE signal is large and the "noise" is just other LFEs, often nearly co-located. Here we exploit this feature to better characterize the tremor source. A quick examination of LFE catalogs shows, unsurprisingly, that detected magnitudes are large when the background tremor amplitude is large. A simple interpretation is that small LFEs are missed when tremor is loud. An unanswered question is whether, in addition, there is a paucity of small LFEs when tremor is loud. Because we have both the LFE Green's function (from stacks) and some minimum bound on the overall LFE rate (from our catalogs), tremor waveforms provide a consistency check on any assumed magnitude-frequency (M-f) distribution. Beneath southern Vancouver Island, the magnitudes of >10^5 LFEs range from about 1.2-2.4 (Bostock et al. 2015). Interpreted in terms of a power-law distribution, the b-value is >5. But missed small events make even this large value only a lower bound. Binning by background tremor amplitude, and assuming a time-invariant M-f distribution, the b-value increases to >7, implying (e.g.) more than 10 million M>1.2 events for every M=2.2 event. Such numbers are inconsistent with the observed modest increase in tremor amplitude with LFE magnitude, as well as with geodetically-allowable slips. Similar considerations apply to exponential and log-normal moment-frequency distributions. Our preliminary interpretation is that when LFE magnitudes are large, the same portion of the fault is producing larger LFEs, rather than a greater rate of LFEs pulled from the same distribution. If correct, this distinguishes LFEs from repeating earthquakes, where larger background fault slip rates lead not to larger earthquakes but to more frequent earthquakes of similar magnitude. One possible explanation, that LFEs

  11. Identification of Stress Change Within a Rock Mass Through Apparent Stress of Local Seismic Events

    NASA Astrophysics Data System (ADS)

    Brown, Laura; Hudyma, Martin

    2017-01-01

    Mine blasting produces excavation geometry changes which induce stress change that can be observed in the seismic source parameter apparent stress calculated for local seismic events. Using high apparent stress as a proxy for increasing stress within a rock mass, areas experiencing increases in the local stress conditions can be determined. This paper presents the use of apparent stress of seismic events to identify areas within a rock mass experiencing local stress change. Examples from a deep Canadian mine, operating in excess of 2900 m below surface, are provided.

  12. Comparison of the apparent masses and cross-axis apparent masses of seated humans exposed to single- and dual-axis whole-body vibration

    NASA Astrophysics Data System (ADS)

    Mansfield, Neil J.; Maeda, Setsuo

    2006-12-01

    Humans are exposed to whole-body vibration in many types of environment. In almost all cases, the vibration to which the human is exposed comprises multi-axis vibration, such that vibration occurs in all directions simultaneously. Despite the complex nature of vibration to which humans are exposed in the workplace, almost all laboratory studies investigating the biomechanical response of the person have been completed using single-axis simulators. This paper presents a study whereby 15 male subjects were exposed to single-axis whole-body vibration in the x-, y- and z-directions and dual-axis vibration in the xy-, xz-, and yz-directions using a 6 degree-of-freedom vibration simulator. All vibration magnitudes were 0.4 ms -2 rms in each axis. Acceleration and force was measured in the x-, y-, and z-direction during all trials. Subjects sat in two postures ('back-on' and 'back-off') on a flat rigid seat. Apparent masses measured using single-axis and dual-axis vibration stimuli showed comparable results; similarly, cross-axis apparent masses (i.e. the ratio of the force in one direction to the acceleration in another direction) were almost identical for the single- and dual-axis vibration stimuli. All results were in agreement with data previously published using single-axis vibration. In most cases, the peaks in the apparent mass and the cross-axis apparent mass occurred at a slightly lower frequency for the dual-axis vibration than for the single-axis vibration. It is hypothesised that this change is due to a nonlinear effect, analogous to that which occurs with increasing vibration magnitude for single-axis vibration.

  13. Influence of spontaneous percolation on apparent mass at the bottom of a Janssen granular column

    NASA Astrophysics Data System (ADS)

    Chand, Ram; Ali Khaskheli, Murad; Qadir, Abdul; Sandali, Yahya; Shi, Qingfan

    2014-01-01

    The effect of spontaneous percolation on apparent mass at the bottom of granular assemblies has been investigated experimentally. Bi-layered arrangements of two types of granules which differ in size are poured in a vertical silo. In this configuration, the smaller grains are layered at the top of larger grains in order to realize percolation. Contrary to the description that apparent mass decreases for denser granular packing [L. Vanel, E. Clement, Pressure screening and fluctuations at the bottom of a granular column, Eur. Phys. J. B 11 (1999) 525-533], we find that apparent mass increases due to the increase in packing density by spontaneous percolation. This behavior may be the consequence of the development of a stronger force network in bigger particles after percolation is achieved. Furthermore, due to inhomogeneous force chains in grains, we find that the value of the product of the friction coefficient by the Janssen coefficient decreases with the increasing of saturation mass.

  14. Apparent mass of the human body in the vertical direction: Inter-subject variability

    NASA Astrophysics Data System (ADS)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-02-01

    The biodynamic responses of the seated human body to whole-body vibration vary considerably between people, but the reasons for the variability are not well understood. This study was designed to determine how the physical characteristics of people affect their apparent mass and whether inter-subject variability is influenced by the magnitude of vibration and the support of a seat backrest. The vertical apparent masses of 80 seated adults (41 males and 39 females aged 18-65) were measured at frequencies between 0.6 and 20 Hz with four backrest conditions (no backrest, upright rigid backrest, reclined rigid backrest, reclined foam backrest) and with three magnitudes of random vibration (0.5, 1.0 and 1.5 m s -2 rms). Relationships between subject physical characteristics (age, gender, weight, and anthropometry) and subject apparent mass were investigated with multiple regression models. The strongest predictor of the modulus of the vertical apparent mass at 0.6 Hz, at resonance, and at 12 Hz was body weight, with other factors having only a marginal effect. After correction for other variables, the principal resonance frequency was most consistently associated with age and body mass index. As age increased from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz, and when the body mass index was increased from 18 to 34 kg m -2 the resonance frequency decreased by up to 1.7 Hz. These changes were greater than the 0.9-Hz increase in resonance frequency between sitting without a backrest and sitting with a reclined rigid backrest, and greater than the 1.0-Hz reduction in resonance frequency when the magnitude of vibration increased from 0.5 to 1.5 m s -2 rms. It is concluded that the effects of age, body mass index, posture, vibration magnitude, and weight should be taken into account when defining the vertical apparent mass of the seated human body.

  15. Fragment Mass Distribution of Debris

    DTIC Science & Technology

    1990-08-30

    distribution (3) is referred to as Rosin - Rammler -Sperrling (RRS) distribution, which goes back to the description of the grain size distribution in grin...the total fragment mass, Mot and then be divided by Mo. The corresponding 1 oga - rithms can then be plotted in a log-log- diagram. k g n...Fig. 2 Easy determination of the constants B and X from the log-log plot . 4. FRAGMENT MASS DISTRIBUTION OF AN 155 MM HE-ROUND Table 1 gives the

  16. Mass distributions in disk galaxies

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    2017-03-01

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to become the dominant contributor. Unexpectedly, we find the total baryon to dark-matter fraction within a galaxy stays nearly constant with radius from 1hR out to at least 6hR , with a baryon fraction of 15-50% among galaxies. On average, only one third of the mass within 2.2hR in a disk galaxy is baryonic and these baryons appear to have had only a minor effect on the distribution of the dark matter.

  17. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  18. Seated Occupant Apparent Mass Characteristics Under Automotive Postures and Vertical Vibration

    NASA Astrophysics Data System (ADS)

    RAKHEJA, S.; HARU, I.; BOILEAU, P.-É.

    2002-05-01

    The biodynamic apparent mass response characteristics of 24 human subjects (12 males and 12 females) seated under representative automotive postures with hands-in-lap (passengers) and hands-on-steering wheel (drivers) are reported. The measurements were carried out under white noise vertical excitations of 0·25, 0·5 and 1·0m/s2r.m.s. acceleration magnitudes in the 0·5-40Hz frequency range and a track measured input (1·07m/s2). The measured data have been analyzed to study the effects of hands position, body mass, magnitude and type of vibration excitation, and feet position, on the biodynamic response expressed in terms of apparent mass. A comparison of the measured response of subjects assuming typical automotive postures involving inclined cushion, inclined backrest and full use of backrest support with data determined under different postural conditions and excitation levels revealed considerable differences. The biodynamic response of automobile occupants seated with hands in lap, peaks in the 6·5-8·6Hz frequency range, which is considerably higher than the reported range of fundamental frequencies (4·5-5Hz) in most other studies involving different experimental conditions. The peak magnitude tends to decrease considerably for the driving posture with hands-on-steering wheel, while a second peak in the 8-12 Hz range becomes more apparent for this posture. The results suggest that biodynamic response of occupants seated in automotive seats and subject to vertical vibration need to be characterized, as a minimum, by two distinct functions for passenger and driving postures. A higher body mass, in general, yields higher peak magnitude response and lower corresponding frequency for both postures. The strong dependence of the response on the body mass is further demonstrated by grouping the measured data into four different mass ranges: less than 60 kg, between 60·5 and 70 kg, between 70·5 and 80 kg, and above 80 kg. From the results, it is concluded that

  19. Apparent plasticity in functional traits determining competitive ability and spatial distribution: a case from desert

    PubMed Central

    Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan

    2015-01-01

    Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745

  20. Time Varying Apparent Volume of Distribution and Drug Half-Lives Following Intravenous Bolus Injections

    PubMed Central

    Wesolowski, Carl A.; Wesolowski, Michal J.; Babyn, Paul S.

    2016-01-01

    We present a model that generalizes the apparent volume of distribution and half-life as functions of time following intravenous bolus injection. This generalized model defines a time varying apparent volume of drug distribution. The half-lives of drug remaining in the body vary in time and become longer as time elapses, eventually converging to the terminal half-life. Two example fit models were substituted into the general model: biexponential models from the least relative concentration error, and gamma variate models using adaptive regularization for least relative error of clearance. Using adult population parameters from 41 studies of the renal glomerular filtration marker 169Yb-DTPA, simulations of extracellular fluid volumes of 5, 10, 15 and 20 litres and plasma clearances of 40 and 100 ml/min were obtained. Of these models, the adaptively obtained gamma variate models had longer times to 95% of terminal volume and longer half-lives. PMID:27403663

  1. Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.

    PubMed

    Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego

    2016-08-01

    This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.

  2. Quenching of Supermassive Black Hole Growth around the Apparent Maximum Mass

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kohei; Inayoshi, Kohei

    2017-05-01

    Recent quasar surveys have revealed that supermassive black holes (SMBHs) rarely exceed a mass of M BH ˜ a few × 1010 {M}⊙ during the entire cosmic history. It has been argued that quenching of the BH growth is caused by a transition of a nuclear accretion disk into an advection-dominated accretion flow, with which strong outflows and/or jets are likely to be associated. We investigate the relationship between the maximum mass of SMBHs and the radio-loudness of quasars with a well-defined sample of ˜105 quasars at a redshift range of 0 < z < 2, obtained from the Sloan Digital Sky Surveys DR7 catalog. We find that the number fraction of the radio-loud (RL) quasars increases above a threshold of M BH ≃ 2 × 109 {M}⊙ , independent of their redshifts. Moreover, the number fraction of RL quasars with lower Eddington ratios (out of all RL quasars), indicating lower accretion rates, increases above the critical BH mass. These observational trends can be natural consequences of the proposed scenario of suppressing BH growth around the apparent maximum mass of ˜1010 {M}⊙ . The ongoing VLA Sky Survey in radio will allow us to estimate of the exact number fraction of RL quasars more precisely, which gives further insight into the quenching processes for BH growth.

  3. Complexation of Arsenite with Dissolved Organic Matter: Conditional Distribution Coefficients and Apparent Stability Constants

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2010-01-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. Log KD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH = 9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. Log Ks for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1–2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, log Ks decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3− and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3. PMID:20801484

  4. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants.

    PubMed

    Liu, Guangliang; Cai, Yong

    2010-11-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. LogKD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH=9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. LogKs for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1-2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, logKs decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3- and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3.

  5. Effects of Posture and Vibration Magnitude on Apparent Mass and Pelvis Rotation during Exposure to Whole-Body Vertical Vibration

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; GRIFFIN, M. J.

    2002-05-01

    The effect of variations in posture and vibration magnitude on apparent mass and seat-to-pelvis pitch transmissibility have been studied with vertical random vibration over the frequency range 1·0-20 Hz. Each of 12 subjects was exposed to 27 combinations of three vibration magnitudes (0·2, 1·0 and 2·0m/s2 r.m.s.) and nine sitting postures (“upright”, “anterior lean”, “posterior lean”, “kyphotic”, “back-on”, “pelvis support”, “inverted SIT-BAR” (increased pressure beneath ischial tuberosities), “bead cushion” (decreased pressure beneath ischial tuberosities) and “belt” (wearing an elasticated belt)).Peaks in the apparent masses were observed at about 5 and 10 Hz, and in the seat-to-pelvis pitch transmissibilities at about 12 Hz. In all postures, the resonance frequencies in the apparent mass and transmissibility decreased with increased vibration magnitude, indicating a non-linear softening system. There were only small changes in apparent mass or transmissibility with posture, although peaks were lower for the apparent mass in the “kyphotic” posture and were lower for the transmissibility in the “belt” posture. The changes in apparent mass and transmissibility caused by changes in vibration magnitude were greater than the changes caused by variation in posture.

  6. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord

    SciTech Connect

    Wells, Simon; Conran, John G.; Tamme, Richard; Gaudin, Arnaud; Webb, Jonathan; Lardelli, Michael

    2010-11-15

    The molecules and mechanisms involved in patterning the dorsoventral axis of the developing vertebrate spinal cord have been investigated extensively and many are well known. Conversely, knowledge of mechanisms patterning cellular distributions along the rostrocaudal axis is relatively more restricted. Much is known about the rostrocaudal distribution of motoneurons and spinal cord cells derived from neural crest but there is little known about the rostrocaudal patterning of most of the other spinal cord neurons. Here we report data from our analyses of the distribution of dorsal longitudinal ascending (DoLA) interneurons in the developing zebrafish spinal cord. We show that, although apparently distributed irregularly, these cells have cryptic organisation. We present a novel cell-labelling technique that reveals that DoLA interneurons migrate rostrally along the dorsal longitudinal fasciculus of the spinal cord during development. This cell-labelling strategy may be useful for in vivo analysis of factors controlling neuron migration in the central nervous system. Additionally, we show that DoLA interneurons persist in the developing spinal cord for longer than previously reported. These findings illustrate the need to investigate factors and mechanisms that determine 'irregular' patterns of cell distribution, particularly in the central nervous system but also in other tissues of developing embryos.

  7. Apparent power-law distributions in animal movements can arise from intraspecific interactions

    PubMed Central

    Breed, Greg A.; Severns, Paul M.; Edwards, Andrew M.

    2015-01-01

    Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. PMID:25519992

  8. Apparent power-law distributions in animal movements can arise from intraspecific interactions.

    PubMed

    Breed, Greg A; Severns, Paul M; Edwards, Andrew M

    2015-02-06

    Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES

    SciTech Connect

    Farr, Will M.; Sravan, Niharika; Kalogera, Vicky; Cantrell, Andrew; Kreidberg, Laura; Bailyn, Charles D.; Mandel, Ilya E-mail: niharika.sravan@gmail.com E-mail: andrew.cantrell@yale.edu E-mail: charles.bailyn@yale.edu

    2011-11-10

    We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically-as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution-and non-parametrically-as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a 'gap' between the most massive neutron stars and the least massive black holes by considering the value, M{sub 1%}, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M{sub 1%}; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M{sub 1%}>4.3 M{sub sun} with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M{sub 1%}>4.5 M{sub sun} with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the

  10. Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?

    PubMed Central

    Monk, Jacquomo; Ierodiaconou, Daniel; Harvey, Euan; Rattray, Alex; Versace, Vincent L.

    2012-01-01

    Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change – particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability

  11. THE MASS DISTRIBUTION OF SUBGIANT PLANET HOSTS

    SciTech Connect

    Lloyd, James P.

    2013-09-01

    High mass stars are hostile to Doppler measurements due to rotation and activity on the main-sequence, so RV searches for planets around massive stars have relied on evolved stars. A large number of planets have been found around evolved stars with M > 1.5 M{sub Sun }. To test the robustness of mass determinations, Lloyd compared mass distributions of planet hosting subgiants with distributions from integrating isochrones and concluded that it is unlikely the subgiant planet hosts are this massive, but rather that the mass inferences are systematically in error. The conclusions of Lloyd have been called in to question by Johnson et al., who show TRILEGAL-based mass distributions that disagree with the mass distributions in Lloyd, which they attribute to Malmquist bias. Johnson et al. argue that the very small spectroscopic observational uncertainties favor high masses, and there are a large number of high mass sub giants in RV surveys. However, in this Letter, it is shown that Malmquist bias does not impact the mass distributions, but the mass distribution is sensitive to Galaxy model. The relationship needed to reconcile the subgiant planet host masses with any model of the Galactic stellar population is implausible, and the conclusion of Lloyd that spectroscopic mass determinations of subgiants are likely to have been overestimated is robust.

  12. Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel

    NASA Astrophysics Data System (ADS)

    Toward, M. G. R.; Griffin, M. J.

    2010-04-01

    The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s -2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the 'steering wheel' and the footrest were also investigated as well as a 'no backrest' condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic

  13. Student understanding of balancing, mass distribution and center of mass

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2017-01-01

    Understanding the relationships between balancing, mass distribution and the center of mass is challenging for students. In particular there is a widespread tendency to attribute a balanced state to equal amounts of mass to both sides of the fulcrum if the mass distribution is continuous. A number of explanations have been proposed, including a recent suggestion that perceptual difficulties in locating the center of mass are, at least in part, to blame. Recent experiments suggest that it is unlikely that perceptual difficulties play a significant role. The results have implications for the interpretation of common student errors more broadly. Supported in part by the NSF through DUE 1022449 and DUE 1432765.

  14. Modelling the fore-and-aft apparent mass of the human body and the transmissibility of seat backrests

    NASA Astrophysics Data System (ADS)

    Qiu, Yi; Griffin, Michael J.

    2011-05-01

    A combined lumped-parameter and multi-body system dynamic model of the human body-seat system has been constructed with masses and moments of inertia and with linear translational and rotational springs and dampers. The model was developed in four steps by minimising the sum-of-least-squares error between laboratory measurements and model predictions of the fore-and-aft driving point apparent mass and the fore-and-aft transmissibility of a car backrest. Good agreement was achieved between model predictions and both the median measured driving-point apparent mass and the median measured backrest transmissibility with six subjects. The model was capable of representing the measured apparent masses and predicting the backrest transmissibility with the individual subjects. It was also capable of predicting the backrest transmissibilities of two different car seats. A sensitivity study was conducted and the effects of the model parameters on the peak moduli and corresponding frequencies of the apparent mass and the backrest transmissibility are presented.

  15. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing

    2016-04-01

    Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite

  16. The Field White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.

    2017-03-01

    We study the white dwarf mass distributions for the volume-complete survey within 20 pc and the SDSS magnitude-limited sample. The observed mass distributions are modelled with Monte Carlo simulations. We find that under fixed standard assumptions for Galactic and stellar evolution, the predicted masses are in good qualitative agreement with the observed values. Nevertheless, the number of massive white dwarfs is overpredicted and we find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution.

  17. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    SciTech Connect

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-09-20

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  18. Nesting distributions of Galápagos boobies (Aves: Sulidae): an apparent case of amensalism.

    PubMed

    Townsend, Howard M; Huyvaert, Kathryn P; Hodum, Peter J; Anderson, David J

    2002-08-01

    Blue-footed boobies (Sula nebouxii) in the Galápagos Islands nest at coastal sites such as cliff edges if Nazca boobies (S. granti) are absent. However, if sympatric with nesting Nazca boobies, they nest nearby, but farther inland, in areas with little topographical relief. Nazca boobies nest at the coastal sites whether blue-footed boobies are present or not. The segregated nesting pattern of these two species offers a model system to investigate factors influencing community structure. We tested a non-interactive hypothesis, in which different fundamental niches generate the non-overlapping distributions, and an interactive hypothesis, in which the two fundamental niches overlap and an interaction between the two species causes the segregation. Data on three factors considered as likely parameters differentiating fundamental niches (nest microclimate, nature of the nesting substrate, and ease of taking flight from nest sites) failed to support the non-interactive hypothesis. These results suggest that the two species have indistinguishable fundamental niches with respect to these parameters, but different realized niches. Researchers studying resource partitioning by ecologically similar species often only consider competition (a "-/-" interaction) to explain situations like this, ignoring the more parsimonious amensal (0/-) possibility. Nesting segregation in this situation is apparently caused by attacks of non-breeding adult Nazca boobies on blue-footed booby nestlings, injuring nestlings and ultimately preventing them from fledging. The interaction does not result in any discernible costs or benefits (i.e., effects on fecundity or survival) for the adult Nazca boobies, so it is best described as an amensal interaction. This interaction provides a sufficient explanation of the observed nesting segregation, and precludes present competition for nesting space.

  19. Periodic Patterns in Distributions of Peptide Masses

    PubMed Central

    Hubler, Shane L.; Craciun, Gheorghe

    2015-01-01

    We are investigating the distribution of the number of peptides for given masses, and especially the observation that peptide density reaches a local maximum approximately every 14 Daltons. This wave pattern exists across species (e.g. human or yeast) and enzyme digestion techniques. To analyze this phenomenon we have developed a mathematical method for computing the mass distributions of peptides, and we present both theoretical and empirical evidence that this 14-Dalton periodicity does not arise from species selection of peptides but from the number-theoretic properties of the masses of amino acid residues. We also describe other, more subtle periodic patterns in the distribution of peptide masses. We also show that these periodic patterns are robust under a variety of conditions, including the addition of amino acid modifications and selection of mass accuracy scale. The method used here is also applicable to any family of sequential molecules, such as linear hydrocarbons, RNA, single- and double-stranded DNA. PMID:22579741

  20. Effect of backrest and torso twist on the apparent mass of the seated body exposed to vertical vibration.

    PubMed

    Mansfield, Neil J; Maeda, Setsuo

    2005-07-01

    Occupational exposure to whole-body vibration is often combined with a requirement to perform twisting actions. This paper reports a study where the effect of twisting on the biomechanical response of the seated person was investigated. Twelve male subjects were exposed to vertical random whole-body vibration at 0.4 m/s2 r.m.s. Each subject sat in four different postures: 'back-on', 'back-off', 'twist' (where subjects were required to twist the torso by 90 degrees) and 'move' (where subjects were required to performing a moving task with extended arms). Similar apparent masses were measured for the 'back-on', 'back-off' and 'twist' conditions, where a peak occurred at about 6 Hz. For the 'move' condition, the peak in the apparent mass was attenuated indicating a different biomechanical response in this posture. The 6 Hz peak in fore-and-aft cross-axis apparent mass was eliminated in the 'move' condition. It is suggested that the change in biomechanical response is due to either the extended arms acting as a passive vibration absorber or that the twisting action interferes with the usual acceleration-muscle feedback system. Further work will be required to test these hypotheses.

  1. Mass distribution and mass resolved angular distribution of fission products in 28Si+232Th

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; John, B. V.; Ramachandran, K.; Pujari, P. K.

    2017-01-01

    Background: Fission process with heavier projectiles and actinide targets has contributions from processes, such as compound nucleus fission, transfer-induced fission, and noncompound nucleus fission. Mass distribution and mass-dependent anisotropy can be used to identify and delineate the contributions due to these different processes. Purpose: Mass distribution in 28Si+232Th has been studied at beam energies of 180 and 158 MeV to investigate the nature of mass distribution arising from complete and incomplete momentum-transfer fission events. Mass-dependent angular anisotropy has been measured at 166 MeV to investigate the dominant noncompound nucleus process contributing to the fission. Method: Mass distribution and mass resolved angular distribution of fission products were measured by the recoil catcher method followed by off-line γ -ray spectrometry. Results: Mass distributions for full momentum-transfer fission processes were found to be symmetric, and those for transfer-induced fission were found to be asymmetric at both beam energies. The relative contribution from transfer-induced fission was found to be higher at lower beam energy. The anisotropy of the fission product angular distribution was found to increase with decreasing mass asymmetry. Conclusions: The mass distribution indicates that, apart from the full momentum-transfer fission process, there is a significant contribution due to transfer-induced fission. The mass dependence of angular anisotropy indicated that preequilibrium fission is the dominant noncompound nucleus process in the present reaction system at near barrier energy (Ec .m ./VC=1.06 ) .

  2. Mass Distributions of Linear Chain Polymers

    PubMed Central

    Hubler, Shane L.; Craciun, Gheorghe

    2012-01-01

    Biochemistry has many examples of linear chain polymers, i.e., molecules formed from a sequence of units from a finite set of possibilities; examples include proteins, RNA, single-stranded DNA, and paired DNA. In the field of mass spectrometry, it is useful to consider the idea of weighted alphabets, with a word inheriting weight from its letters. We describe the distribution of the mass of these words in terms of a simple recurrence relation, the general solution to that relation, and a canonical form that explicitly describes both the exponential form of this distribution and its periodic features, thus explaining a wave pattern that has been observed in protein mass databases. Further, we show that a pure exponential term dominates the distribution and that there is exactly one such purely exponential term. Finally, we illustrate the use of this theorem by describing a formula for the integer mass distribution of peptides and we compare our theoretical results with mass distributions of human and yeast peptides. PMID:23024448

  3. The field white dwarf mass distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

    2016-09-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

  4. Value of apparent diffusion coefficient measurement for discrimination of focal benign and malignant hepatic masses.

    PubMed

    Kilickesmez, O; Bayramoglu, S; Inci, E; Cimilli, T

    2009-02-01

    The purpose of our study was to investigate the value of diffusion-weighted magnetic resonance imaging (DW-MRI) to discriminate benign and malignant focal lesions of the liver using parallel imaging technique. A total of 77 patients and 65 healthy controls were enrolled in the study. DW-MRI was performed with b-factors of 0, 500 and 1000 s/mm(2), and the apparent diffusion coefficients (ADC) values of the normal liver and the lesions were calculated. The mean ADC value of the focal liver lesions were as follows: simple cysts (3.16 +/- 0.18 x 10(-3) mm(2)/s), hydatid cysts (2.58 +/- 0.53 x 10(-3) mm(2)/s), hemangiomas (1.97 +/- 0.49 x 10(-3) mm(2)/s), metastases (1.14 +/- 0.41 x 10(-3) mm(2)/s) and hepatocellular carcinomas (HCC) (1.15 +/- 0.36 x 10(-3) mm(2)/s). The mean ADC values of all the disease groups were statistically significant when compared with the mean ADC value of the normal liver (1.56 +/- 0.14 x 10(-3) mm(2)/s), (P < 0.01). There were also statistically significant differences among the ADC values of hemangiomas and HCC metastases (P < 0.01), and simple and hydatid cysts (P < 0.008). However, there was no statistically significant difference between HCC and metastases. The present study showed that ADC measurement has the potential to differentiate benign and malignant focal hepatic lesions. We propose to add DW sequence in the MR protocol for the detection and quantitative discrimination of hepatic pathologies.

  5. An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2011-12-01

    During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.

  6. The mass distribution of Population III stars

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Casey, A. R.; Gilmore, G.; Heger, A.; Chan, C.

    2017-06-01

    Extremely metal-poor (EMP) stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in EMP stars are representative of their natal gas cloud composition. For this reason, the chemistry of EMP stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 EMP stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function (IMF) to a subset of 29 of the inferred Population III star masses, and find that the mass distribution is well represented by a power-law IMF with exponent α = 2.35^{+0.29}_{-0.24}. The inferred maximum progenitor mass for supernovae from massive Population III stars is M_{max} = 87^{+13}_{-33} M⊙, and we find no evidence in our sample for a contribution from stars with masses above ˜120 M⊙. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the IMF of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.

  7. On an apparent discrepancy between pulsation and evolution masses for Cepheids.

    NASA Technical Reports Server (NTRS)

    Iben, I., Jr.; Tuggle, R. S.

    1972-01-01

    Results of new theoretical pulsation calculations in the linear nonadiabatic approximation are presented. Emphasis is placed on the location of blue edges (the borderline between stability and instability against pulsation) for pulsation in the fundamental mode. The results of evolutionary calculations for the helium-burning phase are introduced, and a theoretical period-luminosity relationship is obtained for Cepheids that lie on the blue edge of the instability strip. The theoretical results are then compared with current estimates of the intrinsic bulk properties of 13 Cepheids, and it is shown how theoretical and observational properties may be reconciled without assuming significant mass loss or the necessity of major adjustments in the theory. Finally, it is argued that the required revision in Cepheid luminosities lies within the observational uncertainties.

  8. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic.

    PubMed

    Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J; Nedachi, Munetomo

    2012-11-20

    The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm.

  9. Deep-sea record of impact apparently unrelated to mass extinction in the Late Triassic

    PubMed Central

    Onoue, Tetsuji; Sato, Honami; Nakamura, Tomoki; Noguchi, Takaaki; Hidaka, Yoshihiro; Shirai, Naoki; Ebihara, Mitsuru; Osawa, Takahito; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Harada, Hideo; Orchard, Michael J.; Nedachi, Munetomo

    2012-01-01

    The 34-million-year (My) interval of the Late Triassic is marked by the formation of several large impact structures on Earth. Late Triassic impact events have been considered a factor in biotic extinction events in the Late Triassic (e.g., end-Triassic extinction event), but this scenario remains controversial because of a lack of stratigraphic records of ejecta deposits. Here, we report evidence for an impact event (platinum group elements anomaly with nickel-rich magnetite and microspherules) from the middle Norian (Upper Triassic) deep-sea sediment in Japan. This includes anomalously high abundances of iridium, up to 41.5 parts per billion (ppb), in the ejecta deposit, which suggests that the iridium-enriched ejecta layers of the Late Triassic may be found on a global scale. The ejecta deposit is constrained by microfossils that suggest correlation with the 215.5-Mya, 100-km-wide Manicouagan impact crater in Canada. Our analysis of radiolarians shows no evidence of a mass extinction event across the impact event horizon, and no contemporaneous faunal turnover is seen in other marine planktons. However, such an event has been reported among marine faunas and terrestrial tetrapods and floras in North America. We, therefore, suggest that the Manicouagan impact triggered the extinction of terrestrial and marine organisms near the impact site but not within the pelagic marine realm. PMID:23129649

  10. Measurement and modelling of the y-direction apparent mass of sitting human body-cushioned seat system

    NASA Astrophysics Data System (ADS)

    Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph

    2009-04-01

    Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.

  11. Apparent equilibrium constant and mass-action ratio for sucrose-phosphate synthase in seeds of Pisum sativum.

    PubMed Central

    Lunn, J E; ap Rees, T

    1990-01-01

    The aim of this work was to use preparations from germinating seeds of Pisum sativum to determine the apparent equilibrium constant of the reaction catalysed by sucrose-phosphate synthase (EC 2.4.1.14) and to compare this with the mass-action ratio of the reaction in the seeds. The apparent equilibrium constant ranged from 5.3 at 0.25 mM-MgCl2, pH 7.0, to 62 at 10 mM-MgCl2, pH 7.5. The sucrose phosphate content of the seeds, 23 nmol/g fresh wt., was determined by separating sucrose phosphate from sucrose by ion-exchange chromatography and then measuring the sucrose released by alkaline phosphatase. Comparison of equilibrium constants and mass-action ratios in the cotyledons of 38 h-germinated seeds showed that the reactions catalysed by glucose-6-phosphate isomerase, phosphoglucomutase and UDP-glucose pyrophosphorylase are close to equilibrium, and those catalysed by sucrose-phosphate synthase and sucrose phosphatase are considerably displaced from equilibrium in vivo. PMID:2140258

  12. Simple mass distribution for the lunar potential.

    NASA Technical Reports Server (NTRS)

    Levie, S. L., Jr.

    1971-01-01

    A set of twenty-one point masses gravitationally equivalent to the L1 lunar potential model is presented. By construction, the equivalence is valid only in a region of space 'sampled' by Apollo spacecraft. That region is taken to be a finite, torus-shaped shell. When used in place of the L1 model for Apollo 12 lunar orbit determination, the solution set gives spacecraft positions identical to within about 100 m. The solution is developed in two steps: first the L1 potential is examined to determine favorable mass locations, and then the mass values are computed to force an optimum matching of the L1 potential. Therefore the solution set is 'artificial.' It is related to the moon's actual mass distribution only in its similar gravitational effects in a limited region of space.

  13. Distribution of apparent activation energy counterparts during thermo - And thermo-oxidative degradation of Aronia melanocarpa (black chokeberry).

    PubMed

    Janković, Bojan; Marinović-Cincović, Milena; Janković, Marija

    2017-09-01

    Kinetics of degradation for Aronia melanocarpa fresh fruits in argon and air atmospheres were investigated. The investigation was based on probability distributions of apparent activation energy of counterparts (εa). Isoconversional analysis results indicated that the degradation process in an inert atmosphere was governed by decomposition reactions of esterified compounds. Also, based on same kinetics approach, it was assumed that in an air atmosphere, the primary compound in degradation pathways could be anthocyanins, which undergo rapid chemical reactions. A new model of reactivity demonstrated that, under inert atmospheres, expectation values for εa occured at levels of statistical probability. These values corresponded to decomposition processes in which polyphenolic compounds might be involved. εa values obeyed laws of binomial distribution. It was established that, for thermo-oxidative degradation, Poisson distribution represented a very successful approximation for εa values where there was additional mechanistic complexity and the binomial distribution was no longer valid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Space Technology 7 : Micropropulsion and Mass Distribution

    NASA Technical Reports Server (NTRS)

    Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; hide

    2007-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass

  15. Space Technology 7 : Micropropulsion and Mass Distribution

    NASA Technical Reports Server (NTRS)

    Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; Connolly, W.; O'Donnell, J.; Markley, F.; Maghami, P.; Hsu, O.

    2007-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass

  16. c-myc protein in normal tissue. Effects of fixation on its apparent subcellular distribution.

    PubMed Central

    Loke, S. L.; Neckers, L. M.; Schwab, G.; Jaffe, E. S.

    1988-01-01

    The c-myc protein is thought to be a DNA-associated nuclear protein. However, immunohistochemical studies on normal or tumor tissues have shown conflicting findings on its subcellular distribution. By using various fixation procedures on cytospin preparations of HL60 cells, the authors found the subcellular distribution of the c-myc protein to be dependent on the method of fixation. When studying mouse tissues in frozen sections using a biotinylated monoclonal antibody against the c-myc protein, they found the protein to be widely distributed in various normal adult mouse tissues, in most cases localized to the nucleus. However, when these tissues were studied after formalin fixation and paraffin embedding, a loss of nuclear staining was observed concurrent with the appearance of c-myc protein immunoreactivity in the cytoplasm. It is concluded that immunohistochemical studies on the expression of this oncogene should take into consideration the effects of fixation when its subcellular distribution is being examined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3281469

  17. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  18. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  19. On the mass distribution of neutron stars

    NASA Astrophysics Data System (ADS)

    Valentim, R.; Rangel, E.; Horvath, J. E.

    2011-06-01

    The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M⊙ and a much wider second peak at 1.73 M⊙. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to 'label' the systems has been made here). They also accommodate the recent findings of ˜M⊙ masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M⊙, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.

  20. Effect of asymmetry of the radio source distribution on the apparent proper motion kinematic analysis

    NASA Astrophysics Data System (ADS)

    Titov, O.; Malkin, Z.

    2009-11-01

    Context: Information on physical characteristics of astrometric radio sources, such as magnitude and redshift, is of great importance for many astronomical studies. However, data usually used in radio astrometry is often incomplete and outdated. Aims: Our purpose is to study the optical characteristics of more than 4000 radio sources observed by the astrometric VLBI technique since 1979. We also studied the effect of the asymmetry in the distribution of the reference radio sources on the correlation matrices between vector spherical harmonics of the first and second degrees. Methods: The radio source characteristics were mainly taken from the NASA/IPAC Extragalactic Database (NED). Characteristics of the gravitational lenses were checked with the CfA-Arizona Space Telescope LEns Survey. SIMBAD and HyperLeda databases were also used to clarify the characteristics of some objects. Also we simulated and investigated a list of 4000 radio sources evenly distributed around the celestial sphere. We estimated the correlation matrices between the vector spherical harmonics using the real as well as modelled distribution of the radio sources. Results: A new list OCARS (optical characteristics of astrometric radio sources) of 4261 sources has been compiled. Comparison of our data of optical characteristics with the official International Earth Rotation and Reference Systems Service (IERS) list showed significant discrepancies for about half of the 667 common sources. Finally, we found that asymmetry in the radio source distribution between hemispheres could cause significant correlation between the vector spherical harmonics, especially in the case of sparse distribution of the sources with high redshift. We also identified radio sources having a many-year observation history and lack of redshift. These sources should be urgently observed with large optical telescopes. Conclusions: The list of optical characteristics created in this paper is recommended for use as a

  1. Prevalence and Geographic Distribution of Vector-Borne Pathogens in Apparently Healthy Dogs in Croatia.

    PubMed

    Mrljak, Vladimir; Kuleš, Josipa; Mihaljević, Željko; Torti, Marin; Gotić, Jelena; Crnogaj, Martina; Živičnjak, Tatjana; Mayer, Iva; Šmit, Iva; Bhide, Mangesh; Barić Rafaj, Renata

    2017-06-01

    Vector-borne pathogens (VBPs) are a group of globally extended and quickly spreading pathogens that are transmitted by various arthropod vectors. The aim of the present study was to investigate the seroprevalence against Babesia canis, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Leishmania infantum, Dirofilaria immitis, and Ehrlichia canis in dogs in Croatia. We investigated 435 randomly selected apparently healthy dogs in 13 different locations of Croatia for antibodies to B. canis by indirect immunofluorescence using a commercial IFA IgG Antibody Kit. All samples were also tested for qualitative detection of D. immitis antigen and for antibodies to A. phagocytophilum, B. burgdorferi sensu lato, L. infantum, and E. canis with two point-of-care assays. Overall, 112 dogs (25.74%, 95% confidence interval [CI] 21.70-30.12) were serologically positive for one or more of the pathogens. B. canis was the most prevalent pathogen (20.00%, 95% CI 16.34-24.07), followed by A. phagocytophilum (6.21%, 95% CI 4.12-8.90), L. infantum, (1.38%, 95% CI 0.51-2.97), and B. burgdorferi sensu lato (0.69%, 95% CI 0.01-2.00). The lowest seroprevalence was for D. immitis and E. canis (0.46%, 95% CI 0.01-1.65). Coinfection was determined in 12 dogs (2.76%, 95% CI 1.43-4.77), of which 10 were positive to two pathogens (7 with B. canis and A. phagocytophilum and 1 B. canis with B. burgdorferi sensu lato or L. infantum or E. canis). One dog was positive to three pathogens and another dog to four pathogens. Seroprevalence for babesia was age, breed, and lifestyle/use dependent. Purebred dogs had almost half the chance of developing disease than crossbred (OR = 0.58, p < 0.026, 95% CI 0.37-0.94). Seropositivity to B. canis was 3.41 times higher for dogs that lived outdoors/shelter (p < 0.006) or 4.57 times higher in mixed/hunting (p < 0.001) compared to indoor/companion dogs. This is the first comprehensive survey of VBP seropositivity conducted in Croatia. Some

  2. Preliminary results on an x-direction apparent mass model of human body sitting in a cushioned, suspended seat

    NASA Astrophysics Data System (ADS)

    Stein, George Juraj; Múčka, Peter; Chmúrny, Rudolf

    2006-12-01

    For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of seated human body have been developed and standardised by the international organisation for standardisation. No such models currently exist for human body sitting in an upright or slightly inclined position in a cushioned "armchair" type seat upper part, mounted on a mechanical, pneumatic or other type vertical suspension system. The interaction with the steering wheel and/or pedals has to be taken into consideration, as well as the variable position of the upper part of the human body in respect to the cushioned back-support of a driver's seat (full back contact to no contact at all), as observed in real driving conditions. This complex problem has to be simplified first to arrive at a manageable simpler mechano-mathematical model which still reflects the main problem features. A simple linear model of the human body apparent mass in the x-direction was designed and analysed. The model accounts for the reaction from the steering wheel and contact with the cushioned back-support of the seat "armchair" part. Model parameters were identified on basis of laboratory measurements. Out of three possible variant the most appropriate was singled out. The proposed model describes the measured apparent mass curve, and also gives indicative prediction of vibration transmissibility across the fore-and-aft ( x-direction) suspension system, if mounted and enabled. The proposed model can be a starting point for a further research in this field.

  3. H i Kinematics and Mass Distribution of Messier 33

    NASA Astrophysics Data System (ADS)

    Kam, S. Z.; Carignan, C.; Chemin, L.; Foster, T.; Elson, E.; Jarrett, T. H.

    2017-08-01

    A new deep H i survey of the galaxy Messier 33 is presented, based on observations obtained at the Dominion Radio Astrophysical Observatory. We observe a perturbed outer gas distribution and kinematics in M33, and confirm the disk warping as a significant twist of the major axis of the velocity field, although no strong tilt is measured, in agreement with previous work. Evidence for a new low-brightness H i component with anomalous velocity is reported. It harbors a large velocity scatter, as its kinematics both exceeds and lags the rotation of the disk, and leaks in the forbidden velocity zone of apparent counterrotation. The observations also reveal wide and multiple-peak H i profiles that can be partly explained by crowded orbits in the framework of the warp model. Asymmetric motions are identified in the velocity field as possible signatures of a lopsided potential and the warp. The mass distribution modeling of the hybrid Hα-H i rotation curve favors a cuspy dark matter halo with a concentration in disagreement with the ΛCDM dark halo mass-concentration relationship. The total mass enclosed in 23 kpc is 8 {10}10 {M}⊙ , of which 11% are stars and gas. At the virial radius of the cuspy halo, the resulting total mass is 5 {10}11 {M}⊙ , but with a baryonic mass fraction of only 2%. This strongly suggests a more realistic radius encompassing the total mass of M33 that is well smaller than the virial radius of the halo, possibly comparable to the size of the H i disk.

  4. An apparent 'even-odd' cycle distribution in Mt. Wilson 'numbers of spots' data

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1986-01-01

    Mt. Wilson 'numbers of spots' data (Howard et al., 1984) appear to be distributed according to 'even-odd' cycle numbering. Linear fits of annual 'numbers of spots' versus annual sunspot number for even- and odd-numbered cycles have slopes which are statistically different at the 5 percent level of significance. The existence of an 'even-odd' split in Mt. Wilson 'numbers of spots' data may be due either to a real difference in even- and odd-numbered cycles on the sun or to a difference in weather at Mt. Wilson during even- and odd-numbered cycles, or both. For cycle 22, an even-numbered cycle, the peak 'numbers of spots' is estimated to be near 2600.

  5. Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates.

    PubMed Central

    Martin, J; Herniou, E; Cook, J; Waugh O'Neill, R; Tristem, M

    1997-01-01

    Retroviruses from lower vertebrate hosts have been poorly characterized to date. Few sequences have been isolated, and those which have been reported are all highly divergent when compared to the retroviruses known to be harbored by mammals and birds. Here we show that retroviruses with significant homology to the human endogenous retrovirus type I (HERV-I) are present within the genomes of fish, reptiles, birds, and mammals and that they may well be widespread within many vertebrates. Phylogenetic analysis of nucleotide sequences strongly supported the inclusion of viruses from each of these vertebrate classes into one monophyletic group. This analysis also demonstrated that the HERV-I-related viruses are more closely related to retroviruses belonging to the murine leukemia virus genus than to members of the other retroviral genera. The presence of HERV-I-related retroviruses in so many disparate vertebrate hosts suggests that other endogenous human retroviruses may also have a much wider distribution than is currently appreciated. PMID:8985368

  6. Mass Distribution in Galaxy Cluster Cores

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.; Edge, A. C.; Main, R. A.

    2017-03-01

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar (M *), gas (M gas), and dark matter (M DM) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular Hα emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r 1.1 expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r 0.67 down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”

  7. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

    2014-12-01

    sector the apparent trend of mass changes caused by the GIA fast mantle flow is more than 15 Gt/yr, which is 11.5% of to the -130 Gt/yr altimetry derived trend. Therefore, previous GRACE derived mass changes in Amundsen sector have been systematically underestimated.

  8. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

    2015-12-01

    sector the apparent trend of mass changes caused by the GIA fast mantle flow is more than 15 Gt/yr, which is 11.5% of to the -130 Gt/yr altimetry derived trend. Therefore, previous GRACE derived mass changes in Amundsen sector have been systematically underestimated.

  9. Measurement and modelling of x-direction apparent mass of the seated human body-cushioned seat system.

    PubMed

    Stein, George Juraj; Múcka, Peter; Chmúrny, Rudolf; Hinz, Barbara; Blüthner, Ralph

    2007-01-01

    For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of the seated human body have been developed and standardized by the ISO. No such models exist hitherto for human body sitting in an upright position in a cushioned seat upper part, used in industrial environment, where the fore-and-aft vibrations play an important role. The interaction with the steering wheel has to be taken into consideration, as well as, the position of the human body upper torso with respect to the cushioned seat back as observed in real driving conditions. This complex problem has to be simplified first to arrive at manageable simpler models, which still reflect the main problem features. In a laboratory study accelerations and forces in x-direction were measured at the seat base during whole-body vibration in the fore-and-aft direction (random signal in the frequency range between 0.3 and 30 Hz, vibration magnitudes 0.28, 0.96, and 2.03 ms(-2) unweighted rms). Thirteen male subjects with body masses between 62.2 and 103.6 kg were chosen for the tests. They sat on a cushioned driver seat with hands on a support and backrest contact in the lumbar region only. Based on these laboratory measurements a linear model of the system-seated human body and cushioned seat in the fore-and-aft direction has been developed. The model accounts for the reaction from the steering wheel. Model parameters have been identified for each subject-measured apparent mass values (modulus and phase). The developed model structure and the averaged parameters can be used for further bio-dynamical research in this field.

  10. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  11. Classic Maximum Entropy Recovery of the Average Joint Distribution of Apparent FRET Efficiency and Fluorescence Photons for Single-molecule Burst Measurements

    PubMed Central

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2012-01-01

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694

  12. Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: implications for dietary strategies to prevent sarcopenia

    PubMed Central

    Valenzuela, Roxana E Ruiz; Ponce, José A; Morales-Figueroa, Gloria Guadalupe; Muro, Karina Aguilar; Carreón, Virginia Ramírez; Alemán-Mateo, Heliodoro

    2013-01-01

    Background Both low dietary protein intake and inadequate distribution of protein over the three mealtimes have been reported in older Caucasian adults, but the association between protein intake at each meal and muscle mass has not been studied. The purpose of this study was to evaluate dietary protein intake and distribution by mealtimes, and to explore their association with appendicular skeletal muscle mass in apparently healthy older adults. Methods This was a cross-sectional pilot study that included 78 people over the age of 60 years. Caloric and protein intake were estimated on the basis of three nonconsecutive 24-hour diet recalls and appendicular skeletal muscle mass by dual-energy X-ray absorptiometry. Results Men consumed 13.4 g of protein/day more than women (P < 0.05). The estimated value of dietary protein intake was 0.9 g/kg/day. In this sample, 28% of subjects did not cover 100% of the dietary reference intake for protein. Lower consumption of dietary protein was found at breakfast and dinnertime compared with the recommended amount of 25–30 g (P < 0.05). Also, the study observed that appendicular skeletal muscle mass in men and women who consumed <25 g of protein at each mealtime was different from that found in the group that consumed >25 g of protein at one, two, or three mealtimes. Conclusion While protein intake was higher than current recommendations, it failed to achieve the values reported as necessary to prevent sarcopenia. In addition, there was under-consumption of protein per mealtime, especially at breakfast and dinner. PMID:24039411

  13. Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs.

    PubMed

    Kavouras, Stavros A; Magkos, Faidon; Yannakoulia, Mary; Perraki, Maria; Karipidou, Melina; Sidossis, Labros S

    2006-06-01

    The bone response to exercise is site-specific and load-dependent. Recent evidence suggests that an inverse relationship may exist between loaded and unloaded sites, such that the former may benefit at the expense of the latter. The present study examined this possibility in 48 males (21 water polo players, 12 handball players, and 15 sedentary controls). Water polo and handball are alike with respect to the active loading of the upper limbs during overhead throwing; however, the weight-supporting environment of water polo removes the weight-bearing effect from the lower limbs. Bone mineral content (BMC), bone projected area (Ap), and areal bone mineral density (aBMD) of the total body and of various subregions were determined by dual-energy X-ray absorptiometry. After adjusting for age, height, and weight, water polo players had higher arms BMC, Ap, and aBMD (by 22.2, 11.1, and 10.5%, respectively; P<0.05), but lower legs aBMD (-6.3%; P<0.05) relative to controls. On the contrary, compared to controls, handball players had higher BMC (from 11.8 to 24.3%), Ap (from 5.2 to 11.7%), and aBMD (from 6.4 to 11.9%) for the total body at all sites. Water polo athletes had increased arms and decreased legs aBMD ratios (regional-to-total) than either handball players or sedentary subjects (P<0.001). Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs, with no major effects on the rest of the body.

  14. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts

    NASA Astrophysics Data System (ADS)

    Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.

    2017-02-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.

  15. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts

    PubMed Central

    Tourell, Monique C.; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P.; Poh, Patrina S. P.; Loessner, Daniela; Momot, Konstantin I.

    2017-01-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment. PMID:28220831

  16. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts.

    PubMed

    Tourell, Monique C; Shokoohmand, Ali; Landgraf, Marietta; Holzapfel, Nina P; Poh, Patrina S P; Loessner, Daniela; Momot, Konstantin I

    2017-02-21

    Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution ("maximum ADC") exhibited a strong correlation with the tumour size (r(2) = 0.90) and with the inverse of the elastic modulus (r(2) = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours' ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour's response to treatment.

  17. MEASURING THE MASS DISTRIBUTION IN GALAXY CLUSTERS

    SciTech Connect

    Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Serra, Ana Laura E-mail: diaferio@ph.unito.it E-mail: serra@to.infn.it

    2013-02-10

    Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing, and the caustic technique are independent of the assumption of dynamical equilibrium. Both techniques enable the determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within {approx}30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the extrapolated Navarro, Frenk and White fit to the lensing mass profile exceeds the caustic mass profile. Contamination of the lensing profile by unrelated structures within the lensing kernel may be an issue in some cases; we highlight the clusters MS0906+11 and A750, superposed along the line of sight, to illustrate the potential seriousness of contamination of the weak lensing signal by these unrelated structures.

  18. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Hémond, Christophe; Briais, Anne; Maia, Marcia; Scheirer, Daniel S.; Walker, Sharon L.; Wang, Tingting; Chen, Yongshun John

    2014-08-01

    geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65-71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ˜350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

  19. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge

    USGS Publications Warehouse

    Baker, Edward; Christophe Hémond,; Anne Briais,; Marcia Maia,; Scheirer, Daniel S.; Sharon L. Walker,; Tingting Wang,; Yongshun John Chen,

    2014-01-01

    Multiple geological processes affect the distribution of hydrothermal venting along a mid-ocean ridge. Deciphering the role of a specific process is often frustrated by simultaneous changes in other influences. Here we take advantage of the almost constant spreading rate (65–71 mm/yr) along 2500 km of the Southeast Indian Ridge (SEIR) between 77°E and 99°E to examine the spatial density of hydrothermal venting relative to regional and segment-scale changes in the apparent magmatic budget. We use 227 vertical profiles of light backscatter and (on 41 profiles) oxidation-reduction potential along 27 first and second-order ridge segments on and adjacent to the Amsterdam-St. Paul (ASP) Plateau to map ph, the fraction of casts detecting a plume. At the regional scale, venting on the five segments crossing the magma-thickened hot spot plateau is almost entirely suppressed (ph = 0.02). Conversely, the combined ph (0.34) from all other segments follows the global trend of ph versus spreading rate. Off the ASP Plateau, multisegment trends in ph track trends in the regional axial depth, high where regional depth increases and low where it decreases. At the individual segment scale, a robust correlation between ph and cross-axis inflation for first-order segments shows that different magmatic budgets among first-order segments are expressed as different levels of hydrothermal spatial density. This correlation is absent among second-order segments. Eighty-five percent of the plumes occur in eight clusters totaling ∼350 km. We hypothesize that these clusters are a minimum estimate of the length of axial melt lenses underlying this section of the SEIR.

  20. Vertical and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in transmissibility and apparent mass

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2012-12-01

    The vertical apparent mass of the human body exhibits nonlinearity, with the principal resonance frequency reducing as the vibration magnitude increases. Measures of the transmission of vibration to the spine and the pelvis have suggested complex modes are responsible for the dominant resonance during vertical excitation, but the modes present with dual-axis excitation have not been investigated. This study was designed to examine how the apparent mass and transmissibility of the human body depend on the magnitude of vertical excitation and the addition of fore-and-aft excitation, and the relation between the apparent mass and the transmissibility of the body. The movement of the body (over the first, fifth and twelfth thoracic vertebrae, the third lumbar vertebra, and the pelvis) in the fore-and-aft and vertical directions (and in pitch at the pelvis) was measured in 12 male subjects sitting with their hands on their laps during random vertical vibration excitation (over the range 0.25-20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 m s-2 rms). At the highest magnitude of vertical excitation (1.0 m s-2 rms) the effect of adding fore-aft vibration (at 0.25, 0.5, and 1.0 m s-2 rms) was investigated. The forces in the vertical and fore-and-aft directions on the seat surface were also measured so as to calculate apparent masses. Resonances in the apparent mass and transmissibility to the spine and pelvis in the fore-and-aft and vertical directions, and pitch transmissibility to the pelvis, shifted to lower frequencies as the magnitude of vertical excitation increased and as the magnitude of the additional fore-and-aft excitation increased. The nonlinear resonant behaviour of the apparent mass and transmissibility during dual-axis vibration excitation suggests coupling between the principal mode associated with vertical excitation and the cross-axis influence of fore-and-aft excitation. The transmissibility measures are consistent with complex modes

  1. What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results

    SciTech Connect

    Haggerty, Roy; Harvey, Charles F.; Freiherr von Schwerin, Claudius; Meigs, Lucy C.

    2004-01-14

    We compare estimates of mass transfer timescales from 316 solute transport experiments reported in 35 publications to the pore-water velocities and residence times, as well as the experimental durations. We also conducted new tracer experiments in columns of different lengths so that the velocity and the advective residence time could be varied independently. In both the experiments reported in the literature and the new experiments, the estimated mass transfer timescale (inverse of the mass-transfer rate coefficient) is better correlated to residence time and the experimental duration than to velocity. Of the measures considered, the experimental duration multiplied by 1 + β (where β is the capacity coefficient, defined as the ratio of masses in the immobile and mobile domains at equilibrium) best predicted the estimated mass transfer timescale. This relation is consistent with other work showing that aquifer and soil material commonly produce multiple timescales of mass transfer.

  2. Mass of nonrelativistic meson from leading twist distribution amplitudes

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.

    2011-01-01

    In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.

  3. Prediction of maximum P- and S-wave amplitude distributions incorporating frequency- and distance-dependent characteristics of the observed apparent radiation patterns

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo

    2016-10-01

    Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P- and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent P- and S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P- and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P- and S-wave amplitudes over a wide frequency and distance ranges successfully.[Figure not available: see fulltext.

  4. The Mass Distribution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Dutton, Aaron A.

    We present the relative fraction of baryons and dark matter at various radii in galaxies. For spiral galaxies, this fraction measured in a galaxy's inner parts is typically baryon-dominated (maximal) and dark-matter dominated (sub-maximal) in the outskirts. The transition from maximal to sub-maximal baryons occurs within the inner parts of low-mass disk galaxies (with V tot <= 200 km s-1) and in the outer disk for more massive systems. The mean mass fractions for late- and early-type galaxies vary significantly at the same fiducial radius and circular velocity, suggesting a range of galaxy formation mechanisms. A more detailed discussion, and resolution of the so-called ``maximal disk problem'', is presented in Courteau & Dutton, ApJL, 801, 20.

  5. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  6. Apparent Disk-mass Reduction and Planetisimal Formation in Gravitationally Unstable Disks in Class 0/I Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Y.; Okuzumi, S.; Kataoka, A.

    2017-04-01

    We investigate the dust structure of gravitationally unstable disks undergoing mass accretion from the envelope, envisioning its application to Class 0/I young stellar objects (YSOs). We find that the dust disk quickly settles into a steady state and that, compared to a disk with interstellar medium (ISM) dust-to-gas mass ratio and micron-sized dust, the dust mass in the steady state decreases by a factor of 1/2 to 1/3, and the dust thermal emission decreases by a factor of 1/3 to 1/5. The latter decrease is caused by dust depletion and opacity decrease owing to dust growth. Our results suggest that the masses of gravitationally unstable disks in Class 0/I YSOs are underestimated by a factor of 1/3 to 1/5 when calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of disks in Class 0/I YSOs is gravitationally unstable than was previously believed. We also investigate the orbital radius {r}{{P}} within which planetesimals form via coagulation of porous dust aggregates and show that {r}{{P}} becomes ∼20 au for a gravitationally unstable disk around a solar mass star. Because {r}{{P}} increases as the gas surface density increases and a gravitationally unstable disk has maximum gas surface density, {r}{{P}}∼ 20 {au} is the theoretical maximum radius for planetesimal formation. We suggest that planetesimal formation in the Class 0/I phase is preferable to that in the Class II phase because a large amount of dust is supplied by envelope-to-disk accretion.

  7. Study of Mass Distribution from Two Phase Unlike Impinging Injectors

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Rakesh; Raghunandan, B. N.; Bolakonda, Sowmya

    2009-11-01

    Two phase impinging injectors as an alternative to conventional coaxial injectors in propulsive devices offer many advantages. In addition to simplicity of design and fabrication, spray shaping according to the need is possible with gas-liquid impingement. The fact that mass distribution can be varied as desired is the main theme of this study with air and water as working fluids. In the doublet configuration, the condition of the gas jet is varied and its effect on the mass distribution is studied. As can be visualized, the circularly symmetric spray mass distribution gets distorted in the presence of the gas jet. Even at low pressure ratios, near elliptical mass distribution results. As gas pressure increases, there is a tendency for the mass distribution to be shifted in the direction of gas jet. The effect of some of the geometric parameters on the mass distribution as well as drop-size distribution are studied. Mechanistic details of jet penetration and the inherent instability in the impinging system are discussed. The data base generated is expected to help designers in spray shaping applications.

  8. Dynamic Distribution of the Gut Microbiota and the Relationship with Apparent Crude Fiber Digestibility and Growth Stages in Pigs

    PubMed Central

    Niu, Qing; Li, Pinghua; Hao, Shuaishuai; Zhang, Yeqiu; Kim, Sung Woo; Li, Huizhi; Ma, Xiang; Gao, Shuo; He, Lichun; Wu, WangJun; Huang, Xuegen; Hua, Jindi; Zhou, Bo; Huang, Ruihua

    2015-01-01

    The gut microbiota plays an important role in nutrient digestibility in animals. To examine changes in the pig gut microbiota across growth stages and its effects on nutrient digestion, the gut microbiota population in pigs at 28 days (before weaning), and 60, 90, and 150 days of age was assessed by 16S rDNA gene sequencing. The apparent digestibility of crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP) and ether extract (EE) was also assessed in these pigs. A total of 19,875 operational taxonomic units (OTUs) were identified from all samples. Both bacterial abundance and diversity increased with age. A total of 22 phyla and 249 genera were identified from all fecal samples; Firmicutes and Bacteroidetes were the most dominant phyla in all samples. With increasing age, the proportion of TM7 and Tenericutes increased, whereas the proportion of Lentisphaerae and Synergistetes decreased. The abundance of 36 genera varied with age, and the apparent digestibility of CF increased with age. Three phyla, Proteobacteria, Tenericutes and TM7, and 11 genera, including Anaeroplasma, Campylobacter, and Clostridium, were correlated with apparent CF digestibility. PMID:25898122

  9. The Involvement of Centralized and Distributed Processes in Sub-second Time Interval Adaptation: An ERP Investigation of Apparent Motion.

    PubMed

    Kaya, Utku; Yildirim, Fazilet Zeynep; Kafaligonul, Hulusi

    2017-09-09

    Accumulating evidence suggests that the timing of brief stationary sounds affects visual motion perception. Recent studies have shown that auditory time interval can alter apparent motion perception not only through concurrent stimulation but also through brief adaptation. The adaptation aftereffects for auditory time intervals were found to be similar to those for visual time intervals, suggesting the involvement of a central timing mechanism. To understand the nature of cortical processes underlying such aftereffects, we adapted observers to different time intervals by using either brief sounds or visual flashes and examined the evoked activity to the subsequently presented visual apparent motion. Both auditory and visual time interval adaptation led to significant changes in the ERPs elicited by the apparent motion. However, the changes induced by each modality were in the opposite direction. Also, they mainly occurred in different time windows and clustered over distinct scalp sites. The effects of auditory time interval adaptation were centered over parietal and parieto-central electrodes while the visual adaptation effects were mostly over occipital and parieto-occipitial regions. Moreover, the changes were much more salient when sounds were used during the adaptation phase. Taken together, our findings within the context of visual motion point to auditory dominance in the temporal domain and highlight the distinct nature of the sensory processes involved in auditory and visual time interval adaptation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Effects of mass-transfer resistance on apparent stability and performance of fixed-bed immobilized enzyme reactors: theory and experiments with immobilized invertase

    SciTech Connect

    Ooshima, H.; Harano, Y.

    1983-01-01

    Taking the hydrolysis of sucrose by invertase immobilized on anion-exchange resin as an example, the effects of mass-transfer resistance on the apparent stability of immobilized enzyme (IME) and the optimal policy for an IME reaction in a fixed-bed reactor have been studied theoretically and experimentally. The following results were obtained: 1) The effect of mass-transfer resistance on the effective deactivation rate of IME is summarized in two parameters concerning the intraparticle diffusion alphap and the interparticle alphaf. 2) At a constant processed amount of raw materials, there exists an optimal flow rate of reaction fluid to enhance the reactor performance while the mass-transfer resistance shifts the optimal point. 3) The intrinsic deactivation rate of IME has been estimated from the relationship between the fractional conversion at the reactor outlet and the operation time. (Refs. 12).

  11. Molar mass distribution and solubility modeling of asphaltenes

    SciTech Connect

    Yarranton, H.W.; Masliyah, J.H.

    1996-12-01

    Attempts to model asphaltene solubility with Scatchard-Hildebrand theory were hampered by uncertainty in molar volume and solubility parameter distribution within the asphaltenes. By considering asphaltenes as a series of polyaromatic hydrocarbons with randomly distributed associated functional groups, molar volume and solubility parameter distributions are calculated from experimental measurements of molar mass and density. The molar mass distribution of Athabasca asphaltenes is determined from interfacial tension and vapor pressure osmometry measurements together with plasma desorption mass spectrometry determinations from the literature. Asphaltene densities are calculated indirectly from mixtures of known concentration of asphaltene in toluene. Asphaltene density, molar volume, and solubility parameter are correlated with molar mass. Solid-liquid equilibrium calculations based on solubility theory and the asphaltene property correlations successfully predict experimental data for both the precipitation point and the amount of precipitated asphaltenes in toluene-hexane solvent mixtures.

  12. Rapid Analysis of Mass Distribution of Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Zapp, Edward

    2007-01-01

    Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.

  13. Mass distributions in elliptical galaxies at large radii

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.

    1987-01-01

    Recently, X-ray observations have shown that elliptical galaxies generally contain large quantities of hot gas. Central dominant cluster ellipticals have even more gas, which they have accreted from the surrounding clusters. The mass distributions in these galaxies can be derived from the condition of hydrostatic equilibrium. M87, the best studied central dominant galaxy, has a massive, dark halo with a total mass of about 4 x 10 to the 12th solar masses within a radius of 300 kpc. The total mass-to-light ratio within this radius is at least 150 solar mass/solar luminosity. The X-ray observations of normal ellipticals also strongly suggest that they have heavy halos, although the distribution of the mass is much less certain than in M87.

  14. Relationship Not Found Between Blood and Urine Concentrations and Body Mass Index in Humans With Apparently Adequate Boron Status.

    PubMed

    Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin

    2016-06-01

    The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.

  15. Effect of Muscle Tension on Non-Linearities in the Apparent Masses of Seated Subjects Exposed to Vertical Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2002-05-01

    In subjects exposed to whole-body vibration, the cause of non-linear dynamic characteristics with changes in vibration magnitude is not understood. The effect of muscle tension on the non-linearity in apparent mass has been investigated in this study. Eight seated male subjects were exposed to random and sinusoidal vertical vibration at five magnitudes (0·35-1·4 m/s2 r.m.s.). The random vibration was presented for 60 s over the frequency range 2·0-20 Hz; the sinusoidal vibration was presented for 10 s at five frequencies (3·15, 4·0, 5·0, 6·3 and 8·0 Hz). Three sitting conditions were adopted such that, in two conditions, muscle tension in the buttocks and the abdomen was controlled. It was assumed that, in these two conditions, involuntary changes in muscle tension would be minimized. The force and acceleration at the seat surface were used to obtain apparent masses of subjects. With both sinusoidal and random vibration, there was statistical support for the hypothesis that non-linear characteristics were less clear when muscle tension in the buttocks and the abdomen was controlled. With increases in the magnitude of random vibration from 0·35 to 1·4 m/s2 r.m.s., the apparent mass resonance frequency decreased from 5·25 to 4·25 Hz with normal muscle tension, from 5·0 to 4·38 Hz with the buttocks muscles tensed, and from 5·13 to 4·5 Hz with the abdominal muscles tensed. Involuntary changes in muscle tension during whole-body vibration may be partly responsible for non-linear biodynamic responses.

  16. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  17. Disc-mass distribution in star-disc encounters

    NASA Astrophysics Data System (ADS)

    Steinhausen, M.; Olczak, C.; Pfalzner, S.

    2012-02-01

    Aims: Investigations of stellar encounters in cluster environments have demonstrated their potential influence on the mass and angular momentum of protoplanetary discs around young stars. We investigated how far the initial surface density in the disc surrounding a young star influences the outcome of an encounter. Methods: The numerical method applied here allows us to determine the mass and angular momentum losses in an encounter for any initial disc-mass distribution. On the basis of a power-law ansatz for the surface density, Σ(r) ∝ r - p, we perform a parameter study of star-disc encounters with different initial disc-mass distributions using N-body simulations. Results: We demonstrate that the shape of the disc-mass distribution has a significant impact on the quantity of the disc-mass and angular momentum losses in star-disc encounters. In particular, the results are most sensitive to how the outer parts of the disc are perturbed by high-mass stars. In contrast, disc-penetrating encounters lead more or less independently of the disc-mass distribution always to large losses. However, maximum losses are generally obtained for initially flat distributed disc material. Based on a parameter study, a fit formula is derived, describing how the relative mass and angular momentum loss depend on the initial disc-mass distribution index p. Encounters generally lead to a steepening of the density profile of the disc. The resulting profiles can have a r-2-dependence or an even steeper one that is independent of the initial distribution of the disc material. Conclusions: From observations, the initial density distribution in discs remains unconstrained, hence the strong dependence on the initial density distribution that we find here might require a revision of the effect of encounters in young stellar clusters. The steep surface density distributions induced by some encounters might be a prerequisite to the formation of planetary systems similar to our own Solar

  18. Distributed Capacitive Sensor for Sample Mass Measurement

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey

    2011-01-01

    Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass

  19. Mass Load Distribution Dependence of Mass Sensitivity of Magnetoelastic Sensors under Different Resonance Modes

    PubMed Central

    Zhang, Kewei; Zhang, Lin; Chai, Yuesheng

    2015-01-01

    Magnetoelastic sensors as an important type of acoustic wave sensors have shown great promise for a variety of applications. Mass sensitivity is a key parameter to characterize its performance. In this work, the effects of mass load distribution on the mass sensitivity of a magnetoelastic sensor under different resonance modes were theoretically investigated using the modal analysis method. The results show that the mass sensitivity and “nodal point” positions are related to the point displacement, which is determined by the motion patterns. The motion patterns are affected by resonance modes and mass load distribution. Asymmetrical mass load distribution causes the motion patterns lose symmetry and leads to the shift of “nodal point”. The mass sensitivity changing with mass load distribution behaves like a sine wave with decaying amplitude and the minimum mass sensitivity appears at the first valley. This study provides certain theoretical guidance for optimizing the mass sensitivity of a magnetoelastic sensor or other acoustic wave based sensors. PMID:26295233

  20. Stellar mass map and dark matter distribution in M 31

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Tempel, E.; Tenjes, P.; Tihhonova, O.; Tuvikene, T.

    2012-10-01

    Aims: Stellar mass distribution in the Andromeda galaxy (M 31) is estimated using optical and near-infrared imaging data. Combining the derived stellar mass model with various kinematical data, properties of the dark matter (DM) halo of the galaxy are constrained. Methods: SDSS observations through the ugriz filters and the Spitzer imaging at 3.6 microns are used to sample the spectral energy distribution (SED) of the galaxy at each imaging pixel. Intrinsic dust extinction effects are taken into account by using far-infrared observations. Synthetic SEDs created with different stellar population synthesis models are fitted to the observed SEDs, providing estimates for the stellar mass surface density at each pixel. The stellar mass distribution of the galaxy is described with a 3-dimensional model consisting of a nucleus, a bulge, a disc, a young disc and a halo component, each following the Einasto density distribution (relations between different functional forms of the Einasto density distribution are given in Appendix B). By comparing the stellar mass distribution to the observed rotation curve and kinematics of outer globular clusters and satellite galaxies, the DM halo parameters are estimated. Results: Stellar population synthesis models suggest that M 31 is dominated by old (≳7 Gyr) stars throughout the galaxy, with the lower limit for the stellar mass-to-light ratios M/Lr ≳ 4 M⊙/L⊙. The upper limit M/Lr ≲ 6 M⊙/L⊙ is given by the rotation curve of the galaxy. The total stellar mass is (10-15) × 1010 M⊙, 30% of which is in the bulge and 56% in the disc. None of the tested DM distribution models (Einasto, NFW, Moore, Burkert) can be falsified on the basis of the stellar matter distribution and the rotation curve of the galaxy. The virial mass M200 of the DM halo is (0.8-1.1) × 1012 M⊙ and the virial radius is R200 = 189-213 kpc, depending on the DM distribution. For the Einasto profile, the average density of the DM halo within the central

  1. Effect of dietary coarsely ground corn on broiler live performance, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and digesta particle size distribution and retention time

    PubMed Central

    Xu, Y.; Stark, C. R.; Ferket, P. R.; Williams, C. M.; Pacheco, W. J.; Brake, J.

    2015-01-01

    Dietary structural material has been reported to improve broiler live performance and gastrointestinal tract (GIT) function. In this 50 d cage study, the effects of coarsely ground corn (CC) inclusion on broiler live performance, GIT development, apparent ileal digestibility (AID) of energy and nitrogen (N), and digesta particle size distribution and retention time were investigated. This study included 3 CC inclusions (0, 25, and 50% fine corn [FC] replaced by CC), with 6 replicate cages of 10 birds per treatment. The feed conversion ratio (FCR) at 35 and 42 d was improved (P < 0.01) as the dietary inclusion of CC increased without effect on feed intake. The 50% CC diet increased absolute and relative gizzard weight at 42 d of age as compared to diets with 0 and 25% CC (P < 0.01). Dietary CC increased absolute proventriculus weight at 28 d of age (P < 0.05). A numerically lower gizzard digesta pH (P < 0.08) was observed at 28 d but not 42 d of age, and there was no difference in proventriculus, jejunum, or ileum digesta pH at 28 or 42 d of age. The 25 and 50% CC treatments increased the digesta retention time at 30 and 45 d of age (P < 0.05 and P < 0.01, respectively). The 25 and 50% CC treatments improved AID of energy by 7.1 and 8.2%, respectively, when compared with the 0% CC treatment, and they improved AID of N by 12.2 and 12.4%, respectively (P < 0.01). The digesta particles in the jejunum exhibited a similar distribution, with a dgw (geometric mean diameter by mass) of 218, 204, and 181 μm when 0, 25, of 50% CC diets were consumed, respectively. In conclusion, birds fed pelleted and screened diets that contained 25 and 50% CC exhibited increased BW, improved FCR, and increased AID of energy and N, which was probably due to enhanced gizzard development and greater digesta retention time. PMID:25568134

  2. Equilibrium models of mass distribution and collisional lifetimes of asteroids

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Wetherill, George

    1993-01-01

    An understanding of the steady state distribution expected in the present day asteroid belt is important to our understanding of the collisional evolution of the asteroids and their physical properties. We have extended earlier work to show that, in the absence of gravity, a simple power law distribution as a function of mass with constant exponent will give an equilibrium distribution of asteroids for all bodies much smaller than the largest asteroids. This result holds for realistic fragmentation mechanisms and is independent of the physical properties of the asteroids. Inclusion of the effects of gravity on disruption and fragmentation of asteroids precludes an analytic solution to this problem, and rules out a simple power law distribution. We are currently calculating numerical solutions in order to determine the expected steady state mass distribution in the asteroid belt.

  3. Is the Binary Mass Ratio Distribution Separation-Dependent?

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Kraus, Adam L.

    2016-01-01

    Recent discoveries of planets orbiting retired A-stars on close orbits and young A-stars on very wide orbits have renewed interest in the properties of nearby intermediate-mass stars. Especially interesting are the young stars because directly-imaged planets orbiting them may be bright enough for characterization (e.g. HR 8799, Beta Pictoris, etc). However, intermediate-mass stars and especially young intermediate mass stars are part of multiple systems more often than not. Close stellar companions may affect the formation and orbital evolution of any planets, and the properties of the companions can help constrain the binary formation mechanism. The mass ratio distribution of a population of binary stars, especially if the distribution for close companions is significantly different from that of wide companions, is helpful to distinguish companions that were born in or affected by the circumstellar disk from those which formed through fragmentation of the molecular core. Previous imaging surveys have found that binary systems with A-type primary stars tend to have cool companions with extreme mass ratios. There are hints at a much flatter mass ratio distribution for close companions, but strong completeness effects complicate the picture. We have conducted a spectroscopic survey of ~400 nearby main sequence A- and B-type stars, aimed at detecting stellar companions as late as M4 for all orbital separations <100 AU. We have searched for companions to the stars by cross-correlating the spectra against model templates for F-M type stars; a significant peak in the cross-correlation function indicates a detection. Our cross-correlation technique can detect low-mass companions with orbits that are too wide to detect with radial velocity monitoring and too small to detect with imaging techniques, making it complementary to work already done. We will present results from our survey and compare the mass ratio distribution we measure to the corresponding distribution for

  4. The mass distribution function of planets in the Galaxy

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2016-05-01

    I will describe some deductions about the planet mass function from the observational data of exoplanets and theoretical considerations of dynamical stability of planetary systems. The Kepler mission has carried out a systematic survey for planets in the Galaxy, and obtained data on several hundred exo-planetary systems. Analysis of these data indicates that planetary orbital separations have an approximately log-normal distribution. Taken together with plausible ansatzs for the dynamical stability of multi-planet systems, it appears that the planet mass function is peaked in logarithm of mass, with the most probable value of log m/M_Earth ˜ (0.6 - 1.0). A modest extrapolation finds that Earth mass planets are about ~1000 times more common than Jupiter mass planets, and that the most common planets in the Galaxy may be of lunar-to-Mars mass.This research was supported by NSF (grant AST-1312498) and NASA (grant NNX14AG93G).

  5. Lg wave propagation in a laterally varying crust and the distribution of the apparent quality factor in central France

    NASA Astrophysics Data System (ADS)

    Campillo, Michel

    1987-11-01

    The aim of this study is to evaluate the sensitivity of Lg waves to lateral changes of the earth's structure. Considering a simple model of uplift of the Moho, numerical simulations show that the geometrical attenuation of Lg is not much affected by a smooth anomaly of the Moho depth. On the other hand, the passing of the Lg wave through the region of the Moho uplift results in a clear deterioration of the wave shapes, which confirms the occurrence of mode conversions. The presence of an overlying sedimentary basin causes a local amplification of Lg above the basin itself and the appearance, behind the basin, of a secondary surface wave guided in the sediments. The effect of the basin on the Lg wave is found to be reasonably taken into account by applying a local amplification function to the data. We use a data set consisting of records of Lg phases in France to test the conclusions of our numerical study. The mapping of the apparent quality factor, computed from Lg at different frequencies, confirms the interpretation of the strong attenuation of S waves around 1 Hz in terms of scattering and shows the weak sensitivity of the amplitude of Lg to smooth changes in the depth of the Moho.

  6. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    NASA Astrophysics Data System (ADS)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  7. Regional variations in the apparent diffusion coefficient and the intracellular distribution of water in rat brain during acute focal ischemia.

    PubMed

    Liu, K F; Li, F; Tatlisumak, T; Garcia, J H; Sotak, C H; Fisher, M; Fenstermacher, J D

    2001-08-01

    The apparent diffusion coefficient of water (ADC) rapidly drops in ischemic tissue after cerebral artery occlusion. This acute drop is thought to be caused by the loss of extracellular fluid and the gain of intracellular fluid. To test the latter possibility, changes in ADC and the size of several cellular compartments were assessed in 3 regions of rat brain at the end of 90 minutes of focal cerebral ischemia. One middle cerebral artery was permanently occluded in 8 Sprague-Dawley rats; sham occlusions were performed in 2 other rats. ADC maps were generated 90 minutes later, and the brains were immediately perfusion fixed. Three regions of interest (ROIs) were defined on the basis of ADC range. Various neuronal, astrocytic, and capillary compartments in each ROI were quantified with light and electron microscopy. At the end of 90 minutes of ischemia, mean ADC was normal in the cortex of sham-operated rats and the contralateral cortex of ischemic rats (ROI-a), 25% lower in the ipsilateral frontoparietal cortex (ROI-b), and 45% lower in the ischemic lateral caudoputamen (ROI-c). At this time, the frequency of swollen astrocytic cell bodies and volume of swollen dendrites and astrocytic processes in neuropil were ROI-a

  8. Waiting Time Distribution of Emissions in Complex Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Méndez Berhondo, Adolfo L.; Rodríguez Taboada, Ramón E.; Larralde, Liliana Alfonso

    2006-04-01

    The waiting time distribution of emissions in Coronal Mass Ejections (CMEs) with several emissions is examined. We define the waiting time as the time interval between the commencement of an emission and the commencement of the next emission considered as parts of a unique CME. The distribution seems to follow a power-law. Two classes of CMEs several emissions are considered: “close” and “separate” depending on angular distance between emissions.

  9. Waiting time distribution of emissions in complex coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Méndez Berhondo, A. L.; Rodríguez Taboada, R. E.; Larralde, L. Alfonso

    The waiting time distribution of emissions in Coronal Mass Ejections (CMEs) with several emissions is examined. We define the waiting time (?) as the time interval between the commencement of an emission and the commencement of the next emission considered as parts of a unique CME. The distribution seems to follow a power-law.Two classes of CMEs several emissions are considered: “close” and “separate” depending on angular distance between emissions.

  10. Halo mass distribution reconstruction across the cosmic web

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

    2015-08-01

    We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

  11. Bayesian Analysis of the Mass Distribution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Valentim, Rodolfo; Horvath, Jorge E.; Rangel, Eraldo M.

    The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of two a priori gaussian peaks distribution by using fifty-five measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.35M⊙ ± 0.06M⊙ and a much wider second peak at 1.73M⊙ ± 0.36M⊙. We compared the two gaussian's model centered at 1.35M⊙ and 1.55M⊙ against a "single gaussian" model with 1.50M⊙ ± 0.11M⊙ using 3σ that provided a wide peak covering objects the full range of observed of masses. In order to compare models, BIC (Baysesian Information Criterion) can be used and a strong evidence for two distributions model against one peak model was found. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (in spite that no attempt to "label" the systems has been made). However, the recently claimed low-mass group, possibly related to O - Mg - Ne core collapse events, has a monotonically decreasing likelihood and has not been identified within this sample.

  12. Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration

    NASA Astrophysics Data System (ADS)

    Huang, Ya; Griffin, Michael J.

    2006-12-01

    The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s -2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.

  13. Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Weber, Fridolin

    2013-04-01

    In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.

  14. BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION

    SciTech Connect

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-09-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters {alpha} Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M{sub 2}/M{sub 1}, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq{proportional_to}q {sup {beta}}, with {beta} = -0.50 {+-} 0.29, consistent with previous results. Finally, we note that the

  15. Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution

    NASA Astrophysics Data System (ADS)

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-09-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2/M 1, from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dqvpropq β, with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ~1% probability

  16. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS

    SciTech Connect

    Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.

    2014-12-20

    Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M ≲ 0.45 M {sub ☉}) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μ{sub WD} = 0.74 M {sub ☉}, with a standard deviation σ{sub WD} = 0.24 M {sub ☉}. Our model constrains the NS companion fraction f {sub NS} to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.

  17. The Close Companion Mass-ratio Distribution of Intermediate-mass Stars

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Kraus, Adam; Dodson-Robinson, Sarah

    2016-08-01

    Binary stars and higher-order multiple systems are a ubiquitous outcome of star formation, especially as the system mass increases. The companion mass-ratio distribution is a unique probe into the conditions of the collapsing cloud core and circumstellar disk(s) of the binary fragments. Inside a˜ 1000 {{A}}{{U}} the disks from the two forming stars can interact, and additionally companions can form directly through disk fragmentation. We should, therefore, expect the mass-ratio distribution of close companions (a≲ 100 AU) to differ from that of wide companions. This prediction is difficult to test using traditional methods, in particular, with intermediate-mass primary stars, for a variety of observational reasons. We present the results of a survey searching for companions to A- and B-type stars using the direct spectral detection method, which is sensitive to late-type companions within ˜ 1\\prime\\prime of the primary and which has no inner working angle. We estimate the temperatures and surface gravity of most of the 341 sample stars and derive their masses and ages. We additionally estimate the temperatures and masses of the 64 companions we find, 23 of which are new detections. We find that the mass-ratio distribution for our sample has a maximum near q˜ 0.3. Our mass-ratio distribution has a very different form than in previous works, where it is usually well-described by a power law, and indicates that close companions to intermediate-mass stars experience significantly different accretion histories or formation mechanisms than wide companions.

  18. Lacunarity and multifractal analysis of the large DLA mass distribution

    NASA Astrophysics Data System (ADS)

    Rodriguez-Romo, Suemi; Sosa-Herrera, Antonio

    2013-08-01

    We show the methodology used to analyze fractal and mass-multifractal properties of very large Diffusion-Limited Aggregation (DLA) clusters with a maximum of 109 particles for 2D aggregates and 108 particles for 3D clusters, to support our main result; the scaling behavior obtained by our experimental results corresponds to the expected performance of monofractal objects. In order to estimate lacunarity measures for large DLA clusters, we develop a variant of the gliding-box algorithm which reduces the computer time needed to obtain experimental results. We show how our mass multifractal data have a tendency to present monofractal behavior for the mass distribution of the cases presented in this paper in the limit of very large clusters. Lacunarity analysis shows, provided we study small clusters mass distributions, data which might be interpreted as two different values of fractal dimensions while the cluster grows; however, this effect tends to vanish when the cluster size increases further, in such a way that monofractality is achieved. The outcomes of this paper lead us to conclude that the previously reported mass multifractality behavior (Vicsek et al., 1990 [13]) detected for DLA clusters is a consequence of finite size effects and floating point precision limitations and not an intrinsic feature of the phenomena, since the scaling behavior of our DLA clusters space corresponds to monofractal objects, being this situation remarkably noticeable in the limit of very large clusters.

  19. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.

    PubMed

    Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen

    2015-04-01

    This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  1. Characterization of breast masses as benign or malignant at 3.0T MRI with whole-lesion histogram analysis of the apparent diffusion coefficient.

    PubMed

    Suo, Shiteng; Zhang, Kebei; Cao, Mengqiu; Suo, Xinjun; Hua, Jia; Geng, Xiaochuan; Chen, Jie; Zhuang, Zhiguo; Ji, Xiang; Lu, Qing; Wang, He; Xu, Jianrong

    2016-04-01

    To investigate the utility of whole-lesion apparent diffusion coefficient (ADC) histogram analysis in capturing breast lesion heterogeneity and determine which ADC metric may help best differentiate benign from malignant breast mass lesions at 3.0T magnetic resonance imaging (MRI). We retrospectively included 101 women with breast mass lesions (benign:malignant = 36:65) who underwent 3.0T diffusion-weighted imaging (DWI) and subsequently had histopathologic confirmation. ADC histogram parameters, including the mean, minimum, maximum, 10th/25th/50th/75th/90th percentile, skewness, kurtosis, and entropy ADCs, were derived for the whole-lesion volume in each patient. Mann-Whitney U-test, univariate and multivariate logistic regression, area under the receiver-operating characteristic curve (Az ), intraclass correlation coefficient (ICC), and Bland-Altman test were used for statistical analysis. Mean, minimum, maximum, and 10th/25th/50th/75th/90th percentile ADCs were significantly lower (all P < 0.0001), while skewness and entropy ADCs were significantly higher (P < 0.001 and P = 0.001, respectively) in malignant lesions compared with benign ones. The Az values of minimum and 25th percentile ADCs were significantly higher than that of mean ADC (P = 0.0194 and P = 0.0154, respectively) or that of median ADC (P = 0.0300 and P = 0.0401, respectively), indicating that minimum and 25th percentile ADCs may be more accurate for lesion discrimination. Multivariate logistic regression showed that the minimum ADC was the unique independent predictor of breast malignancy. Minimum and 25th percentile ADCs had excellent interobserver agreement (ICC = 0.943 and 0.989, respectively; narrow width of 95% limits of agreement). These results suggest that whole-lesion ADC histogram analysis may facilitate the differentiation between benign and malignant breast mass lesions. © 2015 Wiley Periodicals, Inc.

  2. Relationship between obesity and several cardiovascular disease risk factors in apparently healthy Korean individuals: comparison of body mass index and waist circumference.

    PubMed

    Sung, Ki Chul; Ryu, Seungho; Reaven, Gerald M

    2007-03-01

    Recent versions of the criteria for diagnosing the metabolic syndrome have emphasized the superiority of abdominal obesity, as measured by waist circumference (WC), in identifying individuals at increased risk for cardiovascular disease (CVD). On the other hand, there is evidence that body mass index (BMI), an estimate of overall obesity, fulfills this function as effectively as does WC. The present analysis was performed to compare the relative use of these 2 indices of obesity to identify multiple CVD risk factors. The study population consisted of 19584 apparently healthy men and women of Korean ethnicity, and the CVD risk factors measured included fasting plasma concentrations of the following variables: glucose, insulin, total, low-density lipoprotein, and high-density lipoprotein cholesterol, triglycerides, apolipoproteins A-I and B, and high-sensitivity C-reactive protein. The univariate relationships between the 2 indices of obesity and the 9 CVD risk factors were relatively modest (the highest r value was 0.45), but they were all statistically significant, and the magnitude of the relationships between the CVD risk factors and BMI and WC were comparable. When multivariate analysis was performed, adjusting for age and either BMI or WC, each index of obesity continued to have an independent relationship, albeit reduced in magnitude, with the CVD risk factors. These findings suggest that measurements of BMI provide as much clinical insight as do determinations of WC in identifying multiple CVD risk factors in a large population of apparently healthy Korean men and women, and that the use of both indices would provide the most information.

  3. The varying mass distribution of molecular clouds across M83

    NASA Astrophysics Data System (ADS)

    Freeman, Pamela; Rosolowsky, Erik; Kruijssen, J. M. Diederik; Bastian, Nate; Adamo, Angela

    2017-06-01

    The work of Adamo et al. showed that the mass distributions of young massive stellar clusters were truncated above a maximum-mass scale in the nearby galaxy M83 and that this truncation mass varies with the galactocentric radius. Here, we present a cloud-based analysis of Atacama Large Millimeter/submillimeter Array CO(1 → 0) observations of M83 to search for such a truncation mass in the molecular cloud population. We identify a population of 873 molecular clouds in M83 that is largely similar to those found in the Milky Way and Local Group galaxies, though clouds in the centre of the galaxy show high surface densities and enhanced turbulence, as is common for clouds in high-density nuclear environments. Like the young massive clusters, we find a maximum-mass scale for the molecular clouds which decreases radially in the galaxy. We find that the most young massive cluster tracks the most massive molecular cloud with the cluster mass being 10-2 times that of the most massive molecular cloud. Outside the nuclear region of M83 (Rg > 0.5 kpc), there is no evidence for changing internal conditions in the population of molecular clouds, with the average internal pressures, densities and free-fall times remaining constant for the cloud population over the galaxy. This result is consistent with the bound cluster formation efficiency depending only on the large-scale properties of the interstellar medium rather than the internal conditions of individual clouds.

  4. Mass size distributions of elemental aerosols in industrial area.

    PubMed

    Moustafa, Mona; Mohamed, Amer; Ahmed, Abdel-Rahman; Nazmy, Hyam

    2015-11-01

    Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt) using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m(3)/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m(3) (for Ba) to 89.62 ng/m(3) (for Fe). The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources.

  5. Mass flow velocity distribution in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Tripp, D. A.

    1981-01-01

    A study of chromospheric lines (those of Si-II and Si-III) was made using the data from high resolution telescope and spectrograph (HRTS). The optically thick line profiles such as lambda 1206 due to Si-III and lambda 1265 and lambda 1533 due to Si-II were to be investigated in detail using the techniques of spectrum synthesis in an attempt to model the mass flow velocity distribution in the region of the solar atmosphere.

  6. NASA Langley Research Center's distributed mass storage system

    NASA Technical Reports Server (NTRS)

    Pao, Juliet Z.; Humes, D. Creig

    1993-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

  7. Fundamental amino acid mass distributions and entropy costs in proteomes.

    PubMed

    Lehmann, Jean; Libchaber, Albert; Greenbaum, Benjamin D

    2016-12-07

    We examine whether the frequency of amino acids across an organism's proteome is primarily determined by optimization to function or other factors, such as the structure of the genetic code. Considering all available proteins together, we first point out that the frequency of an amino acid in a proteome negatively correlates with its mass, suggesting that the genome preserves a fundamental distribution ruled by simple energetics. Given the universality of such distributions, one can use outliers, cysteine and leucine, to identify amino acids that deviate from this simple rule for functional purposes and examine those functions. We quantify the strength of such selection as the entropic cost outliers pay to defy the mass-frequency relation. Codon degeneracy of an amino acid partially explains the correlation between mass and frequency: light amino acids being typically encoded by highly degenerate codon families, with the exception of arginine. While degeneracy may be a factor in hard wiring the relationship between mass and frequency in proteomes, it does not provide a complete explanation. By examining extremophiles, we are able to show that this law weakens with temperature, likely due to protein stability considerations, thus the environment is essential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tidal Densities of Globular Clusters and the Galactic Mass Distribution

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok

    1990-12-01

    The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink(1985), we find that such reduction from observed values would make the tidal density(the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

  9. Gravitational and mass distribution effects on stationary superwinds

    NASA Astrophysics Data System (ADS)

    Añorve-Zeferino, G. A.

    2016-11-01

    Here, we model the effect of non-uniform dynamical mass distributions and their associated gravitational fields on the stationary galactic superwind solution. We do this by considering an analogue injection of mass and energy from stellar winds and SNe. We consider both compact dark-matter and baryonic haloes that does not extend further from the galaxies optical radii Ropt as well as extended gravitationally interacting ones. We consider halo profiles that emulate the results of recent cosmological simulations and coincide also with observational estimations from galaxy surveys. This allows us to compare the analytical superwind solution with outflows from different kinds of galaxies. We give analytical formulae that establish when an outflow is possible and also characterize distinct flow regimes and enrichment scenarios. We also constraint the parameter space by giving approximate limits above which gravitation, self-gravitation and radiative cooling can inhibit the stationary flow. We obtain analytical expressions for the free superwind hydrodynamical profiles. We find that the existence or inhibition of the superwind solution highly depends on the steepness and concentration of the dynamical mass and the mass and energy injection rates. We compare our results with observational data and a recent numerical work. We put our results in the context of the mass-metallicity relationship to discuss observational evidence related to the selective loss of metals from the least massive galaxies and also discuss the case of massive galaxies.

  10. Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by diffusion-weighted imaging (DWI) in small renal masses.

    PubMed

    Ponhold, Lothar; Javor, Domagoj; Heinz-Peer, Gertraud; Sevcenco, Sabina; Hofstetter, Martin; Baltzer, Pascal Andreas

    2016-08-01

    Diffusion-weighted imaging (DWI) is increasingly used to diagnose renal lesion subtypes. Especially in small renal masses, identification of less aggressive tumor types is of clinical interest, as active surveillance strategies can be applied. To evaluate the inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by DWI in small renal masses ≤4 cm (SRM). This retrospective IRB-approved study included 39 patients (46 SRM: 12 benign, 34 malignant). All underwent a 3 T DWI of SRM prior to surgery. Two radiologists independently analyzed all imaging data by three measurements. Limits of agreement, intraclass correlation coefficients (ICC), group comparisons by t-tests, and ROC analysis were performed. Reliability of ADC measurements was very high with an ICC of >0.9 for both observers. Inter-rater reliability was high with an ICC of 0.82. Limits of agreement for average ADC values between both observers were -23.5% to 38.3% with a mean difference of 7.5% between both observers. No significant differences were found between benign and malignant lesions (P value Observer 1: 0.362, Observer 2: 0.622). Papillary carcinoma showed lower ADC values compared to non-papillary carcinoma (P value Observer 1: 0.008, Observer 2: 0.012). Consequently, ROC analysis revealed a significant (P < 0.001, respectively) area under the ROC curve of 0.853 (Observer 1) and 0.837 (Observer 2) without significant differences between both readers (P = 0.772). ADC measurements of SRM at 3 T show a high reproducibility and differentiate papillary from non-papillary carcinoma subtypes. However, measurement variability may limit the application of fixed ADC thresholds for lesion diagnosis. © The Foundation Acta Radiologica 2015.

  11. Mass-action model analysis of the apparent molar volume and heat capacity of pluronics in water and liposome suspensions at 25 °C.

    PubMed

    Quirion, François; Meilleur, Luc; Lévesque, Isabelle

    2013-07-09

    Pluronics are block copolymers composed of a central block of polypropylene oxide and two side chains of polyethylene oxide. They are used in water to generate aggregates and gels or added to phospholipid suspensions to prepare microparticles for drug delivery applications. The structure of these systems has been widely investigated. However, little is known about the mechanisms leading to these structures. This investigation compares the apparent molar volumes and heat capacities of Pluronics F38, F108, F127, P85, P104, and P103 at 25 °C in water and in the presence of lecithin liposomes. The changes in molar volumes, heat capacities, and enthalpies generated by a mass-action model are in good agreement with the loss of hydrophobic hydration of the polypropylene oxide central block of the Pluronics. However, the molecularity of the endothermic transitions is much smaller than the aggregation numbers reported in the literature for the same systems. It is suggested that Pluronics go through dehydration of their central block to form unimolecular or small entities having a hydrophobic polypropylene oxide core. In water, these entities would assemble athermally to form larger aggregates. In the presence of liposomes, they would be transferred into the hydrophobic lecithin bilayers of the liposomes. Light transmission experiments suggest that the liposome suspensions are significantly altered only when the added Pluronics are in the dehydrated state.

  12. Mass Distribution in Plumes: constraints from gravity waves

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Baines, P. G.

    2012-12-01

    The Soufriere Hills volcano on Montserrat Island in the Caribbean has been active for more than 15 years. A small network, consisting of 4 sites, 5 - 10 km distant from the Soufriere Hills Volcano, was installed early in 2003. Each site has borehole strainmeters as well as micro-barographs and gave clear data from all volcanic events. A number of vulcanian explosions followed the major dome collapse on 13th July, 2003 and have continued until at least January 2008.. The plumes from these fragmentation events gave rise to an ~800 second period atmospheric pressure signal of 20 - 50 pascal amplitude propagating at about 30 m/sec. The onset is rarefaction. The data are consistent with a gravity wave confined to the troposphere. Note that plumes penetrating the stratosphere have a very different air pressure character. Initial modeling indicated that the coda of these waves was sensitive to the mass distribution in the plume. Since only the data beyond about 1000 seconds are found to yield information about mass distribution, we can use a simple impulsive source. The data, and particularly the coda, are best satisfied if most of the effective mass is at mid-plume, with reduced amounts near the surface and high in the troposphere. This suggests that the heavier ash particles fall as the plume rises. Since particle size impacts the event's hazard, this type of observation may have predictive capability.

  13. Lensing measurements of the mass distribution in SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh

    2015-12-01

    We measure weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). We find voids using an algorithm designed to maximize the lensing signal by dividing the survey volume into 2D slices, and then finding holes in this 2D distribution of LRGs. We perform a stacked shear measurement on about 20 000 voids with radii between 15 and 55 Mpc h-1, and redshifts between 0.16 and 0.37. We measure the characteristic radial shear signal of voids with a signal to noise of 7. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. We compare our measured shape and amplitude with the predictions of Krause et al. Voids in the galaxy distribution have been extensively modelled using simulations and measured in the SDSS. We discuss how the addition of void mass profiles can enable studies of galaxy formation and cosmology.

  14. Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice.

    PubMed

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2015-10-01

    Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training. To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training. A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015. Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions. Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists. Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs. 13.0 (11.9-14.1) with massed practice (P = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs. 13.4 (12.8-14.0) for

  15. A study of jet mass distributions with grooming

    NASA Astrophysics Data System (ADS)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2017-07-01

    We perform a phenomenological study of the invariant mass distribution of hadronic jets produced in proton-proton collisions, in conjunction with a grooming algorithm. In particular, we consider the modified MassDrop Tagger (mMDT), which corresponds to Soft Drop with angular exponent β = 0. Our calculation, which is differential in both jet mass and jet transverse momentum, resums large logarithms of the jet mass, including the full dependence on the groomer's energy threshold z cut, and it is matched to fixed-order QCD matrix elements at next-to-leading order. In order to account for non-perturbative contributions, originating from the hadronisation process and from the underlying event, we also include a phenomenological correction factor derived from Monte Carlo parton shower simulations. Furthermore, we consider two different possibilities for the jet transverse momentum: before or after grooming. We show that the former should be preferred for comparisons with upcoming experimental data essentially because the mMDT transverse momentum spectrum is not collinear safe, though the latter exhibits less sensitivity to underlying event and displays properties that may provide complementary information for probing non-perturbative effects.

  16. Probing the Mass Distribution and Stellar Populations of M82

    NASA Astrophysics Data System (ADS)

    Greco, Johnny; Martini, P.; Thompson, T. A.

    2012-01-01

    M82 is often considered the archetypical starburst galaxy because of its spectacular starbust-driven superwind. Its close proximity of 3.6 Mpc and nearly edge-on geometry make it a unique laboratory for studying the physics of rapid star formation and violent galactic winds. In addition, there is evidence that it has been tidally-truncated by its interaction with M81 and therefore has essentially no dark matter halo. The mass distribution of this galaxy is needed to estimate the power of its superwind, as well as determine if a dark matter halo is still present. Numerous studies have used stellar and gas dynamics to estimate the mass distribution, yet the substantial dust attenuation has been a significant challenge. We have measured the stellar kinematics in the near-infrared K-band with the LUCI-1 spectrograph at the Large Binocular Telescope. We used the '2CO stellar absorption bandhead at 2.29µm to measure the stellar rotation curve out to ˜4kpc, and our results confirm that the dark matter halo is still present. This is in stark contrast with the nearly Keplerian gas dynamics measured with HI and CO emission from the interstellar medium. We estimate M82's dynamical mass to be ˜1010 M⊙. We have also measured the equivalent width of the 12CO bandhead to provide new constraints on the spatial extent of the red supergiant population. The variation in the CO equivalent width with radius clearly shows that supergiants dominate the light within 0.5kpc radius. The superwind is likely launched from this region, where we estimate the enclosed mass is 2×109 M⊙.

  17. The Nickel Mass Distribution of Normal Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Tomás; Prieto, José L.; Pejcha, Ondřej; Clocchiatti, Alejandro

    2017-06-01

    Core-collapse supernova (SN) explosions expose the structure and environment of massive stars at the moment of their death. We use the global fitting technique of Pejcha & Prieto to estimate a set of physical parameters of 19 normal SNe II, such as their distance moduli, reddenings, 56Ni masses {M}{Ni}, and explosion energies {E}\\exp from multicolor light curves and photospheric velocity curves. We confirm and characterize known correlations between {M}{Ni} and bolometric luminosity at 50 days after the explosion, and between {M}{Ni} and {E}\\exp . We pay special attention to the observed distribution of {M}{Ni} coming from a joint sample of 38 SNe II, which can be described as a skewed-Gaussian-like distribution between 0.005 {M}⊙ and 0.280 {M}⊙ , with a median of 0.031 {M}⊙ , mean of 0.046 {M}⊙ , standard deviation of 0.048 {M}⊙ , and skewness of 3.050. We use a two-sample Kolmogorov-Smirnov test and two-sample Anderson-Darling test to compare the observed distribution of {M}{Ni} to results from theoretical hydrodynamical codes of core-collapse explosions with the neutrino mechanism presented in the literature. Our results show that the theoretical distributions obtained from the codes tested in this work, KEPLER and Prometheus Hot Bubble, are compatible with the observations irrespective of different pre-SN calibrations and different maximum mass of the progenitors.

  18. Estimating groundwater recharge on a temperate humid to semiarid volcanic island (Jeju, Korea) from water table fluctuations, Cl mass balance, apparent CFC-12 ages and 3H renewal

    NASA Astrophysics Data System (ADS)

    Hagedorn, K. B.; El-Kadi, A. I.; Mair, A.; Whittier, R.

    2010-12-01

    Groundwater table fluctuations, Chloride mass balance, apparent groundwater Chlorofluorocarbon (CFC-12) ages and tritium (3H) renewal rates were used to assess recharge on Jeju Island (Korea), where groundwater is the main source of potable water. Given the limitations of various techniques and the respective data, the methods yield highly variable results of 10 to 1,991 mm/yr, with an average of 780 mm/yr that represents about 40% of the average annual rainfall over the island. The magnitude of recharge has not changed significantly over the past 50 years as indicated by an overall agreement of estimates for recent inter-seasonal recharge from the water table fluctuation method, and the long term average values from the geochemical techniques and the detailed water budget. Heterogeneity of recharge at the catchment scale is caused by spatially and temporally variable rainfall and evapotranspiration as well as the wide range in effective porosity and specific yield values of the aquifer lithologies. A Piston Flow model with negligible dispersion and diffusion fits 3H values for most groundwater samples. This implies that the mafic to intermediate volcanics exhibit fracture-hosted groundwater flow and that rapid recharge may be occurring in zones of interconnected porosity that represent a fraction of the total porosity. Calculated recharge rates that are generally highest (>1,000 mm/yr) in southern and eastern catchments and decrease with altitude indicate a strong control of topography and rainfall. However, since high recharge may occur across broad areas, attempts to protect groundwater from surface contamination require management of the landscape as a whole, not just the uplands. Increased recharge in western catchments (i.e., Hallim and Hangyeong) has not lowered groundwater nitrate contents due to the low effective porosities of the aquifers, where older nitrate-rich water is trapped in massive lava blocks within the unsaturated zone and is slowly mixed with

  19. Waist Circumference as a Marker of Obesity Is More Predictive of Coronary Artery Calcification than Body Mass Index in Apparently Healthy Korean Adults: The Kangbuk Samsung Health Study.

    PubMed

    Park, Jongsin; Lee, Eun Seo; Lee, Da Young; Kim, Jihyun; Park, Se Eun; Park, Cheol Young; Lee, Won Young; Oh, Ki Won; Park, Sung Woo; Rhee, Eun Jung

    2016-12-01

    We aimed to assess the risk for coronary artery calcification (CAC) according to groups subdivided by body mass index (BMI) and waist circumference (WC) in apparently healthy Korean adults. Thirty-three thousand four hundred and thirty-two participants (mean age, 42 years) in a health screening program were divided into three groups according to BMI: <23 kg/m² (normal), 23 to 25 kg/m² (overweight), and >25 kg/m² (obese). In addition, the participants were divided into two groups according to WC. Coronary artery calcium score (CACS) was measured with multi-detector computed tomography in all participants. Presence of CAC was defined as CACS >0. When logistic regression analysis was performed with the presence of CAC as the dependent variable, the risk for CAC increased as BMI increased after adjusting for confounding variables (1.102 [95% confidence interval (CI), 1.000 to 1.216]; 1.284 [95% CI, 1.169 to 1.410]; in the overweight and obese groups vs. the normal weight group). When the participants were divided into six groups according to BMI and WC, the subjects with BMI and WC in the obese range showed the highest risk for CAC (1.321 [95% CI, 1.194 to 1.461]) and those with BMI in the overweight range and WC in the obese range showed the second highest risk for CAC (1.235 [95% CI, 1.194 to 1.461]). Participants with obesity defined by both BMI and WC showed the highest risk for CAC. Those with BMIs in the overweight range but with WC in the obese range showed the second highest risk for CAC, suggesting that WC as a marker of obesity is more predictive of CAC than BMI.

  20. Waist Circumference as a Marker of Obesity Is More Predictive of Coronary Artery Calcification than Body Mass Index in Apparently Healthy Korean Adults: The Kangbuk Samsung Health Study

    PubMed Central

    Park, Jongsin; Lee, Eun Seo; Lee, Da Young; Kim, Jihyun; Park, Se Eun; Park, Cheol-Young; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo

    2016-01-01

    Background We aimed to assess the risk for coronary artery calcification (CAC) according to groups subdivided by body mass index (BMI) and waist circumference (WC) in apparently healthy Korean adults. Methods Thirty-three thousand four hundred and thirty-two participants (mean age, 42 years) in a health screening program were divided into three groups according to BMI: <23 kg/m2 (normal), 23 to 25 kg/m2 (overweight), and >25 kg/m2 (obese). In addition, the participants were divided into two groups according to WC. Coronary artery calcium score (CACS) was measured with multi-detector computed tomography in all participants. Presence of CAC was defined as CACS >0. Results When logistic regression analysis was performed with the presence of CAC as the dependent variable, the risk for CAC increased as BMI increased after adjusting for confounding variables (1.102 [95% confidence interval (CI), 1.000 to 1.216]; 1.284 [95% CI, 1.169 to 1.410]; in the overweight and obese groups vs. the normal weight group). When the participants were divided into six groups according to BMI and WC, the subjects with BMI and WC in the obese range showed the highest risk for CAC (1.321 [95% CI, 1.194 to 1.461]) and those with BMI in the overweight range and WC in the obese range showed the second highest risk for CAC (1.235 [95% CI, 1.194 to 1.461]). Conclusion Participants with obesity defined by both BMI and WC showed the highest risk for CAC. Those with BMIs in the overweight range but with WC in the obese range showed the second highest risk for CAC, suggesting that WC as a marker of obesity is more predictive of CAC than BMI. PMID:28029026

  1. Generalised Extreme Value Distributions Provide a Natural Hypothesis for the Shape of Seed Mass Distributions

    PubMed Central

    2015-01-01

    Among co-occurring species, values for functionally important plant traits span orders of magnitude, are uni-modal, and generally positively skewed. Such data are usually log-transformed “for normality” but no convincing mechanistic explanation for a log-normal expectation exists. Here we propose a hypothesis for the distribution of seed masses based on generalised extreme value distributions (GEVs), a class of probability distributions used in climatology to characterise the impact of event magnitudes and frequencies; events that impose strong directional selection on biological traits. In tests involving datasets from 34 locations across the globe, GEVs described log10 seed mass distributions as well or better than conventional normalising statistics in 79% of cases, and revealed a systematic tendency for an overabundance of small seed sizes associated with low latitudes. GEVs characterise disturbance events experienced in a location to which individual species’ life histories could respond, providing a natural, biological explanation for trait expression that is lacking from all previous hypotheses attempting to describe trait distributions in multispecies assemblages. We suggest that GEVs could provide a mechanistic explanation for plant trait distributions and potentially link biology and climatology under a single paradigm. PMID:25830773

  2. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  3. The Argonne Fragment Mass Analyzer and measurements of entry distributions

    NASA Astrophysics Data System (ADS)

    Heinz, A.; Khoo, T. L.; Reiter, P.; Ahmad, I.; Bhattacharyya, P.; Caggiano, J.; Carpenter, M. P.; Cizewski, J. A.; Davids, C. N.; Henning, W. F.; Janssens, R. V. F.; Jones, G. D.; Julin, R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Siem, S.; Sonzogni, A. A.; Uusitalo, J.; Wiedenhöver, I.

    2001-07-01

    The Argonne Fragment Mass Analyzer (FMA) is designed to separate and identify evaporation residues according to their mass-to-charge ratio. The FMA in combination with GAMMASPHERE—an array of 100 compton-suppressed germanium detectors—allowed for a number of very interesting in-beam gamma-spectroscopy studies, as the FMA provided a very clean trigger on evaporation residues to obtain extremely background-free gamma-spectra. This setup was used to measure the total gamma-energy and multiplicity after particle evaporation—the so-called entry distribution—by exploiting the calorimetric properties of GAMMASPHERE, using its germanium detectors as well as its BGO shields for a maximum gamma efficiency. The entry distribution can be used to estimate the height of the fission barrier as a function of angular momentum. This method is especially favorable for unstable nuclei, for which the fission barrier is otherwise very difficult to measure. Here, the entry distributions of 220Th at beam energies of 206 MeV and 219.5 MeV in the 176Yb(48Ca,4n) reaction are presented. The results are compared to a previous measurement.

  4. Mass distribution of orbiting man-made space debris

    NASA Technical Reports Server (NTRS)

    Bess, T. D.

    1975-01-01

    Three ways of producing space debris were considered, and data were analyzed to determine mass distributions for man-made space debris. Hypervelocity (3.0 to 4.5 km/sec) projectile impact with a spacecraft wall, high intensity explosions and low intensity explosions were studied. For hypervelocity projectile impact of a spacecraft wall, the number of fragments fits a power law. The number of fragments for both high intensity and low intensity explosions fits an exponential law. However, the number of fragments produced by low intensity explosions is much lower than the number of fragments produced by high intensity explosions. Fragment masses down to 10 to the -7 power gram were produced from hypervelocity impact, but the smallest fragment mass resulting from an explosion appeared to be about 10 mg. Velocities of fragments resulting from hypervelocity impact were about 10 m/sec, and those from low intensity explosions were about 100 m/sec. Velocities of fragments from high intensity explosions were about 3 km/sec.

  5. Mass and charge distributions in chlorine-induced nuclear reactions

    SciTech Connect

    Marchetti, A.A.

    1991-12-31

    Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions {sup 37}Cl on {sup 40}Ca and {sup 209}Bi at E/A = 7.3 MeV, and {sup 35}Cl, on {sup 209}Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the {sup 31}Cl on {sup 209}Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system {sup 37}Cl on {sup 40}Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction {sup 37}Cl on {sup 40}Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids.

  6. Mass size distribution of particle-bound water

    NASA Astrophysics Data System (ADS)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  7. Gravitational lensing by clusters of galaxies - Constraining the mass distribution

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).

  8. A spiral galaxy's mass distribution uncovered through lensing and dynamics

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; van de Ven, Glenn; Dutton, Aaron A.

    2016-12-01

    We investigate the matter distribution of a spiral galaxy with a counter-rotating stellar core, SDSS J1331+3628 (J1331), independently with gravitational lensing and stellar dynamical modelling. By fitting a gravitational potential model to a quadruplet of lensing images around J1331's bulge, we tightly constrain the mass inside the Einstein radius Rein = (0.91 ± 0.02) arcsec (≃1.83 ± 0.04 kpc) to within 4 per cent: Mein = (7.8 ± 0.3) × 1010 M⊙. We model observed long-slit major axis stellar kinematics in J1331's central regions by finding Multi-Gaussian Expansion (MGE) models for the stellar and dark matter distribution that solve the axisymmetric Jeans equations. The lens and dynamical model are independently derived, but in very good agreement with each other around ˜Rein. We find that J1331's centre requires a steep total mass-to-light ratio gradient. A dynamical model including an NFW halo (with virial velocity v200 ≃ 240 ± 40 km s-1 and concentration c200 ≃ 8 ± 2) and moderate tangential velocity anisotropy (βz ≃ -0.4 ± 0.1) can reproduce the signatures of J1331's counter-rotating core and predict the stellar and gas rotation curve at larger radii. However, our models do not agree with the observed velocity dispersion at large radii. We speculate that the reason could be a non-trivial change in structure and kinematics due to a possible merger event in J1331's recent past.

  9. Large-scale mass distribution in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Haider, M.; Steinhauser, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Hernquist, L.

    2016-04-01

    Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 per cent of the dark matter and 23 per cent of the baryons are within haloes more massive than the resolution limit of 2 × 108 M⊙. The filaments of the cosmic web host a further 45 per cent of the dark matter and 46 per cent of the baryons. The remaining 31 per cent of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 per cent of them are in a condensed state, 21.6 per cent are present as cold, diffuse gas, and 53.9 per cent are found in the state of a warm-hot intergalactic medium.

  10. Mass Distribution and Gravitational Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Ninković, Slobodan

    2017-04-01

    Models of mass distribution in the Milky Way are discussed where those yielding the potential analytically are preferred. It is noted that there are three main contributors to the Milky Way potential: bulge, disc and dark halo. In the case of the disc the Miyamoto-Nagai formula, as simple enough, has shown as a very good solution, but it has not been able to satisfy all requirements. Therefore, improvements, such as adding new terms or combining several Miyamoto-Nagai terms, have been attempted. Unlike the disc, in studying the bulge and dark halo the flattening is usually neglected, which offers the possibility of obtaining an exact solution of the Poisson equation. It is emphasized that the Hernquist formula, used very often for the bulge potential, is a special case of another formula and the properties of that formula are analysed. In the case of the dark halo, the slopes of its cumulative mass for the inner and outer parts are explained through a new formalism presented here for the first time.

  11. Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk

    PubMed Central

    Yuan, Han; Amin, Ripal; Ye, Xin; De La Motte, Carol A.; Cowman, Mary K.

    2015-01-01

    Hyaluronan (HA) in human milk mediates host responses to microbial infection, via TLR4- and CD44-dependent signaling. Signaling by HA is generally size-specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low M component. Here we report the size distribution of HA in human milk samples from twenty unique donors. A new method for HA analysis, employingion exchange (IEX) chromatography to fractionate HA by size, and specific quantification of each size fraction by competitive Enzyme Linked Sorbent Assay (ELSA), was developed. When separated into four fractions, milk HA with M ≤ 20 kDa, M ≈20-60 kDa, and M ≈ 60-110 kDa comprised an average of 1.5%, 1.4% and 2% of the total HA, respectively. The remaining 95% was HA with M≥110 kDa. Electrophoretic analysis of the higher M HA from thirteen samples showed nearly identical M distributions, with an average M of ∼440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low M HA components. PMID:25579786

  12. Field line distribution of mass density at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, Kazue; Lee, Jimyoung; Zeitler, C. K.; Wimer, N. T.; Litscher, L. E.; Singer, H. J.; Min, Kyungguk

    2015-06-01

    The distribution of mass density along the field lines affects the ratios of toroidal (azimuthally oscillating) Alfvén frequencies, and given the ratios of these frequencies, we can get information about that distribution. Here we assume the commonly used power law form for the field line distribution, ρm = ρm,eq(LRE/R)α, where ρm,eq is the value of the mass density ρm at the magnetic equator, L is the L shell, RE is the Earth's radius, R is the geocentric distance to a point on the field line, and α is the power law coefficient. Positive values of α indicate that ρm increases away from the magnetic equator, zero value indicates that ρm is constant along the magnetic field line, and negative α indicates that there is a local peak in ρm at the magnetic equator. Using 12 years of observations of toroidal Alfvén frequencies by the Geostationary Operational Environmental Satellites, we study the typical dependence of inferred values of α on the magnetic local time (MLT), the phase of the solar cycle as specified by the F10.7 extreme ultraviolet solar flux, and geomagnetic activity as specified by the auroral electrojet (AE) index. Over the mostly dayside range of the observations, we find that α decreases with respect to increasing MLT and F10.7, but increases with respect to increasing AE. We develop a formula that depends on all three parameters, α3Dmodel=2.2+1.3·cos(MLT·15°)+0.0026·AE·cos((MLT-0.8)·15°)+2.1·10-5·AE·F10.7-0.010·F10.7, that models the binned values of α within a standard deviation of 0.3. While we do not yet have a complete theoretical understanding of why α should depend on these parameters in such a way, we do make some observations and speculations about the causes. At least part of the dependence is related to that of ρm,eq; higher α, corresponding to steeper variation with respect to magnetic latitude, occurs when ρm,eq is lower.

  13. The Photometric Amplitude and Mass Ratio Distributions of Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.

    2001-08-01

    The distribution of the light variation amplitudes A(a), in addition to determining the number of undiscovered contact binary systems falling below photometric detection thresholds and thus lost to statistics, can serve as a tool in determination of the mass ratio distribution Q(q), which is very important for understanding of the evolution of contact binaries. Calculations of the expected A(a) show that it tends to converge to a mass ratio dependent constant value for a-->0. Strong dependence of A(a) on Q(q) can be used to determine the latter distribution, but the technique is limited by the presence of unresolved visual companions and by blending in crowded areas of the sky. The bright-star sample to 7.5 mag is too small for an application of the technique, while the Baade's window sample from the OGLE project may suffer stronger blending; thus the present results are preliminary and illustrative only. Estimates based on the Baade's window data from the OGLE project, for amplitudes a>0.3 mag, where the statistics appear to be complete allowing determination of Q(q) over 0.12<=q<=1, suggest a steep increase of Q(q) with q-->0. The mass ratio distribution can be approximated by a power law, either Qa(q)~(1-q)a1 with a1=6+/-2 or Qb(q)~qb1 with b1=-2+/-0.5, with a slight preference for the former form. While both forms would predict very large numbers of small mass ratio systems, these predictions must be modified by the theoretically expected cutoff caused by a tidal instability at qmin~=0.07-0.1. A maximum in Q(q), due to the interplay of a steep power-law increase in Q(q) for q-->0 and of the cutoff at qmin, is expected to be mapped into a local maximum in A(a) around a~=0.2-0.25 mag. When better statistics of the amplitudes are available, the location of this maximum will shed light on the currently poorly known value of qmin. The correction factor linking the apparent, inclination-uncorrected frequency of W UMa-type systems to the true spatial frequency remains

  14. THE EFFECTS OF VIEWING ANGLE ON THE MASS DISTRIBUTION OF EXOPLANETS

    SciTech Connect

    Lopez, S.; Jenkins, J. S.

    2012-09-10

    We present a mathematical method to statistically decouple the effects of unknown inclination angles on the mass distribution of exoplanets that have been discovered using radial-velocity (RV) techniques. The method is based on the distribution of the product of two random variables. Thus, if one assumes a true mass distribution, the method makes it possible to recover the observed distribution. We compare our prediction with available RV data. Assuming that the true mass function is described by a power law, the minimum mass function that we recover proves a good fit to the observed distribution at both mass ends. In particular, it provides an alternative explanation for the observed low-mass decline, usually explained as sample incompleteness. In addition, the peak observed near the low-mass end arises naturally in the predicted distribution as a consequence of imposing a low-mass cutoff in the true distribution. If the low-mass bins below 0.02 M{sub J} are complete, then the mass distribution in this regime is heavily affected by the small fraction of lowly inclined interlopers that are actually more massive companions. Finally, we also present evidence that the exoplanet mass distribution changes form toward low mass, implying that a single power law may not adequately describe the sample population.

  15. Multi-component Erlang distribution of plant seed masses and sizes

    NASA Astrophysics Data System (ADS)

    Fan, San-Hong; Wei, Hua-Rong

    2012-12-01

    The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.

  16. Mass Distribution and Bar Formation in Growing Disk Galaxy Models

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Sellwood, J. A.

    2016-11-01

    We report idealized simulations that mimic the growth of galaxy disks embedded in responsive halos and bulges. The disks manifested an almost overwhelming tendency to form strong bars that we found very difficult to prevent. We found that fresh bars formed in growing disks after we had destroyed the original, indicating that bar formation also afflicts continued galaxy evolution, and not just the early stages of disk formation. This behavior raises still more insistently the previously unsolved question of how some galaxies avoid bars. Since our simulations included only collisionless star and halo particles, our findings may apply to gas-poor galaxies only; however, the conundrum persists for the substantial unbarred fraction of those galaxies. Our original objective was to study how internal dynamics rearranged the distribution of mass in the disk as a generalization of our earlier study with rigid spherical components. With difficulty, we were able to construct some models that were not strongly influenced by bars, and found that halo compression and angular momentum exchange with the disk did not alter our earlier conclusion that spiral activity is largely responsible for creating smooth density profiles and rotation curves.

  17. Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses

    NASA Astrophysics Data System (ADS)

    Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique

    2014-12-01

    Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.

  18. The Distribution of Mass Surface Densities in a High-mass Protocluster

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael J.

    2016-09-01

    We study the probability distribution function (PDF) of mass surface densities, Σ, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. This PDF constrains the physical processes, such as turbulence, magnetic fields, and self-gravity, that are expected to be controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 pc, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a “super star cluster.” We study Σ in two ways. First, we use a combination of NIR and MIR extinction maps that are able to probe the bulk of the cloud structure up to Σ ˜ 1 g cm-2(A V ≃ 200 mag). Second, we study the FIR and submillimeter dust continuum emission from the cloud utilizing Herschel-PACS and SPIRE images and paying careful attention to the effects of foreground and background contamination. We find that the PDFs from both methods, applied over a ˜20‧(30 pc)-sized region that contains ≃1.5 × 105 M ⊙ and enclosing a minimum closed contour with Σ ≃ 0.013 g cm-2 (A V ≃ 3 mag), shows a lognormal shape with the peak measured at Σ ≃ 0.021 g cm-2 (A V ≃ 4.7 mag). There is tentative evidence for the presence of a high-Σ power-law tail that contains from ˜3% to 8% of the mass of the cloud material. We discuss the implications of these results for the physical processes occurring in this cloud.

  19. Relation between meteor head echo mass-velocity selection effects, shower mass distribution indices, and mass threshold of the MU radar

    NASA Astrophysics Data System (ADS)

    Kero, Johan

    2014-01-01

    Observations are described that led to a study of the relationship between the head echo mass-velocity selection effect, the mass distribution indices of the Geminid and Orionid meteor showers, and the mass threshold of the MU radar, published by Kero et al. (2013).

  20. Water mass mixing: The dominant control on the zinc distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Roshan, Saeed; Wu, Jingfeng

    2015-07-01

    Dissolved zinc (dZn) concentration was determined in the North Atlantic during the U.S. GEOTRACES 2010 and 2011 cruise (GOETRACES GA03). A relatively poor linear correlation (R2 = 0.756) was observed between dZn and silicic acid (Si), the slope of which was 0.0577 nM/µmol/kg. We attribute the relatively poor dZn-Si correlation to the following processes: (a) differential regeneration of zinc relative to silicic acid, (b) mixing of multiple water masses that have different Zn/Si, and (c) zinc sources such as sedimentary or hydrothermal. To quantitatively distinguish these possibilities, we use the results of Optimum Multi-Parameter Water Mass Analysis by Jenkins et al. (2015) to model the zinc distribution below 500 m. We hypothesized two scenarios: conservative mixing and regenerative mixing. The first scenario (conservative) could be modeled to results in a correlation with observations with a R2 = 0.846. In the second scenario, we took a Si-related regeneration into account, which could model the observations with a R2 = 0.867. Through this regenerative mixing scenario, we estimated a Zn/Si = 0.0548 nM/µmol/kg that may be more realistic than linear regression slope due to accounting for process b. However, this did not improve the model substantially (R2 = 0.867 versus0.846), which may indicate the insignificant effect of remineralization on the zinc distribution in this region. The relative weakness in the model-observation correlation (R2~0.85 for both scenarios) implies that processes (a) and (c) may be plausible. Furthermore, dZn in the upper 500 m exhibited a very poor correlation with apparent oxygen utilization, suggesting a minimal role for the organic matter-associated remineralization process.

  1. Boosted apparent horizons

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp

    Boosted black holes play an important role in General Relativity (GR), especially in relation to the binary black hole problem. Solving Einstein vac- uum equations in the strong field regime had long been the holy grail of numerical relativity until the significant breakthroughs made in 2005 and 2006. Numerical relativity plays a crucial role in gravitational wave detection by providing numerically generated gravitational waveforms that help search for actual signatures of gravitational radiation exciting laser interferometric de- tectors such as LIGO, VIRGO and GEO600 here on Earth. Binary black holes orbit each other in an ever tightening adiabatic inspiral caused by energy loss due to gravitational radiation emission. As the orbits shrinks, the holes speed up and eventually move at relativistic speeds in the vicinity of each other (separated by ~ 10M or so where 2M is the Schwarzschild radius). As such, one must abandon the Newtonian notion of a point mass on a circular orbit with tangential velocity and replace it with the concept of black holes, cloaked behind spheroidal event horizons that become distorted due to strong gravity, and further appear distorted because of Lorentz effects from the high orbital velocity. Apparent horizons (AHs) are 2-dimensional boundaries that are trapped surfaces. Conceptually, one can think of them as 'quasi-local' definitions for a black hole horizon. This will be explained in more detail in chapter 2. Apparent horizons are especially important in numerical relativity as they provide a computationally efficient way of describing and locating a black hole horizon. For a stationary spacetime, apparent horizons are 2-dimensional cross-sections of the event horizon, which is itself a 3-dimensional null surface in spacetime. Because an AH is a 2-dimensional cross-section of an event horizon, its area remains invariant under distortions due to Lorentz boosts although its shape changes. This fascinating property of the AH can be

  2. Measurement of mass distribution of chemical species in aerosol particles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1984-01-01

    Aerosols may be generated through the nebulizing of solutions and the evaporation of their solvent, leaving the dry solute particles. Attention is presently given to a method for the direct determination of the masses of chemical species in individual aerosol particles on a continuous, real-time basis, using mass spectrometry. After the aerosol particles are introduced into the ion source of a quadrupole mass spectrometer, the particles impinge on a hot rhenium filament in the mass spectrometer's ion source. The resulting vapor plume is ionized by electron bombardment, and a pulse of ions is generated by each particle. The intensities of different masses in the ion pulses can then be measured by the mass spectrometer.

  3. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action.

    PubMed

    Szymanski, R; Sosnowski, S; Maślanka, Ł

    2016-03-28

    Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is higher than the chemical one (observed in a macroscopic-large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.

  4. Statistical effects related to low numbers of reacting molecules analyzed for a reversible association reaction A + B = C in ideally dispersed systems: An apparent violation of the law of mass action

    NASA Astrophysics Data System (ADS)

    Szymanski, R.; Sosnowski, S.; Maślanka, Ł.

    2016-03-01

    Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is higher than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.

  5. Vitamin D status in apparently healthy medication-free Slovaks: Association to blood pressure, body mass index, self-reported smoking status and physical activity.

    PubMed

    Sebekova, K; Krivosikova, Z; Gajdos, M; Podracka, L

    2016-01-01

    Vitamin D plays a role in protecting against chronic degenerative diseases. Slovak adults present one of the highest cardiovascular mortality rates among 27 EU countries. We asked whether the 25(OH)D3 status in apparently healthy medication-free Slovaks deteriorates upon ageing, and in the presence of cardiometabolic risk factors. We studied the impact of blood pressure, overweight/obesity, smoking, and physical activity on 25(OH)D3 levels determined using RIA method in 578 (5-81 years old) subjects. The average level of 25(OH)D3 was 36±17 ng/ml. A proportion of 15 % of participants were 25(OH)D3‑deficient (≤20 ng/ml), 26 % presented insufficient (20-to-30 ng/ml), and 59 % satisfactory (> 30 ng/ml) levels. Neither mean 25(OH)D3 levels, nor the prevalence of hypovitaminosis D showed age dependence. Physically active normotensive non-smokers presented the highest (41±19 ng/ml), and their smoking counterparts with elevated BP the lowest 25(OH)D3 levels (30±12 ng/ml). In apparently healthy medication-free Slovaks the prevalence of hypovitaminosis D is high. Vitamin D status does not deteriorate in course of healthy ageing. Physical activity, normotension, and non-smoking status are associated with favorable vitamin D status while low 25(OH)D3 levels are associated with multiple cardiometabolic risk factors. Further studies in subjects at high cardiovascular risk are needed to elucidate the potential association of hypovitaminosis D with high cardiovascular mortality in Slovak adults (Tab. 1, Fig. 4, Ref. 42).

  6. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2006-01-01

    The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

  7. A unified model for the spatial and mass distribution of subhaloes

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Cole, Shaun; Frenk, Carlos S.; Jing, Yipeng

    2016-04-01

    N-body simulations suggest that the substructures that survive inside dark matter haloes follow universal distributions in mass and radial number density. We demonstrate that a simple analytical model can explain these subhalo distributions as resulting from tidal stripping which increasingly reduces the mass of subhaloes with decreasing halocentric distance. As a starting point, the spatial distribution of subhaloes of any given infall mass is shown to be largely indistinguishable from the overall mass distribution of the host halo. Using a physically motivated statistical description of the amount of mass stripped from individual subhaloes, the model fully describes the joint distribution of subhaloes in final mass, infall mass and radius. As a result, it can be used to predict several derived distributions involving combinations of these quantities including, but not limited to, the universal subhalo mass function, the subhalo spatial distribution, the gravitational lensing profile, the dark matter annihilation radiation profile and boost factor. This model clarifies a common confusion when comparing the spatial distributions of galaxies and subhaloes, the so-called anti-bias, as a simple selection effect. We provide a PYTHON code SUBGEN for populating haloes with subhaloes at http://icc.dur.ac.uk/data/.

  8. Comparing the Effects of Massed and Distributed Practice on Skill Acquisition for Children with Autism

    ERIC Educational Resources Information Center

    Haq, Shaji S.; Kodak, Tiffany; Kurtz-Nelson, Evangeline; Porritt, Marilynn; Rush, Kristin; Cariveau, Tom

    2015-01-01

    We replicated and extended the findings of Haq and Kodak (2015) by evaluating the efficiency of massed and distributed practice for teaching tacts and textual and intraverbal behavior to 3 children with autism. Massed practice included all practice opportunities conducted on 1 day during each week, and distributed practice included practice…

  9. Comparing the Effects of Massed and Distributed Practice on Skill Acquisition for Children with Autism

    ERIC Educational Resources Information Center

    Haq, Shaji S.; Kodak, Tiffany; Kurtz-Nelson, Evangeline; Porritt, Marilynn; Rush, Kristin; Cariveau, Tom

    2015-01-01

    We replicated and extended the findings of Haq and Kodak (2015) by evaluating the efficiency of massed and distributed practice for teaching tacts and textual and intraverbal behavior to 3 children with autism. Massed practice included all practice opportunities conducted on 1 day during each week, and distributed practice included practice…

  10. Impact of Organic-Liquid Distribution and Flow-Field Heterogeneity on Reductions in Mass Flux

    SciTech Connect

    Difilippo, Erica L.; Carroll, Kenneth C.; Brusseau, Mark L.

    2010-06-07

    A series of flow-cell experiments was conducted to investigate the impact of organic-liquid distribution and flow-field heterogeneity on the relationship between source-zone mass removal and reductions in contaminant mass flux from the source zone. Changes in source-zone architecture were quantified using image analysis, allowing explicit examination of their impact on the mass-flux-reduction/mass-removal behavior. The results showed that there was minimal reduction in mass flux until a large fraction of mass was removed for systems wherein organic liquid was present solely as residual saturation in regions that were hydraulically accessible. Conversely, significant reductions in mass flux occurred with relatively minimal mass removal for systems wherein organic liquid was present at both residual and higher saturations. The latter systems exhibited multi-step mass-flux-reduction/mass-removal behavior, and characterization of the organic-liquid saturation distribution throughout flushing allowed identification of the cause of the nonideal behavior. The age of the source zone (time from initial emplacement to time of initial characterization) significantly influenced the observed mass-flux-reduction/mass-removal behavior. The results of this study illustrate the impact of both organic-liquid distribution and flow-field heterogeneity on mass-removal and mass-flux processes.

  11. Penrose inequality and apparent horizons

    SciTech Connect

    Ben-Dov, Ishai

    2004-12-15

    A spherically symmetric spacetime is presented with an initial data set that is asymptotically flat, satisfies the dominant energy condition, and such that on this initial data M<{radical}(A/16{pi}), where M is the total mass and A is the area of the apparent horizon. This provides a counterexample to a commonly stated version of the Penrose inequality, though it does not contradict the true Penrose inequality.

  12. Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm

    SciTech Connect

    Moller, Peter; Ickhikawa, Takatoshi; Iwamoto, Akira

    2008-01-01

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  13. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  14. The distribution of mass and angular momentum in the solar system

    SciTech Connect

    Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

    1989-01-01

    This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

  15. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  16. Measuring distributional inequality: relative body mass index distributions by gender, race/ethnicity, and education, United States (1999-2006).

    PubMed

    Houle, Brian C

    2010-01-01

    Few studies consider obesity inequalities as a distributional property. This study uses relative distribution methods to explore inequalities in body mass index (BMI; kg/m(2)). Data from 1999-2006 from the National Health and Nutrition Examination Survey were used to compare BMI distributions by gender, Black/White race, and education subgroups in the United States. For men, comparisons between Whites and Blacks show a polarized relative distribution, with more Black men at increased risk of over or underweight. Comparisons by education (overall and within race/ethnic groups) effects also show a polarized relative distribution, with more cases of the least educated men at the upper and lower tails of the BMI distribution. For women, Blacks have a greater probability of high BMI values largely due to a right-shifted BMI distribution relative to White women. Women with less education also have a BMI distribution shifted to the right compared to the most educated women.

  17. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  18. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    PubMed Central

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-01-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3–4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages. PMID:26924271

  19. Statistical prediction of protein structural, localization and functional properties by the analysis of its fragment mass distributions after proteolytic cleavage

    NASA Astrophysics Data System (ADS)

    Bogachev, Mikhail I.; Kayumov, Airat R.; Markelov, Oleg A.; Bunde, Armin

    2016-02-01

    Structural, localization and functional properties of unknown proteins are often being predicted from their primary polypeptide chains using sequence alignment with already characterized proteins and consequent molecular modeling. Here we suggest an approach to predict various structural and structure-associated properties of proteins directly from the mass distributions of their proteolytic cleavage fragments. For amino-acid-specific cleavages, the distributions of fragment masses are determined by the distributions of inter-amino-acid intervals in the protein, that in turn apparently reflect its structural and structure-related features. Large-scale computer simulations revealed that for transmembrane proteins, either α-helical or β -barrel secondary structure could be predicted with about 90% accuracy after thermolysin cleavage. Moreover, 3/4 intrinsically disordered proteins could be correctly distinguished from proteins with fixed three-dimensional structure belonging to all four SCOP structural classes by combining 3-4 different cleavages. Additionally, in some cases the protein cellular localization (cytosolic or membrane-associated) and its host organism (Firmicute or Proteobacteria) could be predicted with around 80% accuracy. In contrast to cytosolic proteins, for membrane-associated proteins exhibiting specific structural conformations, their monotopic or transmembrane localization and functional group (ATP-binding, transporters, sensors and so on) could be also predicted with high accuracy and particular robustness against missing cleavages.

  20. Relationship between obesity and foot pain and its association with fat mass, fat distribution, and muscle mass.

    PubMed

    Tanamas, Stephanie K; Wluka, Anita E; Berry, Patricia; Menz, Hylton B; Strauss, Boyd J; Davies-Tuck, Miranda; Proietto, Joseph; Dixon, John B; Jones, Graeme; Cicuttini, Flavia M

    2012-02-01

    To examine the relationship between obesity, body composition, and foot pain as assessed by the Manchester Foot Pain and Disability Index (MFPDI). Subjects 25-62 years of age (n = 136) were recruited as part of a study examining the relationship between obesity and musculoskeletal health. Foot pain was defined as current foot pain and pain in the last month, and an MFPDI score of ≥1. Body composition (tissue mass and fat distribution) was measured using dual x-ray absorptiometry. The body mass index (BMI) in this population was normally distributed around a mean of 32.1 kg/m(2). The prevalence of foot pain was 55.1%. There was a positive association between BMI and foot pain (odds ratio [OR] 1.11, 95% confidence interval [95% CI] 1.06-1.17). Foot pain was also positively associated with fat mass (OR 1.05, 95% CI 1.02-1.09) and fat mass index (FMI; OR 1.16, 95% CI 1.06-1.28) when adjusted for age, sex, and skeletal muscle mass and age, sex, and fat-free mass index (FFMI), respectively. When examining fat distribution, positive associations were observed for android/total body fat ratio (OR 1.42, 95% CI 1.11-1.83) and android/gynoid fat ratio (OR 35.15, 95% CI 2.60-475.47), although gynoid/total body fat ratio was inversely related to foot pain (OR 0.83, 95% CI 0.73-0.93). Skeletal muscle mass and FFMI were not associated with foot pain when adjusted for fat mass or FMI, respectively. Increasing BMI, specifically android fat mass, is strongly associated with foot pain and disability. This may imply both biomechanical and metabolic mechanisms. Copyright © 2012 by the American College of Rheumatology.

  1. Gravitational lensing by a smoothly variable three-dimensional mass distribution

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Paczynski, Bohdan

    1990-01-01

    A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.

  2. Gravitational lensing by a smoothly variable three-dimensional mass distribution

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Paczynski, Bohdan

    1990-01-01

    A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.

  3. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction

    PubMed Central

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2014-01-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior. PMID:24563557

  4. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction.

    PubMed

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2013-10-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior.

  5. The supernova progenitor mass distributions of M31 and M33: further evidence for an upper mass limit

    SciTech Connect

    Jennings, Zachary G.; Weisz, Daniel R.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2014-11-10

    Using Hubble Space Telescope photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form dN/dM∝M {sup –α}. Our new larger sample of M31 progenitors follows a distribution with α=4.4{sub −0.4}{sup +0.4}, and the M33 sample follows a distribution with α=3.8{sub −0.5}{sup +0.4}. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives α=4.2{sub −0.3}{sup +0.3}. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function, which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix α = 2.35 and treat the maximum mass as a free parameter, we find M {sub max} ∼ 35-45 M {sub ☉}, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.

  6. The Distribution of Black Hole Masses in X-ray Transients

    NASA Astrophysics Data System (ADS)

    Bailyn, C. D.; Jain, R. K.; Coppi, P.; Orosz, J. A.

    1996-12-01

    Measuring the mass functions in soft X-ray transient binary systems has provided some of the strongest evidence for the existence of black holes in nature. This evidence comes in the form of a lower limit on the mass of the compact object, which in six cases is at or above the maximum mass of a neutron star. To determine the true mass (rather than a lower limit) of the black hole, one needs to determine the orbital inclination, and either the mass ratio or the mass of the secondary star. A variety of methods have been employed to determine these parameters, in particular modelling the ellipsoidal variability of the secondary star. Here we assess the results of these efforts, and employ Baysian statistical techniques to explore the mass distribution of the black holes in these systems. We find that the mass distribution encompasses a surprisingly small range of masses, from 6-8 times solar. There is one exception, namely V404 Cyg, which has a black hole with M>10M_⊙. V404 Cyg is also unique in having a highly evolved secondary star. We find that it is statistically improbable that the mass of the black hole in V404 Cyg is drawn from the same distribution as the other systems. The concentration of black hole masses near 7M_⊙ may pose interesting constraints on the supernova events which produced them.

  7. The Distribution of Black Hole Masses in X-ray Transients

    NASA Astrophysics Data System (ADS)

    Bailyn, C. D.; Jain, R. K.; Coppi, P.; Orosz, J. A.

    1997-05-01

    Measuring the mass functions in soft X-ray transient binary systems has provided some of the strongest evidence for the existence of black holes in nature. This evidence comes in the form of a lower limit on the mass of the compact object, which in six cases is at or above the maximum mass of a neutron star. To determine the true mass (rather than a lower limit) of the black hole, one needs to determine the orbital inclination, and either the mass ratio or the mass of the secondary star. A variety of methods have been employed to determine these parameters, in particular modelling of ellipsoidal variability of the secondary star. Here we assess the results of these efforts, and employ Baysian statistical techniques to explore the mass distribution of the black holes in these systems. We find that the mass distribution encompasses a surprisingly small range of masses, from 6-8 times solar. There is one exception, namely V404 Cyg, which has a black hole with M>10M_⊙. V404 Cyg is also unique in having a highly evolved secondary star. We find that it is statistically improbable that the mass of the black hole in V404 Cyg is drawn from the same distribution as the other systems. The concentration of black hole masses near 7M_⊙ may pose interesting constraints on the supernova events which produced them.

  8. Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity

    NASA Astrophysics Data System (ADS)

    Kang, Liqiang; Guo, Liejin; Liu, Dayou

    2008-04-01

    The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport.

  9. The stellar mass distribution of S4G disk galaxies

    NASA Astrophysics Data System (ADS)

    Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija

    2017-03-01

    We use 3.6 μm imaging from the S4G survey to characterize the typical stellar density profiles (Σ*) and bars as a function of fundamental galaxy parameters (e.g. the total stellar mass M *), providing observational constraints for galaxy simulation models to be compared with. We rescale galaxy images to a common frame determined by the size in physical units, by their disk scalelength, or by their bar size and orientation. We stack the resized images to obtain statistically representative average stellar disks and bars. For a given M * bin (>= 109 M ⊙), we find a significant difference in the stellar density profiles of barred and non-barred systems that gives evidence for bar-induced secular evolution of disk galaxies: (i) disks in barred galaxies show larger scalelengths and fainter extrapolated central surface brightnesses, (ii) the mean surface brightness profiles of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation, and (iii) the central mass concentration of barred galaxies is larger (by almost a factor 2 when T < 5) than in their non-barred counterparts. We also show that early- and intermediate-type spirals (0 <= T < 5) host intrinsically narrower bars than the later types and S0s, whose bars are oval-shaped. We show a clear correlation between galaxy family and bar ellipticity.

  10. Multiplicity Distributions from Antiproton-Proton Collisions at 1.8 Tev Center of Mass Energy

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Ho.

    Charged-particle multiplicity distributions from antiproton-proton collisions at 1800 GeV center of mass energy, obtained with the E735 detector multiplicity hodoscope, are presented and discussed. A simple iteration method is used for conversion from number of observed hodoscope hits to true charged-particle multiplicity. The first four moments of the distribution are compared with distributions from lower energies. The distributions are also fit to KNO-G and negative binomial functions.

  11. No Apparent Reduction in Schistosome Burden or Genetic Diversity Following Four Years of School-Based Mass Drug Administration in Mwea, Central Kenya, a Heavy Transmission Area

    PubMed Central

    Lelo, Agola E.; Mburu, David N.; Magoma, Gabriel N.; Mungai, Ben N.; Kihara, Jimmy H.; Mwangi, Ibrahim N.; Maina, Geoffrey M.; Kinuthia, Joseph M.; Mutuku, Martin W.; Loker, Eric S.; Mkoji, Gerald M.; Steinauer, Michelle L.

    2014-01-01

    Background Schistosomiasis is a debilitating neglected tropical disease that infects over 200 million people worldwide. To combat this disease, in 2012, the World Health Organization announced a goal of reducing and eliminating transmission of schistosomes. Current control focuses primarily on mass drug administration (MDA). Therefore, we monitored transmission of Schistosoma mansoni via fecal egg counts and genetic markers in a typical school based MDA setting to ascertain the actual impacts of MDA on the targeted schistosome population. Methods For 4 years, we followed 67 children enrolled in a MDA program in Kenya. Infection status and egg counts were measured each year prior to treatment. For 15 of these children, for which there was no evidence of acquired resistance, meaning they became re-infected following each treatment, we collected microsatellite genotype data from schistosomes passed in fecal samples as a representation of the force of transmission between drug treatments. We genotyped a total of 4938 parasites from these children, with an average of 329.2 parasites per child for the entire study, and an average of 82.3 parasites per child per annual examination. We compared prevalence, egg counts, and genetic measures including allelic richness, gene diversity (expected heterozygosity), adult worm burdens and effective number of breeders among time points to search for evidence for a change in transmission or schistosome populations during the MDA program. Findings We found no evidence of reduced transmission or schistosome population decline over the course of the program. Although prevalence declined in the 67 children as it did in the overall program, reinfection rates were high, and for the 15 children studied in detail, schistosome egg counts and estimated adult worm burdens did not decline between years 1 and 4, and genetic diversity increased over the course of drug treatment. Interpretation School based control programs undoubtedly improve the

  12. No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in mwea, central kenya, a heavy transmission area.

    PubMed

    Lelo, Agola E; Mburu, David N; Magoma, Gabriel N; Mungai, Ben N; Kihara, Jimmy H; Mwangi, Ibrahim N; Maina, Geoffrey M; Kinuthia, Joseph M; Mutuku, Martin W; Loker, Eric S; Mkoji, Gerald M; Steinauer, Michelle L

    2014-10-01

    Schistosomiasis is a debilitating neglected tropical disease that infects over 200 million people worldwide. To combat this disease, in 2012, the World Health Organization announced a goal of reducing and eliminating transmission of schistosomes. Current control focuses primarily on mass drug administration (MDA). Therefore, we monitored transmission of Schistosoma mansoni via fecal egg counts and genetic markers in a typical school based MDA setting to ascertain the actual impacts of MDA on the targeted schistosome population. For 4 years, we followed 67 children enrolled in a MDA program in Kenya. Infection status and egg counts were measured each year prior to treatment. For 15 of these children, for which there was no evidence of acquired resistance, meaning they became re-infected following each treatment, we collected microsatellite genotype data from schistosomes passed in fecal samples as a representation of the force of transmission between drug treatments. We genotyped a total of 4938 parasites from these children, with an average of 329.2 parasites per child for the entire study, and an average of 82.3 parasites per child per annual examination. We compared prevalence, egg counts, and genetic measures including allelic richness, gene diversity (expected heterozygosity), adult worm burdens and effective number of breeders among time points to search for evidence for a change in transmission or schistosome populations during the MDA program. We found no evidence of reduced transmission or schistosome population decline over the course of the program. Although prevalence declined in the 67 children as it did in the overall program, reinfection rates were high, and for the 15 children studied in detail, schistosome egg counts and estimated adult worm burdens did not decline between years 1 and 4, and genetic diversity increased over the course of drug treatment. School based control programs undoubtedly improve the health of individuals; however, our data

  13. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    SciTech Connect

    Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.

    2012-08-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  14. Observational Constraints on Quasar Black Hole Mass Distributions, Eddington Ratio Distributions, and Lifetimes

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.; Vestergaard, M.; Fan, X.; Hopkins, P.; Hernquist, L.; Siemiginowska, A.

    2010-01-01

    I will present the black hole mass function (BHMF) of broad line quasars in the SDSS DR3. We employ a powerful Bayesian statistical technique that corrects for incompleteness and the statistical uncertainty in the mass estimates. We find evidence that the most massive black hole appeared as quasars earlier in the universe, and that most quasars are not radiating at or near the Eddington limit. I will also present constraints on the quasar lifetime and maximum black hole mass, derived from the mass functions.

  15. Constrained invariant mass distributions in cascade decays. The shape of the “mqll-threshold” and similar distributions

    NASA Astrophysics Data System (ADS)

    Lester, Christopher G.

    2007-10-01

    Considering the cascade decay D → cC → cbB → cbaA in which D, C, B, A are massive particles and c, b, a are massless particles, we determine for the shape of the distribution of the invariant mass of the three massless particles mabc for the sub-set of decays in which the invariant mass mab of the last two particles in the chain is (optionally) constrained to lie inside an arbitrary interval, mab ∈ [mabcut min, mabcut max]. An example of an experimentally important distribution of this kind is the “mqll threshold”—which is the distribution of the combined invariant mass of the visible Standard Model particles radiated from the hypothesised decay of a squark to the lightest neutralino via successive two body decay: q˜ → qχ˜20 → qll˜ → qllχ˜10, in which the experimenter requires additionally that mll be greater than mllmax /√{ 2}. The location of the “foot” of this distribution is often used to constrain sparticle mass scales. The new results presented here permit the location of this foot to be better understood as the shape of the distribution is derived. The effects of varying the position of the mll cut(s) may now be seen more easily.

  16. Exponential and power-law mass distributions in brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Linna, R. P.; Timonen, J.; Møller, Peder Friis; Oddershede, Lene

    2004-08-01

    Generic arguments, a minimal numerical model, and fragmentation experiments with gypsum disk are used to investigate the fragment-size distribution that results from dynamic brittle fragmentation. Fragmentation is initiated by random nucleation of cracks due to material inhomogeneities, and its dynamics are pictured as a process of propagating cracks that are unstable against side-branch formation. The initial cracks and side branches both merge mutually to form fragments. The side branches have a finite penetration depth as a result of inherent damping. Generic arguments imply that close to the minimum strain (or impact energy) required for fragmentation, the number of fragments of size s scales as s-(2D-1)/Df1(-(2/λ)Ds)+f2(-s0-1(λ+s1/D)D) , where D is the Euclidean dimension of the space, λ is the penetration depth, and f1 and f2 can be approximated by exponential functions. Simulation results and experiments can both be described by this theoretical fragment-size distribution. The typical largest fragment size s0 was found to diverge at the minimum strain required for fragmentation as it is inversely related to the density of initially formed cracks. Our results also indicate that scaling of s0 close to this divergence depends on, e.g., loading conditions, and thus is not universal. At the same time, the density of fragment surface vanishes as L-1 , L being the linear dimension of the brittle solid. The results obtained provide an explanation as to why the fragment-size distributions found in nature can have two components, an exponential as well as a power-law component, with varying relative weights.

  17. The mass distribution and gravitational potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    McMillan, Paul J.

    2017-02-01

    We present mass models of the Milky Way created to fit observational constraints and to be consistent with expectations from theoretical modelling. The method used to create these models is that demonstrated in our previous study, and we improve on those models by adding gas discs to the potential, considering the effects of allowing the inner slope of the halo density profile to vary, and including new observations of maser sources in the Milky Way amongst the new constraints. We provide a best-fitting model, as well as estimates of the properties of the Milky Way. Under the assumptions in our main model, we find that the Sun is R0 = 8.20 ± 0.09 kpc from the Galactic Centre, with the circular speed at the Sun being v0 = 232.8 ± 3.0 km s-1; and that the Galaxy has a total stellar mass of (54.3 ± 5.7) × 109 M⊙, a total virial mass of (1.30 ± 0.30) × 1012 M⊙ and a local dark-matter density of 0.40 ± 0.04 GeV cm-3, where the quoted uncertainties are statistical. These values are sensitive to our choice of priors and constraints. We investigate systematic uncertainties, which in some cases may be larger. For example, if we weaken our prior on R0, we find it to be 7.97 ± 0.15 kpc and that v0 = 226.8 ± 4.2 km s-1. We find that most of these properties, including the local dark-matter density, are remarkably insensitive to the assumed power-law density slope at the centre of the dark-matter halo. We find that it is unlikely that the local standard of rest differs significantly from that found under assumptions of axisymmetry. We have made code to compute the force from our potential, and to integrate orbits within it, publicly available.

  18. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-flux reduction

    NASA Astrophysics Data System (ADS)

    Akyol, N. H.; Russo, A. E.; Brusseau, M. L.

    2011-12-01

    A series of flow-cell experiments was conducted to investigate the impact of nonuniform organic-liquid distribution and flow-field heterogeneity on the relationship between source zone mass removal and mass flux reduction under conditions of enhanced-solubilization flushing. Sudan IV dyed trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Natural sand media with different median particle diameters and natural soils were used for these experiments to represent various pyhsically heterogeneous systems. Photographs were obtained throughout the course of the experiments to observe changes in source-zone distributions. The results showed that the heterogeneous systems exhibited multi-step mass-flux reduction/mass-removal behavior. This nonideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all cases, the later stage of mass removal was controlled by the more poorly-accessible mass associated with higher-saturation zones.

  19. Fast Track to Molar-Mass Distributions of Technical Lignins.

    PubMed

    Sulaeva, Irina; Zinovyev, Grigory; Plankeele, Jean-Michel; Sumerskii, Ivan; Rosenau, Thomas; Potthast, Antje

    2017-02-08

    Technical lignins (waste products obtained from wood pulping or biorefinery processes) have so far required lengthy analysis procedures and different eluents for molar-mass analysis by gel permeation chromatography (GPC). This challenge has become more pressing recently since attempts to utilize lignins have increased, leading to skyrocketing numbers of samples to be analyzed. A new approach, which uses the eluent DMSO/LiBr (0.5 % w/v) and converts lignosulfonate salts into their acidic form before analysis, overcomes these limitations by enabling measurement of all kinds of lignins (kraft, organosolv, soda, lignosulfonates) in the same size-exclusion chromatography (SEC) system without the necessity of prior time-consuming derivatization steps. In combination with ultra-performance liquid chromatography (UPLC), analysis times are shortened to one tenth of classical lignin GPC. The new approach is presented, along with a comparison of GPC and UPLC methods and a critical discussion of the analytical parameters.

  20. Rack Distribution Effects on MPLM Center of Mass

    NASA Technical Reports Server (NTRS)

    Tester, John T.

    2005-01-01

    This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.

  1. Mass distribution of fission fragments within the Born-Oppenheimer approximation

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Ivanyuk, F. A.; Nerlo-Pomorska, B.

    2017-03-01

    The fission fragments mass-yield of 236 U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution.

  2. Nasopharyngeal Pneumococcal Serotypes Before and After Mass Azithromycin Distributions for Trachoma

    PubMed Central

    Keenan, Jeremy D.; Sahlu, Ida; McGee, Lesley; Cevallos, Vicky; Vidal, Jorge E.; Chochua, Sopio; Hawkins, Paulina; Gebre, Teshome; Tadesse, Zerihun; Emerson, Paul M.; Gaynor, Bruce D.; Lietman, Thomas M.; Klugman, Keith P.

    2016-01-01

    Twenty-four Ethiopian communities were randomized to receive either (1) quarterly mass azithromycin distributions for trachoma for 1 year or (2) delayed treatment. Nasopharyngeal swabs collected from separate cross-sectional population-based samples of children were processed for Streptococcus pneumoniae. Mass azithromycin did not significantly alter the pneumococcal serotype distribution, and hence it would not be expected to alter vaccine coverage. PMID:27199475

  3. Optimization of orthotropic distributed-mode loudspeaker using attached masses and multi-exciters.

    PubMed

    Lu, Guochao; Shen, Yong; Liu, Ziyun

    2012-02-01

    Based on the orthotropic model of the plate, the method to optimize the sound response of the distributed-mode loudspeaker (DML) using the attached masses and the multi-exciters has been investigated. The attached masses method will rebuild the modes distribution of the plate, based on which multi-exciter method will smooth the sound response. The results indicate that the method can be used to optimize the sound response of the DML. © 2012 Acoustical Society of America

  4. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

    PubMed Central

    Olcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.

    2015-01-01

    Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators. PMID:25963304

  5. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters.

    PubMed

    Howard, Andrew W; Marcy, Geoffrey W; Johnson, John Asher; Fischer, Debra A; Wright, Jason T; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Lin, Doug N C; Ida, Shigeru

    2010-10-29

    The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

  6. Mass and spatial distribution of carbonaceous component in Comet Halley

    NASA Astrophysics Data System (ADS)

    Fomenkova, M.; Chang, S.

    1993-03-01

    Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

  7. Mass and spatial distribution of carbonaceous component in Comet Halley

    NASA Technical Reports Server (NTRS)

    Fomenkova, M.; Chang, S.

    1993-01-01

    Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

  8. Mass and spatial distribution of carbonaceous component in Comet Halley

    NASA Technical Reports Server (NTRS)

    Fomenkova, M.; Chang, S.

    1993-01-01

    Cometary grains containing large amounts of carbon and/or organic matter were discovered by in situ measurements of cometary dust composition during VEGA and GIOTTO fly-by missions. In accordance with the classification for the data of PUMA-1 and PUMA-2 mass-spectrometers on board the VEGA spacecraft, particles with a ratio of C to any rock-forming element (Mg, Si, Fe, Ca etc.) greater than 10, were categorized as CHON. There are 464 such particles in PUMA-1 data and 51 in PUMA-2 data. Application of cluster analysis to these grains revealed several distinct compositional classes, namely: (H,C,N,O), (H,C,N), (H,C), (H,C,O), (C,N), (C,O), (C,N,O), and (C). Similar classes were identified among particles analyzed by PIA. Also, about a third of all particles fell into groups (H) and (O) characterized by abundances of these elements beyond chemically reasonable limits.

  9. Volume and mass distribution in selected asteroid families

    NASA Astrophysics Data System (ADS)

    Włodarczyk, I.; Leliwa-Kopystyński, J.

    2014-10-01

    The main focus of this paper is calculation of the diameters of asteroids belonging to five families (Vesta, Eos, Eunomia, Koronis, and Themis). To do that, we used the HCM algorithm applied for a data set containing 292,003 numbered asteroids, and a numerical procedure for choosing the crucial parameter of the HCM, called "the cutting velocity" vcut. It was established with a precision as high as 1 m s-1. Thereafter, we used the WISE (Wide-field Infrared Survey Explorer) catalog to set a range of albedo for the largest members of each family considered. The albedo data were supported by the data concerning color classification (SDSS MOC4). The asteroids with albedo out of this range were classified as interlopers and were therefore disqualified as family members. Sizes were calculated for the asteroids with albedo within the acceptable range. For the other asteroids (those chosen by means of the HCM, but with albedo not listed in the WISE), the value of albedo of the largest member of the family was adopted. Results are given in a set of figures showing the families on the planes (a, e), (a, i), (e, i). Diameters and volumes of the asteroids that are the individual members of a family were calculated on the basis of their known or assumed albedo and on their absolute magnitude. Volumes of the parent bodies of the families were found on the basis of the cumulative volume distribution of these families. We also studied the secular resonances of the family members. We have shown that the locations of members of the considered asteroid families are related to the lines of secular resonances z1, z2, and z3 with Saturn.

  10. Massed versus Distributed Repeated Reading: A Case of Forgetting Helping Recall?

    ERIC Educational Resources Information Center

    Krug, Damon; And Others

    1990-01-01

    Repeated reading of a passage at 1 sitting (massed) was compared with repeated reading with a delay between readings (distributed) for effects on recall in 3 experiments with 125 college undergraduates and 45 high school students. Advantages of distributed repeated reading are discussed in terms of a deactivation hypothesis. (SLD)

  11. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert K.

    1989-01-01

    A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

  12. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert K.

    1989-01-01

    A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

  13. The small domain of cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile Chlamydomonas reinhardtii.

    PubMed

    Gudynaite-Savitch, Loreta; Loiselay, Christelle; Savitch, Leonid V; Simmonds, John; Kohalmi, Susanne E; Choquet, Yves; Hüner, Norman P A

    2007-10-01

    Cytochrome f from the psychrophile Chlamydomonas raudensis UWO 241 has a lower thermostability of its c-type heme and an apparent molecular mass that is 7 kDa lower than that of the model mesophilic green alga Chlamydomonas reinhardtii. We combined chloroplast transformation, site-directed mutagensis, and the creation of chimeric fusion constructs to assess the contribution of specific domains and (or) amino acids residues to the structure, stability, and accumulation of cytochrome f, as well as its function in photosynthetic intersystem electron transport. We demonstrate that differences in the amino acid sequence of the small domain and specific charged amino acids in the large domain of cytochrome f alter the physical properties of this protein but do not affect either the thermostability of the c-type heme, the apparent half-life of cytochrome f in the presence of the chloroplastic protein synthesis inhibitor chloramphenicol, or the capacity for photosynthetic intersystem electron transport, measured as e-/P700. However, pulse-labeling with [14C]acetate, combined with immunoblotting, indicated that the negative autoregulation of cytochrome f accumulation observed in mesophilic C. reinhardtii transformed with chimeric constructs from the psychrophile was likely the result of the defective association of the chimeric forms of cytochrome f with the other subunits of the cytochrome b6/f complex native to the C. reinhardtii wild type. These results are discussed in terms of the unique fatty acid composition of the thylakoid membranes of C. raudensis UWO 241 adapted to cold environments.

  14. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Seth, A.; Kim, M.; Läsker, R.; Goulding, A.; Gao, F.; Braatz, J. A.; Henkel, C.; Condon, J.; Lo, K. Y.; Zhao, W.

    2016-08-01

    We use new precision measurements of black hole (BH) masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive BH mass. The megamaser-derived BH masses span 106-108 {M}⊙ , while all the galaxy properties that we examine (including total stellar mass, central mass density, and central velocity dispersion) lie within a narrower range. Thus, no galaxy property correlates tightly with {M}{BH} in ˜L* spiral galaxies as traced by megamaser disks. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed {σ }* the mean megamaser {M}{BH} are offset by -0.6 ± 0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not appear to show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to an inability to resolve their spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.

  15. The modified design of ring electrode quartz crystal resonator for uniform mass sensitivity distribution.

    PubMed

    Gao, Jinyang; Huang, Xianhe; Wang, Yan

    2013-09-01

    The mass sensitivity distribution curve of quartz crystal resonators (QCRs) with common circular electrodes is bell-shaped; however, a uniform mass sensitivity distribution is expected for highly accurate and repeatable measuring results. Pioneers designed a ring electrode QCR with a bimodal distribution curve of mass sensitivity, and an obvious concavity is presented between two peak points for a fundamental operating frequency of 10 MHz. The concavity is an obstacle to uniform mass sensitivity distribution, so eliminating the concavity is the goal of this study; two methods-changing overtone order and designing electrode geometry-are proposed to do so. An analytical theory for sensitivity distribution is introduced in this paper first. Analysis results show that the fifth overtone of 10 MHz is desirable for eliminating the concavity but with a drawback of sacrificing absolute mass sensitivity. The method of designing the electrode geometry can overcome this drawback and dot-ring and double-ring electrode geometries are proposed. When electrode parameters were selected properly, the maximum difference of mass sensitivity between two peak points was reduced by about 42.21% for dot-ring electrode QCR and 77.63% for double-ring electrode QCR compared with that of ring electrode QCR.

  16. Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Liang, Zan; Zang, Qiang

    2015-03-01

    Motion-induced oscillations of crane payloads seriously degrade their effectiveness and safety. Significant progress has been achieved with reducing payload oscillations on a single-pendulum crane with a point-mass payload attached to the end of the cable. However, large payloads and the actual configuration of the hoisting mechanism may transform the crane to a double-pendulum system with a distributed-mass payload. The manipulation task can be more challenging because of the complicated dynamics. The dynamics of bridge cranes transporting distributed-mass beams are derived. A command-smoothing scheme is presented to suppress the complex payload oscillations. Simulations of a large range of motions are used to analyze the dynamic behavior of the cranes and the robustness of the method. Experimental results obtained from a small-scale double-pendulum bridge crane transporting a distributed-mass beam validate the simulated dynamic behavior and the effectiveness of the method.

  17. On the detection of a cometary mass distribution. [by perturbations on space probe orbits

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Peale, S. J.

    1976-01-01

    The problem of detecting a possible cometary distribution on the fringes of the solar system is examined. The acceleration of a space probe due to a hypothetical cometary mass distribution with the surface density rising to a maximum and subsequently falling off with increasing distance from the sun is analyzed. The total minimum detectable cometary mass for the Pioneer and Mariner spacecraft is estimated on the basis of this model to be on the order of 1000 earth masses. Precision tracking of deep space probes is less sensitive by three orders of magnitude for the detection of an unseen cometary mass distribution at the fringes of the solar system than are the secular perturbations of long-period comets.

  18. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  19. Measurement of ion energy distributions using a combined energy and mass analyzer.

    PubMed

    Walton, S G; Fernsler, R F; Leonhardt, D

    2007-08-01

    A method is described for measuring ion energy distributions using a commercially available, combined energy analyzer/mass spectrometer. The distributions were measured at an electrode located adjacent to pulsed, electron beam-generated plasmas produced in argon. The method uses energy-dependent tuning and was tested for various plasma conditions. The results indicate an improved collection efficiency of low-energy ions when compared to conventional approaches in measuring ion energy distributions.

  20. Does Mass Azithromycin Distribution Impact Child Growth and Nutrition in Niger? A Cluster-Randomized Trial

    PubMed Central

    Amza, Abdou; Yu, Sun N.; Kadri, Boubacar; Nassirou, Baido; Stoller, Nicole E.; Zhou, Zhaoxia; West, Sheila K.; Bailey, Robin L.; Gaynor, Bruce D.; Keenan, Jeremy D.; Porco, Travis C.; Lietman, Thomas M.

    2014-01-01

    Background Antibiotic use on animals demonstrates improved growth regardless of whether or not there is clinical evidence of infectious disease. Antibiotics used for trachoma control may play an unintended benefit of improving child growth. Methodology In this sub-study of a larger randomized controlled trial, we assess anthropometry of pre-school children in a community-randomized trial of mass oral azithromycin distributions for trachoma in Niger. We measured height, weight, and mid-upper arm circumference (MUAC) in 12 communities randomized to receive annual mass azithromycin treatment of everyone versus 12 communities randomized to receive biannual mass azithromycin treatments for children, 3 years after the initial mass treatment. We collected measurements in 1,034 children aged 6–60 months of age. Principal Findings We found no difference in the prevalence of wasting among children in the 12 annually treated communities that received three mass azithromycin distributions compared to the 12 biannually treated communities that received six mass azithromycin distributions (odds ratio = 0.88, 95% confidence interval = 0.53 to 1.49). Conclusions/Significance We were unable to demonstrate a statistically significant difference in stunting, underweight, and low MUAC of pre-school children in communities randomized to annual mass azithromycin treatment or biannual mass azithromycin treatment. The role of antibiotics on child growth and nutrition remains unclear, but larger studies and longitudinal trials may help determine any association. PMID:25210836

  1. Earthquake Apparent Stress Scaling

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Mayeda, K.; Ruppert, S.

    2002-12-01

    There is currently a disagreement within the geophysical community on the way earthquake energy scales with magnitude. One set of recent papers finds evidence that energy release per seismic moment (apparent stress) is constant (e.g. Choy and Boatwright, 1995; McGarr, 1999; Ide and Beroza, 2001). Another set of recent papers finds the apparent stress increases with magnitude (e.g. Kanamori et al., 1993 Abercrombie, 1995; Mayeda and Walter, 1996; Izutani and Kanamori, 2001). The resolution of this issue is complicated by the difficulty of accurately accounting for and determining the seismic energy radiated by earthquakes over a wide range of event sizes in a consistent manner. We have just started a project to reexamine this issue by analyzing aftershock sequences in the Western U.S. and Turkey using two different techniques. First we examine the observed regional S-wave spectra by fitting with a parametric model (Walter and Taylor, 2002) with and without variable stress drop scaling. Because the aftershock sequences have common stations and paths we can examine the S-wave spectra of events by size to determine what type of apparent stress scaling, if any, is most consistent with the data. Second we use regional coda envelope techniques (e.g. Mayeda and Walter, 1996; Mayeda et al, 2002) on the same events to directly measure energy and moment. The coda techniques corrects for path and site effects using an empirical Green function technique and independent calibration with surface wave derived moments. Our hope is that by carefully analyzing a very large number of events in a consistent manner using two different techniques we can start to resolve this apparent stress scaling issue. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  2. The MLP distribution: a modified lognormal power-law model for the stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Basu, Shantanu; Gil, M.; Auddy, Sayantan

    2015-05-01

    This work explores the mathematical properties of a distribution introduced by Basu & Jones (2004), and applies it to model the stellar initial mass function (IMF). The distribution arises simply from an initial lognormal distribution, requiring that each object in it subsequently undergoes exponential growth but with an exponential distribution of growth lifetimes. This leads to a modified lognormal with a power-law (MLP) distribution, which can in fact be applied to a wide range of fields where distributions are observed to have a lognormal-like body and a power-law tail. We derive important properties of the MLP distribution, like the cumulative distribution, the mean, variance, arbitrary raw moments, and a random number generator. These analytic properties of the distribution can be used to facilitate application to modelling the IMF. We demonstrate how the MLP function provides an excellent fit to the IMF compiled by Chabrier and how this fit can be used to quickly identify quantities like the mean, median, and mode, as well as number and mass fractions in different mass intervals.

  3. Attitude dynamics and control of a spacecraft using shifting mass distribution

    NASA Astrophysics Data System (ADS)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  4. Putting Neutron Stars On A New Scale: The Underlying Mass Distribution of Pulsars from Radio Observations

    NASA Astrophysics Data System (ADS)

    Kiziltan, Bulent; Kottas, A.; Thorsett, S. E.

    2010-01-01

    The interpretation of the possible range of masses a neutron star can attain has been a topic of great interest, and debate, among astronomers as well as physicists since it was theoretically predicted to be about 1.4 solar masses in the early 1930s. While the number of precise pulsar mass measurements from which we can extract this information still constitutes only the tip of the iceberg, we now have robust tools at our disposal to make rigorous predictions about the underlying comprehensive neutron star mass distribution. Here, we will present the range of masses at which we can expect neutron stars to form and thereafter continue to support before it collapses into a black hole. We will elaborate on the signatures of different evolutionary histories and physical processes on the plausible mass range and briefly discuss the tools we developed to make these assessments. Finally, we will point to the ensuing broad range of ramifications.

  5. Investigation of the mass distribution of a detailed seated male finite element model.

    PubMed

    Vavalle, Nicholas A; Thompson, A Bradley; Hayes, Ashley R; Moreno, Daniel P; Stitzel, Joel D; Gayzik, F Scott

    2014-06-01

    Accurate mass distribution in computational human body models is essential for proper kinematic and kinetic simulations. The purpose of this study was to investigate the mass distribution of a 50th percentile male (M50) full body finite element model (FEM) in the seated position. The FEM was partitioned into 10 segments, using segment planes constructed from bony landmarks per the methods described in previous research studies. Body segment masses and centers of gravity (CGs) of the FEM were compared with values found from these studies, which unlike the present work assumed homogeneous body density. Segment masses compared well to literature while CGs showed an average deviation of 6.0% to 7.0% when normalized by regional characteristic lengths. The discrete mass distribution of the FEM appears to affect the mass and CGs of some segments, particularly those with low-density soft tissues. The locations of the segment CGs are provided in local coordinate systems, thus facilitating comparison with other full body FEMs and human surrogates. The model provides insights into the effects of inhomogeneous mass on the location of body segment CGs.

  6. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  7. Distributed low-mass star formation in the IRDC G34.43+00.24

    SciTech Connect

    Foster, Jonathan B.; Arce, Héctor G.; Offner, Stella; Kassis, Marc; Sanhueza, Patricio; Jackson, James M.; Finn, Susanna C.; Sakai, Takeshi; Sakai, Nami; Yamamoto, Satoshi; Guzmán, Andrés E.; Rathborne, Jill M.

    2014-08-20

    We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine the column density structure of the cloud. In combination with an empirically verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in the K band, which comes from excited H{sub 2} in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow line-width SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.

  8. Biomechanical basis of choosing the rational mass and its distribution throughout the lower limb prosthesis segments.

    PubMed

    Farber, B S; Moreinis, I Sh

    1995-11-01

    A solution for finding a rational distribution of mass in lower limb prostheses has been considered based on the formal premise favoring the identification of the movements of a prosthetic and an intact leg. For the purpose of simplicity, and analysis has been carried out for only the swing phase, the data about the properties of moving segments being determined without integrating differential equations of motion. At the formation of equations of motion, an assumption that body segments are absolutely rigid and have constant moments of inertia and locations of the center of mass was taken into consideration. Based on independent proportions formed of combinations of the coefficients of equations of motion, a system of three equations has been formulated and solved in relation to the mass values sought: a static radius and a radius of inertia of the prosthesis complex link "shin + foot + footwear." From the six unknowns included in the equations, three values are chosen as mean values determined empirically. The solution of obtained equations results in the following conclusions: the parameters of the mass distribution in a "shin + foot + footwear" complex link depend on the amputation level and the patient's mass. These data, reported in appropriate tables, may be used in prosthetics practice. Recommendations have also been presented with regard to a prosthesic mass relative to the age of the person with amputation and a method of a balancing of prostheses aimed at the achievement of a rational distribution of masses. The analysis of obtained equations has also allowed us to make recommendations about the artificial foot mass. It has been concluded that a reasonable desire to reduce the mass of the prosthetic segments is not an end in itself, but is only the means of a rational distribution by means of balancing. It has been proved that rational prosthetic fitting results in decreased energy costs and overloads are decreased and a normalized gait.

  9. Friedmann equations and thermodynamics of apparent horizons.

    PubMed

    Gong, Yungui; Wang, Anzhong

    2007-11-23

    With the help of a masslike function which has a dimension of energy and is equal to the Misner-Sharp mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon dE=T(A)dS(A) can be derived from the Friedmann equation in various theories of gravity, including the Einstein, Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple coincidence, but rather a more profound physical connection.

  10. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    SciTech Connect

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  11. The Stellar Populations of Deeply Embedded Young Clusters: Near-Infrared Spectroscopy and Emergent Mass Distributions

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.

    1996-04-01

    The goal of this thesis is to test the following hypothesis: the initial distribution of stellar masses from a single "episode" of star formation is independent of the local physical conditions of the region. In other words, is the initial mass function (IMF) strictly universal over spatial scales d < 1 \\ pc and over time intervals Delta-tau << 3 x 10^6 yrs? We discuss the utility of embedded clusters in addressing this question. Using a combination of spectroscopic and photometric techniques, we seek to characterize emergent mass distributions of embedded clusters in order to compare them both with each other and with the field star IMF. Medium resolution (R=1000) near-infrared spectra obtainable with the current generation of NIR grating spectrographs can provide estimates of the photospheric temperatures of optically-invisible stars. Deriving these spectral types requires a three--step process; i) setting up a classification scheme based on near-infrared spectra of spectral standards; ii) understanding the effects of accretion on this classification scheme by studying optically-visible young stellar objects; and iii) applying this classification technique to the deeply embedded clusters. Combining near-infrared photometry with spectral types, accurate stellar luminosities can be derived for heavily reddened young stars thus enabling their placement in the H-R diagram. From their position in the H-R diagram, masses and ages of stars can be estimated from comparison with theoretical pre-main sequence evolutionary models. Because it is not practical to obtain complete spectroscopic samples of embedded cluster members, a technique is developed based solely on near-IR photometry for estimating stellar luminosities from flux--limited surveys. We then describe how spectroscopic surveys of deeply embedded clusters are necessary in order to adopt appropriate mass-luminosity relationships. Stellar luminosity functions constructed from complete extinction-limited samples

  12. Using Theoretical Protein Isotopic Distributions to Parse Small-Mass-Difference Post-Translational Modifications via Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rhoads, Timothy W.; Williams, Jared R.; Lopez, Nathan I.; Morré, Jeffrey T.; Bradford, C. Samuel; Beckman, Joseph S.

    2013-01-01

    Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.

  13. Sensitivity bias in the mass-radius distribution from transit timing variations and radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2016-04-01

    Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses - radial velocities (RVs) and transit timing variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable - as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This `sensitivity bias' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in the sensitivity of the two methods with orbital period and system architecture, which may compound the discrepancies between them (e.g. short-period planets detectable by RVs may be more dense due to atmospheric loss). We advocate for continued mass measurements using both approaches as a means both to measure the masses of more planets and to identify potential differences in planet structure that may result from their dynamical and environmental histories.

  14. Cluster Mass Distribution of the Hubble Frontier Fields - What have we learned?

    NASA Astrophysics Data System (ADS)

    Jean-Paul, Kneib

    2016-07-01

    The Hubble Frontier Fields have provided the deepest imaging of six of the most massive clusters in the Universe. Using strong lensing and weak lensing techniques, we have investigated with a record high precision the mass models of these clusters. First we identified the multiples images that are then confronted to an evolving model to best match the strong lensing observable constraints. We then include weak lensing and flexion to investigate the mass distribution in the outer region. By investigating the accuracy of the model we show that we can constrain the small scale mass distribution, thus investigating the relation between the cluster galaxy stellar mass and its dark matter halo. On larger scale combining with weak lensing and X-ray measurement we can probe the assembly scenario of these cluster, which confirm that massive clusters are at the crossroads of filamentary structures.

  15. Search for Z' --> e+ e- using dielectron mass and angular distribution.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-06-02

    We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios.

  16. Search for Z' ---> e+ e- using dielectron mass and angular distribution

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-02-01

    The authors search Z{prime} bosons in dielectron events produced in p{bar p} collisions at {radical}s = 1.96 TeV, using a 0.45 fb{sup -1} dataset accumulated with the CDF II detector at the Fermilab Tevatron. To identify the Z{prime} {yields} e{sup +}e{sup -} signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z{prime} mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z{prime}, as well as on the contact interaction mass scales for different helicity structure scenarios.

  17. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

    PubMed

    Chirchir, Habiba

    2015-05-01

    Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running. © 2014 Wiley Periodicals, Inc.

  18. The Balmer-Like Formula for Mass Distribution of Elementary Particle Resonances

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Barabanov, M. Yu.; Kazacha, G. S.; Korovin, P. P.; Yamaleev, R. M.

    1998-09-01

    Elementary particle resonances have been systematically analyzed using all available experimental data. We have come to the conclusion that resonance decay product momenta and masses of resonances are to be quantized. The Balmer-like formula for mass distribution of elementary particle resonances has been obtained. These observations allow us to formulate a strategy of experimental searches for new resonances and systematize the already known one.

  19. Asymmetry distributions and mass effects in dijet events at a polarized HERA

    NASA Astrophysics Data System (ADS)

    Maul, M.; Schäfer, A.; Mirkes, E.; Rädel, G.

    1998-09-01

    The asymmetry distributions for several kinematic variables are considered for finding a systematic way to maximize the signal for the extraction of the polarized gluon density. The relevance of mass effects for the corresponding dijet cross section is discussed and the different approximations for including mass effects are compared. We also compare via the programs Pepsi and Mepjet two different Monte Carlo (MC) approaches for simulating the expected signal in the dijet asymmetry at a polarized HERA.

  20. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

    NASA Astrophysics Data System (ADS)

    Bülow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2001-07-01

    In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker.

  1. Collisional evolution - an analytical study for the non steady-state mass distribution.

    NASA Astrophysics Data System (ADS)

    Vieira Martins, R.

    1999-05-01

    To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the

  2. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1978-01-01

    The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

  3. Mass flow rate and pressure distribution of gas through three-dimensional micro-channels

    SciTech Connect

    Jiang, Jianzheng; Fan, Jing

    2014-12-09

    An effective method to predict the mass flow rate and pressure distribution of gas through three dimensional micro-channels with different cross-section shapes has been proposed. For rectangular cross sections often employed in experiment, the present solutions versus measured data of Zohar et al. (2002) show that the side walls significantly affect the mass flow rates as the aspect ratio is smaller than 10, whereas the non-dimensional pressure distributions, mainly determined by the inlet-to-outlet pressure ratio, are insensitive to the aspect ratio.

  4. Controls on space-time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain)

    NASA Astrophysics Data System (ADS)

    Ezquerro, L.; Moretti, M.; Liesa, C. L.; Luzón, A.; Pueyo, E. L.; Simón, J. L.

    2016-10-01

    This work describes soft-sediment deformation structures (clastic dykes, load structures, diapirs, slumps, nodulizations or mudcracks) identified in three sections (Concud, Ramblillas and Masada Cociero) in the Iberian Range, Spain. These sections were logged from boreholes and outcrops in Upper Pliocene-Lower Pleistocene deposits of the Teruel-Concud Residual Basin, close to de Concud normal fault. Timing of the succession and hence of seismic and non-seismic SSDSs, covering a time span between 3.6 and 1.9 Ma, has been constrained from previous biostratigraphic and magnetostratigraphic information, then substantially refined from a new magnetostratigraphic study at Masada Cociero profile. Non-seismic SSDSs are relatively well-correlated between sections, while seismic ones are poorly correlated except for several clusters of structures. Between 29 and 35 seismic deformed levels have been computed for the overall stratigraphic succession. Factors controlling the lateral and vertical distribution of SSDSs are their seismic or non-seismic origin, the distance to the seismogenic source (Concud Fault), the sedimentary facies involved in deformation and the observation conditions (borehole core vs. natural outcrop). In the overall stratigraphic section, seismites show an apparent recurrence period of 56 to 108 ka. Clustering of seismic SSDSs levels within a 91-ka-long interval records a period of high paleoseismic activity with an apparent recurrence time of 4.8 to 6.1 ka, associated with increasing sedimentation rate and fault activity. Such activity pattern of the Concud Fault for the Late Pliocene-Early Pliocene, with alternating periods of faster and slower slip, is similar to that for the most recent Quaternary (last ca. 74 ka BP). Concerning the research methods, time occurrence patterns recognized for peaks of paleoseismic activity from SSDSs in boreholes are similar to those inferred from primary evidence in trenches. Consequently, apparent recurrence periods

  5. The apparent Universe

    NASA Astrophysics Data System (ADS)

    Binétruy, P.; Helou, A.

    2015-10-01

    We exploit the parallel between dynamical black holes and cosmological spacetimes to describe the evolution of Friedmann-Lemaître-Robertson-Walker universes from the point of view of an observer in terms of the dynamics of the apparent horizon. Using the Hayward-Kodama formalism of dynamical black holes, we clarify the role of the Clausius relation to derive the Friedmann equations for a Universe, in the spirit of Jacobson’s work on the thermodynamics of spacetime. We also show how dynamics at the horizon naturally leads to the quantum-mechanical process of Hawking radiation. We comment on the connection of this work with recent ideas to consider our observable Universe as a Bose-Einstein condensate and on the corresponding role of vacuum energy.

  6. Time-Resolved Mass Sensing of a Molecular Adsorbate Nonuniformly Distributed Along a Nanomechnical String

    NASA Astrophysics Data System (ADS)

    Biswas, T. S.; Xu, Jin; Miriyala, N.; Doolin, C.; Thundat, T.; Davis, J. P.; Beach, K. S. D.

    2015-06-01

    We show that the particular distribution of mass deposited on the surface of a nanomechanical resonator can be estimated by tracking the evolution of the device's resonance frequencies during the process of desorption. The technique, which relies on analytical models we have developed for the multimodal response of the system, enables mass sensing at much higher levels of accuracy than is typically achieved with a single frequency-shift measurement and no rigorous knowledge of the mass profile. We report on a series of demonstration experiments, in which the explosive molecule 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) is vapor deposited along the length of a silicon nitride nanostring to create a dense, random covering of RDX crystallites on the surface. In some cases, the deposition is biased to produce distributions with a slight excess or deficit of mass at the string midpoint. The added mass is then allowed to sublimate away under vacuum conditions, with the device returning to its original state over about 4 h (and the resonance frequencies, measured via optical interferometry, relaxing back to their pre-mass-deposition values). Our claim is that the detailed time trace of observed frequency shifts is rich in information—not only about the quantity of RDX initially deposited but also about its spatial arrangement along the nanostring. The data also reveal that sublimation in this case follows a nontrivial rate law, consistent with mass loss occurring at the exposed surface area of the RDX crystallites.

  7. Stellar Populations of Deeply Embedded Young Clusters: Near--Infrared Spectroscopy and Emergent Mass Distributions

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.

    1996-02-01

    The goal of this thesis is to test the following hypothesis: the initial distribution of stellar masses from a single ``episode'' of star formation is independent of the local physical conditions of the region. In other words, is the initial mass function (IMF) strictly universal over spatial scales d < 1 pc and over time intervals Δ τ << 3 × 106yrs? We discuss the utility of embedded clusters in addressing this question. Using a combination of spectroscopic and photometric techniques, we seek to characterize emergent mass distributions of embedded clusters in order to compare them both with each other and with the field star IMF. Medium resolution (R = 1000) near--infrared spectra obtainable with the current generation of NIR grating spectrographs can provide estimates of the photospheric temperatures of optically--invisible stars. Deriving these spectral types requires a three--step process; i) setting up a classification scheme based on near--infrared spectra of spectral standards; ii) understanding the effects of accretion on this classification scheme by studying optically--visible young stellar objects; and iii) applying this classification technique to the deeply embedded clusters. Combining near--infrared photometry with spectral types, accurate stellar luminosities can be derived for heavily reddened young stars thus enabling their placement in the H--R diagram. From their position in the H--R diagram, masses and ages of stars can be estimated from comparison with theoretical pre--main sequence evolutionary models. Because it is not practical to obtain complete spectroscopic samples of embedded cluster members, a technique is developed based solely on near--IR photometry for estimating stellar luminosities from flux--limited surveys. We then describe how spectroscopic surveys of deeply embedded clusters are necessary in order to adopt appropriate mass--luminosity relationships. Stellar luminosity functions constructed from complete extinction

  8. Increasing Protein Distribution Has No Effect on Changes in Lean Mass During a Rugby Preseason.

    PubMed

    MacKenzie-Shalders, Kristen L; King, Neil A; Byrne, Nuala M; Slater, Gary J

    2016-02-01

    Increasing the frequency of protein consumption is recommended to stimulate muscle hypertrophy with resistance exercise. This study manipulated dietary protein distribution to assess the effect on gains in lean mass during a rugby preseason. Twenty-four developing elite rugby athletes (age 20.1 ± 1.4 years, mass 101.6 ± 12.0 kg; M ± SD) were instructed to consume high biological value (HBV) protein at their main meals and immediately after resistance exercise while limiting protein intake between meals. To manipulate protein intake frequency, the athletes consumed 3 HBV liquid protein supplements (22 g protein) either with main meals (bolus condition) or between meals (frequent condition) for 6 weeks in a 2 × 2 crossover design. Dietary intake and change in lean mass values were compared between conditions by analysis of covariance and correlational analysis. The dietary manipulation successfully altered the protein distribution score (average number of eating occasions containing > 20 g of protein) to 4.0 ± 0.8 and 5.9 ± 0.7 (p < .01) for the bolus and frequent conditions, respectively. There was no difference in gains in lean mass between the bolus (1.4 ± 1.5 kg) and frequent (1.5 ± 1.4 kg) conditions (p = .91). There was no clear effect of increasing protein distribution from approximately 4-6 eating occasions on changes in lean mass during a rugby preseason. However, other dietary factors may have augmented adaptation.

  9. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology

    NASA Astrophysics Data System (ADS)

    Birmili, Wolfram; Wiedensohler, Alfred; Heintzenberg, Jost; Lehmann, Katrin

    2001-12-01

    Atmospheric particle number size distributions determined over 1.5 years at a central European site were statistically analyzed in terms of their relation to time of day, season, meteorology, and synoptic-scale air masses. All size distributions were decomposed into lognormal particle modes corresponding to the accumulation, Aitken, aged nucleation, and nucleation modes. The concentration of nucleation mode particles (<30 nm) behaved in a strongly diurnal fashion as a result of both anthropogenic source influence and secondary new particle formation events. The concentrations of Aitken and accumulation mode particles (>30 nm) lacked such diurnal behavior, and proved to be indicative of different synoptic-scale air mass types. Over 70% of the time, air masses of Atlantic origin and maritime character prevailed, showing obvious signs of anthropogenic influence most of the time (accumulation mode: 500 cm-3; Aitken mode: 2300 cm-3). During a limited period of time (10%), however, continentally aged air with significantly enhanced concentrations of aerosol was observed (accumulation mode: 1200 cm-3; Aitken mode: 3300 cm-3). These air masses were advected from source regions in Russia, and eastern, southeastern, and central Europe, mainly under anticyclonic and high-pressure influence. The analysis provides a refined picture of the behavior of the particle number size distribution and provides parameterizations that are representative for a variety of air masses in Europe and thus suitable for future climate modeling applications.

  10. Mass distribution of meteoroids obtained by a meteor forward-scatter (MFS) radar method.

    NASA Astrophysics Data System (ADS)

    Cevolani, G.; Gabucci, M. F.

    1996-04-01

    The cumulative distributions of the number vs. duration of echoes belonging to main meteor showers (Lyrids, η-Aquarids, δ-Aquarids, Perseids, Orionids, Leonids, Geminids) and sporadic background were investigated using a forward-scatter (FS) continuous-wave meteor radar link operational during 1992 - 95 over the long baseline Bologna-Lecce in Italy. The trend of the mass distribution of particles in the quoted meteoroid streams was derived, and the values of the mass index s were compared for each meteor population with the steady-state condition. It was found that the mass index s generally increases towards long-duration echoes, but many of the observed meteor streams appear to have unstable populations. The values of the mass index of the sporadic complex are generally higher than the corresponding ones of meteor showers in the range of echo durations 0.1 ≤ T ≤ 10 s. This is a possible consequence of longer-lasting FS signals, indicating a shift of the mass distribution function vs. higher echo durations. Moreover, non-gravitational forces in connection with solar radiation pressure, Poynting-Robertson effect, solar-wind particle streaming, mutual collisions, etc., appear to be responsible for the observed widespread radiants and for unstable populations in the meteoroid streams.

  11. Two-Year-Olds Learn Novel Nouns, Verbs, and Conventional Actions from Massed or Distributed Exposures.

    ERIC Educational Resources Information Center

    Childers, Jane B.; Tomasello, Michael

    2002-01-01

    Examined 2-year-olds' comprehension and production of novel nouns, verbs, or actions at 3 intervals after training conducted in massed or distributed exposures. Found that for comprehension, children learned all item types in all training conditions at all retention intervals. Production was better for nonverbal actions than for either word type…

  12. Imaging distributed and massed repetitions of natural scenes: Spontaneous retrieval and maintenance

    PubMed Central

    Bradley, Margaret M.; Costa, Vincent D.; Ferrari, Vera; Codispoti, Maurizio; Fitzsimmons, Jeffrey R.; Lang, Peter J.

    2015-01-01

    Repetitions that are distributed (spaced) across time prompt enhancement of a memory-related event-related potential, compared to when repetitions are massed (contiguous). Here, we employed fMRI to investigate neural enhancement and suppression effects during free viewing of natural scenes that were either novel or repeated four times with massed or distributed repetitions. Distributed repetition was uniquely associated with a repetition enhancement effect in a bilateral posterior parietal cluster that included the precuneus and posterior cingulate and which has previously been implicated in episodic memory retrieval. Unique to massed repetition, on the other hand, was enhancement in a right dorsolateral prefrontal cluster that has been implicated in short-term maintenance. Repetition suppression effects for both types of spacing were widespread in regions activated during novel picture processing. Taken together, the data are consistent with a hypothesis that distributed repetition prompts spontaneous retrieval of prior occurrences, whereas massed repetitions prompts short-term maintenance of the episodic representation, due to contiguous presentation. These processing differences may mediate the classic spacing effect in learning and memory. PMID:25504854

  13. Body mass index distribution affects discrepancies in weight classifications in children

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to investigate the effect of body mass index (BMI) distribution, ethnicity, and age at menarche on the consistency in the prevalence of underweight and overweight as defined by the Centers for Disease Control and Prevention (CDC) and the International Obesity Task Fo...

  14. Two-Year-Olds Learn Novel Nouns, Verbs, and Conventional Actions from Massed or Distributed Exposures.

    ERIC Educational Resources Information Center

    Childers, Jane B.; Tomasello, Michael

    2002-01-01

    Examined 2-year-olds' comprehension and production of novel nouns, verbs, or actions at 3 intervals after training conducted in massed or distributed exposures. Found that for comprehension, children learned all item types in all training conditions at all retention intervals. Production was better for nonverbal actions than for either word type…

  15. The dijet mass spectrum and angular distributions with the D0 detector

    SciTech Connect

    Abachi, S.

    1996-07-01

    We present preliminary results from an analysis of dijet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 91 pb{sup -1}. Measurements of dijet mass spectra and dijet angular distributions in {anti p}p collisions at {radical}s- = 1.8 TeV are compared with next-to-leading order QCD theory.

  16. On the Fine Isotopic Distribution and Limits to Resolution in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dittwald, Piotr; Valkenborg, Dirk; Claesen, Jürgen; Rockwood, Alan L.; Gambin, Anna

    2015-08-01

    Mass spectrometry enables the study of increasingly larger biomolecules with increasingly higher resolution, which is able to distinguish between fine isotopic variants having the same additional nucleon count, but slightly different masses. Therefore, the analysis of the fine isotopic distribution becomes an interesting research topic with important practical applications. In this paper, we propose the comprehensive methodology for studying the basic characteristics of the fine isotopic distribution. Our approach uses a broad spectrum of methods ranging from generating functions—that allow us to estimate the variance and the information theory entropy of the distribution—to the theory of thermal energy fluctuations. Having characterized the variance, spread, shape, and size of the fine isotopic distribution, we are able to indicate limitations to high resolution mass spectrometry. Moreover, the analysis of "thermorelativistic" effects (i.e., mass uncertainty attributable to relativistic effects coupled with the statistical mechanical uncertainty of the energy of an isolated ion), in turn, gives us an estimate of impassable limits of isotopic resolution (understood as the ability to distinguish fine structure peaks), which can be moved further only by cooling the ions. The presented approach highlights the potential of theoretical analysis of the fine isotopic distribution, which allows modeling the data more accurately, aiming to support the successful experimental measurements.

  17. Low-frequency vibration energy harvester using a spherical permanent magnet with controlled mass distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yunhee; Ju, Suna; Chae, Song Hee; Jun, Sangbeom; Ji, Chang-Hyeon

    2015-06-01

    This paper presents a vibration energy harvester using a springless spherical permanent magnet with a non-uniform mass distribution as a proof mass. The magnet has been designed to have the center of mass below the geometrical center, which generates a roly-poly-like motion in response to external vibrations and maintains the upright position. Utilizing this roly-poly-like magnet, proof-of-concept electromagnetic energy harvesters have been fabricated, tested and analyzed. An analytical model which explains the motion of the magnet assembly and resulting output voltage has been developed by finite element analysis of the magnetic field distribution and motion analysis of the magnet assembly. With the fabricated device, a maximum open-circuit voltage of 48.85 mVrms and an output power of 9.03 μW have been obtained in response to a 20 Hz sinusoidal vibration at 3 g acceleration.

  18. Renormalization group computation of the mass distribution in an expanding universe. I - Method

    NASA Astrophysics Data System (ADS)

    Peebles, P. J. E.

    1985-10-01

    A method is presented for computing the mass distribution that develops in a model universe with no characteristic lengths provided by the matter or by the background expanding cosmological model. This problem is of interest as a possible approximation to our universe and as a test of our ability to compute the evolution of the mass distribution in an expanding universe. A preliminary application of the method yields results intermediate between what has been obtained from conventional N-body models and what followed from the Davis-Peebles (1983) integration of the BBGKY hierarchy: the mass autocorrelation function xi(r) approaches the expected power-law behavior at small lag r, but xi(r) breaks below the power law at a value of xi larger than that suggested by the galaxy clustering data.

  19. Chain length distributions in linear polyaddition proceeding in nano-scale small volumes without mass transfer

    NASA Astrophysics Data System (ADS)

    Szymanski, R.; Sosnowski, S.

    2017-01-01

    Computer simulations (Monte Carlo and numerical integration of differential equations) and theoretical analysis show that the statistical nature of polyaddition, both irreversible and reversible one, affects the way the macromolecules of different lengths are distributed among the small volume nano-reactors (droplets in this study) at any reaction time. The corresponding droplet distributions in respect to the number of reacting chains as well as the chain length distributions depend, for the given reaction time, on rate constants of polyaddition kp and depolymerization kd (reversible process), and the initial conditions: monomer concentration and the number of its molecules in a droplet. As a model reaction, a simple polyaddition process (M)1+(M)1 ⟶ ⟵ (M)2 , (M)i+(M)j ⟶ ⟵ (M)i+j was chosen, enabling to observe both kinetic and thermodynamic (apparent equilibrium constant) effects of a small number of reactant molecules in a droplet. The average rate constant of polymerization is lower than in a macroscopic system, depending on the average number of reactant molecules in a droplet. The apparent equilibrium constants of polymerization Ki j=[(M)i +j] ¯ /([(M)i] ¯ [(M)j] ¯ ) appear to depend on oligomer/polymer sizes as well as on the initial number of monomer molecules in a droplet. The corresponding equations, enabling prediction of the equilibrium conditions, were derived. All the analyzed effects are observed not only for ideally dispersed systems, i.e. with all droplets containing initially the same number of monomer (M)1 molecules, but also when initially the numbers of monomer molecules conform the Poisson distribution, expected for dispersions of reaction mixtures.

  20. Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change

    NASA Astrophysics Data System (ADS)

    Gerbaux, M.; Genthon, C.; Etchevers, P.; Vincent, C.; Dedieu, J. P.

    A new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mass-balance reconstructions for the period 1981 2004 are produced using meteorological reconstruction from the SAFRAN meteorological model for Glacier de Saint-Sorlin and Glacier d'Argentière, French Alps. Both glaciers lost mass at an accelerated rate in the last 23 years. The spatial distribution of precipitation within the model grid is adjusted using field mass-balance measurements. This is the only correction made to the SAFRAN meteorological input to the glacier model, which also includes surface atmospheric temperature, moisture, wind and all components of downward radiation. Independent data from satellite imagery and geodetic measurements are used for model validation. With this model, glacier sensitivity to climate change can be separately evaluated with respect to a full range of meteorological parameters, whereas simpler models, such as degree-day models, only account for temperature and precipitation. We provide results for both mass balance and equilibrium-line altitude (ELA) using a generic Alpine glacier. The sensitivity of the ELA to air temperature alone is found to be 125 m °C-1, or 160 m °C-1 if concurrent (Stefan Boltzmann) longwave radiation change is taken into account.

  1. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    SciTech Connect

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  2. The spatial distribution of neutral hydrogen as traced by low H I mass galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Han-Seek; Wyithe, J. Stuart. B.; Baugh, C. M.; Lagos, C. d. P.; Power, C.; Park, Jaehong

    2017-02-01

    The formation and evolution of galaxies with low neutral atomic hydrogen (H I) masses, M_{H I} < 108 h-2 M⊙, are affected by host dark matter halo mass and photoionization feedback from the UV background after the end of reionization. We study how the physical processes governing the formation of galaxies with low H I mass are imprinted on the distribution of neutral hydrogen in the Universe using the hierarchical galaxy formation model, GALFORM. We calculate the effect on the correlation function of changing the H I mass detection threshold at redshifts 0 ≤ z ≤ 0.5. We parametrize the clustering as ξ(r) = (r/r0)-γ and we find that including galaxies with M_{H I} < 108 h-2 M⊙ increases the clustering amplitude r0 and slope γ compared to samples of higher H I masses. This is due to these galaxies with low H I masses typically being hosted by haloes with masses greater than 1012 h-1 M⊙, and is in contrast to optically selected surveys for which the inclusion of faint, blue galaxies lowers the clustering amplitude. We show the H I mass function for different host dark matter halo masses and galaxy types (central or satellite) to interpret the values of r0 and γ of the clustering of H I-selected galaxies. We also predict the contribution of low H I mass galaxies to the 21 cm intensity mapping signal. We calculate that a dark matter halo mass resolution better than ˜1010 h-1 M⊙ at redshifts higher than 0.5 is required in order to predict converged 21 cm brightness temperature fluctuations.

  3. A Renaissance study of Am stars. I. The mass ratio distribution

    NASA Astrophysics Data System (ADS)

    Boffin, H. M. J.

    2010-12-01

    Aims: Triggered by the study of Carquillat & Prieur (2007, MNRAS, 380, 1064) of Am binaries, I reanalyse their sample of 60 orbits to derive the mass ratio distribution (MRD), assuming as they did a priori functional forms, i.e. a power law or a Gaussian. The sample is then extended using orbits published by several groups and a full analysis of the MRD is made, without any assumption on the functional form. Methods: I derive the MRD using a Richardson-Lucy inversion method, assuming a fixed mass of the Am primary and randomly distributed orbital inclinations. Using the large sub-sample of double-lined spectroscopic binaries, I show that this methodology is indeed perfectly adequate. Results: I first derive new parameters of the functional form for the Carquillat & Prieur sample. Using the inversion method, applied to my extended sample of 162 systems, I find that the final MRD can be approximated by a uniform distribution.

  4. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Mamon, Gary A.

    2003-08-01

    We study velocity moments of elliptical galaxies in the Coma cluster using Jeans equations. The dark matter distribution in the cluster is modelled by a generalized formula based upon the results of cosmological N-body simulations. Its inner slope (cuspy or flat), concentration and mass within the virial radius are kept as free parameters, as well as the velocity anisotropy, assumed independent of position. We show that the study of line-of-sight velocity dispersion alone does not allow us to constrain the parameters. By a joint analysis of the observed profiles of velocity dispersion and kurtosis, we are able to break the degeneracy between the mass distribution and velocity anisotropy. We determine the dark matter distribution at radial distances larger than 3 per cent of the virial radius and we find that the galaxy orbits are close to isotropic. Due to limited resolution, different inner slopes are found to be consistent with the data and we observe a strong degeneracy between the inner slope α and concentration c; the best-fitting profiles have the two parameters related with c= 19-9.6α. Our best-fitting Navarro-Frenk-White profile has concentration c= 9, which is 50 per cent higher than standard values found in cosmological simulations for objects of similar mass. The total mass within the virial radius of 2.9h-170 Mpc is 1.4 × 1015h-170 Msolar (with 30 per cent accuracy), 85 per cent of which is dark. At this distance from the cluster centre, the mass-to-light ratio in the blue band is 351h70 solar units. The total mass within the virial radius leads to estimates of the density parameter of the Universe, assuming that clusters trace the mass-to-light ratio and baryonic fraction of the Universe, with Ω0= 0.29 +/- 0.1.

  5. Low Frequency Vibration Energy Harvester Using Spherical Permanent Magnet with Non-uniform Mass Distribution

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ju, S.; Chae, S. H.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    We present a non-resonant vibration energy harvesting device using springless spherical permanent magnet with non-uniform mass distribution as a proof mass. The magnet has its center-of-mass below the geometrical center, which generates a roly-poly-like motion in response to external vibrations. Two different types of magnet assemblies with different center-of-mass position have been fabricated and tested. Using the roly-poly-like magnets, proof-of-concept electromagnetic energy harvesters have been fabricated and tested. Moreover, effect of ferrofluid as a lubricant has been tested with the fabricated energy harvester. Maximum open-circuit voltage of 154.4mV and output power of 4.53μW have been obtained at 3g vibration at 12Hz with the fabricated device.

  6. The Extended H I Rotation Curve and Mass Distribution of M31

    NASA Astrophysics Data System (ADS)

    Carignan, Claude; Chemin, Laurent; Huchtmeier, Walter K.; Lockman, Felix J.

    2006-04-01

    New H I observations of Messier 31 (M31) obtained with the Effelsberg and Green Bank 100 m telescopes make it possible to measure the rotation curve of that galaxy out to ~35 kpc. Between 20 and 35 kpc, the rotation curve is nearly flat at a velocity of ~226 km s-1. A model of the mass distribution shows that at the last observed velocity point, the minimum dark-to-luminous mass ratio is ~0.5 for a total mass of 3.4×1011 Msolar at R<35 kpc. This can be compared to the estimated Milky Way mass of 4.9×1011 Msolar for R<50 kpc.

  7. Free vibrations of a cantilevered SWCNT with distributed mass in the presence of nonlocal effect.

    PubMed

    De Rosa, M A; Lippiello, M; Martin, H D

    2015-01-01

    The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT) in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  8. Semi-Empirical Determination of the Mass Distribution of Horizontal Branch Stars in M3

    NASA Astrophysics Data System (ADS)

    Valcarce, A.; Catelan, M.

    2006-06-01

    We determine, by means of a semi-empirical study, the masses of horizontal branch stars in the glo-bular cluster M3 (NGC 5272). We used the most recent and reliable observational datasets (broadband BVI photometry) available for the cluster, both for variable and nonvariable stars, to infer the most likely masses of individual horizontal branch stars by comparison against theoretical evolutionary tracks, suitably transformed to the observational planes. We found a mass distribution that is adequately described by a Gaussian, with = 0.64M_⊙ and σ = 0.020M⊙, thus su-pporting the Gaussian shape previously obtained by Rood & Crocker (1989, in The Use of Pulsating Stars in Fundamental Problems of Astronomy, 218) without taking evolutionary effects into account. A recent suggestion of strong mass bimodality in M3 (Castellani et al. 2005, A&A, 437, 1017) is not supported by our analysis.

  9. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

    SciTech Connect

    Ramanathan Sampath

    2006-06-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period January 01, 2006 to June 30, 2006 which covers the fourth six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse completed obtaining additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in a previous reporting period. Simultaneously, REM, our subcontractor, has completed obtaining raw data for surface area, volume, and drag coefficient to mass ratio (Cd/m) information for 9 more biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated before in this project. Results of the mean mass data obtained to date are reported here, and analysis of the raw data collected by REM is in progress.

  10. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

    SciTech Connect

    Ramanathan Sampath

    2006-01-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2005 to December 31, 2005 which covers the third six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, Morehouse continued to obtain additional mean mass measurements for biomass particles employing the gravimetric technique measurement system that was set up in the last reporting period. Simultaneously, REM, our subcontractor, has obtained raw data for surface area, volume, and drag coefficient to mass ratio (C{sub d}/m) information for several biomass particles employing the electrodynamic balance (EDB) measurement system that was calibrated in the last reporting period. Preliminary results of the mean mass and the shape data obtained are reported here, and more data collection is in progress.

  11. The Distribution of Stellar Mass-To Ratio in the Local Universe

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    We have used the final data release of the Sloan Digital Sky Survey (SDSS) to estimate the projected autocorrelation function, wp(rp), for the stellar mass of galaxies, as well as their stellar light in the SDSS five photometric bands. All these quantities are robustly and precisely determined over scales 10h-1 kpc < rp < 30h-1 Mpc. Ratios of wp(rp) between two given wavebands are proportional to the mean color of correlated stars at rp from a randomly chosen star, while the ratio of stellar mass to luminosity autocorrelations measures an analogous mean stellar mass-to-light ratio (M*/L). These measurements provide a precise quantitative characterization of the well-known dependence of stellar populations on environment, which, when combined with accurate luminosity and stellar mass functions, is expected to provide a compact way to constrain Halo Occupation Distribution models that try to represent all the correlations in detail.

  12. Estimation of particle number size distributions from mass based model simulations and comparison to observations

    NASA Astrophysics Data System (ADS)

    Engler, Christa; Heinold, Bernd; Tegen, Ina

    2014-05-01

    The atmospheric Chemistry Transport Model system COSMO-MUSCAT was used to determine the particle mass concentrations of dust and anthropogenically emitted aerosol particles over Europe. The model system consists of the online coupled code of the operational forecast model COSMO (Schättler et al., 2009) and the chemistry-transport model MUSCAT (Wolke et al., 2012). For a four-months-period in 2008 (May to August), the dust and anthropogenic aerosol mass concentrations for six different species (sulfate, nitrate, ammonium, organic and elemental carbon and sea salt) were simulated. For the dust, five different size bins were used and a representative particle size and density were assumed for each size bin. Afterwards, the number concentration was calculated. For the anthropogenic aerosol, lognormal modes were assumed with a representative mode diameter, sigma and density for each component. These parameters were then used to convert the simulated mass concentrations to number concentrations and number size distributions for each component. Those individual size distributions can then be summed up to a total particle number size distribution. A first comparison with measurement data from the Cape Verde Islands showed a good agreement between observed and simulated dust particle size distributions. Both, the shape of the number size distributions and the order of magnitude of the particle number concentrations compared well. Only for the smallest size bin, observed numbers were occasionally higher, which can be explained by anthropogenic or biomass burning aerosol, which is included in the measurements of the total particle size distributions but was not included in the model runs. Comparisons of measured and simulated size distributions of the anthropogenic aerosol will be available soon. In case the data are available, we will also present an estimation of the particle number concentrations with the aerosol microphysical aerosol module ext-M7 for the duration of a

  13. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT

    SciTech Connect

    Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao

    2011-04-10

    In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.

  14. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    PubMed

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-06

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI.

  15. Apparent lisinopril overdose requiring hemodialysis.

    PubMed

    Belay, Tilahun W; Nusair, Ahmad R

    2013-07-15

    A case of apparent overdose of angiotensin-converting-enzyme inhibitors requiring hemodialysis is reported. A 51-year-old white man (weight, 85 kg; height, 178 cm; body mass index, 28) with a history of hypertension, low back pain, and anxiety apparently took 27 lisinopril 10-mg tablets (3.18 mg/kg body weight) over a period of 3 or fewer days. The friend who brought him to the emergency department reported that the patient was hard to rouse and was speaking incoherently on the day of admission. Over the previous few days, the patient reportedly had visual hallucinations, incoherence, and inarticulate speech. Laboratory tests, electrocardiography, and computed tomography were performed. The patient was judged to have high-anion-gap metabolic acidosis, acute kidney injury, severe hyperkalemia, and rhabdomyolysis. He was given three doses of albuterol via a nebulizer, three doses of calcium gluconate 1 g i.v., two doses of sodium bicarbonate 100 meq i.v., two doses of sodium polystyrene sulfonate 30 g orally, three doses of insulin 10 units i.v., and three doses of dextrose 25 g (as 50% dextrose injection) i.v. He then underwent emergent hemodialysis and was admitted to the intensive care unit. The patient's confusion abated, kidney function improved, and acid-base and electrolyte imbalances resolved. The patient was discharged after 15 days. A man who had evidently taken an overdose of lisinopril had multiorgan dysfunction in the absence of hypotension. The abnormalities resolved after he was treated for acidosis and hyperkalemia and received hemodialysis to remove the lisinopril.

  16. Teacher candidates' mastery of phoneme-grapheme correspondence: massed versus distributed practice in teacher education.

    PubMed

    Sayeski, Kristin L; Earle, Gentry A; Eslinger, R Paige; Whitenton, Jessy N

    2017-04-01

    Matching phonemes (speech sounds) to graphemes (letters and letter combinations) is an important aspect of decoding (translating print to speech) and encoding (translating speech to print). Yet, many teacher candidates do not receive explicit training in phoneme-grapheme correspondence. Difficulty with accurate phoneme production and/or lack of understanding of sound-symbol correspondence can make it challenging for teachers to (a) identify student errors on common assessments and (b) serve as a model for students when teaching beginning reading or providing remedial reading instruction. For students with dyslexia, lack of teacher proficiency in this area is particularly problematic. This study examined differences between two learning conditions (massed and distributed practice) on teacher candidates' development of phoneme-grapheme correspondence knowledge and skills. An experimental, pretest-posttest-delayed test design was employed with teacher candidates (n = 52) to compare a massed practice condition (one, 60-min session) to a distributed practice condition (four, 15-min sessions distributed over 4 weeks) for learning phonemes associated with letters and letter combinations. Participants in the distributed practice condition significantly outperformed participants in the massed practice condition on their ability to correctly produce phonemes associated with different letters and letter combinations. Implications for teacher preparation are discussed.

  17. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    NASA Astrophysics Data System (ADS)

    Gómez, L.; Wyrowski, F.; Schuller, F.; Menten, K. M.; Ballesteros-Paredes, J.

    2014-01-01

    Aims: We present an analysis of the dust continuum emission at 870 μm in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). Methods: We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of σrms = 28-44 mJy beam-1. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N2H+ (3-2) line toward selected positions to obtain kinematic information. Results: The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 M⊙ (Gaussclumps) and 7-4254 M⊙ (Clumpfind), and the ranges in effective radius are ~0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM ∝ Mα, with an index (α) of -1.60 ± 0.06, consistent with the CO mass distribution and other high-mass star-forming regions. Based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A148

  18. System effectiveness of a targeted free mass distribution of long lasting insecticidal nets in Zanzibar, Tanzania.

    PubMed

    Beer, Netta; Ali, Abdullah S; de Savigny, Don; Al-Mafazy, Abdul-Wahiyd H; Ramsan, Mahdi; Abass, Ali K; Omari, Rahila S; Björkman, Anders; Källander, Karin

    2010-06-18

    Insecticide-treated nets (ITN) and long-lasting insecticidal treated nets (LLIN) are important means of malaria prevention. Although there is consensus regarding their importance, there is uncertainty as to which delivery strategies are optimal for dispensing these life saving interventions. A targeted mass distribution of free LLINs to children under five and pregnant women was implemented in Zanzibar between August 2005 and January 2006. The outcomes of this distribution among children under five were evaluated, four to nine months after implementation. Two cross-sectional surveys were conducted in May 2006 in two districts of Zanzibar: Micheweni (MI) on Pemba Island and North A (NA) on Unguja Island. Household interviews were conducted with 509 caretakers of under-five children, who were surveyed for socio-economic status, the net distribution process, perceptions and use of bed nets. Each step in the distribution process was assessed in all children one to five years of age for unconditional and conditional proportion of success. System effectiveness (the accumulated proportion of success) and equity effectiveness were calculated, and predictors for LLIN use were identified. The overall proportion of children under five sleeping under any type of treated net was 83.7% (318/380) in MI and 91.8% (357/389) in NA. The LLIN usage was 56.8% (216/380) in MI and 86.9% (338/389) in NA. Overall system effectiveness was 49% in MI and 87% in NA, and equity was found in the distribution scale-up in NA. In both districts, the predicting factor of a child sleeping under an LLIN was caretakers thinking that LLINs are better than conventional nets (OR = 2.8, p = 0.005 in MI and 2.5, p = 0.041 in NA), in addition to receiving an LLIN (OR = 4.9, p < 0.001 in MI and in OR = 30.1, p = 0.001 in NA). Targeted free mass distribution of LLINs can result in high and equitable bed net coverage among children under five. However, in order to sustain high effective coverage, there is need

  19. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    PubMed Central

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  20. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    PubMed

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  1. The effect of caster wheel diameter and mass distribution on drag forces in manual wheelchairs.

    PubMed

    Zepeda, Rene; Chan, Franco; Sawatzky, Bonita

    2016-01-01

    This study proposes a way to reduce energy losses in the form of rolling resistance friction during manual wheelchair propulsion by increasing the size of the front caster wheels and adjusting the weight distribution. Drag tests were conducted using a treadmill and a force transducer. Three different casters diameter (4 in., 5 in., and 6 in.) and six different mass distribution combinations (based on percentage of total weight on the caster wheels) were studied. A two-way analysis of variance test was performed to compare caster size and weight distribution contribution with drag force of an ultralight wheelchair. The 4 in. caster contributed significantly more drag, but only when weight was 40% or greater over the casters. Weight distribution contributed more to drag regardless of the casters used.

  2. Habitat productivity influences root mass vertical distribution in grazed Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Rueda, Marta; Rebollo, Salvador; Rodríguez, Miguel Á.

    2010-07-01

    Herbivores are expected to influence grassland ecosystems by modifying root biomass and root spatial distribution of plant communities. Studies in perennial dominated grasslands suggest that grazing intensity and primary productivity may be strong determinants of the vertical distribution of subterranean biomass. However, no studies have addressed this question in annual dominated pastures. In this study we assess the effect of grazing and habitat productivity on the vertical distribution of root mass in an annual dominated Mediterranean pasture grazed by free-ranging sheep and wild rabbits. We evaluate the effects of grazing on total root mass and vertical root distribution (0-4, 4-8 and 8-12 cm depths) in two neighboring topographic sites (uplands and lowlands) with different productivity using a replicated fence experiment which excludes sheep and sheep plus rabbits. We found evidences that grazing affected root biomass and vertical distribution at lowlands (high productivity habitats), where places grazed by sheep plus rabbits exhibit more root mass and a higher concentration of it towards the soil surface than only rabbits and ungrazed places. In contrast, grazing did not affect root biomass and vertical distribution at uplands (low productivity habitats). We suggest that higher nitrogen and organic matter found in lowlands permit a plant adjustment for nitrogen acquisition by increasing biomass allocation to root production which would allow plant regrowth and the quick completion of the annual life cycle. Contrary, soil resources scarcity at uplands do not permit plants modify their root growth patterns in response to grazing. Our study emphasizes the importance of primary productivity in predicting grazing effect on belowground processes in Mediterranean environments dominated by annuals.

  3. Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses

    NASA Astrophysics Data System (ADS)

    Vinnikov, V. V.; Gritsevich, M. I.; Kuznetsova, D. V.; Turchak, L. I.

    2016-06-01

    An approach to the estimation of the initial shape of a meteoroid based on the statistical distributions of masses of its recovered fragments is presented. The fragment distribution function is used to determine the corresponding scaling index of the power law with exponential cutoff. The scaling index is related empirically to the shape parameter of a fragmenting body by a quadratic equation, and the shape parameter is expressed through the proportions of the initial object. This technique is used to study a representative set of fragments of the Bassikounou meteorite and compare the obtained data with the results of statistical analysis of other meteorites.

  4. The mass distribution of the strong lensing cluster SDSS J1531+3414

    SciTech Connect

    Sharon, Keren; Johnson, Traci L.; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Bayliss, Matthew B.; Florian, Michael K.; Dahle, Håkon

    2014-11-01

    We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.

  5. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    DOE PAGES

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both tomore » the dissipation in collective motion and to adiabatic fission characteristics.« less

  6. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    NASA Astrophysics Data System (ADS)

    Singh, Pardeep; Kaur, Harjeet

    2016-11-01

    The fission-fragment mass distribution is analysed for the 208Pb(18O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schrödinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process.

  7. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  8. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  9. On the Distribution of Orbital Eccentricities for Very Low-mass Binaries

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.

    2011-06-01

    We have compiled a sample of 16 orbits for very low-mass stellar (<0.1 M sun) and brown dwarf binaries, including updated orbits for HD 130948BC and LP 415-20AB. This sample enables the first comprehensive study of the eccentricity distribution for such objects. We find that very low-mass binaries span a broad range of eccentricities from near-circular to highly eccentric (e ≈ 0.8), with a median eccentricity of 0.34. We have examined potential observational biases in this sample, and for visual binaries we show through Monte Carlo simulations that if we choose appropriate selection criteria then all eccentricities are equally represented (lsim 5% difference between input and output eccentricity distributions). The orbits of this sample of very low-mass binaries show some significant differences from their solar-type counterparts. They lack a correlation between orbital period and eccentricity, and display a much higher fraction of near-circular orbits (e < 0.1) than solar-type stars, which together may suggest a different formation mechanism or dynamical history for these two populations. Very low-mass binaries also do not follow the e 2 distribution of Ambartsumian, which would be expected if their orbits were distributed in phase space according to a function of energy alone (e.g., the Boltzmann distribution). We find that current numerical simulations of very low-mass star formation do not completely reproduce the observed properties of our binary sample. The cluster formation model of Bate agrees very well with the overall e distribution, but the lack of any high-e (>0.6) binaries at orbital periods comparable to our sample suggests that tidal damping due to gas disks may play too large of a role in the simulations. In contrast, the circumstellar disk fragmentation model of Stamatellos & Whitworth predicts only high-e binaries and thus is highly inconsistent with our sample. These discrepancies could be explained if multiple formation processes are

  10. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

    SciTech Connect

    Acosta, D.; The CDF Collaboration TITLE=Measuremen

    2005-03-13

    Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

  11. Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-02-01

    Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS

    SciTech Connect

    Sadavoy, Sarah I.; Di Francesco, James; Bontemps, Sylvain; Megeath, S. Thomas; Allgaier, Erin; Rebull, Luisa M.; Carey, Sean; McCabe, Caer-Eve; Noriega-Crespo, Alberto; Padgett, Deborah; Gutermuth, Robert; Hora, Joe; Huard, Tracy; Muzerolle, James; Terebey, Susan

    2010-02-20

    Using data from the SCUBA Legacy Catalogue (850 {mu}m) and Spitzer Space Telescope (3.6-70 {mu}m), we explore dense cores in the Ophiuchus, Taurus, Perseus, Serpens, and Orion molecular clouds. We develop a new method to discriminate submillimeter cores found by Submillimeter Common-User Bolometer Array (SCUBA) as starless or protostellar, using point source photometry from Spitzer wide field surveys. First, we identify infrared sources with red colors associated with embedded young stellar objects (YSOs). Second, we compare the positions of these YSO candidates to our submillimeter cores. With these identifications, we construct new, self-consistent starless and protostellar core mass functions (CMFs) for the five clouds. We find best-fit slopes to the high-mass end of the CMFs of -1.26 +- 0.20, -1.22 +- 0.06, -0.95 +- 0.20, and -1.67 +- 0.72 for Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are each consistent with the -1.35 power-law slope of the Salpeter initial mass function at higher masses, but suggest some differences. We examine a variety of trends between these CMF shapes and their parent cloud properties, potentially finding a correlation between the high-mass slope and core temperature. We also find a trend between core mass and effective size, but we are very limited by sensitivity. We make similar comparisons between core mass and size with visual extinction (for A{sub V} >= 3) and find no obvious trends. We also predict the numbers and mass distributions of cores that future surveys with SCUBA-2 may detect in each of these clouds.

  13. The Bivariate Luminosity--HI Mass Distribution Function of Galaxies based on the NIBLES Survey

    NASA Astrophysics Data System (ADS)

    Butcher, Zhon; Schneider, Stephen E.; van Driel, Wim; Lehnert, Matt

    2016-01-01

    We use 21cm HI line observations for 2610 galaxies from the Nançay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) to derive a bivariate luminosity--HI mass distribution function. Our HI survey was selected to randomly probe the local (900 < cz < 12,000 km/s) galaxy population in each 0.5 mag wide bin for the absolute z-band magnitude range of -13.5 < Mz < -24 without regard to morphology or color. This targeted survey allowed more on-source integration time for weak and non-detected sources, enabling us to probe lower HI mass fractions and apply lower upper limits for non-detections than would be possible with the larger blind HI surveys. Additionally, we obtained a factor of four higher sensitivity follow-up observations at Arecibo of 90 galaxies from our non-detected and marginally detected categories to quantify the underlying HI distribution of sources not detected at Nançay. Using the optical luminosity function and our higher sensitivity follow up observations as priors, we use a 2D stepwise maximum likelihood technique to derive the two dimensional volume density distribution of luminosity and HI mass in each SDSS band.

  14. Control of bridge cranes with distributed-mass payloads under windy conditions

    NASA Astrophysics Data System (ADS)

    Tang, Rui; Huang, Jie

    2016-05-01

    Operating cranes is challenging because payloads experience large and dangerous oscillations, especially when the system is suffering from wind disturbances and the large-size payload is modeled as a distributed-mass model. The payload oscillations induced by both intentional motions commanded by the human operator and by the external wind disturbances make the dynamics more complicated. This paper presents a novel combined control architecture to limit oscillations of the distributed-mass payload caused by both human-operator commands and wind disturbances. While a smoothed command suppressed operator-induced oscillations, a wind-rejection command eliminated the payload swing resulting from the wind gusts. Through simulations, a large range of system parameters and motions are analyzed to investigate the dynamic behavior of bridge cranes with distributed-mass beams and wind disturbances by using the new control scheme. Experimental results obtained from a small-scale bridge crane validate the simulated dynamic behavior and the effectiveness of the proposed method.

  15. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

    2017-01-01

    With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

  16. Mass transfer in cataclysmic variables - Clues from the dwarf nova period distribution

    NASA Technical Reports Server (NTRS)

    Shafter, A. W.; Wheeler, J. C.; Cannizzo, J. K.

    1986-01-01

    Evidence is presented in support of the hypothesis that the mean mass-transfer rate at a given orbital period is not continuous across the 2-3 hr gap in the orbital period distribution for cataclysmic variables. It is pointed out that although dwarf novae comprise nearly half (48 percent) of all disk systems with orbital periods less than 10 hr, only three systems out of the 22 with periods between 3 and 4 hr appear to be dwarf novae. The overall orbital period distribution for dwarf novae in conjunction with the predictions from current theories of dwarf nova eruptions are used to argue that mass-transfer rates must be generally higher for systems with orbital periods greater than 3 hr relative to systems with periods less than 2 hr. It is further argued that the mean mass-transfer rate at a given orbital period cannot increase more steeply than P exp 1.7 unless the white dwarf mass is positively correlated with orbital period.

  17. Distribution of nanoflagellates in five water masses of the East China Sea in autumn and winter

    NASA Astrophysics Data System (ADS)

    Lin, Shiquan; Huang, Lingfeng; Zhu, Zhisheng; Xiong, Yuan; Lu, Jiachang

    2016-02-01

    The variations of abundance, biomass and trophic structure of nanoflagellates (NF) among five typical water masses in the East China Sea were investigated in autumn (November 19-December 23, 2006) and winter (February 22-March 11, 2007). It was found that water mass had a significant impact on the distribution of NF. Either in autumn or in winter, the highest abundance and biomass of NF were recorded in the East China Sea Shelf Mixing Water (ECSSMW), and the lowest in the Kuroshio Subsurface Water (KSSW). While in the East China Sea Coastal Water (ECSCW), the abundance and biomass of both heterotrophic nanoflagellates (HNF) and pigmented phototrophic nanoflagellates (PNF) were only slightly higher than that in Taiwan Strait Water (TSW) and Kuroshio Surface Water (KSW). In respect to the seasonal variation, the abundance and biomass of NF in TSW declined in winter, while in other 4 water masses, they showed an increasing trend from autumn to winter, mainly due to the decrease (in TSW) or increase (in ECSCW, ECSSMW, KSW and KSSW) of HNF. The distribution pattern of abundance- or biomass-based PNF/HNF ratio was found to be correlated to the nutrient level of the water mass. Results of Pearson correlation analysis and principle component analysis indicated that PNF was mainly constrained by nutrient supply, and HNF was controlled by food availability in the East China Sea.

  18. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

    PubMed

    Sprigle, Stephen; Huang, Morris

    2015-01-01

    Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

  19. Mass distribution and Dynamical State of Galaxy Clusters in the LZLS Sample

    NASA Astrophysics Data System (ADS)

    Campusano, L. E.; Cypriano, E. S.; Sodré, L., Jr.; Kneib, J.-P.

    We use the weak gravitational lensing effect to study the mass distribution of a sample of 50 southern Abell clusters (0.05 5 × 1044 erg s-1 observed with ESO-VLT under uniform sky conditions and subarsecond (0.6'') image quality. Their dynamical equibrium is assesed through comparison of the clusters mass estimates made by weak-lensing, velocity-dispersions and X-ray techniques. So far, for 24 clusters (Cypriano et al. 2004), we find: a) the center of their mass and light distributions are coincident for 77% of the sample; b) the elongations of the fitted mass profiles and of the light of the cD galaxies generally match with each other; c) although most of the clusters are found to be in dynamical equilibrium, those with TX ≥ 8 keV (or σv ≥ 1120 km s-1) are the discordant ones. The preliminary bright arc statistics for our whole sample (LZLS) suggests the presence of a cut-off at z˜0.07 which is qualitatively consistent with predictions done in a ΛCDM cosmology (Meneghetti et al. 2003).

  20. Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling

    PubMed Central

    2013-01-01

    Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software “Least Square Mass Isotopomer Analyzer” (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman’s least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations. PMID:23837681

  1. Origin of the narrow, single peak in the fission-fragment mass distribution for {sup 258}Fm

    SciTech Connect

    Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter

    2009-01-15

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  2. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging.

    PubMed

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-03-30

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research.

  3. Effect of mass-addition distribution and injectant on heat transfer and transition criteria.

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Mccloskey, M. H.; Stalmach, C. J., Jr.; Wright, R. L.

    1972-01-01

    Surface pressures, heat-transfer rates, and transition locations for a sharp cone (whose semivertex angle is 12 deg) were obtained in a hypervelocity wind tunnel at a free-stream Mach number of 12 and a free-stream Re/ft range of 3,000,000 to 6,000,000. The effects of injecting either methane, nitrogen, or Freon-22 (at rates up to 2.1% of free-stream rate) were studied for a uniform injection-distribution and for a variable injection-distribution. Gaseous injection had little effect on the surface pressure measurements. For a given mass injection distribution, the laminar region heat-transfer decreases as the injection rate increases or as the molecular weight of the injectant decreases. For a given mass-injection rate (integrated over the surface of the entire cone), the transition location and heat-transfer rates were sensitive to the injection distribution. The transition Reynolds numbers were significantly greater when the local injection rate was constant over the surface of the cone.

  4. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Ptasinski, Jacek; Cafmeyer, Jan

    1999-04-01

    As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.

  5. Cluster mass fraction and size distribution determined by fs-time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2009-11-01

    Characterization of supersonic gas jets is important for accurate interpretation and control of laser-cluster experiments. While average size and total atomic density can be found by standard Rayleigh scatter and interferometry, cluster mass fraction and size distribution are usually difficult to measure. Here we determine the cluster fraction and the size distribution with fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The fs-time-resolved refractive index measured with frequency domain interferometer (FDI) shows different contributions from monomer plasma and cluster plasma in the time domain, enabling us to determine the cluster fraction. The fs-time-resolved absorption measured by a delayed probe shows the contribution from clusters of various sizes, allowing us to find the size distribution.

  6. Patient distribution in a mass casualty event of an airplane crash.

    PubMed

    Postma, Ingri L E; Weel, Hanneke; Heetveld, Martin J; van der Zande, Ineke; Bijlsma, Taco S; Bloemers, Frank W; Goslings, J Carel

    2013-11-01

    Difficulties have been reported in the patient distribution during Mass Casualty Incidents. In this study we analysed the regional patient distribution protocol (PDP) and the actual patient distribution after the 2009 Turkish Airlines crash near Amsterdam. Analysis of the patient distribution of 126 surviving casualties of the crash by collecting data on medical treatment capacity, number of patients received per hospital, triage classification, Injury Severity Score (ISS), secondary transfers, distance from the crash site, and the critical mortality rate. The PDP holds ambiguous definitions of medical treatment capacity and was not followed. There were 14 receiving hospitals (distance from crash: 5.8-53.5 km); four hospitals received 133-213% of their treatment capacity, and 5 hospitals received 1 patient. Three hospitals within 20 km of the crash did not receive any casualties. Level I trauma centres received 89% of the 'critical' casualties and 92% of the casualties with ISS ≥ 16. Only 3 casualties were secondarily transferred, and no casualties died in, or on the way to hospital (critical mortality rate=0%). Patient distribution worked out well after the crash as secondary transfers were low and critical mortality rate was zero. However, the regional PDP was not followed in this MCI and casualties were unevenly distributed among hospitals. The PDP is indistinctive, and should be updated in cooperation between Emergency Services, surrounding hospitals, and Schiphol International Airport as a high risk area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Wright, Jason T.; Fischer, Debra A.

    2008-05-01

    We analyze 8 years of precise radial velocity measurements from the Keck Planet Search, characterizing the detection threshold, selection effects, and completeness of the survey. We first carry out a systematic search for planets, by assessing the false-alarm probability associated with Keplerian orbit fits to the data. This allows us to understand the detection threshold for each star in terms of the number and time baseline of the observations, and the underlying “noise” from measurement errors, intrinsic stellar jitter, or additional low-mass planets. We show that all planets with orbital periods P < 2000 days, velocity amplitudes K > 20 m s-1, and eccentricities e ≲ 0.6 have been announced, and we summarize the candidates at lower amplitudes and longer orbital periods. For the remaining stars, we calculate upper limits on the velocity amplitude of a companion. For orbital periods less than the duration of the observations, these are typically 10 m s-1 and increase ∝ P2 for longer periods. We then use the nondetections to derive completeness corrections at low amplitudes and long orbital periods and discuss the resulting distribution of minimum mass and orbital period. We give the fraction of stars with a planet as a function of minimum mass and orbital period and extrapolate to long-period orbits and low planet masses. A power-law fit for planet masses >0.3 MJ and periods < 2000 days gives a mass-period distribution dN = CMα Pβ d ln Md ln P with α = -0.31 ± 0.2, β = 0.26 ± 0.1, and the normalization constant C such that 10.5% of solar type stars have a planet with mass in the range 0.3–10 MJ and orbital period 2–2000 days. The orbital period distribution shows an increase in the planet fraction by a factor of ≈5 for orbital periods ≳300 days. Extrapolation gives 17%–20% of stars having gas giant planets within 20 AU. Finally, we constrain the occurrence rate of planets orbiting M dwarfs compared to FGK dwarfs, taking into account

  8. Collisional evolution - an analytical study for the nonsteady-state mass distribution

    NASA Astrophysics Data System (ADS)

    Martins, R. Vieira

    1999-05-01

    To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution

  9. Surface-level fine particle mass concentrations: from hemispheric distributions to megacity sources.

    PubMed

    Hidy, George M

    2009-07-01

    Since 1990, basic knowledge of the "chemical climate" of fine particles, has greatly improved from Junge's compilation from the 1960s. A worldwide baseline distribution of fine particle concentrations on a synoptic scale of approximately 1000 km can be estimated at least qualitatively from measurements. A geographical distribution of fine particle characteristics is deduced from a synthesis of a variety of disparate data collected at ground level on all continents, especially in the northern hemisphere. On the average, the regional mass concentrations range from 1 to 80 microg/m3, with the highest concentrations in regions of high population density and industrialization. Fine particles by mass on a continental and hemispheric spatial scale are generally dominated by non-sea salt sulfate (0.2 to approximately 20 microg/m3, or approximately 25%) and organic carbon (0.2-> 10 microg/m3, or approximately 25%), with lesser contributions of ammonium, nitrate, elemental carbon, and elements found in sea salt or soil dust. The crustal and trace metal elements contribute a varied amount to fine particle mass depending on location, with a larger contribution in marine conditions or during certain events such as dust storms or volcanic disturbances. The average distribution of mass concentration and major components depends on the proximity to areal aggregations of sources, most of which are continental in origin, with contributions from sea salt emissions in the marine environment. The highest concentrations generally are within or near very large population and industrial centers, especially in Asia, including parts of China and India, as well as North America and Europe. Natural sources of blowing dust, sea salt, and wildfires contribute to large, intermittent spatial-scale particle loadings beyond these ranges. A sampling of 10 megacities illustrates a range of characteristic particle composition, dependent on local and regional sources. Long-range transport of pollution

  10. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  11. The mass ratio distribution of MBH binaries in the hierarchical model

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Nian; Yuan, Ye-Fei; Hao, Jing-Meng; Tang, Ning-Yu

    2015-06-01

    We present different mass ratio distributions of massive black hole (MBH) binaries due to different mechanisms involved in binary evolution. A binary system of MBHs forms after the merger of two galaxies, which has three stages: the dynamical friction stage, the stellar scattering or circumbinary disk stage, and the gravitational radiation stage. The second stage was once believed to be the “final parsec problem” (FPP) as the binary stalled at this stage because of the depletion of stars. Now, the FPP has been shown to no longer be a problem. Here we get two different mass ratio distributions of MBH binaries under two mechanisms, stellar scattering and the circumbinary disk interaction. For the circumbinary disk mechanism, we assume that the binary shrinks by interaction with a circumbinary disk and the two black holes (BHs) have different accretion rates in the simulation. We apply this simple assumption to the hierarchical coevolution model of MBHs and dark matter halos, and we find that there will be more equal-mass MBH binaries in the final coalescence for the case where the circumbinary mechanism operates. This is mainly because the secondary BH in the circumbinary disk system accretes at a higher rate than the primary one. Supported by the National Natural Science Foundation of China.

  12. Vertical distribution of dry mass in cereals straw and its loss during harvesting

    NASA Astrophysics Data System (ADS)

    Zajaç, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Macuda, J.

    2013-01-01

    The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.

  13. Derivation from first principles of the statistical distribution of the mass peak intensities of MS data.

    PubMed

    Ipsen, Andreas

    2015-02-03

    Despite the widespread use of mass spectrometry (MS) in a broad range of disciplines, the nature of MS data remains very poorly understood, and this places important constraints on the quality of MS data analysis as well as on the effectiveness of MS instrument design. In the following, a procedure for calculating the statistical distribution of the mass peak intensity for MS instruments that use analog-to-digital converters (ADCs) and electron multipliers is presented. It is demonstrated that the physical processes underlying the data-generation process, from the generation of the ions to the signal induced at the detector, and on to the digitization of the resulting voltage pulse, result in data that can be well-approximated by a Gaussian distribution whose mean and variance are determined by physically meaningful instrumental parameters. This allows for a very precise understanding of the signal-to-noise ratio of mass peak intensities and suggests novel ways of improving it. Moreover, it is a prerequisite for being able to address virtually all data analytical problems in downstream analyses in a statistically rigorous manner. The model is validated with experimental data.

  14. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

    NASA Astrophysics Data System (ADS)

    Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

    2014-02-01

    The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

  15. Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging

    PubMed Central

    Giordano, Silvia; Zucchetti, Massimo; Decio, Alessandra; Cesca, Marta; Fuso Nerini, Ilaria; Maiezza, Marika; Ferrari, Mariella; Licandro, Simonetta Andrea; Frapolli, Roberta; Giavazzi, Raffaella; Maurizio, D’Incalci; Davoli, Enrico; Morosi, Lavinia

    2016-01-01

    The penetration of anticancer drugs in solid tumors is important to ensure the therapeutic effect, so methods are needed to understand drug distribution in different parts of the tumor. Mass spectrometry imaging (MSI) has great potential in this field to visualize drug distribution in organs and tumor tissues with good spatial resolution and superior specificity. We present an accurate and reproducible imaging method to investigate the variation of drug distribution in different parts of solid tumors. The method was applied to study the distribution of paclitaxel in three ovarian cancer models with different histopathological characteristics and in colon cancer (HCT116), breast cancer (MDA-MB-231) and malignant pleural mesothelioma (MPM487). The heterogeneous drug penetration in the tumors is evident from the MALDI imaging results and from the images analysis. The differences between the various models do not always relate to significant changes in drug content in tumor homogenate examined by classical HPLC analysis. The specificity of the method clarifies the heterogeneity of the drug distribution that is analyzed from a quantitative point of view too, highlighting how marked are the variations of paclitaxel amounts in different part of solid tumors. PMID:28000726

  16. Derivation of the Statistical Distribution of the Mass Peak Centroids of Mass Spectrometers Employing Analog-to-Digital Converters and Electron Multipliers

    DOE PAGES

    Ipsen, Andreas

    2017-02-03

    Here, the mass peak centroid is a quantity that is at the core of mass spectrometry (MS). However, despite its central status in the field, models of its statistical distribution are often chosen quite arbitrarily and without attempts at establishing a proper theoretical justification for their use. Recent work has demonstrated that for mass spectrometers employing analog-to-digital converters (ADCs) and electron multipliers, the statistical distribution of the mass peak intensity can be described via a relatively simple model derived essentially from first principles. Building on this result, the following article derives the corresponding statistical distribution for the mass peak centroidsmore » of such instruments. It is found that for increasing signal strength, the centroid distribution converges to a Gaussian distribution whose mean and variance are determined by physically meaningful parameters and which in turn determine bias and variability of the m/z measurements of the instrument. Through the introduction of the concept of “pulse-peak correlation”, the model also elucidates the complicated relationship between the shape of the voltage pulses produced by the preamplifier and the mean and variance of the centroid distribution. The predictions of the model are validated with empirical data and with Monte Carlo simulations.« less

  17. Laboratory mass extinction and size distribution measurements of volcanic ash aerosol

    NASA Astrophysics Data System (ADS)

    Reed, Benjamin; Grainger, Don; Peters, Daniel; McPheat, Robert

    2017-04-01

    This presentation details laboratory measurements of the mass extinction coefficient and size distribution of dispersed volcanic ash aerosol from a wide range of samples collected globally. These eruption specific measurements can be directly applied to improve satellite remote sensing retrievals of mass columnar concentration. The experimental apparatus dispersed volcanic ash in nitrogen gas into an aerosol chamber and used two optical systems to measure spectral extinction over a broad range of wavelengths: a Fourier transform spectrometer made measurements in the infrared, and two diffraction grating spectrometers made measurements covering ultraviolet and visible wavelengths. The combined spectral range was 0.34 - 19 microns. Simultaneously, the size distribution of particles exiting the chamber was measured using a scanning mobility particle sizer (SMPS) and an optical particle counter (OPC). The SMPS and OPC covered the full particle size distribution. The results of these experiments will be presented, and will demonstrate significant variation in the extinction properties of ashes from different eruptions, particularly associated with the SiO2 absorption feature at 9.5 microns.

  18. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.

    PubMed

    Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H

    2015-12-17

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

  19. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.

    2015-12-01

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to

  20. Impact of Climatic Variability on Atmospheric Mass Distribution and GRACE-Derived Gravity Fields

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Ponte, Rui M.; Frey, Herbert (Technical Monitor)

    2003-01-01

    During the period we calculated the atmospheric data sets related to its mass and angular momentum distribution. For mass, we determined the various harmonics from the NCEP-NCAR reanalysis, especially the low-order harmonics that are useful in studying the gravitation distribution as will be determined from the GRACE mission. Atmospheric mass is also related to the atmospheric loading on the solid Earth; we cooperated with scientists who needed the atmospheric mass information for understanding its contributions to the overall loading, necessary for vertical and horizontal coordinate estimation. We calculated atmospheric angular momentum from the NCEP-NCAR reanalyses and 4 operational meteorological centers, based on the motion (wind) terms and the mass (surface pressure) terms. These are associated with motions of the planet, including its axial component causing changes in the length of day, more related to the winds, and the equatorial component related to motions of the pole, more related to the mass. Tasks related to the ocean mass and angular momentum were added to the project as well. For these we have noted the ocean impact on motions of the pole as well as the torque mechanisms that relate the transfer of angular momentum between oceans and solid earth. The activities of the project may be summarized in the following first manuscript written in December 2002, for a symposium that Dr. Salstein attended on Geodynamics. We have continued to assess ocean angular momentum (OAM) quantities derived from bottom pressure and velocity fields estimated with our finite-difference barotropic (single layer) model. Three years of output (1993-95) from a run without any data constraints was compared to output from a corresponding run that was constrained by altimeter data using a Kalman filter and smoother scheme. Respective OAM time series were combined with corresponding atmospheric series and compared to observed polar motion. The constrained OAM series provided

  1. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.

    PubMed

    Hiraoki, Ryoya; Ono, Yuko; Saito, Tsuguyuki; Isogai, Akira

    2015-02-09

    Native wood cellulose was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and the fibrous TEMPO-oxidized celluloses (TOCs) thus obtained were disintegrated in water to prepare TOC nanofibrils (TOCNs). The carboxyl groups of TOCs and TOCNs were methyl-esterified, and the methylated samples were dissolved in 8% LiCl/N,N-dimethylacetamide for size-exclusion chromatography/multiangle laser-light scattering (SEC-MALLS) analysis to obtain their molecular-mass (MM) values and MM distributions (MMDs). The results showed that remarkable depolymerization occurred in TOCs and TOCNs and depended on the oxidation and sonication conditions. Because single peaks without bimodal patterns were observed in the MMDs for all of the TOC and TOCN samples, depolymerization may have randomly occurred on whole cellulose molecules and oxidized cellulose molecules in the microfibrils during these treatments. Compared with the MM values obtained by SEC-MALLS, the intrinsic viscosities of TOCs dissolved in 0.5 M copper ethylenediamine solution provided lower MM values owing to depolymerization during the dissolution and postreduction processes.

  2. Effects of internal mass distribution and its isolation on the acoustic characteristics of a submerged hull

    NASA Astrophysics Data System (ADS)

    Peters, Herwig; Kinns, Roger; Kessissoglou, Nicole

    2014-03-01

    The primary aim of machinery isolation in marine vessels is to isolate structural vibration of the onboard machinery from the hull and to reduce far-field radiation of underwater noise. A substantial proportion of the total submarine mass is on flexible mounts that isolate supported masses from the hull at frequencies above the mounting system resonant frequency. This reduces the dynamically effective mass of the hull and affects the signature of the marine vessel due to propeller excitation. A fully coupled finite element/boundary element (FE/BE) model has been developed to investigate the effect of mass distribution and isolation in a submerged hull. The finite element model of the structure includes internal structures to represent the machinery and other flexibly mounted components. Changes in the radiated sound power demonstrate the effect of machinery isolation on the acoustic signature of the submerged hull due to the external propeller forces. Results are also presented to show how the arrangement of flexible mounts for a large internal structure can influence the radiation due to machinery forces.

  3. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

    SciTech Connect

    Gilbert, Holly; Kilper, Gary; Kucera, Therese; Alexander, David

    2011-01-20

    In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda} < 504 A), and finally at wavelengths where H{sup 0}, He{sup 0}, and He{sup +} are all ionized ({lambda} < 228 A). This approach, first suggested by Kucera et al., permits the separation of the contributions of neutral hydrogen and helium to the total column density in prominences. Additionally, an enhancement of the technique allowed the calculation of the two-dimensional (2D) spatial distribution of the column density from the continuum absorption in each extreme-ultraviolet observation. We find the total prominence mass is consistently lower in the 625 A observations compared to lines in the other wavelength regimes. There is a significant difference in total mass between the 625 A and 195 A lines, indicating the much higher opacity at 625 A is causing a saturation of the continuum absorption and thus, a potentially large underestimation of mass.

  4. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

    2011-02-01

    Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

  5. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

  6. Mass cytometry panel optimization through the designed distribution of signal interference.

    PubMed

    Takahashi, Chikara; Au-Yeung, Amelia; Fuh, Franklin; Ramirez-Montagut, Teresa; Bolen, Chris; Mathews, William; O'Gorman, William E

    2017-01-01

    Mass cytometry is capable of measuring more than 40 distinct proteins on individual cells making it a promising technology for innovating biomarker discovery. However, in order for this potential to be fully realized, best practices in panel design need to be further defined in order to achieve consistency and reproducibility in data analysis. Of particular importance are controls that reveal, and panel design principles that mitigate the effects of signal interference or overlap. We observed a disparity between the staining profiles of two noncompeting anti- integrin β7 mAbs and hypothesized that signal interference was responsible. A mass-minus-one (MMO) control was applied and demonstrated that signal overlap caused the perceived interclonal discrepancy in β7 expression. Panel redesign in consideration of mass-cytometry specific interference dynamics dramatically improved concordance between both mAbs by redistributing background signals caused by overlap. These studies visualize how signal overlap can complicate mass cytometry data interpretation and demonstrate how the rational distribution of interference can greatly improve panel design and data quality. © 2016 International Society for Advancement of Cytometry.

  7. Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles

    SciTech Connect

    Ramanathan Sampath

    2007-06-30

    This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to June 30, 2007 which covers the entire performance period of the project. 25 individual biomass particles (hardwood sawdust AI14546 in the size range of 100-200 microns) were levitated in an electrodynamic balance (EDB) and their external surface area, volume, and drag coefficient/mass (C{sub d}/m) ratios were characterized applying highly specialized video based and high-speed diode array imaging systems. Analysis methods were employed using shape and drag information to calculate mass and density distributions for these particles. Results of these measurements and analyses were validated by independent mass measurements using a particle weighing and counting technique. Similar information for 28 PSOC 1451D bituminous coal particles was retrieved from a previously published work. Using these two information, density correlations for coal/biomass blends were developed. These correlations can be used to estimate the density of the blend knowing either the volume fraction or the mass fraction of coal in the blend. The density correlations presented here will be useful in predicting the burning rate of coal/biomass blends in cofiring combustors. Finally, a discussion on technological impacts and economic projections of burning biomass with coal in US power plants is presented.

  8. Predicting apparent Sherwood numbers for fluidized beds

    SciTech Connect

    Groenewold, H.; Tsotsas, E.

    1999-09-01

    Mass transfer data of bubbling fluidized beds have been reevaluated with a new model which is completely predictive. The model is based on a two-phase approach with active bypass, formally plug flow for the suspension gas and a consideration of backmixing in the main kinetic coefficient, i.e. in the apparent particle-to-fluid Sherwood number. A good agreement with experimental results of various authors with a broad range of Reynolds numbers and particle diameters is demonstrated.

  9. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Wan, Qiongqiong; Hou, Jian; He, Qing; Badu-Tawiah, Abraham; Nie, Zongxiu

    2015-02-01

    Label and label-free methods to image carbon-based nanomaterials exist. However, label-based approaches are limited by the risk of tag detachment over time, and label-free spectroscopic methods have slow imaging speeds, weak photoluminescence signals and strong backgrounds. Here, we present a label-free mass spectrometry imaging method to detect carbon nanotubes, graphene oxide and carbon nanodots in mice. The large molecular weights of nanoparticles are difficult to detect using conventional mass spectrometers, but our method overcomes this problem by using the intrinsic carbon cluster fingerprint signal of the nanomaterials. We mapped and quantified the sub-organ distribution of the nanomaterials in mice. Our results showed that most carbon nanotubes and nanodots were found in the outer parenchyma of the kidney, and all three materials were seen in the red pulp of the spleen. The highest concentrations of nanotubes in the spleen were found within the marginal zone.

  10. Mass Spectrometry Data from the Biological MS Data and Software Distribution Center

    DOE Data Explorer

    Anderson, Gordon

    The mass spectrometry capabilities at Pacific Northwest National Laboratory (PNNL) are primarily applied to biological research, with an emphasis on proteomics and metabolomics. Many of these cutting-edge mass spectrometry capabilities and bioinformatics methods are housed in the Department of Energy's Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility operated by PNNL. These capabilities have been developed and acquired through cooperation between the EMSL national scientific user program and PNNL programmatic research. At the website of the Biological MS Data and Software Distribution Center, the following resources are made available: PNNL-developed software tools and source code, PNNL-generated raw data and processed results, links to publications that used the data and results available on this site, and tutorials and user manuals. [taken from http://omics.pnl.gov/

  11. Equilibrium quality and mass flux distributions in an adiabatic three-subchannel test section

    SciTech Connect

    Yadigaroglu, G.; Maganas, A.

    1995-12-01

    An experiment was designed to measure the fully developed quality and mass flux distributions in an adiabatic three-subchannel test section. The three subchannels had the geometrical characteristics of the corner, side, and interior subchannels of a boiling water reactor (BWR-5) rod bundle. Data collected with Refrigerant-114 at pressures ranging from 7 to 14 bars, simulating operation with water in the range 55 to 103 bars are reported. The average mass flux and quality in the test section were in the ranges 1,300 to 1,750 kg/m{sup 2} {center_dot} s and {minus}0.03 to 0.25, respectively. The data are analyzed and presented in various forms.

  12. Implementation of a Campuswide Distributed Mass Storage Service: the Dream Versus Reality

    NASA Technical Reports Server (NTRS)

    Prahst, Stephen; Armstead, Betty Jo

    1996-01-01

    In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro- wide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup services for critical data dw resides on workstations and personal computers. Because of software availability and budgets, the total service was phased in over dm years. During the process of building the service from the commercial technologies available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occurred. We also enhanced some technologies to better meet the needs of users and system administrators. This report describes our team's journey from dream to reality, outlines some of the problem areas that still exist, and suggests some solutions.

  13. An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    NASA Astrophysics Data System (ADS)

    Chen, Ruey-Shun; Tsai, Yung-Shun; Tu, Arthur

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  14. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  15. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  16. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1. (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  17. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  18. Methods for validation of the mass distribution of a full body finite element model - biomed 2011.

    PubMed

    Thompson, A Bradley; Rhyne, Ashley C; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2011-01-01

    Accurate mass distribution in computational human body models is essential for kinematic and kinetic validation. The purpose of this study was to validate the mass distribution of the 50th percentile male model (M50) developed as part of the Global Human Body Models Consortium (GHBMC) project. The body segment centers of gravity (CG) of M50 were compared against published data in two ways: using a homogeneous body surface CAD model, and a Finite Element Model (FEM). Both the CAD and FEM models were generated from image data collected from the same 50th percentile male subject. Each model was partitioned into 11 segments, using segment planes constructed from bony landmarks acquired from the subject. CG’s of the CAD and FEA models were computed using commercially available software packages. Deviation between the literature data CG’s and CG’s of the FEM and CAD were 5.8% and 5.6% respectively when normalized by a regional characteristic length. Deviation between the FEM and CAD CG’s averaged 2.4% when normalized in the same fashion. Unlike the CAD and literature which both assume homogenous mass distribution, the FEM CG data account for varying densities of anatomical structures by virtue of the assigned material properties. This analysis validates the CG’s determined from each model by comparing them directly to well-known literature studies that rely only on anthropometric landmarks to determine the CG’s measurements. The results of this study will help enhance the biofidelity of the GHBMC M50 model.

  19. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. Fausti; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-05-01

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1°(approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  20. Selection effects on the orbital period distribution of Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Arur, Kavitha; Maccarone, Tom

    2017-01-01

    Observations show a lack of Low Mass Black Hole Binaries with orbital periods below 4 hours. While it is known that Black Hole Binaries (BHBs) tend to have lower peak luminosities in outburst compared to their Neutron Star counterparts, it is unclear if selection effects can account for the difference in the numbers. Studying the effect of these selection biases is important for binary population studies. Here we report on the implications for the inferred orbital period distribution of these BHBs after a simulation that accounts for extinction of the optical counterpart, absorption of X-ray counts and detectability of the outburst.

  1. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    SciTech Connect

    Choi, Kyoo Sil; Zhu, Zihua; Sun, Xin; De Moor, Emmanuel; Taylor, Mark D.; Speer, John; Matlock, David K.

    2015-04-20

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ~100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe-0.29C-2.95Mn-1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite.

  2. Microlensing on extended structures having a spherically-symmetric mass distribution

    NASA Astrophysics Data System (ADS)

    Zhdanov, V.; Alexandrov, A.; Stashko, O.

    2016-06-01

    Different dark matter (DM) models predict various clustering properties, i.e. the possibility of DM to form massive objects on different scales. The lower mass limit of these objects according to [1, 2]. may be of the order of planetary masses. The gravitational microlensing can be used to confirm or to reject the existence of such structures and therefore to argue in favor or against concrete DM theories. There are observational programs (OGLE, EROS etc) yielding the light curves of a remote objects in high amplification events (HAE) due to microlensing on foreground masses of the Galaxy. In case when the foreground mass is an extended one, then the light curve in HAE must differ from the light curve due to ordinary microlensing on a point mass. However the question is: what is the value of this difference and is it possible to register this difference with modern observational facilities. This question has been studied elsewhere [3–5] by means of special model lens mappings. In this paper we study this problem starting directly from mass distribution of the extended structure. Namely, we consider microlensing on an extended DM clump with the cored spherically-symmetric mass profile (without a singularity in the center). We present examples of the amplification curves in both cases. Then we generate the amplification curves in case of the extended clump model for different values R, γ when the clump moves uniformly with respect to the line of sight with some impact parameter p and velocity V. These curves are then fitted with the point microlens model (with free parameters p and V) and we estimate the difference between the curves. The general outcome is that the amplification curves in case of the extended clumps are very similar to those in case of the point microlens (with appropriately chosen parameters p and V that cannot be derived from observations independently), and it would be difficult to distinguish them on the basis of observations if we deal with

  3. Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean.

    PubMed

    Kim, Hyunji; Soerensen, Anne L; Hur, Jin; Heimbürger, Lars-Eric; Hahm, Doshik; Rhee, Tae Siek; Noh, Seam; Han, Seunghee

    2017-02-07

    Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m(-2) yr(-1)). A higher upward diffusion in the North Pacific (12 nmol m(-2) yr(-1)) than in the Equatorial Pacific (1.8-5.7 nmol m(-2) yr(-1)) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.

  4. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  5. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Surface Mass Balance Distributions: Downscaling of Coarse Climates to drive Ice Sheet Models realistically

    NASA Astrophysics Data System (ADS)

    Rodehacke, Christian; Mottram, Ruth; Langen, Peter; Madsen, Marianne; Yang, Shuting; Boberg, Fredrik; Christensen, Jens

    2017-04-01

    The surface mass balance (SMB) is the most import boundary conditions for the state of glaciers and ice sheets. Hence its representation in numerical model simulations is of highest interest for glacier, ice cap and ice sheet modeling efforts. While descent SMB distributions of the current climate could be interfered with the help of various observation techniques and platforms, its construction for older past and future climates relies on input from spatially coarse resolved global climate models or reconstructions. These coarse SMB estimates with a footprint in the order of 100 km could hardly resolve the marginal ablations zones where the Greenland ice sheets, for instance, loses snow and ice. We present a downscaling method that is based on the physical calculation of the surface mass and energy balance. By the consequent application of universal and computationally cheap parameterizations we get an astonishing good representation of the SMB distribution including its marginal ablation zone. However the method has its limitations; for example wrong accumulation rates due to an insufficient precipitation field leaves its imprint on the SMB distribution. Also the still not satisfactory description of the bare ice albedo, in particular, in parts of Greenland is a challenge. We inspect our Greenland SMB fields' for various forcings and compare them with some widely used reference fields in the community to highlight the weakness and strength of our approach. We use the ERA-Interim reanalyzes period starting in 1979 directly as well as dynamically downscaled by our regional climate model HIRHAM (5 km resolution). Also SMB distributions obtained from the climate model EC-Earth with a resolution of T159 (approx. 125 km resolution in Greenland) are used either directly or downscaled with our regional climate model HIRHAM. Model-based End-of-the-century SMB estimates give an outlook of the future.

  7. The effect of gas double-dynamic on mass distribution in solid-state fermentation.

    PubMed

    Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang

    2014-05-10

    The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Mass distribution of free insecticide-treated nets do not interfere with continuous net distribution in Tanzania.

    PubMed

    Eze, Ikenna C; Kramer, Karen; Msengwa, Amina; Mandike, Renata; Lengeler, Christian

    2014-05-27

    To protect the most vulnerable groups from malaria (pregnant women and infants) the Tanzanian Government introduced a subsidy (voucher) scheme in 2004, on the basis of a public-private partnership. These vouchers are provided to pregnant women at their first antenatal care visit and mothers of infants at first vaccination. The vouchers are redeemed at registered retailers for a long-lasting insecticidal net against the payment of a modest top-up price. The present work analysed a large body of data from the Tanzanian National Voucher Scheme, focusing on interactions with concurrent mass distribution campaigns of free nets. In an ecologic study involving all regions of Tanzania, voucher redemption data for the period 2007-2011, as well as data on potential determinants of voucher redemption were analysed. The four outcome variables were: pregnant woman and infant voucher redemption rates, use of treated bed nets by all household members and by under- five children. Each of the outcomes was regressed with selected determinants, using a generalized estimating equation model and accounting for regional data clustering. There was a consistent improvement in voucher redemption rates over the selected time period, with rates >80% in 2011. The major determinants of redemption rates were the top-up price paid by the voucher beneficiary, the retailer- clinic ratio, and socio-economic status. Improved redemption rates after 2009 were most likely due to reduced top-up prices (following a change in policy). Redemption rates were not affected by two major free net distribution campaigns. During this period, there was a consistent improvement in net use across all the regions, with rates of up to 75% in 2011. The key components of the National Treated Nets Programme (NATNETS) seem to work harmoniously, leading to a high level of net use in the entire population. This calls for the continuation of this effort in Tanzania and for emulation by other countries with endemic malaria.

  9. Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging.

    PubMed

    Nilsson, Anna; Goodwin, Richard J A; Swales, John G; Gallagher, Richard; Shankaran, Harish; Sathe, Abhishek; Pradeepan, Selvi; Xue, Aixiang; Keirstead, Natalie; Sasaki, Jennifer C; Andren, Per E; Gupta, Anshul

    2015-09-21

    Colistin and polymyxin B are effective treatment options for Gram-negative resistant bacteria but are used as last-line therapy due to their dose-limiting nephrotoxicity. A critical factor in developing safer polymyxin analogues is understanding accumulation of the drugs and their metabolites, which is currently limited due to the lack of effective techniques for analysis of these challenging molecules. Mass spectrometry imaging (MSI) allows direct detection of targets (drugs, metabolites, and endogenous compounds) from tissue sections. The presented study exemplifies the utility of MSI by measuring the distribution of polymyxin B1, colistin, and polymyxin B nonapeptide (PMBN) within dosed rat kidney tissue sections. The label-free MSI analysis revealed that the nephrotoxic compounds (polymyxin B1 and colistin) preferentially accumulated in the renal cortical region. The less nephrotoxic analogue, polymyxin B nonapeptide, was more uniformly distributed throughout the kidney. In addition, metabolites of the dosed compounds were detected by MSI. Kidney homogenates were analyzed using LC/MS/MS to determine total drug exposure and for metabolite identification. To our knowledge, this is the first time such techniques have been utilized to measure the distribution of polymyxin drugs and their metabolites. By simultaneously detecting the distribution of drug and drug metabolites, MSI offers a powerful alternative to tissue homogenization analysis and label or antibody-based imaging.

  10. Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.

    PubMed

    Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan

    2017-07-18

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑6DDT (0.10-66 pg L(-1)) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

  11. Investigating the effect of mixing ratio on molar mass distributions of synthetic polymers determined by MALDI-TOF mass spectrometry using design of experiments.

    PubMed

    Brandt, Heike; Ehmann, Thomas; Otto, Matthias

    2010-11-01

    It is well known that the mixing ratio affects the molar mass distribution of synthetic polymers determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surely, the molar mixing ratio determines whether a mass spectrum will be obtained or not. However, depending on the mass range, several effects such as multimer formation occur, which might be a source of errors in molar mass distribution calculations. In this study, the effect of mixing ratio was investigated for several synthetic polymers, including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) using statistical designs of experiments. The 2(3) full factorial design was found to be suitable in the study of more than 1000 samples. The obtained MALDI mass spectra as well as the ANOVA statistics show that the mixing ratio affects the molar mass distribution. The optimal mixing ratio for a defined synthetic polymer depends on the studied combination (matrix, cationization reagent, solvent).

  12. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  13. Fragments mass and charge distribution in the light particle accompanied fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Karthikraj, C.; Ren, Zhongzhou

    2017-06-01

    The ternary fission mass and charge distribution of 252Cf for different light third fragments (A 3 = 4He, 10Be, 14C, 20O, 20Ne and 24Ne) are studied with the use of statistical theory of fission. Two different approaches are adopted to generate the possible ternary fragment combinations: in one case, the Z/A of the products is the same as 252Cf, in the other the finite-range droplet model (FRDM) data are used, creating all the possible combinations also with different Z/A. For the calculation of the nuclear level densities, single-particle level energies of FRDM are also used. When the lighter fragment A 3 is 4He, our calculated mass and charge distribution results, at T = 1 MeV, show the larger yield for the deformed fragment combinations which is in line with the experimental observation. Interestingly, for various third fragments, our calculated results at T = 2 MeV indicate that the favorable ternary configuration contains closed shell nucleus either Pb or Sn as the heaviest fragment. In addition, we have compared our calculated ternary isotopic yields with the available experimental and theoretical data.

  14. Low-Cost Micro Mass Spectrometers for Handheld Chemical Analysis and Distributed Networks for Space Flight Missions

    NASA Astrophysics Data System (ADS)

    van Amerom, F. H. W.; Chaudhary, A.; Short, R. T.

    2012-06-01

    Distributed networks of low-cost micro mass spectrometers, far smaller than presently available, will be powerful tools for safety of astronauts, enabling chemical monitoring throughout spacecrafts/habitats, surface vehicles and Mars deployments.

  15. Radio relics tracing the projected mass distribution in CIZA J2242.8+5301*

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Akamatsu, Hiroki; Kakuwa, Jun; Fujita, Yutaka; Zhang, Yuying; Tanaka, Masayuki; Umetsu, Keiichi

    2015-12-01

    We present a weak-lensing analysis for a merging galaxy cluster, CIZA J2242.8+5301, which hosts double radio relics, using three-band Subaru/Suprime-Cam imaging (Br'z'). Since the lifetime of dark matter halos colliding into clusters is longer than that of X-ray emitting gas halos, weak-lensing analysis is a powerful method to constrain merger dynamics. Two-dimensional shear fitting using a clean background catalog suggests that the cluster undergoes a merger with a mass ratio of about 2 : 1. The main halo is located around the gas core in the southern region, while no concentrated gas core is associated with the northern sub-halo. We find that the projected cluster mass distribution resulting from an unequal-mass merger is in excellent agreement with the curved shapes of the two radio relics and the overall X-ray morphology, except for the lack of the northern gas core. The lack of a prominent radio halo enables us to constrain an upper limit of the fractional energy of magnetohydrodynamic turbulence of (δ B/B)^2<{O}(10^{-6}) at a resonant wavenumber, by finding a balance between the acceleration time and the time after the core passage or the cooling time, with an assumption of resonant acceleration by a second-order Fermi process.

  16. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    SciTech Connect

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-10-15

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  17. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.

    PubMed

    Waltman, Melanie J; Dwivedi, Prabha; Hill, Herbert H; Blanchard, William C; Ewing, Robert G

    2008-10-19

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H(2)O)(n)H(+) with (H(2)O)(2)H(+) as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO(3)(-), NO(3)(-), NO(2)(-), O(3)(-) and O(2)(-) of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.

  18. Mapping the regioisomeric distribution of fatty acids in triacylglycerols by hybrid mass spectrometry.

    PubMed

    Nagy, Kornél; Sandoz, Laurence; Destaillats, Frédéric; Schafer, Olivier

    2013-01-01

    This study describes the use of hybrid mass spectrometry for the mapping, identification, and semi-quantitation of triacylglycerol regioisomers in fats and oils. The identification was performed based on the accurate mass and fragmentation pattern obtained by data-dependent fragmentation. Quantitation was based on the high-resolution ion chromatograms, and relative proportion of sn-1(3)/sn-2 regioisomers was calculated based on generalized fragmentation models and the relative intensities observed in the product ion spectra. The key performance features of the developed method are inter-batch mass accuracy < 1 ppm (n = 10); lower limit of detection (triggering threshold) 0.1 μg/ml (equivalent to 0.2 weight % in oil); lower limit of quantitation 0.2 μg/ml (equivalent to 0.4 weight % in oil); peak area precision 6.5% at 2 μg/ml concentration and 15% at 0.2 μM concentration; inter-batch precision of fragment intensities < 1% (n = 10) independent of the investigated concentration; and averaged accuracy using the generic calibration 3.8% in the 1-10 μg/ml range and varies between 1-23% depending on analytes. Inter-esterified fat, beef tallow, pork lard, and butter fat samples were used to show how well regioisomeric distribution of palmitic acid can be captured by this method.

  19. Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution

    NASA Astrophysics Data System (ADS)

    Kelly, N. J.; Boynton, W. V.; Kerry, K.; Hamara, D.; Janes, D.; Reedy, R. C.; Kim, K. J.; Haberle, R. M.

    2006-12-01

    Conclusions are drawn about the column density (g/cm2), spatial extent, and mass of the seasonal carbon dioxide frost on the poles of Mars as a function of time utilizing data from the 2001 Mars Odyssey Gamma Ray Spectrometer (GRS). Quantification of these CO2 values is achieved by observing attenuation effects of the surface-emitted hydrogen gamma ray flux as the frost condenses and sublimates in a seasonal exchange of CO2 between the ground and the atmosphere. Columnar thickness and mass results are discussed and plotted for latitudes including +/-60° and poleward. GRS observations are compared to predictions from the NASA Ames Research Center General Circulation Model and to similar experimental results from the Mars Odyssey High Energy Neutron Detector and Neutron Spectrometer. Models for north and south polar atmosphere and regolith distributions are incorporated, and our results indicate that the assumption of a 100% H2O-ice residual cap underlying the seasonal frost in the north is accurate. The GRS CO2 frost observations are in good agreement with the other studies mentioned, in particular for the timing of the beginning of frost deposition to the complete sublimation of surface CO2 back into the atmosphere. The total amount of condensed carbon dioxide mass seen by the GRS is on the order of 6.0 × 1015 kg and verifies previous reports that nearly 25% of the Martian CO2 reservoir participates in the ground-atmosphere exchange cycle.

  20. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells.

    PubMed

    de Castro, María; Martínez-Rubio, Romina; Acebes, José L; Encina, Antonio; Fry, Stephen C; García-Angulo, Penélope

    2017-07-01

    As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose. © 2017 Institute of Botany, Chinese Academy of Sciences.

  1. Effects of fore-aft body mass distribution on acceleration in dogs.

    PubMed

    Walter, Rebecca M; Carrier, David R

    2011-05-15

    The ability of a quadruped to apply propulsive ground reaction forces (GRF) during rapid acceleration may be limited by muscle power, foot traction or the ability to counteract the nose-up pitching moment due to acceleration. Because the biomechanics of acceleration change, both throughout the stride cycle and over subsequent strides as velocity increases, the factors limiting propulsive force production may also change. Depending on which factors are limiting during each step, alterations in fore-aft body mass distribution may either increase or decrease the maximum propulsive GRF produced. We analyzed the effects of experimental alterations in the fore-aft body mass distribution of dogs as they performed rapid accelerations. We measured the changes in trunk kinematics and GRF as dogs accelerated while carrying 10% body mass in saddlebags positioned just in front of the shoulder girdle or directly over the pelvic girdle. We found that dogs applied greater propulsive forces in the initial hindlimb push-off and first step by the lead forelimb in both weighted conditions. During these steps dogs appear to have been limited by foot traction. For the trailing forelimb, propulsive forces and impulses were reduced when dogs wore caudally placed weights and increased when dogs wore cranially placed weights. This is consistent with nose-up pitching or avoidance thereof having limited propulsive force production by the trailing forelimb. By the second stride, the hindlimbs appear to have been limited by muscle power in their ability to apply propulsive force. Adding weights decreased the propulsive force they applied most in the beginning of stance, when limb retractor muscles were active in supporting body weight. These results suggest that all three factors: foot traction, pitching of the body, and muscle power play roles in limiting quadrupedal acceleration. Digging in to the substrate with claws or hooves appears to be necessary for maximizing propulsion in the initial

  2. Influence of different water masses on planktonic ciliate distribution on the East China Sea shelf

    NASA Astrophysics Data System (ADS)

    Zhang, Cuixia; Zhang, Wuchang; Ni, Xiaobo; Zhao, Yuan; Huang, Lingfeng; Xiao, Tian

    2015-01-01

    In summer 2006 and winter 2007, ciliate abundance and biomass were investigated in the East China Sea in connection with water masses, frontal zones, dissolved oxygen and chlorophyll a concentrations, and picoplankton and nanoflagellate abundances. In addition, tintinnid ciliates were identified to species based on lorica morphology. There was no significant difference of ciliate abundance and biomass between Changjiang diluted water (CDW) and shelf mixing water (SMW) in the Changjiang river estuary and its adjacent sea in summer, or among the coastal water (CoW), the SMW and the Kuroshio water (KW) on the shelf in winter. The influence of water masses on ciliate distribution was slight, except that distinct increases in ciliate abundance were observed in the vicinity of frontal structures. Most tintinnids were neritic species, with no discrimination between two water masses in the Changjiang river estuary. However, cosmopolitan and warm water species were very mainly restricted to SMW and KW; neritic species were essentially present in CoW and SMW on the continental shelf. Total ciliate biomass was closely correlated with picoplankton biomass in the CDW and KW. Picoeukaryotes and Synechococcus were the potential food source of ciliates. In winter, within KW, nanoflagellates would play a major role in the transfer of organic matter from picoplankton to ciliates in the microbial community within KW. In the low-oxygen and hypoxia area adjacent to the Changjiang estuary where relatively high ciliate abundance and biomass occurred, heterotrophic bacteria would appear to exhibit a potential prey effect on the distribution of bacterivorous aloricated ciliates and nanoflagellates acting as intermediates between bacteria and tintinnids.

  3. A CAD Approach to Developing Mass Distribution and Composition Models for Spaceflight Radiation Risk Analyses

    NASA Astrophysics Data System (ADS)

    Zapp, E.; Shelfer, T.; Semones, E.; Johnson, A.; Weyland, M.; Golightly, M.; Smith, G.; Dardano, C.

    For roughly the past three decades, combinatorial geometries have been the predominant mode for the development of mass distribution models associated with the estimation of radiological risk for manned space flight. Examples of these are the MEVDP (Modified Elemental Volume Dose Program) vehicle representation of Liley and Hamilton, and the quadratic functional representation of the CAM/CAF (Computerized Anatomical Male/Female) human body models as modified by Billings and Yucker. These geometries, have the advantageous characteristics of being simple for a familiarized user to maintain, and because of the relative lack of any operating system or run-time library dependence, they are also easy to transfer from one computing platform to another. Unfortunately they are also limited in the amount of modeling detail possible, owing to the abstract geometric representation. In addition, combinatorial representations are also known to be error-prone in practice, since there is no convenient method for error identification (i.e. overlap, etc.), and extensive calculation and/or manual comparison may is often necessary to demonstrate that the geometry is adequately represented. We present an alternate approach linking materials -specific, CAD-based mass models directly to geometric analysis tools requiring no approximation with respect to materials , nor any meshing (i.e. tessellation) of the representative geometry. A new approach to ray tracing is presented which makes use of the fundamentals of the CAD representation to perform geometric analysis directly on the NURBS (Non-Uniform Rational BSpline) surfaces themselves. In this way we achieve a framework for- the rapid, precise development and analysis of materials-specific mass distribution models.

  4. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

    PubMed

    Zuo, Xiaojun; Fu, Dafang; Li, He

    2012-11-01

    Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.

  5. Determination of the uncertainties in the theoretical mass isotopomer distribution of molecules.

    PubMed

    García Alonso, J Ignacio; Rodríguez-González, P; González-Gago, A; González-Antuña, A

    2010-04-01

    A procedure for the determination of the uncertainties in the theoretical mass isotopomer distribution of molecules due to natural variations in the isotope composition of their constituting elements is described here for the first time. For this purpose, a Visual Basic macro for Microsoft Excel was written by adapting the direct stepwise calculation algorithm published by Kubinyi (Anal. Chim. Acta 1991, 247, 107-119, Fig. 1). In our procedure no pruning threshold factors were used to eliminate round up errors for large molecules. Then, the Kragten procedure of uncertainty propagation (Analyst 1994, 119, 2161-2165) was applied taking into account the correlation coefficients between the isotope abundances of the corresponding atoms. For bi-isotopic elements (C, H, N, Cl, Br) the correlation coefficients were given the value of -1. For tri- and tetra-isotopic elements the correlation coefficients were calculated using the mass dependent fractionation law used in stable isotope geochemistry and values of +1 or -1 were obtained depending on the isotope system considered. It was observed that for small organic molecules of natural isotope abundances, such as phenol or polybrominated diphenylethers, the method provided relatively small propagated uncertainties similar in magnitude to those measured experimentally. For (13)C-labelled molecules the calculated uncertainties were mainly due to the uncertainties in the isotope enrichment of (13)C and were much larger than the experimental uncertainties. For large molecules of natural isotope abundances, such as peptide C(68)H(107)N(17)O(25) (NIST 8327 RM), the uncertainties in their mass isotopomer distributions were much larger and their source could be assigned mainly to the uncertainty of the natural isotope composition of carbon. When the size of the molecule was even larger, such as bovine insulin (C(254)H(377)N(65)O(75)S(6)), Kragten procedure provided a good estimate for the uncertainty when the most probable isotope

  6. Low-frequency currents and water mass spatial distribution on the southern Brazilian shelf

    NASA Astrophysics Data System (ADS)

    Soares, Ivan; öller, Osmar

    2001-10-01

    The Southern Brazilian Shelf (SBS) circulation is discussed in terms of the water mass distribution observed in seasonal hydrography and the subtidal frequency oscillations observed in shelf current and coastal wind time series. Low-salinity water that originated from river runoff is demonstrated to be an important inner-shelf feature, participating in water mass formation and distribution, while Tropical and Sub-Tropical waters (transported by Brazil Current) are the main outer-shelf and slope waters. Cross-shelf transport on the SBS shelf is maximum in austral spring when Patos Lagoon runoff peaks and monthly mean winds are upwelling-favorable, and along-shelf transport is maximum in the austral autumn and winter periods when La Plata River runoff is driven toward the SBS by Argentina coastal winds and mean winds over the SBS are downwelling-favorable, creating near shore bands of low-salinity water. The intrusion of water from Uruguay and Argentina shelves creates a cold, less-saline mid-shelf water mass which, together with local river runoff and the Brazil Current, are responsible for well defined cross-shelf gradients. Subtidal currents, recorded during a 3-month-long mooring in the austral autumn of 1997, suggest an Ekman response to along-shelf wind forcing with a time lag of 14 h. Power spectra and coherence functions characterize wind influence as occurring primarily in the synoptic period band of 2-10 days, with most energetic peak at 4×10 -3 cph (10.4 days). The residual current, computed according to Mardia's directional data statistics ( Mardia, 1972. Statistics of Directional Data. Academic Press, New York), flows parallel to the coastline and equatorward, in agreement with a buoyancy-driven current.

  7. Lunar rocks as meteoroid detectors. [meteoroid mass distribution estimates using microcrater population

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.; Hoerz, F.; Gault, D. E.

    1973-01-01

    About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles. The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. The population of craters on such a surface is directly related to the total population of particles impacting that surface. Crater size distribution data together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of interplanetary dust at 1 AU.

  8. Polymorphic distribution of proteins in solution by mass spectrometry: The analysis of insulin analogues.

    PubMed

    Fávero-Retto, Maely P; Guerreiro, Luiz Henrique; Pessanha, Cássio M; Palmieri, Leonardo C; Lima, Luís Maurício T R

    2017-01-01

    The characterization of conformational and oligomeric distribution of proteins is of paramount importance for the understanding of the correlation between structure and function. Among the bioanalytical approaches currently available, the electrospray ionization-mass spectrometry (ESI-MS) coupled to ion mobility spectrometry (IMS) is the best suited for high resolution identification with high sensitivity, allowing the in situ separation of oligomeric and conformational species. We tested the performance of the ESI-MS technique along with the IMS separation approach on a broad variety of insulin and insulin analogues with distinct oligomeric distribution pattern. The measurement of commercial insulin allowed the identification of species ranging from monomers to hexamers and their complexes with zinc ions. Dissimilar distribution profile for regular insulin as a function of formulation component and among the insulin analogues were observed by ESI-IMS-MS but not by ESI-MS along, crystallographic assays or size-exclusion chromatography. These data suggest the additional suitability of ESI-IMS-MS in conformational and oligomeric profiling of biomacromolecules and biopharmaceuticals. The easiness of the technique provides further motivation for its application in the characterization of both raw and formulated protein biopharmaceuticals in routine and comparability exercises. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Central Body Fat Distribution Associates with Unfavorable Renal Hemodynamics Independent of Body Mass Index

    PubMed Central

    Zelle, Dorien M.; Bakker, Stephan J.L.; Navis, Gerjan

    2013-01-01

    Central distribution of body fat is associated with a higher risk of renal disease, but whether it is the distribution pattern or the overall excess weight that underlies this association is not well understood. Here, we studied the association between waist-to-hip ratio (WHR), which reflects central adiposity, and renal hemodynamics in 315 healthy persons with a mean body mass index (BMI) of 24.9 kg/m2 and a mean 125I-iothalamate GFR of 109 ml/min per 1.73 m2. In multivariate analyses, WHR was associated with lower GFR, lower effective renal plasma flow, and higher filtration fraction, even after adjustment for sex, age, mean arterial pressure, and BMI. Multivariate models produced similar results regardless of whether the hemodynamic measures were indexed to body surface area. Thus, these results suggest that central body fat distribution, independent of BMI, is associated with an unfavorable pattern of renal hemodynamic measures that could underlie the increased renal risk reported in observational studies. PMID:23578944

  10. 3D Mass Spectrometry Imaging Reveals a Very Heterogeneous Drug Distribution in Tumors

    PubMed Central

    Giordano, S.; Morosi, L.; Veglianese, P.; Licandro, S. A.; Frapolli, R.; Zucchetti, M.; Cappelletti, G.; Falciola, L.; Pifferi, V.; Visentin, S.; D’Incalci, M.; Davoli, E.

    2016-01-01

    Mass Spectrometry Imaging (MSI) is a widespread technique used to qualitatively describe in two dimensions the distribution of endogenous or exogenous compounds within tissue sections. Absolute quantification of drugs using MSI is a recent challenge that just in the last years has started to be addressed. Starting from a two dimensional MSI protocol, we developed a three-dimensional pipeline to study drug penetration in tumors and to develop a new drug quantification method by MALDI MSI. Paclitaxel distribution and concentration in different tumors were measured in a 3D model of Malignant Pleural Mesothelioma (MPM), which is known to be a very heterogeneous neoplasm, highly resistant to different drugs. The 3D computational reconstruction allows an accurate description of tumor PTX penetration, adding information about the heterogeneity of tumor drug distribution due to the complex microenvironment. The use of an internal standard, homogenously sprayed on tissue slices, ensures quantitative results that are similar to those obtained using HPLC. The 3D model gives important information about the drug concentration in different tumor sub-volumes and shows that the great part of each tumor is not reached by the drug, suggesting the concept of pseudo-resistance as a further explanation for ineffective therapies and tumors relapse. PMID:27841316

  11. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  12. DESI then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections

    PubMed Central

    Eberlin, Livia S; Liu, Xioahui; Ferreira, Christina R.; Santagata, Sandro; Agar, Nathalie Y.R.; Cooks, R. Graham

    2011-01-01

    Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species including particular lipids and proteins, and correlation with the morphological features of a single tissue section is highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI) and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and Eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide(24:1), detected at m/z 888.8 by DESI imaging, was co-localized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis. PMID:21975048

  13. A possible explanation for the inconsistency between the Giotto grain mass distribution and ground-based observations

    NASA Technical Reports Server (NTRS)

    Perry, C. H.; Green, S. F.; Mcdonnell, J. A. M.

    1988-01-01

    Giotto measured the in situ Halley dust grain mass distribution with 2 instruments, Particle Impact Analyzer and Dust Impact Detection System (DIDSY), as well as the total intercepted mass from the deceleration of the spacecraft (Giotto Radio-Science Experiment, GRE). Ground based observations made shortly before encounter have fluxes much higher than would be predicted from Giotto data. It is concluded that Giotto DIDSY and GRE data represent observations of dust originating from a narrow track along the nucleus. They are consistent with ground based data, if assumptions are made about the level of activity along this track. The actual size distribution that should be used for modeling of the whole coma should not include the large mass excess actually observed by Giotto. Extrapolation of the small grain data should be used, since for these grains the velocity dispersion is low and temporal changes at the nucleus would not affect the shape of the mass distribution.

  14. Enhancing the Sensitivity to New Physics in the top-antitop Invariant Mass Distribution

    SciTech Connect

    Alvarez, Ezequiel; /Univ. Nacional San Luis /SLAC

    2012-06-14

    We propose selection cuts on the LHC t{bar t} production sample which should enhance the sensitivity to New Physics signals in the study of the t{bar t} invariant mass distribution. We show that selecting events in which the t{bar t} object has little transverse and large longitudinal momentum enlarges the quark-fusion fraction of the sample and therefore increases its sensitivity to New Physics which couples to quarks and not to gluons. We find that systematic error bars play a fundamental role and assume a simple model for them. We check how a non-visible new particle would become visible after the selection cuts enhance its resonance bump. A final realistic analysis should be done by the experimental groups with a correct evaluation of the systematic error bars.

  15. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

    SciTech Connect

    Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto; Martinez-Gonzalez, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2013-08-01

    Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters, leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.

  16. From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Ivascu, M.; Maruhn*, J. A.; Greiner*, W.

    1987-12-01

    The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like α-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For 234U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus 264Fm, leading to doubly magic products 132Sn. The most probable light fragments from cold fission of 234,236U, 239Np and 240Pu are 100Zr, 104,106,108Mo respectively, in good agreement with experimental data.

  17. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

    2017-03-01

    Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

  18. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

    2016-09-01

    Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

  19. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae.

    PubMed

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-05-11

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium.

  20. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  1. Water ice cloud property retrievals at Mars with OMEGA:Spatial distribution and column mass

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Madeleine, Jean-Baptiste; Szantai, Andre; Audouard, Joachim; Geminale, Anna; Altieri, Francesca; Bellucci, Giancarlo; Montabone, Luca; Wolff, Michael J.; Forget, Francois

    2017-04-01

    Spectral images of Mars recorded by OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) on Mars Express can be used to deduce the mean effective radius (r_eff) and optical depth (τ_i) of water ice particles in clouds. Using new data sets for a priori surface temperature, vertical profiles of atmospheric temperature, dust opacity, and multi-spectral surface albedo, we have analyzed over 40 OMEGA image cubes over the Tharsis, Arabia, and Syrtis Major quadrangles, and mapped the spatial distribution of r_eff, τ_i, and water ice column mass. We also explored the parameter space of r_eff and τ_i, which are inversely proportional, and the ice cloud index (ICI), which is the ratio of the reflectance at 3.4 and 3.52 μm, and indicates the thickness of water ice clouds. We found that the ICI, trivial to calculate for OMEGA image cubes, can be a proxy for column mass, which is very expensive to compute, requiring accurate retrievals of surface albedo, r_eff, and τ_i. Observing the spatial distribution, we find that within each cloud system, r_eff varies about a mean of 2.1 μm, that τi is closely related to r_eff, and that the values allowed for τ_i, given r_eff, are related to the ICI. We also observe areas where our retrieval detects very thin clouds made of very large particles (mean of 12.5 μm), which are still under investigation.

  2. ATLASGAL - Kinematic distances and the dense gas mass distribution of the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Csengeri, T.; Walmsley, C. M.; Bontemps, S.; Russeil, D.; Bronfman, L.; Koribalski, B. S.; Schuller, F.

    2015-07-01

    Context. The formation of high mass stars and clusters occurs in giant molecular clouds. Objects in evolved stages of massive star formation such as protostars, hot molecular cores, and ultracompact HII regions have been studied in more detail than earlier, colder objects. Further progress thus requires the analysis of the time before massive protostellar objects can be probed by their infrared emission. With this in mind, the APEX Telescope Large Area Survey of the whole inner Galactic plane at 870 μm (ATLASGAL) has been carried out to provide a global view of cold dust and star formation at submillimetre wavelengths. Aims: We derive kinematic distances to a large sample of massive cold dust clumps from their measured line velocities. We estimate masses and sizes of ATLASGAL sources, for which the kinematic distance ambiguity is resolved. Methods: The ATLASGAL sample is divided into groups of sources, which are located close together, mostly within a radius of 2 pc, and have velocities in a similar range with a median velocity dispersion of ~1 km s-1. We use NH3, N2H+, and CS velocities to calculate near and far kinematic distances to those groups. Results: We obtain 296 groups of ATLASGAL sources in the first quadrant and 393 groups in the fourth quadrant, which are coherent in space and velocity. We analyse HI self-absorption and HI absorption to resolve the kinematic distance ambiguity to 689 complexes of submm clumps. They are associated with 12CO emission probing large-scale structure and 13CO (1-0) line as well as the 870 μm dust continuum on a smaller scale. We obtain a scale height of ~28 ± 2 pc and displacement below the Galactic midplane of ~-7 ± 1 pc. Within distances from 2 to 18 kpc ATLASGAL clumps have a broad range of gas masses with a median of 1050 M⊙ as well as a wide distribution of radii with a median of 0.4 pc. Their distribution in galactocentric radii is correlated with spiral arms. Conclusions: Using a statistically significant

  3. Mass influx obtained from low-light-level television observations of faint meteors. [for modeling meteoroid mass distribution

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Clifton, K. S.

    1973-01-01

    Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources.

  4. THE MASS DISTRIBUTION AND ASSEMBLY OF THE MILKY WAY FROM THE PROPERTIES OF THE MAGELLANIC CLOUDS

    SciTech Connect

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel E-mail: pjm@slac.stanford.edu E-mail: aklypin@nmsu.edu

    2011-12-10

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7}{sub -0.4} (stat.){sup +0.3}{sub -0.3} (sys.) Multiplication-Sign 10{sup 12} M{sub Sun} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M{sub Sun} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  5. Parelectric spectroscopy of drug-carrier-systems--distribution of carrier masses or activation energies.

    PubMed

    Sivaramakrishnan, R; Kankate, L; Niehus, H; Kramer, K D

    2005-04-22

    The answer of a high-frequency electromagnetic wave to a sample as termination of an open-ended coaxial line gives the mobility and the density of permanent electric dipole moments in the substance under test. As long as these dipoles are attached to carrier molecules of well defined masses, both parameters can be extracted from the reflected wave in a quick manner giving unambiguous results. The corresponding algorithm has been applied to solid lipid nanoparticles with glucocorticoid molecules attached to or incorporated in the carrier molecules. The results from measurements in the frequency region (0.1-100) MHz have recently been published. As soon as we have to envisage a distribution in carrier masses and/or in activation energies of the attached molecules, we have to apply a more sophisticated evaluation algorithm. The need for a more generalised algorithm is clear as well, when we have to deal with more than one dipole-carrying constituent in the samples. All these evaluation algorithms shall be presented together with the mathematical basis in a short but exact form.

  6. The mass distribution of the unusual merging cluster Abell 2146 from strong lensing

    NASA Astrophysics Data System (ADS)

    Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen R.; Canning, Rebecca E. A.; Leonard, Adrienne; Santana, Rebecca; White, Jacob A.; Baum, Stefi A.; Clowe, Douglas I.; Edge, Alastair; Fabian, Andrew C.; McNamara, Brian R.; O'Dea, Christopher P.

    2017-01-01

    Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky, and it is unique in showing two large shocks on Chandra X-ray Observatory images. With an early stage merger, shortly after first core passage, one would expect the cluster galaxies and the dark matter to be leading the X-ray emitting plasma. In this regard, the cluster Abell 2146-A is very unusual in that the X-ray cool core appears to lead, rather than lag, the brightest cluster galaxy (BCG) in their trajectories. Here we present a strong-lensing analysis of multiple-image systems identified on Hubble Space Telescope images. In particular, we focus on the distribution of mass in Abell 2146-A in order to determine the centroid of the dark matter halo. We use object colours and morphologies to identify multiple-image systems; very conservatively, four of these systems are used as constraints on a lens mass model. We find that the centroid of the dark matter halo, constrained using the strongly lensed features, is coincident with the BCG, with an offset of ≈2 kpc between the centres of the dark matter halo and the BCG. Thus from the strong-lensing model, the X-ray cool core also leads the centroid of the dark matter in Abell 2146-A, with an offset of ≈30 kpc.

  7. A study of dust color temperature and dust mass distributions of four far infrared loops

    NASA Astrophysics Data System (ADS)

    Jha, A. K.; Aryal, B.; Weinberger, R.

    2017-10-01

    We present dust color temperature, dust mass and inclination angle of four far infrared loops namely G007+18, G143+07, G214-01 and G323-02 which are found to be located within 1° from pulsars PSR J1720-1633, PSR J0406+6138, PSR J0652-0142 and PSR J1535-5848, respectively. These low latitude loops (l<20°) are believed to be formed because high pressure events occurred in the past (e.g., supernova explosion). The dust color temperature of the core region is found to lie in the range 19.4±1.2-25.3±1.7K, whereas the range increased to 33±2-47±3K for the outer region. The dust color and dust mass distribution maps show that the low temperature region has greater density as expected. The core region of one loop is found to be edge-on (i>70°) whereas the larger structure is nearly face-on (i<70°).

  8. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

    SciTech Connect

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

    2012-02-29

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  9. The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems

    NASA Astrophysics Data System (ADS)

    Gubin, S. V.; Lupachev, A. V.; Shatilovich, A. V.; Myl'nikov, A. P.; Ryss, A. Yu.; Veremeeva, A. A.

    2016-12-01

    The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.

  10. Parton distribution functions, αs, and heavy-quark masses for LHC Run II

    NASA Astrophysics Data System (ADS)

    Alekhin, S.; Blümlein, J.; Moch, S.; PlačakytÄ--, R.

    2017-07-01

    We determine a new set of parton distribution functions (ABMP16), the strong coupling constant αs and the quark masses mc, mb and mt in a global fit to next-to-next-to-leading order (NNLO) in QCD. The analysis uses the MS ¯ scheme for αs and all quark masses and is performed in the fixed-flavor number scheme for nf=3 , 4, 5. Essential new elements of the fit are the combined data from HERA for inclusive deep-inelastic scattering (DIS), data from the fixed-target experiments NOMAD and CHORUS for neutrino-induced DIS, data from Tevatron and the LHC for the Drell-Yan process and the hadro-production of single-top and top-quark pairs. The theory predictions include new improved approximations at NNLO for the production of heavy quarks in DIS and for the hadro-production of single-top quarks. The description of higher twist effects relevant beyond the leading twist collinear factorization approximation is refined. At NNLO, we obtain the value αs(nf=5 )(MZ)=0.1147 ±0.0008 .

  11. Peakbin selection in mass spectrometry data using a consensus approach with estimation of distribution algorithms.

    PubMed

    Armañanzas, Rubén; Saeys, Yvan; Inza, Iñaki; García-Torres, Miguel; Bielza, Concha; van de Peer, Yves; Larrañaga, Pedro

    2011-01-01

    Progress is continuously being made in the quest for stable biomarkers linked to complex diseases. Mass spectrometers are one of the devices for tackling this problem. The data profiles they produce are noisy and unstable. In these profiles, biomarkers are detected as signal regions (peaks), where control and disease samples behave differently. Mass spectrometry (MS) data generally contain a limited number of samples described by a high number of features. In this work, we present a novel class of evolutionary algorithms, estimation of distribution algorithms (EDA), as an efficient peak selector in this MS domain. There is a trade-of f between the reliability of the detected biomarkers and the low number of samples for analysis. For this reason, we introduce a consensus approach, built upon the classical EDA scheme, that improves stability and robustness of the final set of relevant peaks. An entire data workflow is designed to yield unbiased results. Four publicly available MS data sets (two MALDI-TOF and another two SELDI-TOF) are analyzed. The results are compared to the original works, and a new plot (peak frequential plot) for graphically inspecting the relevant peaks is introduced. A complete online supplementary page, which can be found at http://www.sc.ehu.es/ccwbayes/members/ruben/ms, includes extended info and results, in addition to Matlab scripts and references.

  12. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BIOMASS PARTICLES

    SciTech Connect

    Sampath, Ramanathan

    2004-05-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

  13. SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BOMASS PARTICLES

    SciTech Connect

    Ramanathan Sampath

    2004-05-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.

  14. Energy & mass-charge distribution peculiarities of ion emitted from penning source

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.

    2017-05-01

    The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).

  15. Velocity and mass bias in the distribution of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Jennings, Elise; Baugh, Carlton M.; Hatt, Dylan

    2015-01-01

    The non-linear, scale-dependent bias in the mass distribution of galaxies and the underlying dark matter is a key systematic affecting the extraction of cosmological parameters from galaxy clustering. Using 95 million haloes from the Millennium-XXL N-body simulation, we find that the mass bias is scale independent only for k < 0.1 h Mpc-1 today (z = 0) and for k < 0.2 h Mpc-1 at z = 0.7. We test analytic halo bias models against our simulation measurements and find that the model of Tinker et al. is accurate to better than 5 per cent at z = 0. However, the simulation results are better fitted by an ellipsoidal collapse model at z = 0.7. We highlight, for the first time, another potentially serious systematic due to a sampling bias in the halo velocity divergence power spectra which will affect the comparison between observations and any redshift-space distortion model which assumes dark matter velocity statistics with no velocity bias. By measuring the velocity divergence power spectra for different sized halo samples, we find that there is a significant bias which increases with decreasing number density. This bias is approximately 20 per cent at k = 0.1 h Mpc-1 for a halo sample of number density bar{n} = 10^{-3} (h/ Mpc)3 at both z = 0 and 0.7 for the velocity divergence auto power spectrum. Given the importance of redshift-space distortions as a probe of dark energy and the major ongoing effort to advance models for the clustering signal in redshift space, our results show that this velocity bias introduces another systematic, alongside scale-dependent halo mass bias, which cannot be neglected.

  16. Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss

    PubMed Central

    Divoux, Adeline; Tordjman, Joan; Lacasa, Danièle; Veyrie, Nicolas; Hugol, Danielle; Aissat, Abdelhalim; Basdevant, Arnaud; Guerre-Millo, Michèle; Poitou, Christine; Zucker, Jean-Daniel; Bedossa, Pierre; Clément, Karine

    2010-01-01

    OBJECTIVE Fibrosis is a newly appreciated hallmark of the pathological alteration of human white adipose tissue (WAT). We investigated the composition of subcutaneous (scWAT) and omental WAT (oWAT) fibrosis in obesity and its relationship with metabolic alterations and surgery-induced weight loss. RESEARCH DESIGN AND METHODS Surgical biopsies for scWAT and oWAT were obtained in 65 obese (BMI 48.2 ± 0.8 kg/m2) and 9 lean subjects (BMI 22.8 ± 0.7 kg/m2). Obese subjects who were candidates for bariatric surgery were clinically characterized before, 3, 6, and 12 months after surgery, including fat mass evaluation by dual energy X-ray absorptiometry. WAT fibrosis was quantified and characterized using quantitative PCR, microscopic observation, and immunohistochemistry. RESULTS Fibrosis amount, distribution and collagen types (I, III, and VI) present distinct characteristics in lean and obese subjects and with WAT depots localization (subcutaneous or omental). Obese subjects had more total fibrosis in oWAT and had more pericellular fibrosis around adipocytes than lean subjects in both depots. Macrophages and mastocytes were highly represented in fibrotic bundles in oWAT, whereas scWAT was more frequently characterized by hypocellular fibrosis. The oWAT fibrosis negatively correlated with omental adipocyte diameters (R = −0.30, P = 0.02), and with triglyceride levels (R = −0.42, P < 0.01), and positively with apoA1 (R = 0.25, P = 0.05). Importantly, scWAT fibrosis correlated negatively with fat mass loss measured at the three time points after surgery. CONCLUSIONS Our data suggest differential clinical consequences of fibrosis in human WAT. In oWAT, fibrosis could contribute to limit adipocyte hypertrophy and is associated with a better lipid profile, whereas scWAT fibrosis may hamper fat mass loss induced by surgery. PMID:20713683

  17. The generalized added mass revised

    NASA Astrophysics Data System (ADS)

    De Wilde, Juray

    2007-05-01

    The reformulation of the generalized or apparent added mass presented by De Wilde [Phys. Fluids 17, 113304 (2005)] neglects the presence of a drag-type force in the gas and solid phase momentum equations. Reformulating the generalized added mass accounting for the presence of a drag-type force, an apparent drag force appears next to the apparent distribution of the filtered gas phase pressure gradient over the phases already found by De Wilde in the above-cited reference. The reformulation of the generalized added mass and the evaluation of a linear wave propagation speed test then suggest a generalized added mass type closure approach to completely describe filtered gas-solid momentum transfer, that is, including both the filtered drag force and the correlation between the solid volume fraction and the gas phase pressure gradient.

  18. On the projected mass distribution around galaxy clusters . A Lagrangian theory of harmonic power spectra

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Gavazzi, Raphaël; Pichon, Christophe; Gouin, Céline

    2017-09-01

    Aims: Gravitational lensing allows us to quantify the angular distribution of the convergence field around clusters of galaxies to constrain their connectivity to the cosmic web. We describe the corresponding theory in Lagrangian space in which analytical results can be obtained by identifying clusters to peaks in the initial field. Methods: We derived the three-point Gaussian statistics of a two-dimensional (2D) field and its first and second derivatives. The formalism allowed us to study the statistics of the field in a shell around a central peak, in particular its multipolar decomposition. Results: The peak condition is shown to significantly remove power from the dipolar contribution and to modify the monopole and quadrupole. As expected, higher order multipoles are not significantly modified by the constraint. Analytical predictions are successfully checked against measurements in Gaussian random fields. The effect of substructures and radial weighting is shown to be small and does not change the qualitative picture.The non-linear evolution is shown to induce a non-linear bias of all multipoles proportional to the cluster mass. Conclusions: We predict the Gaussian and weakly non-Gaussian statistics of multipolar moments of a 2D field around a peak as a proxy for the azimuthal distribution of the convergence field around a cluster of galaxies. A quantitative estimate of this multipolar decomposition of the convergence field around clusters in numerical simulations of structure formation and in observations will be presented in two forthcoming papers.

  19. Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Guo, L.; Huang, Y.

    2013-12-01

    Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is resistive diffusion.

  20. High- and low-throughput scoring of fat mass and body fat distribution in C. elegans

    PubMed Central

    Wählby, Carolina; Lee-Conery, Annie; Bray, Mark-Anthony; Kamentsky, Lee; Larkins-Ford, Jonah; Sokolnicki, Katherine L.; Veneskey, Matthew; Michaels, Kerry; Carpenter, Anne E.; O’Rourke, Eyleen J.

    2014-01-01

    Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding, activity, and reproductive output. Accordingly, the most informative screens for genes and compounds affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is a well-established and effective model organism, especially for biological processes that involve organ systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C. elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only fat mass but also body fat distribution could be assessed at a genome-wide scale. Here we present a radical improvement in oil red O worm staining together with high-throughput image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free, and inexpensive, and requires only 15 minutes of hands-on time to process a 96-well plate. Together with our free and user-friendly automated image analysis package, this method enables C. elegans sample preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or chemical perturbations that lead to alterations in fat quantity and distribution in whole animals. PMID:24784529

  1. INFORMATION ON THE MILKY WAY FROM THE 2MASS ALL SKY STAR COUNT: BIMODAL COLOR DISTRIBUTIONS

    SciTech Connect

    Chang, Chan-Kao; Lai, Shao-Yu; Peng, Ting-Hung; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2012-11-10

    The J - K{sub s} color distributions (CDs) with a bin size of 0.05 mag has been carried out for the entire Milky Way using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, with a red peak at 0.8 < J - K{sub s} < 0.85 and a blue peak at 0.3 < J - K{sub s} < 0.4. The colors of the red peak are more or less the same for the whole sky, but those of the blue peak depend on Galactic latitude (J - K{sub s} {approx} 0.35 at low Galactic latitudes and 0.35 < J - K{sub s} < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all-sky 2MASS CDs, we assemble an empirical Hertzsprung-Russell (H-R) diagram, which is composed of observational-based near-infrared H-R diagrams and color-magnitude diagrams, and incorporate a Milky Way model. In the empirical H-R diagram, the main-sequence turn-off for stars in the thin disk is relatively bluer, (J - K{sub s} ){sub 0} = 0.31, compared with that of the thick disk which is (J - K{sub s} ){sub 0} = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main-sequence turn-off. In general, the 2MASS CDs can be treated as a tool to measure the age of the stellar population of the Milky Way in a statistical manner and to our knowledge it is the first attempt to do so.

  2. Mass Transport Deposits in the Santaren Channel: Distribution, Characteristics, and Potential Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Schnyder, J.

    2015-12-01

    Submarine slope failures are a likely cause for tsunami generation along the East U.S. coast. A possible source are the large slope failures along western Great Bahama Bank (GBB). Numerical models simulate tsunami generation and propagation through the Straits of Florida, caused by these Pleistocene mass wasting events. In order to estimate the likelihood and extent of future landslides, distribution, characteristics, and possible triggering mechanisms of previous failures and their associated mass transport deposits (MTD) have to be investigated. In 2013, the University of Hamburg acquired 2D high-resolution multichannel seismic data, multibeam data, and subbottom profiles inside the Santaren Channel, along the slopes of western GBB and Cay Sal Bank (CSB). The two platforms are different in two ways. CSB is part of the Cuban Fold and Thrust Belt while GBB is situated in a tectonically quiet zone. In addition, the slopes of western GBB are on the leeward side of the bank, while the eastern slopes of CSB are in a windward position. Differences in nature and size of mass wasting events between the Cay Sal side and the western GBB side of the dataset show how influential the tectonically active Cuban Fold and Thrust Belt is to the generation of large MTDs in this area. In the study area, the slope failures can be divided in two categories; small-scale in situ failures with high frequencies on the slopes, dominant on the western GBB side, and large landslides with a lower frequency, but higher volumes and transport distances on the toe of the slope and in the basin, dominant on the Cay Sal side. The distribution of in situ failures, such as slump and debris flow alternation, shows the interplay between high and low inner strength of the sediment, respectively. On the other hand, large MTDs caused by submarine landslides suggest movement in an unconfined manner. Internal sediment preconditions derived from sea level oscillations are suggested as triggering mechanisms

  3. Body mass index and distribution of body fat can influence sensory detection and pain sensitivity.

    PubMed

    Tashani, O A; Astita, R; Sharp, D; Johnson, M I

    2017-08-01

    The aim of this study was to investigate the influence of body fat percentage and its distribution on sensory detection and pain sensitivity responses to experimentally induced noxious stimuli in otherwise pain-free individuals. Seventy-two participants were divided into three equal groups according to their body mass index (BMI: normal, overweight and obese). Percentage body fat was estimated using a four-site skinfold method. Measurements of cold pressor pain threshold, tolerance and intensity; contact thermal sensory detection and heat pain threshold and tolerance (TSA-II - NeuroSensory Analyzer, Medoc); and blunt pressure pain threshold (algometer, Somedic SenseLab AB) were taken at the waist and thenar eminence. Mean ± SD pressure pain threshold of the obese group (620.72 ± 423.81 kPa) was significantly lower than normal (1154.70 ± 847.18 kPa) and overweight (1285.14 ± 998.89 kPa) groups. Repeated measures ANOVA found significant effects for site for cold detection threshold (F1,68  = 8.3, p = 0.005) and warm detection threshold (F1,68  = 38.69, p = 0.001) with waist having lower sensory detection thresholds than thenar eminence. For heat pain threshold, there were significant effects for site (F1,68  = 4.868, p = 0.031) which was lower for waist compared with thenar eminence (mean difference = 0.89 °C). Obese individuals were more sensitive than non-obese individuals to pressure pain but not to thermal pain. Body sites may vary in their response to different types and intensities of stimuli. The inconsistency of findings within and between research studies should catalyse further research in this field. This study provided evidence that body mass index and distribution of body fat can influence sensory detection and pain sensitivity. Obese individuals were more sensitive than normal range body mass index individuals to pressure pain but not to thermal pain. Pain response varied according to subcutaneous body fat at different body

  4. Criteria and models for the distribution of casualties in trauma-related mass casualty incidents: a systematic literature review protocol.

    PubMed

    Khajehaminian, Mohammad Reza; Ardalan, Ali; Hosseini Boroujeni, Sayed Mohsen; Nejati, Amir; Keshtkar, Abbasali; Foroushani, Abbas Rahimi; Ebadati E, Omid Mahdi

    2017-07-12

    One of the most critical practices in mass casualty incident management is vacating the victims from scene of the incident and transporting them to proper healthcare facilities. Decision on distribution of casualties needs to be taken on pre-developed policies and structured decision support mechanisms. While many studies tried to present models for the distribution of casualties, no systematic review has yet been conducted to evaluate the existing models on casualty distribution following mass casualty incidents. A systematic review is therefore needed to examine the existing models of patient distribution and to provide a summary of the models. This systematic review protocol is aimed to examine the existing models and extracting rules and principles of mass casualty distribution. This study will comprehensively investigate existing papers with search phrases and terms including "mass casualty incident", distribution, evacuation, and Mesh terms directly corresponding to search phrases. No limitations on the type of studies, date of publication, or language of the relevant documents will be imposed. PubMed, Web of Science, Scopus, and Google Scholar will be searched to access the relevant documents. Included papers will be critically appraised by two independent reviewers. The data including incidents type, scene characteristics, patient features, pre-hospital resources, and hospital resources will be categorized. Subgroup analysis will be conducted when possible. To the best of our knowledge, no study has yet addressed the effects and interaction of contributing factors on the decision-making processes for casualty's distribution. This is the first study that comprehensively assesses and critically appraises the current models of casualty distribution. This study will provide evidences about models and criteria for casualty distribution following mass casualty incidents. PROSPERO Registration Number: CRD42016049115.

  5. Automated Anatomical Interpretation of Ion Distributions in Tissue: Linking Imaging Mass Spectrometry to Curated Atlases

    PubMed Central

    2015-01-01

    Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments. PMID:25153352

  6. Automated anatomical interpretation of ion distributions in tissue: linking imaging mass spectrometry to curated atlases.

    PubMed

    Verbeeck, Nico; Yang, Junhai; De Moor, Bart; Caprioli, Richard M; Waelkens, Etienne; Van de Plas, Raf

    2014-09-16

    Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments.

  7. Primary motives for demand of ivermectin drug in mass distribution programmes to control onchocerciasis.

    PubMed

    Abanobi, O C; Chukwuocha, U M; Onwuiiliri, C O E; Opara, K C

    2011-03-01

    This report of a survey study presents findings from a sample of 594 persons out of a total of 35,763 treated individuals who voluntarily demanded Ivermectin treatment during a community-based Ivermectin distribution exercise. The distribution, which took place in 2008, was the seventh in the planned ten or more years of mass distribution of the microfilaricide to control onchocerciasis in endemic communities of Ezinihitte in the Imo River Basin of Nigeria. The subjects were selected by quota sampling procedure on the basis of community and gender, and were asked to rank-order six plausible reasons for seeking treatment in terms of their order of importance in motivating them to demand Ivermectin. "To gain treatment and prevention of Skin Problems" and "Desire to be De-wormed" ranked first and second respectively. "To gain promotion of general wellbeing" and "To improve state of vision and prevent of blindness" ranked third and fourth respectively. In the fifth and sixth rank-ordered positions were "To prevent hanging groin" and "to prevent/relieve enlargement of the scrotum or clitoris" in that order. A test of hypothesis to determine if there was significant agreement among treated persons on the rank order of importance of their reasons for demanding Ivermectin gave a Kendall's Coefficient of Concordance of, W = 0.62, p < 0.01. The findings are interpreted within the framework of the major postulations of the health belief model with consideration to perceptions of severity of the conditions and belief that submitting to treatment will abate the perceived risk of the conditions. The role of endemicity of specific manifestations of onchocerciasis in lay assessment of risk of this disease is also discussed.

  8. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Klitgaard, A. B.; Tendal, O. S.

    2004-04-01

    The geographic and bathymetric distribution of “ostur”, that is mass occurrences of large-sized astrophorid demosponges, first recognized at the Faroe Islands during the internordic BIOFAR programme (Marine Benthic Fauna of the Faroe Islands), are mapped for the northeast Atlantic. This is done on the basis of information obtained during the sampling of the BIOICE programme (Benthic Invertebrates in Icelandic Waters) as well as during cruises at Karmoy (southwest Norway), the Trondheim Fjord (middle Norway), the Koster area (southwest Sweden) and the Denmark Strait (southeast Greenland). In addition, information has been acquired from Nordic and German biologists and fishermen regarding the occurrence of “ostur”. These data together with the sparse information in the literature show that the geographic distribution of the “ostur” areas follows two band-shaped arcs, defined by the Norwegian Atlantic Current and the Irminger Current. The local occurrence of “ostur” is, however, to a great extent dependent on areas of variable topography where a hard bottom is present. The results show that two main types of “ostur” can be recognized in the northeast Atlantic. Firstly a boreal “ostur” which is dominated by Geodia barretti, Geodia macandrewi, Geodia atlantica, Isops phlegraei, Stryphnus ponderosus and Stelletta normani, and occurs around the Faroe Islands, Norway, Sweden, parts of the western Barents Sea and south of Iceland. Secondly a cold water “ostur” characterized by the same genera but represented by different species, viz. Geodia mesotriaena, Isops phlegraei pyriformis and Stelletta rhaphidiophora, which is found north of Iceland, in most of the Denmark Strait, off East Greenland and north of Spitzbergen. A number of hexactinellid species are also represented in the cold water “ostur”, the most frequently occurring being Schaudinnia rosea. Suggestions are given regarding the possible causes for observed changes in the distribution

  9. Investigation of fine-structure dips in fission-fragment mass distribution: An asymmetric two centre shell model approach

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2017-04-01

    The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.

  10. The Interplay Between Fat Mass and Fat Distribution as Determinants of the Metabolic Syndrome Is Sex-Dependent.

    PubMed

    Lind, Lars; Ärnlöv, Johan; Lampa, Erik

    2017-09-01

    Fat mass and fat distribution are major determinants of the metabolic syndrome (MetS), but the interplay between them has not been thoroughly investigated. In addition, fat mass and fat distribution are generally different in men than in women. We aimed to determine whether the interplay between fat mass and fat distribution regarding MetS and its components is sex-dependent using data from the large-scale population-based sample EpiHealth. Occurrence of MetS and its components was determined together with fat mass by bioimpedance in 19,094 participants in the EpiHealth sample [mean age 61 years (SD 8.5), 56% females]. MetS was defined by the NCEP/ATPIII-criteria. MetS prevalence was 23.0%. Fat mass (percent of body weight) was more strongly related to MetS (and the number of MetS components) in men than in women (P < 0.0001 for interaction term) and in those with a high compared with those with a low waist/hip ratio (WHR). This modulating effect of WHR on the fat mass versus MetS-relationship was more pronounced in women than in men (P < 0.0001 for interaction term). When analyzing the MetS components one by one, fat mass was more closely related to all the individual MetS criteria in men than in women, except for the glucose criteria. Fat mass is more closely related to prevalent MetS in men than in women, but the modulating effect of an abdominal type of fat distribution on the fat mass versus MetS-relationship is stronger in women.

  11. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙),more » and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  12. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (˜2%-5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (˜40%-80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  13. The ATLAS3D project - XX. Mass-size and massdistributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph

  14. Measuring the Mass Distribution in Z is Approximately 0.2 Cluster Lenses with XMM, HST and CFHT

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Being the most massive gravitationally bound objects in the Universe, clusters of galaxies are prime targets for studies of structure formation and evolution. Specifically the comoving space density of virialized clusters of a given mass (or X-ray temperature), but also the frequency and degree of substructure, as well as the shape of the cluster mass profile are quantities whose current values and evolution as a function of lookback time can provide important constraints on the cosmological and physical parameters of structure formation theories. The project funded by NASA grant NAG 5-10041 intended to take such studies to a new level by combining observations of a well-selected cluster sample by three state-of-the-art telescopes: HST, to accurately measure the mass distribution in the cluster core (approx. 0.5 h(sup -1)(sub 50) Mpc) via strong gravitational lensing; CFHT, to measure the large scale mass distribution out to approx. 3 Mpc via weak lensing; and XMM, to measure the gas density and temperature distribution accurately on intermediate scales < 1.5 Mpc. XMM plays a pivotal role in this context as the calibration of X-ray mass measurements through accurate, spatially resolved X-ray temperature measurements (particularly in the cosmologically most sensitive range of kT> 5 keV) is central to the questions outlined above. This set of observations promised to yield the best cluster mass measurements obtained so far for a representative sample, thus allowing us to: 1) Measure the high-mass end of the local cluster mass function; 2) Test predictions of a universal cluster mass profile; 3) calibrate the mass-temperature and temperature-luminosity relations for clusters and the scatter around these relations, which is vital for studies of cluster evolution using the X-ray temperature and X-ray luminosity functions.

  15. Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution

    NASA Astrophysics Data System (ADS)

    Wyatt, M. C.; Farihi, J.; Pringle, J. E.; Bonsor, A.

    2014-04-01

    This paper explores how the stochastic accretion of planetesimals on to white dwarfs would be manifested in observations of their atmospheric pollution. Archival observations of pollution levels for unbiased samples of DA and non-DA white dwarfs are used to derive the distribution of inferred accretion rates, confirming that rates become systematically lower as sinking time (assumed here to be dominated by gravitational settling) is decreased, with no discernable dependence on cooling age. The accretion rates expected from planetesimals that are all the same mass (i.e., a mono-mass distribution) are explored both analytically and using a Monte Carlo model, quantifying how measured accretion rates inevitably depend on sinking time, since different sinking times probe different times since the last accretion event. However, that dependence is so dramatic that a mono-mass distribution can be excluded within the context of this model. Consideration of accretion from a broad distribution of planetesimal masses uncovers an important conceptual difference: accretion is continuous (rather than stochastic) for planetesimals below a certain mass, and the accretion of such planetesimals determines the rate typically inferred from observations; smaller planetesimals dominate the rates for shorter sinking times. A reasonable fit to the observationally inferred accretion rate distributions is found with model parameters consistent with a collisionally evolved mass distribution up to Pluto-mass, and an underlying accretion rate distribution consistent with that expected from descendants of debris discs of main-sequence A stars. With these parameters, while both DA and non-DA white dwarfs accrete from the same broad planetesimal distribution, this model predicts that the pollution seen in DAs is dominated by the continuous accretion of <35 km objects, and that in non-DAs by >35 km objects (though the dominant size varies between stars by around an order of magnitude from this

  16. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  17. Distribution and mass inventory of total dichlorodiphenyldichloroethylene in the water column of the southern California bight.

    PubMed

    Zeng, Eddy Y; Tsukada, David; Diehl, Dario W; Peng, Jian; Schiff, Kenneth; Noblet, James A; Maruya, Keith A

    2005-11-01

    A large-scale survey on the area and depth stratified distribution of dichlorodiphenyltrichloroethane (DDT; mainly p,p'- and o,p'-dichlorodiphenyldichloroethylene (DDE)) contamination in the water column of the Southern California Bight (SCB) was conducted in 2003-2004 using a solid-phase microextraction-based sampling technique. Dissolved-phase DDEs were clearly widespread, with the central SCB containing the highest levels, and the Palos Verdes Shelf sediments have remained the dominant source of DDT compounds to the SCB. The p,p'- and o,p'-DDE concentrations ranged from < 0.073 to 2.6 ng/L and from < 0.043 to 0.26 ng/L, respectively, clearly elevated with respect to measured values from across the globe. DDEs were hypothesized to have been transported from the historically contaminated zone on the Palos Verdes Shelf to other areas via a repeated process of sediment resuspension/deposition and short-range advection. Total mass inventories were estimated at 14 and 0.86 kg for p,p'- and o,p'-DDE, respectively, for the sampled area, resulting in p,p'- and o,p'-DDE mass inventories for the entire SCB of 230 and 14 kg, respectively. Furthermore, total fluxes of p,p'-DDE were estimated to be in the range of 0.8 to 2.3 metric tons per year. These results suggest that the SCB has been and continues to be a significant source of DDT contamination to the global oceans.

  18. Desorption Electrospray Ionization (DESI) Mass Spectrometric Imaging of the Distribution of Rohitukine in the Seedling of Dysoxylum binectariferum Hook. F

    PubMed Central

    Mohana Kumara, Patel; Srimany, Amitava; Arunan, Suganya; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Pradeep, Thalappil

    2016-01-01

    Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spectrometry imaging (DESI MSI) and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and methoxylated analogues. Rh was predominantly distributed in the main roots, collar region of the stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex region. The identities of the metabolites were assigned based on both the fragmentation patterns and exact mass analyses. We discuss these results, with specific reference to the possible pathways of Rh biosynthesis and translocation during seedling development in D. binectariferum. PMID:27362422

  19. Desorption Electrospray Ionization (DESI) Mass Spectrometric Imaging of the Distribution of Rohitukine in the Seedling of Dysoxylum binectariferum Hook. F.

    PubMed

    Mohana Kumara, Patel; Srimany, Amitava; Arunan, Suganya; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Pradeep, Thalappil

    2016-01-01

    Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spectrometry imaging (DESI MSI) and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and methoxylated analogues. Rh was predominantly distributed in the main roots, collar region of the stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex region. The identities of the metabolites were assigned based on both the fragmentation patterns and exact mass analyses. We discuss these results, with specific reference to the possible pathways of Rh biosynthesis and translocation during seedling development in D. binectariferum.

  20. Normative data of body fat mass and its distribution as assessed by DXA in Indian adult population.

    PubMed

    Marwaha, Raman K; Tandon, Nikhil; Garg, M K; Narang, Archna; Mehan, Neena; Bhadra, Kuntal

    2014-01-01

    Dual-energy X-ray absorptiometry (DXA) assessment of body fat mass is precise and highly correlated with under water weighing. In view of ethnic differences, we undertook this study to prepare normative data for body fat mass in apparently healthy adult Indians and correlate it with body mass index (BMI). This cross-sectional population-based study included 2347 subjects (male: 924; female: 1423) aged >20 yr who participated in a general health examination. They were evaluated for anthropometry and body fat mass by DXA. All subjects were categorized as overweight and obese based on standard BMI criteria. Mean age and BMI were 49.1 ± 18.2yr and 25.0 ± 4.7kg/m(2), respectively. Mean percent total and regional fat (trunk, arm, and leg) reached maximum in the age group of 30-40yr in males and 50-60yr in females. Females had significantly higher total and regional fat mass compared with males. Fat mass was positively correlated with age (r = 0.224; p < 0.00001) and BMI (r = 0.668; p < 0.00001). Prevalence of overweight and obesity was seen in 2119 (46.1%) and 536 (13.8%), respectively, according to World Health Organization definition and 64.0% and 31.1%, respectively, as per Indian guidelines. Percent total body fat mass (PTBFM) of 25% in males and 30% in females corresponds to BMI of 22.0kg/m(2) with sensitivity of >80% and specificity of >70% in receiver operating characteristic curve analysis. Body fat mass in Indians is higher than that in Western populations for a given age and BMI. PTBFM of 25% in males and 30% in females corresponds to BMI of 22kg/m(2) in Indians.

  1. Distribution of fat, non-osseous lean and bone mineral mass in international Rugby Union and Rugby Sevens players.

    PubMed

    Higham, D G; Pyne, D B; Anson, J M; Dziedzic, C E; Slater, G J

    2014-06-01

    Differences in the body composition of international Rugby Union and Rugby Sevens players, and between players of different positions are poorly understood. The purpose of this study was to examine differences in the quantity and regional distribution of fat, non-osseous lean and bone mineral mass between playing units in Rugby Union and Rugby Sevens. Male Rugby Union (n=21 forwards, 17 backs) and Rugby Sevens (n=11 forwards, 16 backs) players from the Australian national squads were measured using dual-energy X-ray absorptiometry. The digital image of each player was partitioned into anatomical regions including the arms, legs, trunk, and android and gynoid regions. Compared with backs, forwards in each squad were heavier and exhibited higher absolute regional fat (Union 43-67%; ±~17%, range of % differences; ±~95% confidence limits (CL); Sevens 20-26%; ±~29%), non-osseous lean (Union 14-22%; ±~5.8%; Sevens 6.9-8.4%; ±~6.6%) and bone mineral (Union 12-26%; ±~7.2%; Sevens 5.0-11%; ±~7.2%) mass. When tissue mass was expressed relative to regional mass, differences between Rugby Sevens forwards and backs were mostly unclear. Rugby Union forwards had higher relative fat mass (1.7-4.7%; ±~1.9%, range of differences; ±~95% CL) and lower relative non-osseous lean mass (-4.2 to -1.8%; ±~1.8%) than backs in all body regions. Competing in Rugby Union or Rugby Sevens characterized the distribution of fat and non-osseous lean mass to a greater extent than a player's positional group, whereas the distribution of bone mineral mass was associated more with a player's position. Differences in the quantity and distribution of tissues appear to be related to positional roles and specific demands of competition in Rugby Union and Rugby Sevens. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Evidence for the inside-out growth of the stellar mass distribution in galaxy clusters since z ~ 1

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Balogh, Michael L.; McGee, Sean L.

    2015-05-01

    We study the radial number density and stellar mass density distributions of satellite galaxies in a sample of 60 massive clusters at 0.04 masses, and then statistically subtract fore- and background sources using data from the COSMOS survey. We measure the galaxy number density and stellar mass density distributions in logarithmically spaced bins over 2 orders of magnitude in radial distance from the BCGs. For projected distances in the range 0.1 mass distribution is well-described by an NFW profile with a concentration of c = 2.03 ± 0.20. However, at smaller radii we measure a significant excess in the stellar mass in satellite galaxies of about 1011M⊙ per cluster, compared to these NFW profiles. We do obtain good fits to generalised NFW profiles with free inner slopes and to Einasto profiles. To examine how clusters assemble their stellar mass component over cosmic time, we compare this local sample to the GCLASS cluster sample at z ~ 1, which represents the approximate progenitor sample of the low-z clusters. This allows for a direct comparison, which suggests that the central parts (R< 0.4 Mpc) of the stellar mass distributions of satellites in local galaxy clusters are already in place at z ~ 1, and contain sufficient excess material for further BCG growth. Evolving towards z = 0, clusters appear to assemble their stellar mass primarily onto the outskirts, making them grow in an inside-out fashion. Appendix A is available in electronic form at http://www.aanda.org

  3. Characterization of the Mass Size Distribution of Plumes Passing Over Lower Manhattan After the WTC Disaster

    NASA Astrophysics Data System (ADS)

    Leifer, R.; Cahill, T. A.; Bench, G.

    2002-12-01

    In response to the disaster at the World Trade Center (WTC), EML initiated a sampling program, on the lab's roof (12th floor), to characterize plumes passing over the building. We were hoping to intercept debris from ground zero, which is approximately 2 km south of EML. The sampler, an 8 stage Davis Rotating Universal Size-cut Monitoring Sampler (DRUM) operated on a 42-day cycle and provided three sets of drums for chemical analysis during the period from October 2, 2001 to the end of December 2001. This sampler, loaned from University of California, Davis (Thomas Cahill) was used for collecting low volume environmental samples for analysis of mass, optical aerosol properties, trace element concentration, organics and asbestos. The DRUM sampler contains eight stages with 50% aerodynamic cut diameters of 5 μm, 2.5 μm, 1.15 μm, 0.75 μm, 0.56 μm, 0.34 μm, 0.24 μm, and 0.09 μm. The inlet rain hat removes particles above 15 μm. The impactor was operated at 10 L min-1. Measurements of the ambient pressure, temperature, wind speed, wind direction and relative humidity were available from a meteorological system mounted on EML's roof. Samples were returned to the University of California, Davis where they were analyzed for optical properties, size and morphology, mass, hydrogen, elemental and organic concentrations. This paper provides information on mass concentration that was analyzed in vacuum by scanning transmission ion microscopy (STIM) using a 3 MEV proton microprobe. During the month of October 2001 (only data presently available) more than 25 plumes were detected passing over EML. The most dramatic occurred on October 3, 2001 when the concentration in stage 5 (0.34 to 0.56 μm) reached 111 μg m-3 and the PM 2.5 equivalent concentration reached 235 μg m-3. The characteristic of this plume, which lasted approximately 10 hours, with peak concentrations occurring at 09:00, will be discussed. Using NOAA and EML meteorological observations, plume types are

  4. Quantitative imaging of inositol distribution in yeast using multi-isotope imaging mass spectrometry (MIMS).

    PubMed

    Saiardi, A; Guillermier, C; Loss, O; Poczatek, J C; Lechene, C

    2014-11-01

    Despite the widely recognized importance of the several species of inositol polyphosphates in cell biology, inositol has not been successfully imaged and quantified inside cells using traditional spectrophotometry. Multi-isotope imaging mass spectrometry (MIMS) technology, however, has facilitated direct imaging and measurement of cellular inositol. After pulsing cells with inositol labeled with the stable isotope Carbon-13 ((13)C), the label was detected in subcellular volumes by MIMS. The tridimensional localization of (13)C within the cell illustrated cellular distribution and local accumulation of inositol. In parallel, we performed control experiments with (13)C-Glucose to compare a different (13)C distribution pattern. Because many functions recently attributed to inositol polyphosphates are localized in the nucleus, we analyzed its relative nuclear concentration. We engineered yeast with human thymidine permease and viral thymidine kinase, then fed them with (15)N-thymidine. This permitted direct analysis of the nuclear DNA through the detection of the (15)N isotopic signal. We found practically no co-localization between inositol signal ((13)C-isotope) and nuclear signal ((15)N-isotope). The (13)C-tag (inositol) accumulation was highest at the plasma membrane and in cytoplasmic domains. In time-course labeling experiments performed with wild type yeast (WT) or modified yeast unable to synthesize inositol from glucose (ino1Δ), the half-time of labeled inositol accumulation was ~1 hour in WT and longer in ino1Δ. These studies should serve as a template to study metabolism and physiological role of inositol using genetically modified yeasts.

  5. A Detailed Study of the Mass Distribution of the Galaxy Cluster RXC J2248.7-4431

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Rosati, P.; Grillo, C.; the CLASH-VLT Team

    2016-02-01

    In this work we use strong gravitational lensing techniques to constrain the total mass distribution of the galaxy cluster RXC J2248.7-4432 (RXC J2248, zlens = 0.348), also known as Abell S1063, observed within the Cluster Lensing And Supernova survey with Hubble (CLASH). Thanks to its strong lensing efficiency and exceptional data quality from the VIsible Multi-Object Spectrograph (VIMOS) and Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope, we can build a parametric model for the total mass distribution. Using the positions of the multiple images generated by 7 multiply-lensed background sources with measured spectroscopic redshifs, we find that the best-fit parametrisation for the cluster total mass distribution is composed of an elliptical pseudo-isothermal mass distribution with a significant core for the overall cluster halo, and of truncated pseudo-isothermal mass profiles for the cluster galaxies. This model is capable to predict the positions of the multiple images with an unprecedented precision of ≈ 0”.3. We also show that varying freely the cosmological parameters of the ΛCDM model, our strong lensing model can constrain the underlying geometry of the universe via the angular diameter distances between the lens and the sources and the observer and the sources.

  6. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  7. High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots1[C][W][OA

    PubMed Central

    Moore, Katie L.; Schröder, Markus; Wu, Zhongchang; Martin, Barry G.H.; Hawes, Chris R.; McGrath, Steve P.; Hawkesford, Malcolm J.; Feng Ma, Jian; Zhao, Fang-Jie; Grovenor, Chris R.M.

    2011-01-01

    Rice (Oryza sativa) takes up arsenite mainly through the silicic acid transport pathway. Understanding the uptake and sequestration of arsenic (As) into the rice plant is important for developing strategies to reduce As concentration in rice grain. In this study, the cellular and subcellular distributions of As and silicon (Si) in rice roots were investigated using high-pressure freezing, high-resolution secondary ion mass spectrometry, and transmission electron microscopy. Rice plants, both the lsi2 mutant lacking the Si/arsenite efflux transporter Lsi2 and its wild-type cultivar, with or without an iron plaque, were treated with arsenate or arsenite. The formation of iron plaque on the root surface resulted in strong accumulation of As and phosphorous on the epidermis. The lsi2 mutant showed stronger As accumulation in the endodermal vacuoles, where the Lsi2 transporter is located in the plasma membranes, than the wild-type line. As also accumulated in the vacuoles of some xylem parenchyma cells and in some pericycle cells, particularly in the wild-type mature root zone. Vacuolar accumulation of As is associated with sulfur, suggesting that As may be stored as arsenite-phytochelatin complexes. Si was localized in the cell walls of the endodermal cells with little apparent effect of the Lsi2 mutation on its distribution. This study reveals the vacuolar sequestration of As in rice roots and contrasting patterns of As and Si subcellular localization, despite both being transported across the plasma membranes by the same transporters. PMID:21490163

  8. An airplane illusion: apparent velocity determined by apparent distance.

    PubMed

    Hershenson, M; Samuels, S M

    1999-01-01

    When a small drone plane appears to be a normal-sized airplane, it appears to be very far away and moving too fast. This is the airplane illusion. In the illusory situation, familiar size determines the apparent size and distance of the plane. It sets the depth for the frontal-plane component of the perceived motion and the relative depth difference for the motion-in-depth component. Because these perceived distances are very large, the perceived velocities are very large in the respective directions. Cognition can override familiarity and produce a veridical perception of the drone.

  9. Measurement of the First and Second Moments of the Hadronic Mass Distribution in Semileptonic B Decays

    SciTech Connect

    Flaecher, Henning U

    2003-07-18

    We report a preliminary measurement of the first and second moments of the hadronic mass distributions in B {yields} X{sub c}{ell}{nu} decays. The measurements are based on {Upsilon}(4S) {yields} B{bar B} events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for threshold lepton momenta ranging from 0.9 to 1.6 GeV. From the moments we determine the non-perturbative Heavy Quark Expansion (HQE) parameters, {bar {Lambda}} and {lambda}{sub 1}. We combine the measured moments with earlier BABAR measurements of the semileptonic branching ratios and B lifetimes and perform a simultaneous fit to the HQE for the moments obtained for different threshold lepton momenta and the semileptonic decay width. This fit results in an improved value for the CKM matrix element |V{sub cb}|.

  10. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two (13) C atoms ((13) C2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of (13) C2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% (13) C2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging

    PubMed Central

    Giordano, Silvia; Pifferi, Valentina; Morosi, Lavinia; Morelli, Melinda; Falciola, Luigi; Cappelletti, Giuseppe; Visentin, Sonja; Licandro, Simonetta A.; Frapolli, Roberta; Zucchetti, Massimo; Pastorelli, Roberta; Brunelli, Laura; D’Incalci, Maurizio; Davoli, Enrico

    2017-01-01

    The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice. PMID:28336905

  12. Evaluation of Plantar Pressure Distribution in Relationship to Body Mass Index in Czech Women During Walking.

    PubMed

    Tománková, Kristína; Přidalová, Miroslava; Svoboda, Zdenek; Cuberek, Roman

    2017-05-01

    Excessive body weight seems to be a risk factor for foot loading. We sought to investigate the effect of different body mass index (BMI) levels on plantar pressure distribution during walking. In total, 163 women aged 45 to 65 years (mean ± SD: age, 57.4 ± 5.3 years; BMI, 27.0 ± 5.3) participated in the study. The women were divided, on the basis of BMI, into a normal-weight, overweight, or obese group. The study used the four following plantar pressure parameters (PPPs): contact percentage, absolute pressure impulse, relative pressure impulse, and absolute peak pressure, which were recorded in ten foot regions using a pressure measurement system. The normal-weight group, compared with the overweight and obese groups, had significantly lower absolute PPP values. In the hallux, second through fifth metatarsals, midfoot, and heel regions, we observed significant between-group differences in the two absolute PPPs (peak pressure and pressure impulse) (P < .001). Between-group differences in the relative PPPs were found in the fourth metatarsal, midfoot, and medial heel (relative impulse) and in the second metatarsal (contact percentage) (P < .001). Higher BMI values correspond to a higher load on the foot during walking in women. The relative foot load in obese women is characterized by a pressure increase in the lateral forefoot and midfoot and by a pressure decrease in the medial heel.

  13. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  14. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae

    PubMed Central

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-01-01

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001 PMID:28492366

  15. Evaluation of Sparfloxacin Distribution by Mass Spectrometry Imaging in a Phototoxicity Model

    NASA Astrophysics Data System (ADS)

    Boudon, Stéphanie Marie; Morandi, Grégory; Prideaux, Brendan; Staab, Dieter; Junker, Ursula; Odermatt, Alex; Stoeckli, Markus; Bauer, Daniel

    2014-10-01

    Mass spectrometry imaging (MSI) was applied to samples from mouse skin and from a human in vitro 3D skin model in order to assess its suitability in the context of photosafety evaluation. MSI proved to be a suitable method for the detection of the model compound sparfloxacin in biological tissues following systemic administration (oral gavage, 100 mg/kg) and subsequent exposure to simulated sunlight. In the human in vitro 3D skin model, a concentration-dependent increase as well as an irradiation-dependent decrease of sparfloxacin was observed. The MSI data on samples from mouse skin showed high signals of sparfloxacin 8 h after dosing. In contrast, animals irradiated with simulated sunlight showed significantly lower signals for sparfloxacin starting already at 1 h postirradiation, with no measurable intensity at the later time points (3 h and 6 h), suggesting a time- and irradiation-dependent degradation of sparfloxacin. The acquisition resolution of 100 μm proved to be adequate for the visualization of the distribution of sparfloxacin in the gross ear tissue samples, but distinct skin compartments were unable to be resolved. The label-free detection of intact sparfloxacin was only the first step in an attempt to gain a deeper understanding of the phototoxic processes. Further work is needed to identify the degradation products of sparfloxacin implicated in the observed inflammatory processes in order to better understand the origin and the mechanism of the phototoxic reaction.

  16. Body mass index and body fat distribution in newly-arrived Vietnamese refugees in Sydney, Australia.

    PubMed

    Bermingham, M; Brock, K; Nguyen, D; Tran-Dinh, H

    1996-10-01

    Body mass index (BMI), body fat distribution and some behavioural variables were examined in an ethnic Vietnamese population newly arrived in Australia. The age range was 23 to 74 years for males (n = 246, mean = 38.8) and 24 to 66 for females (n = 165, mean = 36.4). Mean BMI was 20.62 +/- 2.65 (male) and 21.25 +/- 3.16 (female). Waist-to-hip ratio (WHR) was 0.844 (males) v 0.802 (females), p < 0.0001: waist was 73.7 cm (males) v 71.7 cm (females), (p = 0.007). Male smoking was 69%, female, 1%; the BMI of male non-smokers was higher than that of smokers 21.22 v 20.35 (p = 0.0017). Exercise patterns, diet or alcohol intake did not appear to affect BMI. The mean BMI of this refugee Vietnamese population is low by comparison with the Australian population. Vietnamese females although of lower mean BMI, have higher WHR than Australian females.

  17. Characterization of macromolecular complexes in red wine: Composition, molecular mass distribution and particle size.

    PubMed

    Bindon, Keren A; Carew, Anna L; Mierczynska-Vasilev, Agnieszka; Kassara, Stella; Kerslake, Fiona; Smith, Paul A

    2016-05-15

    Precipitates were prepared from two compositionally different Pinot noir wines with addition of excess ethanol, and contained primarily polysaccharide, tannin and protein. The ethanol-soluble material was further fractionated into polymeric (tannin) and monomeric phenolics. Tannin associated with precipitates was of a higher molecular mass than that remaining in ethanolic solution. Wine fractions were reconstituted at the ratios of the original wine and analyzed using nanoparticle tracking analysis. The average particle size of the tannin fraction was 75-89 nm, and increased when combined with the precipitate (≅ 200 nm). Addition of the monomeric fraction to the tannin-precipitate complex increased both the incidence and concentration of smaller particles, reducing the average particle size. The formation of aggregates occurred in all fractions and only minor differences in particle size distribution were found between wines. Differences in particle concentration between wines appear to be due to differences in the total concentration of macromolecules rather than compositional differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.

    2015-03-01

    During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.

  19. Stereophotogrammetrie Mass Distribution Parameter Determination Of The Lower Body Segments For Use In Gait Analysis

    NASA Astrophysics Data System (ADS)

    Sheffer, Daniel B.; Schaer, Alex R.; Baumann, Juerg U.

    1989-04-01

    Inclusion of mass distribution information in biomechanical analysis of motion is a requirement for the accurate calculation of external moments and forces acting on the segmental joints during locomotion. Regression equations produced from a variety of photogrammetric, anthropometric and cadaeveric studies have been developed and espoused in literature. Because of limitations in the accuracy of predicted inertial properties based on the application of regression equation developed on one population and then applied on a different study population, the employment of a measurement technique that accurately defines the shape of each individual subject measured is desirable. This individual data acquisition method is especially needed when analyzing the gait of subjects with large differences in their extremity geo-metry from those considered "normal", or who may possess gross asymmetries in shape in their own contralateral limbs. This study presents the photogrammetric acquisition and data analysis methodology used to assess the inertial tensors of two groups of subjects, one with spastic diplegic cerebral palsy and the other considered normal.

  20. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

    2014-02-01

    The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

  1. Existence and differential geometric properties of continuous families of periodic three-body motions with non-uniform mass distributions

    NASA Astrophysics Data System (ADS)

    Khajeh Salehani, Mahdi

    Using the method of analytic continuation in an equivariant differential geometric setting, we exhibit two interesting families of vanishing angular momentum periodic orbits for the Newtonian three-body problem with non-uniform mass distributions having two equal masses which connect at the celebrated figure-8 orbit, exhibited by A. Chenciner and R. Montgomery (2000) in the case of equal masses, and yield a continuous family of periodic three-body motions in the plane. At one end of the family, when the two equal masses are infinitesimal and the third one reaches the value of +1, we arrive at a solution of a double Kepler problem; at the other end of the family, when the third mass is infinitesimal, we have a special case of periodic solution of a restricted three-body problem.

  2. Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration

    NASA Astrophysics Data System (ADS)

    Imhoff, Paul T.; Jaffé, Peter R.

    1994-09-01

    Gas-water phase mass transfer was examined in a homogeneous sand with both the gas and water phase mobile: water was infiltrated from the top of the sand column while benzene-laden air flowed upward from the bottom. Mass-transfer limitations for this situation may be important for applications of bioventing, where water and nutrients are added at the ground surface simultaneously with induced air movement to carry oxygen and volatile organics to microbial populations. Gas- and water-phase samples indicate that gas-water phase mass transfer was sufficiently fast that equilibrium between gas and water phases was achieved at all sampling locations within the porous medium. Lower-bound estimates for the gas-water mass-transfer rate coefficient show that mass transfer was at least 10-40 times larger than predictions made from an empirical model developed for gas-water phase mass transfer in an identical porous medium. A water-phase tracer test demonstrates that water flow was much more uniform in this study than in those earlier experiments, which is a likely explanation for the differing rates of gas-water phase mass transfer. It is hypothesized that the liquid distribution in previous laboratory experiments was less uniform because of preferential flow paths due to wetting front instabilities. Gas-water phase mass-transfer rate coefficients reported in this investigation are for an ideal situation of uniform water infiltration: mass-transfer rates in field soils are expected to be significantly smaller.

  3. A method for estimating distributions of mass transfer rate coefficients with application to purging and batch experiments

    NASA Astrophysics Data System (ADS)

    Hollenbeck, K. J.; Harvey, C. F.; Haggerty, R.; Werth, C. J.

    1999-04-01

    Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding of pore-scale heterogeneity demonstrate that two (or even a few) rate coefficients are insufficient in many cases. Here, we investigate a piece-wise linear model for a continuous distribution of rate coefficients, that has several advantages over previously used `statistical' distribution models (with functional form from gamma or lognormal PDF's): (1) distributions of arbitrary, even bimodal, shapes can be represented; (2) linear estimation methods can be applied to determine the distribution from experimental data; (3) the uncertainty in the distribution can be determined for each of its sections; and (4) the relationship between the time scales of available data and those of estimatable mass transfer processes can be investigated. A statistical model refinement algorithm is presented that reduces the number of parameters (sections of the piece-wise linear model) to the admissible minimum. We show that purging experiments allow estimation of a wider zone of the rate distribution than do batch experiments, and hence will provide predictions that are accurate over a wider range of time scales. Finally, in an application to TCE gas-purging desorption data, the piece-wise linear rate-distribution model has a higher probability of being adequate than those using a gamma or lognormal distribution or a single rate coefficient.

  4. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto.

    PubMed

    Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

    2017-03-08

    Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography-electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.

  5. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto

    PubMed Central

    Matsumoto, Takashi; Kushida, Hirotaka; Matsushita, Shoko; Oyama, Yoshiyuki; Suda, Takafumi; Watanabe, Junko; Kase, Yoshio; Setou, Mitsutoshi

    2017-01-01

    Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography–electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung. PMID:28272490

  6. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; Yi, Donghui; Wang, Weili

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  7. The Planetary Nebula System and Dynamics of NGC 5128. III. Kinematics and Halo Mass Distributions

    NASA Astrophysics Data System (ADS)

    Hui, Xiaohui; Ford, Holland C.; Freeman, Kenneth C.; Dopita, Michael A.

    1995-08-01

    We present a study of the halo dynamics and mass distributions of the nearby giant elliptical galaxy NGC 5128 using planetary nebulae (PNs) as test particles. Radial velocities of 433 PNs were obtained with multifiber spectrographs on both the Anglo-Australian Telescope (AAT) and the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope. The velocities were measured from the [O III] λ5007 emission line with a typical 1 σ error of ±4 km s-1 and ±30 km s-1 for the AAT and the CTIO data, respectively. These PNs cover the entire galaxy to a radius of 10 kpc and extend along the photometric major axis out to 20 kpc. The PN velocity field shows the distinctive characteristics of a triaxial potential: the galaxy's rotation axis is offset from its photometric minor axis by 39°±10°. the rotation axis and the line of maximum rotation are likely not orthogonal. We also find that the ordered motions of the stars become more important with increasing radius compared to their random motions. The rotation reaches approximately 100 km s-1 and 50 km s-1 along the photometric major and minor axes, giving a local V/σ ratio of about 1.0 and 0.5, respectively. The aximuthal variation of the velocity dispersion appears to be modulated by rotation, i.e., it reaches a maximum where the largest rotation is observed and drops to a minimum at zero rotation. The amplitude of this modulation is about 20km s-1, compared to a mean dispersion velocity of 110 km s-1. The kinematics of the globular clusters depend on the metallicity Taking [Fe/H] = -1.0 as the dividing point, the metal-poor clusters do not show any significant rotation. However, the metal-rich clusters show both major and minor axis rotation, and the amplitudes of the rotation are similar to that of the PNs. The stellar velocity dispersion measured from absorption-line spectra together with an Hα rotation curve of the dust lane suggest that the stellar orbits are isotropic and the mass-to-light ratio (M/LB) is 3

  8. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    PubMed

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  9. Evaluating the Effects of Massed and Distributed Practice on Acquisition and Maintenance of Tacts and Textual Behavior with Typically Developing Children

    ERIC Educational Resources Information Center

    Haq, Shaji S.; Kodak, Tiffany

    2015-01-01

    This study evaluated the effects of massed and distributed practice on the acquisition of tacts and textual behavior in typically developing children. We compared the effects of massed practice (i.e., consolidating all practice opportunities during the week into a single session) and distributed practice (i.e., distributing all practice…

  10. Quantification of peptide m/z distributions from 13C-labeled cultures with high-resolution mass spectrometry.

    PubMed

    Allen, Doug K; Goldford, Joshua; Gierse, James K; Mandy, Dominic; Diepenbrock, Christine; Libourel, Igor G L

    2014-02-04

    Isotopic labeling studies of primary metabolism frequently utilize GC/MS to quantify (13)C in protein-hydrolyzed amino acids. During processing some amino acids are degraded, which reduces the size of the measurement set. The advent of high-resolution mass spectrometers provides a tool to assess molecular masses of peptides with great precision and accuracy and computationally infer information about labeling in amino acids. Amino acids that are isotopically labeled during metabolism result in labeled peptides that contain spatial and temporal information that is associated with the biosynthetic origin of the protein. The quantification of isotopic labeling in peptides can therefore provide an assessment of amino acid metabolism that is specific to subcellular, cellular, or temporal conditions. A high-resolution orbital trap was used to quantify isotope labeling in peptides that were obtained from unlabeled and isotopically labeled soybean embryos and Escherichia coli cultures. Standard deviations were determined by estimating the multinomial variance associated with each element of the m/z distribution. Using the estimated variance, quantification of the m/z distribution across multiple scans was achieved by a nonlinear fitting approach. Observed m/z distributions of uniformly labeled E. coli peptides indicated no significant differences between observed and simulated m/z distributions. Alternatively, amino acid m/z distributions obtained from GC/MS were convolved to simulate peptide m/z distributions but resulted in distinct profiles due to the production of protein prior to isotopic labeling. The results indicate that peptide mass isotopologue measurements faithfully represent mass distributions, are suitable for quantification of isotope-labeling-based studies, and provide additional information over existing methods.

  11. Theoretical investigation of fission fragment kinetic energy distributions in the symmetric mass region for 233U(nth,f)

    NASA Astrophysics Data System (ADS)

    Chebboubi, Abdelaziz; Serot, Olivier; Kessedjian, Grégoire; Litaize, Olivier; Blanc, Aurelien; Bernard, David; Faust, Herbert; Julien-Laferrière, Sylvain; Köster, Ulli; Letourneau, Alain; Materna, Thomas; Méplan, Olivier; Mutti, Paolo; Rapala, Michal; Sage, Christophe

    2017-09-01

    Fission yields are essential for nuclear reactor studies (decay heat, fuel inventory…) and constitute also one of the main observables needed to improve our understanding of the fission process. The symmetric mass region is of particular interest due to various intriguing properties of the fission fragments already reported in the literature : inversion of the nuclear charge polarization, large width of the fission fragment kinetic energy distribution, strong change of the prompt neutron multiplicity, etc. Recently, measurements of fission yields and kinetic energy distributions in the symmetric mass region were achieved at the LOHENGRIN mass spectrometer of the Institut Laue-Langevin (ILL). This experimental work is challenging due to the low counting rate and the appearance of contaminant masses, leading to pronounced components in the fission fragment kinetic energy distribution. Despite removing the undesirable contributions, the fission fragment kinetic energy distributions still show two components, indicating that the fission process could be modal. To go further and better characterize these components a comparison between our experimental data and Monte Carlo calculations (FIFRELIN code) simulating the de-excitation of the fission fragments for different fission channels will be presented and discussed.

  12. Non-thermal internal energy distribution of ions observed in an electrospray source interfaced with a sector mass spectrometer.

    PubMed

    Rondeau, David; Galland, Nicolas; Zins, Emilie-Laure; Pepe, Claude; Drahos, László; Vékey, Károly

    2011-02-01

    The internal energy distribution P(E(int)) of ions emitted in an electrospray (ESI) source interfaced with a sector mass spectrometer is evaluated by using the experimental survival yield (SY) method including the kinetic shift. This method is based on the relationship between the degree of fragmentation of an ion and its amount of internal energy and uses benzylpyridinium cations due to their simple fragmentation scheme. Quantum chemical calculations are performed, namely at G3(MP2)//B3LYP and QCISD/MP2 levels of theory. The results show that the internal energy distribution of the ions emitted in the ESI source interfaced with a sector analyzer is very narrow. The MassKinetics software is used to confirm these observations. The P(E(int)) is the parameter that allows to fit the experimental SY of each substituted benzylpyridinium cation with theoretical mass spectra generated by the MassKinetics software. The resulting internal energy distributions are similar to the ones obtained with the experimental SY method. This indicates that in the present experimental conditions, P(E(int)) cannot be compared with a 'thermal-like' Boltzmann distribution. In addition, it appears that with the sector analyzer, increasing the collision energy in the first pumping stage of the ESI source does not correspond to a warm-up of the produced ions.

  13. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Fiori, A.; Dagan, G.

    2016-12-01

    The driving mechanism of tracer transport in aquifers is groundwater flow which is controlled by the heterogeneity of hydraulic properties. We show how hydrodynamics and mass transfer are coupled in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of residence time are illustrated assuming a log-normal hydraulic conductivity field and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity.

  14. Spatial and quantitative datasets of the pancreatic β-cell mass distribution in lean and obese mice

    PubMed Central

    Parween, Saba; Eriksson, Maria; Nord, Christoffer; Kostromina, Elena; Ahlgren, Ulf

    2017-01-01

    A detailed understanding of pancreatic β-cell mass distribution is a key element to fully appreciate the pathophysiology of models of diabetes and metabolic stress. Commonly, such assessments have been performed by stereological approaches that rely on the extrapolation of two-dimensional data and provide very limited topological information. We present ex vivo optical tomographic data sets of the full β-cell mass distribution in cohorts of obese ob/ob mice and their lean controls, together with information about individual islet β-cell volumes, their three-dimensional coordinates and shape throughout the volume of the pancreas between 4 and 52 weeks of age. These data sets offer the currently most comprehensive public record of the β-cell mass distribution in