Sample records for distribution changed significantly

  1. Northward shifts of the distributions of Spanish reptiles in association with climate change.

    PubMed

    Moreno-Rueda, Gregorio; Pleguezuelos, Juan M; Pizarro, Manuel; Montori, Albert

    2012-04-01

    It is predicted that climate change will drive extinctions of some reptiles and that the number of these extinctions will depend on whether reptiles are able to change their distribution. Whether the latitudinal distribution of reptiles may change in response to increases in temperature is unknown. We used data on reptile distributions collected during the 20th century to analyze whether changes in the distributions of reptiles in Spain are associated with increases in temperature. We controlled for biases in sampling effort and found a mean, statistically significant, northward shift of the northern extent of reptile distributions of about 15.2 km from 1940-1975 to 1991-2005. The southern extent of the distributions did not change significantly. Thus, our results suggest that the latitudinal distributions of reptiles may be changing in response to climate change. ©2011 Society for Conservation Biology.

  2. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  3. A century later: Long-term change of an inshore temperate marine fish assemblage

    NASA Astrophysics Data System (ADS)

    McHugh, Matthew; Sims, David W.; Partridge, Julian C.; Genner, Martin J.

    2011-02-01

    There is compelling evidence that European marine fish assemblages have undergone extensive changes in composition over the last century. However, our knowledge of which species have changed in abundance and body size distributions, and the reasons for these changes, is limited due to a paucity of historical data. Here we report a study of long-term change in a marine fish assemblage from the inshore waters of the Western English Channel, near Plymouth. We compiled data from historic trawls undertaken between 1913 and 1922, and resurveyed those sites in 2008 and 2009. Our results revealed highly significant temporal differences in assemblage composition, but the scale of change was not consistent among taxonomic groups. Dramatic changes were recorded within the elasmobranchs, characterised by a reduction in abundance of all skate (Rajiidae) species, apparent extirpation of the angel shark ( Squatina squatina), and large increases in the abundance of lesser-spotted catshark ( Scyliorhinus canicula). By contrast we observed less evidence of change among 'flatfishes' (Pleuronectiformes) or 'roundfishes' (other teleosts). Changes were also observed in length-frequency distributions, with a significant decline in the size distribution of elasmobranchs (excluding S. canicula), but no significant change in size distributions of either group of teleosts. These data provide further evidence that larger, slow-maturing species have undergone declines in UK waters over the last century, and form useful benchmarks for assessment of future changes in this coastal faunal assemblage.

  4. A Centroid Model of Species Distribution to Analyize Multi-directional Climate Change Finger Print in Avian Distribution in North America

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Sauer, J.; Dubayah, R.

    2015-12-01

    Species distribution shift (or referred to as "fingerprint of climate change") as a primary mechanism to adapt climate change has been of great interest to ecologists and conservation practitioners. Recent meta-analyses have concluded that a wide range of animal and plant species are already shifting their distribution. However majority of the literature has focused on analyzing recent poleward and elevationally upward shift of species distribution. However if measured only in poleward shifts, the fingerprint of climate change will be underestimated significantly. In this study, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. We used the centroid approach to examine large number of species permanent resident species in North America and evaluated the dreiction and magnitude of their shifting distribution. To examine the inferential ability of mean temperature and precipitation, we test a hypothesis based on climate velocity theory that species would be more likely to shift their distribution or would shift with greater magnitude in in regions with high climate change velocity. For species with significant shifts of distribution, we establish a precipitation model and a temperature model to explain their change of abundance at the strata level. Two models which are composed of mean and extreme climate indices respectively are also established to test the influences of changes in gradual and extreme climate trends.

  5. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian

    2017-11-01

    Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.

  6. Long-term changes of tree species composition and distribution in Korean mountain forests

    NASA Astrophysics Data System (ADS)

    Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok

    2017-04-01

    Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.

  7. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America.

    PubMed

    Carmona-Castro, O; Moo-Llanes, D A; Ramsey, J M

    2018-03-01

    Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule-set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial-receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050. © 2017 The Royal Entomological Society.

  8. Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand.

    PubMed

    Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B

    2017-01-01

    Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.

  9. Detecting changes in the spatial distribution of nitrate contamination in ground water

    USGS Publications Warehouse

    Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.

    1997-01-01

    Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.

  10. A significant upward shift in plant species optimum elevation during the 20th century.

    PubMed

    Lenoir, J; Gégout, J C; Marquet, P A; de Ruffray, P; Brisse, H

    2008-06-27

    Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.

  11. Constraints and benefits of changing the distribution process for recreation special use permits in the U.S

    Treesearch

    Jessie Meybin; Robert Burns; Alan Graefe; James D. Absher

    2010-01-01

    A significant policy change governing recreation Special Use Permits on U.S. Federal lands was implemented in October 2008. The changes may have a major impact on current and potential recreation users, members of local communities, and existing outfitter/guide services. This paper presents findings from interviews with permit distribution supervisors about changes in...

  12. Assessing clinical significance of treatment outcomes using the DASS-21.

    PubMed

    Ronk, Fiona R; Korman, James R; Hooke, Geoffrey R; Page, Andrew C

    2013-12-01

    Standard clinical significance classifications are based on movement between the "dysfunctional" and "functional" distributions; however, this dichotomy ignores heterogeneity within the "dysfunctional" population. Based on the methodology described by Tingey, Lambert, Burlingame, and Hansen (1996), the present study sought to present a 3-distribution clinical significance model for the 21-item version of the Depression Anxiety Stress Scales (DASS-21; P. F. Lovibond & Lovibond, 1995) using data from a normative sample (n = 2,914), an outpatient sample (n = 1,000), and an inpatient sample (n = 3,964). DASS-21 scores were collected at pre- and post-treatment for both clinical samples, and patients were classified into 1 of 5 categories based on whether they had made a reliable change and whether they had moved into a different functional range. Evidence supported the validity of the 3-distribution model for the DASS-21, since inpatients who were classified as making a clinically significant change showed lower symptom severity, higher perceived quality of life, and higher clinician-rated functioning than those who did not make a clinically significant change. Importantly, results suggest that the new category of recovering is an intermediate point between recovered and making no clinically significant change. Inpatients and outpatients have different treatment goals and therefore use of the concept of clinical significance needs to acknowledge differences in what constitutes a meaningful change. (c) 2013 APA, all rights reserved.

  13. Influences of climate change on the potential distribution of Lutzomyia longipalpis sensu lato (Psychodidae: Phlebotominae).

    PubMed

    Peterson, A Townsend; Campbell, Lindsay P; Moo-Llanes, David A; Travi, Bruno; González, Camila; Ferro, María Cristina; Ferreira, Gabriel Eduardo Melim; Brandão-Filho, Sinval P; Cupolillo, Elisa; Ramsey, Janine; Leffer, Andreia Mauruto Chernaki; Pech-May, Angélica; Shaw, Jeffrey J

    2017-09-01

    This study explores the present day distribution of Lutzomyia longipalpis in relation to climate, and transfers the knowledge gained to likely future climatic conditions to predict changes in the species' potential distribution. We used ecological niche models calibrated based on occurrences of the species complex from across its known geographic range. Anticipated distributional changes varied by region, from stability to expansion or decline. Overall, models indicated no significant north-south expansion beyond present boundaries. However, some areas suitable both at present and in the future (e.g., Pacific coast of Ecuador and Peru) may offer opportunities for distributional expansion. Our models anticipated potential range expansion in southern Brazil and Argentina, but were variably successful in anticipating specific cases. The most significant climate-related change anticipated in the species' range was with regard to range continuity in the Amazon Basin, which is likely to increase in coming decades. Rather than making detailed forecasts of actual locations where Lu. longipalpis will appear in coming years, our models make interesting and potentially important predictions of broader-scale distributional tendencies that can inform heath policy and mitigation efforts. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).

    PubMed

    Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J

    2018-01-01

    Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.

  15. Effects of Schroth and Pilates exercises on the Cobb angle and weight distribution of patients with scoliosis.

    PubMed

    Kim, Gichul; HwangBo, Pil-Neo

    2016-03-01

    [Purpose] The purpose of this study was to compare the effect of Schroth and Pilates exercises on the Cobb angle and body weight distribution of patients with idiopathic scoliosis. [Subjects] Twenty-four scoliosis patients with a Cobb angle of ≥20° were divided into the Schroth exercise group (SEG, n = 12) and the Pilates exercise group (PEG, n = 12). [Methods] The SEG and PEG performed Schroth and Pilates exercises, respectively, three times a week for 12 weeks. The Cobb angle was measured in the standing position with a radiography apparatus, and weight load was measured with Gait View Pro 1.0. [Results] In the intragroup comparison, both groups showed significant changes in the Cobb angle. For weight distribution, the SEG showed significant differences in the total weight between the concave and convex sides, but the PEG did not show significant differences. Furthermore, in the intragroup comparison, the SEG showed significant differences in the changes in the Cobb angle and weight distribution compared with the PEG. [Conclusion] Both Schroth and Pilates exercises were effective in changing the Cobb angle and weight distribution of scoliosis patients; however, the intergroup comparison showed that the Schroth exercise was more effective than the Pilates exercise.

  16. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  17. Holocene Changes in the Distribution and Abundance of Oaks in California

    Treesearch

    Roger Byrne; Eric Edlund; Scott Mensing

    1991-01-01

    Our knowledge of the long-term history of oaks is primarily based on biogeographical analysis of anomalous distribution patterns and paleobotanical macrofossil evidence. Neither of these provide a continuous record of change. In this paper, we present fossil pollen evidence which records significant changes in oak abundance over the last 10,000 years. Between 10,000-5,...

  18. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1.

    PubMed

    Prisk, G K; Guy, H J; Elliott, A R; Paiva, M; West, J B

    1995-02-01

    We used multiple-breath N2 washouts (MBNW) to study the inhomogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from 1) distribution of specific ventilation (SV) from mixed-expired and 2) end-tidal N2, 3) change of slope of N2 washout (semilog plot) with time, 4) change of slope of normalized phase III of successive breaths, 5) anatomic dead space, and 6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV (P < 0.05) and significantly greater changes in the changes in slope of the N2 washouts (P < 0.001), indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  19. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; Paiva, Manuel; West, John B.

    1995-01-01

    We used multiple-breath N2 washouts (MBNW) to study the homogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from (1) distribution of specific ventilation (SV) from mixed-expired and (2) end-tidal N2, (3) change of slope of N2 washout (semilog plot) with time, (4) change of slope of normalized phase III of successive breaths, (5) anatomic lead dead space, and (6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV and significantly greater changes in the changes in slope of the N2 washouts, indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  20. Substantial increase in concurrent droughts and heatwaves in the United States

    PubMed Central

    Mazdiyasni, Omid; AghaKouchak, Amir

    2015-01-01

    A combination of climate events (e.g., low precipitation and high temperatures) may cause a significant impact on the ecosystem and society, although individual events involved may not be severe extremes themselves. Analyzing historical changes in concurrent climate extremes is critical to preparing for and mitigating the negative effects of climatic change and variability. This study focuses on the changes in concurrences of heatwaves and meteorological droughts from 1960 to 2010. Despite an apparent hiatus in rising temperature and no significant trend in droughts, we show a substantial increase in concurrent droughts and heatwaves across most parts of the United States, and a statistically significant shift in the distribution of concurrent extremes. Although commonly used trend analysis methods do not show any trend in concurrent droughts and heatwaves, a unique statistical approach discussed in this study exhibits a statistically significant change in the distribution of the data. PMID:26324927

  1. Substantial increase in concurrent droughts and heatwaves in the United States.

    PubMed

    Mazdiyasni, Omid; AghaKouchak, Amir

    2015-09-15

    A combination of climate events (e.g., low precipitation and high temperatures) may cause a significant impact on the ecosystem and society, although individual events involved may not be severe extremes themselves. Analyzing historical changes in concurrent climate extremes is critical to preparing for and mitigating the negative effects of climatic change and variability. This study focuses on the changes in concurrences of heatwaves and meteorological droughts from 1960 to 2010. Despite an apparent hiatus in rising temperature and no significant trend in droughts, we show a substantial increase in concurrent droughts and heatwaves across most parts of the United States, and a statistically significant shift in the distribution of concurrent extremes. Although commonly used trend analysis methods do not show any trend in concurrent droughts and heatwaves, a unique statistical approach discussed in this study exhibits a statistically significant change in the distribution of the data.

  2. The pace of past climate change vs. potential bird distributions and land use in the United States

    USGS Publications Warehouse

    Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; VanDerWal, Jeremy; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.

    2016-01-01

    Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr−1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr−1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.

  3. The pace of past climate change vs. potential bird distributions and land use in the United States.

    PubMed

    Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; VanDerWal, Jeremy; Thogmartin, Wayne E; Vavrus, Stephen J; Heglund, Patricia J

    2016-03-01

    Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species' suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr(-1) , about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr(-1) ). The direction of shifts was not uniform. The majority of species' distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing. © 2015 John Wiley & Sons Ltd.

  4. Rapid Temporal Changes of Boundary Layer Winds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    2005-01-01

    The statistical distribution of the magnitude of the vector wind change over 0.25, 0.5, 1 and 2-h periods based on data from November 1999 through August 2001 is presented. The distributions of the 2-h u and v component wind changes are also presented for comparison. The wind changes at altitudes from 500 to 3000 m were measured using the Eastern Range network of five 915 MHz Doppler radar wind profilers. Quality controlled profiles were produced every 15 minutes for up to sixty gates, each representing 101 m in altitude over the range from 130 m to 6089 m. Five levels, each constituting three consecutive gates, were selected for analysis because of their significance to aerodynamic loads during the Space Shuttle ascent roll maneuver. The distribution of the magnitude of the vector wind change is found to be lognormal consistent with earlier work in the mid-troposphere. The parameters of the distribution vary with time lag, season and altitude. The component wind changes are symmetrically distributed with near-zero means, but the kurtosis coefficient is larger than that of a Gaussian distribution.

  5. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.

  6. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    PubMed Central

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876

  7. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa.

    PubMed

    Munga, Stephen; Yakob, Laith; Mushinzimana, Emmanuel; Zhou, Guofa; Ouna, Tom; Minakawa, Noboru; Githeko, Andrew; Yan, Guiyun

    2009-12-01

    Spatial and temporal variations in the distribution of anopheline larval habitats and land use and land cover (LULC) changes can influence malaria transmission intensity. This information is important for understanding the environmental determinants of malaria transmission heterogeneity, and it is critical to the study of the effects of environmental changes on malaria transmission. In this study, we investigated the spatial and temporal variations in the distribution of anopheline larval habitats and LULC changes in western Kenya highlands over a 4-year period. Anopheles gambiae complex larvae were mainly confined to valley bottoms during both the dry and wet seasons. Although An. gambiae larvae were located in man-made habitats where riparian forests and natural swamps had been cleared, Anopheles funestus larvae were mainly found in permanent habitats in pastures. The association between land cover type and occurrence of anopheline larvae was statistically significant. The distribution of anopheline positive habitats varied significantly between months, during the survey. In 2004, the mean density of An. gambiae was significantly higher during the month of May, whereas the density of An. funestus peaked significantly in February. Over the study period, major LULC changes occurred mostly in the valley bottoms. Overall, farmland increased by 3.9%, whereas both pastures and natural swamps decreased by 8.9% and 20.9%, respectively. The area under forest cover was decreased by 5.8%. Land-use changes in the study area are favorable to An. gambiae larval development, thereby risking a more widespread distribution of malaria vector habitats and potentially increasing malaria transmission in western Kenya highlands.

  8. Effects of chronic elevated levels of CO2 on the concentration of blood cellular elements and plasma corticosterone in the male rat

    NASA Technical Reports Server (NTRS)

    Alexander, R. A.; Lang, C. K.; Steele, M. K.; Corbin, B. J.; Wade, C. E.

    1995-01-01

    The mean CO2 concentration on the Space Shuttle is 0.3% and has reached 0.7%, for extended periods of time. Following space flight, it has been shown that both humans and animals have significant changes in red blood cell counts (RBC) and white blood cell counts (WBC). In other studies, where no significant change did occur in the total WBC, a significant change did occur in the distribution of WBC. WBC are affected by circulating levels of glucocorticoids, which often increase when animals or humans are exposed to adverse and/or novel stimuli (e.g. elevated CO2 levels or weightlessness). The purpose of this study was to determine if elevations in CO2 concentration produce changes in total WBC and/or their distribution.

  9. The Hispanic Population: 1990-2000 Growth and Change.

    ERIC Educational Resources Information Center

    Guzman, Betsy; McConnell, Eileen Diaz

    2002-01-01

    Points out significant changes in the Hispanic population between 1990 and 2000. Explores changes in the size and distribution of the Latino population using short-form data from the 1990 and 2000 censuses. Indicates significant growth of the Hispanic population who identify as 'other' Latino and the growing importance of the Midwest and South as…

  10. The distribution shifts of Pinus armandii and its response to temperature and precipitation in China

    PubMed Central

    Zheng, Xiaofeng; Gao, Pengxiang

    2017-01-01

    Background The changing climate, particularly in regard to temperature and precipitation, is already affecting tree species’ distributions. Pinus armandii, which dominates on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural and ecological value. We wish to test the correlations between the distribution shift of P. armandii and changing climate, and figure out how it tracks future climate change. Methods We sampled the surface soil at sites throughout the distribution of P. armandii to compare the relative abundance of pollen to the current percent cover of plant species. This was used to determine possible changes in the distribution P. armandii. Given the hilly terrain, elevation was considered together with temperature and precipitation as variables correlated with distribution shifts of P. armandii. Results We show that P. armandii is undergoing change in its geographic range, including retraction, a shift to more northern areas and from the upper high part of the mountains to a lower-altitude part in hilly areas. Temperature was the strongest correlate of this distribution shift. Elevation and precipitation were also both significantly correlated with distribution change of P. armandii, but to a lesser degree than temperature. Conclusion The geographic range of P. armandii has been gradually decreasing under the influence of climate change. This provides evidence of the effect of climate change on trees at the species level and suggests that at least some species will have a limited ability to track the changing climate. PMID:28929025

  11. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors.

    PubMed

    Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O

    2017-09-01

    Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr -1 . The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing factors to recent distributional changes and for comprehensive conservation planning for climate change adaptation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Acute spinal cord injury changes the disposition of some, but not all drugs given intravenously.

    PubMed

    García-López, P; Martínez-Cruz, A; Guízar-Sahagún, G; Castañeda-Hernández, G

    2007-09-01

    Experimental laboratory investigations in paraplegic rats. In order to understand why acute spinal cord injury (SCI) changes the disposition of some, but not all drugs given intravenously (i.v.), pharmacokinetic parameters of drugs with different pharmacological properties were evaluated to determine the influence of SCI on physiological processes such as distribution, metabolism and excretion. Mexico City, Mexico. Rats were subjected to severe SCI (contusion) at T-9 level; pharmacokinetic studies of phenacetin, naproxen or gentamicin were performed 24 h after. These drugs were not chosen as markers because of their therapeutic properties, but because of their pharmacokinetic characteristics. Additional studies including plasma proteins, liver and renal function tests, and micro-vascular hepatic blood flow, were also performed at the same time after injury. Acute SCI significantly reduced distribution of drugs with intermediate and low binding to plasma proteins (phenacetin 30% and gentamicin 10%, respectively), but distribution did not change when naproxen - a drug highly bound to plasma proteins (99%) - was used, in absence of changes in plasma proteins. Metabolism was significantly altered only for a drug with liver blood flow - limited clearance (phenacetin) and not for a drug with liver capacity-limited clearance (naproxen). The liver function test did not change, whereas the hepatic micro-vascular blood flow significantly decreased after SCI. Renal excretion, evaluated by gentamicin clearance, was significantly reduced as a consequence of SCI, without significant changes in serum creatinine. Changes in drug disposition associated to acute SCI are complex and generalization is not possible. They are highly dependent on each drug properties as well as on the altered physiological processes. Results motivate the quest for strategies to improve disposition of selective i.v. drugs during spinal shock, in an effort to avoid therapeutic failure.

  13. Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species

    PubMed Central

    Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian

    2010-01-01

    Background Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. Methodology/Principal Findings We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Conclusions/Significance Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change. PMID:20454451

  14. Malaria vectors in South America: current and future scenarios.

    PubMed

    Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb

    2015-08-19

    Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.

  15. The Impacts of Changes to Nevada’s Net Metering Policy on the Financial Performance and Adoption of Distributed Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Sigrin, Ben; Gleason, Mike

    Net energy metering (NEM) is a billing mechanism that has historically compensated owners of distributed generation systems at retail rates for any electricity that they export back to the grid rather than consume on-site. NEM can significantly enhance the financial performance of distributed generation systems from the owner’s perspective. The following analysis was designed to illustrate the potential impact of NEM policy and tariff changes implemented in early 2016 in Nevada.

  16. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  17. Regional Distribution Shifts Help Explain Local Changes in Wintering Raptor Abundance: Implications for Interpreting Population Trends

    PubMed Central

    Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.

    2014-01-01

    Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. PMID:24466253

  18. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  19. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  20. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that the remaining probability distribution of cumulative releases would not be significantly changed... with § 191.13 into a “complementary cumulative distribution function” that indicates the probability of... distribution function for each disposal system considered. The Agency assumes that a disposal system can be...

  1. 40 CFR Appendix C to Part 191 - Guidance for Implementation of Subpart B

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that the remaining probability distribution of cumulative releases would not be significantly changed... with § 191.13 into a “complementary cumulative distribution function” that indicates the probability of... distribution function for each disposal system considered. The Agency assumes that a disposal system can be...

  2. Have bird distributions shifted along an elevational gradient on a tropical mountain?

    PubMed

    Campos-Cerqueira, Marconi; Arendt, Wayne J; Wunderle, Joseph M; Aide, T Mitchell

    2017-12-01

    An upward shift in elevation is one of the most conspicuous species responses to climate change. Nevertheless, downward shifts and, apparently, the absences of response have also been recently reported. Given the growing evidence of multiple responses of species distributions due to climate change and the paucity of studies in the tropics, we evaluated the response of a montane bird community to climate change, without the confounding effects of land-use change. To test for elevational shifts, we compared the distribution of 21 avian species in 1998 and 2015 using occupancy models. The historical data set was based on point counts, whereas the contemporary data set was based on acoustic monitoring. We detected a similar number of species in historical (36) and contemporary data sets (33). We show an overall pattern of no significant change in range limits for most species, although there was a significant shift in the range limit of eight species (38%). Elevation limits shifted mostly upward, and this pattern was more common for upper than lower limits. Our results highlight the variability of species responses to climate change and illustrate how acoustic monitoring provides an easy and powerful way to monitor animal populations along elevational gradients.

  3. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  4. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707

  5. On the role of grain boundary character distribution in grain growth of Al-Mg alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, K.; Shibayanagi, T.; Umakoshi, Y.

    1997-02-01

    Grain growth behavior of recrystallized Al-Mg alloys containing 0.3 and 2.7 mass% Mg was investigated, focusing on the interconnection between development of the texture and grain boundary character distribution. An Al-0.3 mass% Mg alloy showed two stages in the change of microstructure during grain growth: the frequency of cube oriented grains and the {Sigma}1 boundary significantly increased at an early stage and then decreased. In the second stage a small amount of isolated large grains with the non-cube component grew and consumed the surrounding cube grains. In contrast, the frequency of cube oriented grains and the grain boundary character distributionmore » showed no significant change during grain growth of Al-2.7 mass% Mg. Small clusters composed of several cube grains containing {Sigma}1 boundaries were formed and their spatial distribution played an important role in the change of microstructure during grain growth. The effect of the spatial distribution on the grain growth behavior was discussed considering the energy balance at triple junctions of grain boundaries.« less

  6. Distribution and dynamics of the invasive native hay-scented fern

    Treesearch

    Songlin Fei; Peter Gould; Melanie Kaeser; Kim Steiner

    2010-01-01

    The spread and dominance of the invasive native hay-scented fern in the understory is one of the most significant changes to affect the forest ecosystems in the northeastern United States in the last century. We studied changes in the distribution and dynamics of hay-scented fern at a large scale over a 10-yr period in Pennsylvania. The study included 56 stands...

  7. Description of Changes in Climatic Indices in USA over 25 Years (1989 – 2013)

    EPA Science Inventory

    The spatial distribution of long-term changes in climatic factors and its relation with vegetation cover, human health, hydrology and many other ecosystem processes help to identify the consequences of climatic factors changes. In recent studies, the significant changes of select...

  8. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    PubMed

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  9. Composition and daytime vertical distribution of the ichthyoplankton assemblage in the Central Cantabrian Sea shelf, during summer: An Eulerian study

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.; Gonzalez-Pola, C.; Lopez-Urrutia, A.; Nogueira, E.

    2011-09-01

    During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.

  10. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it is happening at higher latitudes. However, the identity of the species showing changes in their range of distribution was different.

  11. Detecting background changes in environments with dynamic foreground by separating probability distribution function mixtures using Pearson's method of moments

    NASA Astrophysics Data System (ADS)

    Jenkins, Colleen; Jordan, Jay; Carlson, Jeff

    2007-02-01

    This paper presents parameter estimation techniques useful for detecting background changes in a video sequence with extreme foreground activity. A specific application of interest is automated detection of the covert placement of threats (e.g., a briefcase bomb) inside crowded public facilities. We propose that a histogram of pixel intensity acquired from a fixed mounted camera over time for a series of images will be a mixture of two Gaussian functions: the foreground probability distribution function and background probability distribution function. We will use Pearson's Method of Moments to separate the two probability distribution functions. The background function can then be "remembered" and changes in the background can be detected. Subsequent comparisons of background estimates are used to detect changes. Changes are flagged to alert security forces to the presence and location of potential threats. Results are presented that indicate the significant potential for robust parameter estimation techniques as applied to video surveillance.

  12. Effect of historical land-use and climate change on tree-climate relationships in the upper Midwestern United States.

    PubMed

    Goring, Simon J; Williams, John W

    2017-04-01

    Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree-climate relationships are poorly understood. We show that tree-climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land-use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land-use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land-use interactions are compounding, in which historical land-use reinforces shifts in species-climate relationships toward wetter distributions, or confounding, in which land-use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary-based models of species distributions may underestimate species resilience to climate change. © 2017 John Wiley & Sons Ltd/CNRS.

  13. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  14. Changes of Vegetation Distribution in the East Dongting Lake After the Operation of the Three Gorges Dam, China.

    PubMed

    Hu, Jia-Yu; Xie, Yong-Hong; Tang, Yue; Li, Feng; Zou, Ye-Ai

    2018-01-01

    Water regime is regarded as the primary factor influencing the vegetation distribution in natural wetland ecosystems. However, the effect of water regime change induced by large-scale hydraulic engineering on vegetation distribution is still unclear. In this study, multi-temporal TM/ETM+/OLI images and hydrological data from 1995 to 2015 were used to elucidate how the change in water regime influenced the vegetation distribution in the East Dongting Lake (EDTL), especially after the operation of the Three Gorges Dam (TGD) in 2003. Using unsupervised and supervised classification methods, three types of land cover were identified in the study area: Water and Mudflat, Grass, and Reed and Forest. Results showed that the total vegetation area in EDTL increased by approximately 78 km 2 during 1995-2015. The areas of Reed and Forest and Grass exhibited a contrasting trend, dramatic increase in Reed and Forest but sharp decrease in Grass, particularly after the operation of TGD. The lowest distribution elevations of Grass and Reed and Forest decreased by 0.61 and 0.52 m, respectively. As a result of water level variation, submergence duration increased at 20-21 m and 28 m elevations (1-13 days), but significantly decreased at 22-27 m and 29-30 m elevations (-3 to -31 days). The submergence duration of Grass and Reed and Forest was 246 and 177 days, respectively. This study indicated that wetland vegetation pattern significantly changed after the operation of TGD, mainly as a result of changes in submergence condition. Submergence duration might be an effective indicator to predict the shift of vegetation distribution in EDTL, and which could provide scientific guidance for vegetation restoration and wetland management in this lake.

  15. Changes of Vegetation Distribution in the East Dongting Lake After the Operation of the Three Gorges Dam, China

    PubMed Central

    Hu, Jia-Yu; Xie, Yong-Hong; Tang, Yue; Li, Feng; Zou, Ye-Ai

    2018-01-01

    Water regime is regarded as the primary factor influencing the vegetation distribution in natural wetland ecosystems. However, the effect of water regime change induced by large-scale hydraulic engineering on vegetation distribution is still unclear. In this study, multi-temporal TM/ETM+/OLI images and hydrological data from 1995 to 2015 were used to elucidate how the change in water regime influenced the vegetation distribution in the East Dongting Lake (EDTL), especially after the operation of the Three Gorges Dam (TGD) in 2003. Using unsupervised and supervised classification methods, three types of land cover were identified in the study area: Water and Mudflat, Grass, and Reed and Forest. Results showed that the total vegetation area in EDTL increased by approximately 78 km2 during 1995–2015. The areas of Reed and Forest and Grass exhibited a contrasting trend, dramatic increase in Reed and Forest but sharp decrease in Grass, particularly after the operation of TGD. The lowest distribution elevations of Grass and Reed and Forest decreased by 0.61 and 0.52 m, respectively. As a result of water level variation, submergence duration increased at 20–21 m and 28 m elevations (1–13 days), but significantly decreased at 22–27 m and 29–30 m elevations (-3 to -31 days). The submergence duration of Grass and Reed and Forest was 246 and 177 days, respectively. This study indicated that wetland vegetation pattern significantly changed after the operation of TGD, mainly as a result of changes in submergence condition. Submergence duration might be an effective indicator to predict the shift of vegetation distribution in EDTL, and which could provide scientific guidance for vegetation restoration and wetland management in this lake. PMID:29765388

  16. The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.

    NASA Astrophysics Data System (ADS)

    Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.

    2015-12-01

    Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change, particularly near the edges of the species' range.

  17. Effects of dexamethasone on angiotensin II-induced changes of monolayer permeability and F-actin distribution in glomerular endothelial cells.

    PubMed

    Fang, Junyan; Wang, Miao; Zhang, Wei; Wang, Yingdeng

    2013-11-01

    The aim of this study was to investigate the changes in monolayer permeability and F-actin distribution caused by angiotensin II (Ang II)-induced injury in glomerular endothelial cells (GENCs) and the effects of dexamethasone on these changes. GENCs isolated and cultured from Wistar rats were used to examine the changes in monolayer permeability and F-actin distribution induced by Ang II. GENC permeability was evaluated by measuring the diffusion of biotin-conjugated bovine serum albumin (biotin-BSA) across a cell monolayer. The expression levels and distribution of F-actin were assessed by flow cytometry. The biotin-BSA concentrations were measured by capture enzyme-linked immunosorbent assay. Ang II at a concentration of 10 mg/l increased the permeability of the GENC monolayer at 6 h and 12 h (P<0.05 and P<0.01, respectively) and caused F-actin depolymerisation at 6 h and 12 h (P<0.01). The two effects attributed to Ang II were significantly inhibited by dexamethasone treatment (P<0.01). The increased permeability of the GENC monolayer induced by Ang II was significantly correlated with the depolymerisation of F-actin. Dexamethasone abrogated the Ang II-mediated damage to GENCs indicating that it may play an important role in protecting GENCs from injury.

  18. Assessing differential expression in two-color microarrays: a resampling-based empirical Bayes approach.

    PubMed

    Li, Dongmei; Le Pape, Marc A; Parikh, Nisha I; Chen, Will X; Dye, Timothy D

    2013-01-01

    Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.

  19. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  20. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    PubMed

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  1. Distribution of Personal Income in Agriculture-Dependent Counties of Midwestern States: A Policy Variables Approach.

    ERIC Educational Resources Information Center

    Goreham, Gary A.; And Others

    Significant social, demographic, and economic changes have occurred in the North Central states since 1960. This document examines structural and policy variables related to distribution of income, during the years 1960-80 in the 397 counties defined as agriculture-dependent in 13 North Central states. Personal income distribution has been…

  2. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  3. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  4. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources.

    PubMed

    Liu, G; Ling, F Q; van der Mark, E J; Zhang, X D; Knezev, A; Verberk, J Q J C; van der Meer, W G J; Medema, G J; Liu, W T; van Dijk, J C

    2016-02-02

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 10(3) cells ml(-1) with a biological activity of 0.01-0.04 ng l(-1) ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers' taps and be ingested.

  5. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    PubMed

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival.

  6. Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation

    PubMed Central

    Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival. PMID:24752011

  7. Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling

    2018-02-01

    A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.

  8. Linked hydrologic and climate variations in British Columbia and Yukon.

    PubMed

    Whitfield, P H

    2001-01-01

    Climatic and hydrologic variations between the decades 1976-1985 and 1986-1995 are examined at 34 climate stations and 275 hydrology stations. The variations in climate are distributed across a broad spatial area. Temperatures were generally warmer in the most recent decade, with many stations showing significant increases during the spring and fall. No significant decreases in temperature were found. Significant increases in temperature were more frequent in the south than in the northern portions of the region. Significant changes in precipitation were also more prevalent in the south. In coastal areas, there were significant decreases in precipitation during the dry season, and significant increases during the wet season. In the BC interior, significant precipitation decreases occurred during the fall, with significant increases during the winter and spring. In the north there were few changes in precipitation. The hydrologic responses to these variations in climate follow six distinctive patterns. The spatial distribution of these patterns suggests that in different ecozones, small variations in climate, particularly temperature, elicit different hydrologic responses.

  9. How much does climate change threaten European forest tree species distributions?

    PubMed

    Dyderski, Marcin K; Paź, Sonia; Frelich, Lee E; Jagodziński, Andrzej M

    2018-03-01

    Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios-optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)-using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: "winners"-mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; "losers"-mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species-Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as "winners." Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. © 2017 John Wiley & Sons Ltd.

  10. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeatedmore » after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.« less

  11. The effects of variable biome distribution on global climate.

    PubMed

    Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D

    1996-01-01

    In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.

  12. Beach Nourishment Dynamics in a Coupled Large-Scale Coastal Change and Economic Optimization Model

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Murray, B.; Smith, M.

    2008-12-01

    Global climate change is predicted to have significant consequences for shoreline evolution from both sea level rise and changing wave climates. Because many coastal communities actively defend against erosion, changing environmental conditions will influence rates of nourishment. Over large coastal regions, including many towns, the anticipated future rate of nourishment is assumed to be proportional to the expected evolution of the shoreline in the region. This view neglects the possibility of strong coupling between the spatial patterns of nourishment and the distribution of property values within the region. To explore the impact of this coupling, we present a numerical model that incorporates the physical forces of alongshore sediment transport and erosion due to sea level rise as well as the economic forces that drive beach replenishment including the economic benefits of enhanced or maintained beach width and the costs of replenishing. Results are presented for a Carolina-like coastline and show how natural shoreline change rates are altered as the wave climate changes (because of changing storm behaviors). Results also show that the nourishment rate is conserved for varying property value distributions when the nourishment cost is unrelated to past nourishment and, in contrast, increasing nourishment cost as available sand for nourishment is depleted causes strong coupling between the property value distribution and erosion patterns. This strong coupling significantly alters the rate of nourishment and hence the depletion of available sand for nourishing.

  13. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    PubMed Central

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188

  14. [Land use pattern and its dynamic changes in Amur tiger distribution region].

    PubMed

    Li, Zhong-wen; Wu, Jian-guo; Kou, Xiao-jun; Tian, Yu; Wang, Tian-ming; Mu, Pu; Ge, Jian-ping

    2009-03-01

    Land use and land cover change has been the primary cause for the habitat loss and fragmentation in the distribution region of Amur tiger (Panthera tigris altaica). Based on the spatiotemporal changes of land use and land cover in the distribution region, as well as their effects on the population dynamics of Amur tiger, this paper analyzed the development process and its characteristics of the main land use types (agricultural land, forest land, and construction land) in this region, with the land use change history being divided chronically into three distinctive periods, i.e., ancient times (prior to 1860), modern times (1860-1949), and contemporary times (after 1949). The results showed that the sporadic land use in ancient times had no significant effects on the survival of Amur tiger, while the extensive and intensive land use after the 1860s was mainly responsible for the decrease of Amur tiger population and its living space. Since 1949, the Amur tiger distribution region has been divided into two parts, i.e., Northeast China and Russia Far East. The differences in land use pattern, policy, and intensity between these two parts led to different survival status of Amur tiger. The key driving forces for the land use change in Amur tiger distribution region were human population increase, policy change, and increased productivity.

  15. The Invisible Work of Distributed Medical Education: Exploring the Contributions of Audiovisual Professionals, Administrative Professionals and Faculty Teachers

    ERIC Educational Resources Information Center

    MacLeod, Anna; Kits, Olga; Mann, Karen; Tummons, Jonathan; Wilson, Keith W.

    2017-01-01

    Distributed medical education (DME) is becoming increasingly prevalent. Much of the published literature on DME has focused on the experiences of learners in distributed programs; however, our empirical work leads us to believe that DME changes the context significantly, not only for learners, but also for other important members of the…

  16. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by historic patterns of LCLU (Albania, France and India). Landsat images sensed in two time periods, up to 25 years apart, are used to extract field object classifications at each hotspot using a multispectral image segmentation approach. The field size distributions for the two periods are compared statistically and quantify examples of significant increasing field size associated primarily with agricultural technological innovation (Argentina and U.S.) and decreasing field size associated with rapid societal changes (Albania and Zimbabwe). The implications of this research, and the potential of higher spatial resolution data from planned global coverage satellites, to provide improved agricultural monitoring are discussed.

  17. Temporal changes in concentrations of amino acids in plasma and whole blood of healthy neonatal foals from birth to two days of age.

    PubMed

    Zicker, S C; Rogers, Q R

    1994-07-01

    Temporal changes, as well as differences in distribution, in concentrations of 24 amino acids in plasma and whole blood of neonatal foals were determined from birth to 2 days of age. In addition, differences in concentrations of amino acids in plasma between mare and foal pairs were determined at birth. Significant (P < 0.05) hypoaminoacidemia existed for 15 amino acids in plasma of foals at birth, compared with mares (paired t-test). Concentrations of 7 amino acids (aspartate, glutamate, glutamine, glycine, hydroxyproline, phenylalanine, proline) in plasma of foals were higher (P < 0.05) at birth than in mares, and concentrations of 2 (taurine, tryptophan) were not different (P > 0.05). Significant (P < 0.05) temporal changes for concentrations of 19 of 24 amino acids in plasma were observed during the 48-hour period. Concentrations of 13 of the 19 amino acids in plasma that had significant changes were higher (P < 0.05) at 48 hours. Significant (P > 0.05) effect of time on concentration of 5 amino acids (alanine, methionine, phenylalanine, taurine, threonine) in plasma was not found after birth. Temporal changes in concentrations of 7 amino acids (alanine, asparagine, glutamine, histidine, hydroxyproline, methionine, and threonine) in whole blood were not significantly (P > 0.05) different from those in plasma. Temporal changes for concentrations of the remaining 17 amino acids in whole blood were significantly (P < 0.05) different, compared with plasma. Distribution of the concentrations of 18 amino acids between whole blood and plasma was significantly (P < 0.05) different.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. EVALUATING PERTUBATIONS AND DEVELOPING RESTORATION STRATEGIES FOR INLAND WETLANDS IN THE GREAT LAKES BASIN

    EPA Science Inventory

    Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to i...

  19. The Dependence of Chlorine Decay and DBP Formation Kinetics On Pipe Flow Properties in Drinking Water Distribution

    EPA Science Inventory

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation has long been discussed because of its regulatory and operational significance. This study further examines the water quality changes under hydrodynamic settings during drinking water distribution. Comparative...

  20. Spatial Exposure Analysis for Threatened and Endangered Species from Changing Pesticide Use Pattern in Southern Georgia

    EPA Science Inventory

    In recent decades, pesticide use patterns and crop distributions have changed; however, because there has not been a significant increase in usage disclosures, it is difficult to estimate the changes in potential exposure zones, this analysis focuses on the intersection of agricu...

  1. Earnings of Students Who Change Universities

    ERIC Educational Resources Information Center

    Holmlund, Linda; Regner, Hakan

    2012-01-01

    Using data on Swedish university entrants, this study finds that earnings are significantly lower for students who change universities compared to students who do not change. Earnings differences decrease over time and over the earnings distribution. The pattern in the estimates seems consistent with non-transfer students having higher earnings…

  2. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less

  3. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  4. Financial Effect of a Drug Distribution Model Change on a Health System.

    PubMed

    Turingan, Erin M; Mekoba, Bijan C; Eberwein, Samuel M; Roberts, Patricia A; Pappas, Ashley L; Cruz, Jennifer L; Amerine, Lindsey B

    2017-06-01

    Background: Drug manufacturers change distribution models based on patient safety and product integrity needs. These model changes can limit health-system access to medications, and the financial impact on health systems can be significant. Objective: The primary aim of this study was to determine the health-system financial impact of a manufacturer's change from open to limited distribution for bevacizumab (Avastin), rituximab (Rituxan), and trastuzumab (Herceptin). The secondary aim was to identify opportunities to shift administration to outpatient settings to support formulary change. Methods: To assess the financial impact on the health system, the cost minus discount was applied to total drug expenditure during a 1-year period after the distribution model change. The opportunity analysis was conducted for three institutions within the health system through chart review of each inpatient administration. Opportunity cost was the sum of the inpatient administration cost and outpatient administration margin. Results: The total drug expenditure for the study period was $26 427 263. By applying the cost minus discount, the financial effect of the distribution model change was $1 393 606. A total of 387 administrations were determined to be opportunities to be shifted to the outpatient setting. During the study period, the total opportunity cost was $1 766 049. Conclusion: Drug expenditure increased for the health system due to the drug distribution model change and loss of cost minus discount. The opportunity cost of shifting inpatient administrations could offset the increase in expenditure. It is recommended to restrict bevacizumab, rituximab, and trastuzumab through Pharmacy & Therapeutics Committees to outpatient use where clinically appropriate.

  5. Assessing changes in the U.S. hardwood sawmill industry with a focus on markets and distribution

    Treesearch

    Omar Espinoza; Urs Buehlmann; Matthew Bumgardner; Bob Smith

    2011-01-01

    The U.S. hardwood sawmilling industry has experienced significant changes over the past decade. A slowing housing industry, competition from imported products, higher transportation costs, and high stumpage prices have changed the business of manufacturing and marketing hardwood lumber. Also, hardwood lumber buyers are changing their business practices by shortening...

  6. From Theory to Practice: How Mass Audubon Is Incorporating Strategic Framing about Climate Change

    ERIC Educational Resources Information Center

    Fleischer, Amy

    2013-01-01

    Mass Audubon recognized that climate change was significantly impacting bird species distribution and seasonality. Unsure of how and when to engage visitors to their network of wildlife sanctuaries on the topic of climate change, its educators turned to the National Network of Ocean and Climate Change Interpreters' Study Circle (NNOCCI). Through…

  7. Longitudinal changes in abdominal fat distribution with menopause.

    PubMed

    Franklin, Ruth M; Ploutz-Snyder, Lori; Kanaley, Jill A

    2009-03-01

    Increases in abdominal fat have been reported with menopause, but the impact of menopause on abdominal fat distribution (visceral vs subcutaneous) is still unclear. The objective of the study was to determine if abdominal fat content (volume) or distribution is altered with menopause. Magnetic resonance imaging was used to quantify total abdominal, subcutaneous, and visceral fat in 8 healthy women, both in the premenopausal state and 8 years later in the postmenopausal state. Physical activity (PA) and blood lipids were also measured. Body weight and waist circumference did not change with menopause (pre- vs postmenopause: body weight, 63.2 +/- 3.1 vs 63.9 +/- 2.5 kg; waist circumference, 92.1 +/- 4.6 vs 93.4 +/- 3.7 cm); however, total abdominal fat, subcutaneous fat, and visceral fat all significantly (P < .05) increased with menopause (pre- vs postmenopause: total, 27 154 +/- 4268 vs 34 717 +/- 3272 cm(3); subcutaneous, 19 981 +/- 3203 vs 24 918 +/- 2521 cm(3); visceral, 7173 +/- 1611 vs 9798 +/- 1644 cm(3)). Although absolute adiposity changed with menopause, relative fat distribution was not significantly different after menopause (pre- vs postmenopause: subcutaneous, 73% +/- 3% vs 71% +/- 3%; visceral, 26% +/- 3% vs 28% +/- 3%). Lean mass, fat mass, and PA, along with total cholesterol and triglyceride levels, did not change with menopause. High-density lipoprotein and low-density lipoprotein both increased (P < .05), and the ratio of total cholesterol to high-density lipoprotein decreased (P < .05) with menopause. As measured longitudinally with magnetic resonance imaging, total abdominal fat content increased with menopause despite no change in PA, body weight, or waist circumference; however, menopause did not affect the relative abdominal fat distribution in these women.

  8. Changes to the temporal distribution of daily precipitation

    NASA Astrophysics Data System (ADS)

    Rajah, Kailash; O'Leary, Tess; Turner, Alice; Petrakis, Gabriella; Leonard, Michael; Westra, Seth

    2014-12-01

    Changes to the temporal distribution of daily precipitation were investigated using a data set of 12,513 land-based stations from the Global Historical Climatology Network. The distribution of precipitation was measured using the Gini index (which describes how uniformly precipitation is distributed throughout a year) and the annual number of wet days. The Mann-Kendall test and a regression analysis were used to assess the direction and rate of change to both indices. Over the period of 1976-2000, East Asia, Central America, and Brazil exhibited a decrease in the number of both wet and light precipitation days, and eastern Europe exhibited a decrease in the number of both wet and moderate precipitation days. In contrast, the U.S., southern South America, western Europe, and Australia exhibited an increase in the number of both wet and light precipitation days. Trends in both directions were field significant at the global scale.

  9. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  10. Temporomandibular joint fibrocartilage degeneration from unilateral dental splints.

    PubMed

    Henderson, Sarah E; Lowe, Jesse R; Tudares, Mauro A; Gold, Michael S; Almarza, Alejandro J

    2015-01-01

    The objective of this study was to determine the extent to which altered loading in the temporomandibular joint (TMJ), as might be associated with a malocclusion, drives degeneration of articulating surfaces in the TMJ. We therefore sought to quantify the effects of altered joint loading on the mechanical properties and biochemical content and distribution of TMJ fibrocartilage in the rabbit. Altered TMJ loading was induced with a 1mm splint placed unilaterally over the maxillary and mandibular molars for 6 weeks. At that time, TMJ fibrocartilage was assessed by compression testing, biochemical content (collagen, glycosaminoglycan (GAG), DNA) and distribution (histology), for both the TMJ disc and the condylar fibrocartilage. There were no changes in the TMJ disc for any of the parameters tested. The condylar fibrocartilage from the splinted animals was significantly stiffer and the DNA content was significantly lower than that in control animals. There was significant remodeling in the condylar fibrocartilage layers as manifested by a change in GAG and collagen II distribution and a loss of defined cell layers. A connection between the compressive properties of TMJ condylar fibrocartilage after 6 weeks of splinting and the changes in histology was observed. These results suggest a change in joint loading leads to condylar damage, which may contribute to pain associated with at least some forms of TMJ disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Temporomandibular Joint Fibrocartilage Degeneration from Unilateral Dental Splints

    PubMed Central

    Henderson, Sarah E.; Lowe, Jesse R.; Tudares, Mauro A.; Gold, Michael S.; Almarza, Alejandro J.

    2014-01-01

    Objective The objective of this study was to determine the extent to which altered loading in the temporomandibular joint (TMJ), as might be associated with a maloclussion, drives degeneration of articulating surfaces in the TMJ. We therefore sought to quantify the effects of altered joint loading on the mechanical properties and biochemical content and distribution of TMJ fibrocartilage in the rabbit. Design Altered TMJ loading was induced with a 1 mm splint placed unilaterally over the maxillary and mandibular molars for six weeks. At that time, TMJ fibrocartilage was assessed by compression testing, biochemical content (collagen, glycosaminoglycan (GAG), DNA) and distribution (histology), for both the TMJ disc and the condylar fibrocartilage. Results There were no changes in the TMJ disc for any of the parameters tested. The condylar fibrocartilage from the splinted animals was significantly stiffer and the DNA content was significantly lower than that in control animals. There was significant remodeling in the condylar fibrocartilage layers as manifested by a change in GAG and collagen II distribution and a loss of defined cell layers. Conclusions A connection between the compressive properties of TMJ condylar fibrocartilage after 6 weeks of splinting and the changes in histology was observed. These results suggest a change in joint loading, leads to condylar damage, which may contribute to pain associated with at least some forms of TMJ disease. PMID:25247778

  12. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  13. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  14. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    PubMed

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P <0. 05) but the change was not significant when it was changed into orchard (P >0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P <0. 05). The contents of POC and PON did not vary markedly after the forest was converted into orchard or sloping farmland, while the POC and PON contents increased markedly by 4. 12 and 1. 25 times after the sloping farmland was abandoned. Those above results indicated that abandoned land was easy for active organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P <0. 05). Those results showed that the activity of soil organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was higher after forest cultivation and lower after the sloping farmland was abandoned.

  15. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial.

    PubMed

    Zhang, Xiaomin; Qi, Qibin; Zhang, Cuilin; Smith, Steven R; Hu, Frank B; Sacks, Frank M; Bray, George A; Qi, Lu

    2012-11-01

    Recent evidence suggests that the fat mass and obesity-associated gene (FTO) genotype may interact with dietary intakes in relation to adiposity. We tested the effect of FTO variant on weight loss in response to 2-year diet interventions. FTO rs1558902 was genotyped in 742 obese adults who were randomly assigned to one of four diets differing in the proportions of fat, protein, and carbohydrate. Body composition and fat distribution were measured by dual-energy x-ray absorptiometry and computed tomography. We found significant modification effects for intervention varying in dietary protein on 2-year changes in fat-free mass, whole body total percentage of fat mass, total adipose tissue mass, visceral adipose tissue mass, and superficial adipose tissue mass (for all interactions, P < 0.05). Carriers of the risk allele had a greater reduction in weight, body composition, and fat distribution in response to a high-protein diet, whereas an opposite genetic effect was observed on changes in fat distribution in response to a low-protein diet. Likewise, significant interaction patterns also were observed at 6 months. Our data suggest that a high-protein diet may be beneficial for weight loss and improvement of body composition and fat distribution in individuals with the risk allele of the FTO variant rs1558902.

  16. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources

    PubMed Central

    Liu, G.; Ling, F. Q.; van der Mark, E. J.; Zhang, X. D.; Knezev, A.; Verberk, J. Q. J. C.; van der Meer, W. G. J.; Medema, G. J.; Liu, W. T.; van Dijk, J. C.

    2016-01-01

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8–4.5 × 103 cells ml−1 with a biological activity of 0.01–0.04 ng l−1 ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers’ taps and be ingested. PMID:26832989

  17. Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean

    PubMed Central

    Gili, Josep-Maria; Grinyó, Jordi; Raya, Vanesa; Sabatés, Ana

    2018-01-01

    In the present work, possible long-term changes in the planktonic cnidarian community were investigated by analyzing (1) species and community spatial distribution patterns, (2) variations in abundance and (3) changes in species richness during three mesoscale surveys representative of the climatic and anthropogenic changes that have occurred during the last three decades (years: 1983, 2004 and 2011) in the NW Mediterranean. These surveys were conducted during the summer (June) along the Catalan coast. All surveys covered the same area, used the same sampling methodology, and taxonomic identification was conducted by the same team of experts. An increase in the abundance of total cnidaria was found from 1983 to 2011. The siphonophore Muggiaea atlantica and the hydromedusa Aglaura hemistoma were the most abundant species, while Muggiaea kochii presented the largest abundance increment over time. Temperature was the main environmental parameter driving significant differences in the cnidarian community composition, abundance and spatial distribution patterns among the surveys. Our results suggest that in the current climate change scenario, warm-water species abundances will be positively favored, and the community will suffer changes in their latitudinal distribution patterns. We consider it extremely important to study and monitor gelatinous zooplankton in mesoscale spatial areas to understand not only long-term changes in abundances but also changes in their spatial distributions since spatial changes are sensitive indicators of climate change. PMID:29715282

  18. Potential effects of climate change on the risk of accidents with poisonous species of the genus Tityus (Scorpiones, Buthidae) in Argentina.

    PubMed

    Martinez, Pablo Ariel; Andrade, Mayane Alves; Bidau, Claudio Juan

    2018-06-01

    The temporal pattern of co-occurrence of human beings and venomous species (scorpions, spiders, snakes) is changing. Thus, the temporal pattern of areas with risk of accidents with such species tends to become dynamic in time. We analyze the areas of occurrence of species of Tityus in Argentina and assess the impact of global climate change on their area of distribution by the construction of risk maps. Using data of occurrence of the species and climatic variables, we constructed models of species distribution (SMDs) under current and future climatic conditions. We also created maps that allow the detection of temporal shifts in the distribution patterns of each Tityus species. Finally, we developed risk maps for the analyzed species. Our results predict that climate change will have an impact on the distribution of Tityus species which will clearly expand to more southern latitudes, with the exception of T. argentinus. T. bahiensis, widely distributed in Brazil, showed a considerable increase of its potential area (ca. 37%) with future climate change. The species T. confluens and T. trivittatus that cause the highest number of accidents in Argentina are expected to show significant changes of their distributions in future scenarios. The former fact is worrying because Buenos Aires province is the more densely populated district in Argentina thus iable to become the most affected by T. trivittatus. These alterations of distributional patterns can lead to amplify the accident risk zones of venomous species, becoming an important subject of concern for public health policies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Control of galactosylated glycoforms distribution in cell culture system.

    PubMed

    McCracken, Neil A; Kowle, Ronald; Ouyang, Anli

    2014-01-01

    Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed. These changes were of interest as glycosylation heterogeneity can impact the effectiveness of a protein. A systematic investigation was done to understand the root cause of the change and control strategy for galactosylated glycoforms distribution. It was found that changes in asparagine concentration could result in a corresponding change in G0F, G1F, and G2F distribution. A follow-up study examined a wider range of asparagine concentration and it was found that G0F, G1F, and G2F percentage could be titrated by adjusting asparagine concentration. The observed changes in heterogeneity from changing asparagine concentration are due to resulting changes in ammonium metabolism. Further study ascertained that different integrated ammonium level during the cell culture process could control G0F, G1F, and G2F percentage distribution. A mechanism hypothesis is proposed that integrated ammonium level impacts intracellular pH, which further regulates β-1, 4 galactosyltransferase activity. © 2014 American Institute of Chemical Engineers.

  20. Climate change and the distribution and conservation of the world's highest elevation woodlands in the South American Altiplano

    NASA Astrophysics Data System (ADS)

    Cuyckens, G. A. E.; Christie, D. A.; Domic, A. I.; Malizia, L. R.; Renison, D.

    2016-02-01

    Climate change is becoming an increasing threat to biodiversity. Consequently, methods for delineation, establishment and management of protected areas must consider the species' future distribution in response to future climate conditions. Biodiversity in high altitude semiarid regions may be particularly threatened by future climate change. In this study we assess the main environmental variables that best explain present day presence of the world's highest elevation woodlands in the South American Altiplano, and model how climate change may affect the future distribution of this unique ecosystem under different climate change scenarios. These woodlands are dominated by Polylepis tarapacana (Rosaceae), a species that forms unique biological communities with important conservation value. Our results indicate that five environmental variables are responsible for 91% and 90.3% of the present and future P. tarapacana distribution models respectively, and suggest that at the end of the 21st century, there will be a significant reduction (56%) in the potential habitat for this species due to more arid conditions. Since it is predicted that P. tarapacana's potential distribution will be severely reduced in the future, we propose a new network of national protected areas across this species distribution range in order to insure the future conservation of this unique ecosystem. Based on an extensive literature review we identify research topics and recommendations for on-ground conservation and management of P. tarapacana woodlands.

  1. A Simulation Tool for Distributed Databases.

    DTIC Science & Technology

    1981-09-01

    11-8 . Reed’s multiversion system [RE1T8] may also be viewed aa updating only copies until the commit is made. The decision to make the changes...distributed voting, and Ellis’ ring algorithm. Other, significantly different algorithms not covered in his work include Reed’s multiversion algorithm, the

  2. Mallard harvest distributions in the Mississippi and Central Flyways

    USGS Publications Warehouse

    Green, A.W.; Krementz, D.G.

    2008-01-01

    The mallard (Anas platyrhynchos) is the most harvested duck in North America. A topic of debate among hunters, especially those in Arkansas, USA, is whether wintering distributions of mallards have changed in recent years. We examined distributions of mallards in the Mississippi (MF) and Central Flyways during hunting seasons 1980-2003 to determine if and why harvest distributions changed. We used Geographic Information Systems to analyze spatial distributions of band recoveries and harvest estimated using data from the United States Fish and Wildlife Service Parts Collection Survey. Mean latitudes of band recoveries and harvest estimates showed no significant trends across the study period. Despite slight increases in band recoveries and harvest on the peripheries of kernel density estimates, most harvest occurred in eastern Arkansas and northwestern Mississippi, USA, in all years. We found no evidence for changes in the harvest distributions of mallards. We believe that the late 1990s were years of exceptionally high harvest in the lower MF and that slight shifts northward since 2000 reflect a return to harvest distributions similar to those of the early 1980s. Our results provide biologists with possible explanations to hunter concerns of fewer mallards available for harvest.

  3. From endogenous to exogenous pattern formation: Invasive plant species changes the spatial distribution of a native ant.

    PubMed

    Li, Kevin; He, Yifan; Campbell, Susanna K; Colborn, A Shawn; Jackson, Eliot L; Martin, Austin; Monagan, Ivan V; Ong, Theresa Wei Ying; Perfecto, Ivette

    2017-06-01

    Invasive species are a significant threat to global biodiversity, but our understanding of how invasive species impact native communities across space and time remains limited. Based on observations in an old field in Southeast Michigan spanning 35 years, our study documents significant impacts of habitat change, likely driven by the invasion of the shrub, Elaeagnus umbellata, on the nest distribution patterns and population demographics of a native ant species, Formica obscuripes. Landcover change in aerial photographs indicates that E. umbellata expanded aggressively, transforming a large proportion of the original open field into dense shrubland. By comparing the ant's landcover preferences before and after the invasion, we demonstrate that this species experienced a significant unfavorable change in its foraging areas. We also find that shrub landcover significantly moderates aggression between nests, suggesting nests are more related where there is more E. umbellata. This may represent a shift in reproductive strategy from queen flights, reported in the past, to asexual nest budding. Our results suggest that E. umbellata may affect the spatial distribution of F. obscuripes by shifting the drivers of nest pattern formation from an endogenous process (queen flights), which led to a uniform pattern, to a process that is both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. The number and sizes of F. obscuripes nests in our study site are projected to decrease in the next 40 years, although further study of this population's colony structures is needed to understand the extent of this decrease. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions. © 2017 John Wiley & Sons Ltd.

  4. Effect of osteogenesis imperfecta mutations in tropocollagen molecule on strength of biomimetic tropocollagen-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Dubey, Devendra K.; Tomar, Vikas

    2010-01-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that affects cellular synthesis of Type-I collagen fibrils and causes extreme bone fragility. This study reports the effects of OI mutations in Tropocollagen (TC) molecules on strength of model Tropocollagen-Hydroxyapatite biomaterials with two different mineral [hydroxyapatite (HAP)] distributions using three dimensional atomistic simulations. Results show that the effect of TC mutations on the strength of TC-HAP biomaterials is insignificant. Instead, change in mineral distribution showed significant impact on the overall strength of TC-HAP biomaterials. Study suggests that TC mutations manifest themselves by changing the mineral distribution during hydroxyapatite growth and nucleation period.

  5. Potential Information Loss Due to Categorization of Minimum Inhibitory Concentration Frequency Distributions.

    PubMed

    Mazloom, Reza; Jaberi-Douraki, Majid; Comer, Jeffrey R; Volkova, Victoriya

    2018-01-01

    A bacterial isolate's susceptibility to antimicrobial is expressed as the lowest drug concentration inhibiting its visible growth, termed minimum inhibitory concentration (MIC). The susceptibilities of isolates from a host population at a particular time vary, with isolates with specific MICs present at different frequencies. Currently, for either clinical or monitoring purposes, an isolate is most often categorized as Susceptible, Intermediate, or Resistant to the antimicrobial by comparing its MIC to a breakpoint value. Such data categorizations are known in statistics to cause information loss compared to analyzing the underlying frequency distributions. The U.S. National Antimicrobial Resistance Monitoring System (NARMS) includes foodborne bacteria at the food animal processing and retail product points. The breakpoints used to interpret the MIC values for foodborne bacteria are those relevant to clinical treatments by the antimicrobials in humans in whom the isolates were to cause infection. However, conceptually different objectives arise when inference is sought concerning changes in susceptibility/resistance across isolates of a bacterial species in host populations among different sampling points or times. For the NARMS 1996-2013 data for animal processing and retail, we determined the fraction of comparisons of susceptibility/resistance to 44 antimicrobial drugs of twelve classes of a bacterial species in a given animal host or product population where there was a significant change in the MIC frequency distributions between consecutive years or the two sampling points, while the categorization-based analyses concluded no change. The categorization-based analyses missed significant changes in 54% of the year-to-year comparisons and in 71% of the slaughter-to-retail within-year comparisons. Hence, analyses using the breakpoint-based categorizations of the MIC data may miss significant developments in the resistance distributions between the sampling points or times. Methods considering the MIC frequency distributions in their entirety may be superior for epidemiological analyses of resistance dynamics in populations.

  6. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  7. Changes in Mauna Kea Dry Forest Structure 2000-2014

    USGS Publications Warehouse

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.

  8. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr - A rare arctic-alpine species in the Tatra Mts.

    PubMed

    Czortek, Patryk; Delimat, Anna; Dyderski, Marcin K; Zięba, Antoni; Jagodziński, Andrzej M; Jaroszewicz, Bogdan

    2018-03-15

    Mountain vegetation is highly specialized to harsh climatic conditions and therefore is sensitive to any change in environment. The rarest and most vulnerable plants occurring in alpine regions are expected to respond rapidly to environmental changes. An example of such a species is Carex lachenalii subsp. lachenalii Schkuhr, which occurs in Poland on only a few isolated sites in the Tatra Mts. The aim of this study was to assess changes in distribution of C. lachenalii in the Tatra Mts over the past 50-150years and the effects of climate change, tourism and historical grazing on the ecological niche of C. lachenalii. We focused on changes in the importance of functional diversity components in shaping plant species composition. Over the past 50-150years, the elevation of the average distribution of C. lachenalii shifted about 178m upward alongside a significant prolongation of the vegetative season by approximately 20days in the last 50-60years. Species composition of plots without C. lachenalii was characterized by competition between plants, whereas on plots with C. lachenalii habitat filtering was the most important component. Our results suggest that climate change was the main factor driving upward shift of C. lachenalii. Moderate trampling enhanced horizontal spread of this plant, whereas cessation of grazing grazing caused decline of C. lachenalii. The three environmental factors studied that determined shifts in distribution of C. lachenalii may also contribute to changes in distribution of other rare mountain plant species causing changes in ecosystem functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  10. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects

    PubMed Central

    Bai, Yunjun; Wei, Xueping

    2018-01-01

    Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700

  11. Comparison of the spatial patterns of schistosomiasis in Zimbabwe at two points in time, spaced twenty-nine years apart: is climate variability of importance?

    PubMed

    Pedersen, Ulrik B; Karagiannis-Voules, Dimitrios-Alexios; Midzi, Nicholas; Mduluza, Tkafira; Mukaratirwa, Samson; Fensholt, Rasmus; Vennervald, Birgitte J; Kristensen, Thomas K; Vounatsou, Penelope; Stensgaard, Anna-Sofie

    2017-05-08

    Temperature, precipitation and humidity are known to be important factors for the development of schistosome parasites as well as their intermediate snail hosts. Climate therefore plays an important role in determining the geographical distribution of schistosomiasis and it is expected that climate change will alter distribution and transmission patterns. Reliable predictions of distribution changes and likely transmission scenarios are key to efficient schistosomiasis intervention-planning. However, it is often difficult to assess the direction and magnitude of the impact on schistosomiasis induced by climate change, as well as the temporal transferability and predictive accuracy of the models, as prevalence data is often only available from one point in time. We evaluated potential climate-induced changes on the geographical distribution of schistosomiasis in Zimbabwe using prevalence data from two points in time, 29 years apart; to our knowledge, this is the first study investigating this over such a long time period. We applied historical weather data and matched prevalence data of two schistosome species (Schistosoma haematobium and S. mansoni). For each time period studied, a Bayesian geostatistical model was fitted to a range of climatic, environmental and other potential risk factors to identify significant predictors that could help us to obtain spatially explicit schistosomiasis risk estimates for Zimbabwe. The observed general downward trend in schistosomiasis prevalence for Zimbabwe from 1981 and the period preceding a survey and control campaign in 2010 parallels a shift towards a drier and warmer climate. However, a statistically significant relationship between climate change and the change in prevalence could not be established.

  12. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects.

    PubMed

    Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang

    2018-01-01

    The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.

  13. Medial stabilized and posterior stabilized TKA affect patellofemoral kinematics and retropatellar pressure distribution differently.

    PubMed

    Glogaza, Alexander; Schröder, Christian; Woiczinski, Matthias; Müller, Peter; Jansson, Volkmar; Steinbrück, Arnd

    2018-06-01

    Patellofemoral kinematics and retropatellar pressure distribution change after total knee arthroplasty (TKA). It was hypothesized that different TKA designs will show altered retropatellar pressure distribution patterns and different patellofemoral kinematics according to their design characteristics. Twelve fresh-frozen knee specimens were tested dynamically in a knee rig. Each specimen was measured native, after TKA with a posterior stabilized design (PS) and after TKA with a medial stabilized design (MS). Retropatellar pressure distribution was measured using a pressure sensitive foil which was subdivided into three areas (lateral and medial facet and patellar ridge). Patellofemoral kinematics were measured by an ultrasonic-based three-dimensional motion system (Zebris CMS20, Isny Germany). Significant changes in patellofemoral kinematics and retropatellar pressure distribution were found in both TKA types when compared to the native situation. Mean retropatellar contact areas were significantly smaller after TKA (native: 241.1 ± 75.6 mm 2 , MS: 197.7 ± 74.5 mm 2 , PS: 181.2 ± 56.7 mm 2 , native vs. MS p < 0.001; native vs. PS p < 0.001). The mean peak pressures were significantly higher after TKA. The increased peak pressures were however seen in different areas: medial and lateral facet in the PS-design (p < 0.001), ridge in the MS design (p < 0.001). Different patellofemoral kinematics were found in both TKA designs when compared to the native knee during flexion and extension with a more medial patella tracking. Patellofemoral kinematics and retropatellar pressure change after TKA in different manner depending on the type of TKA used. Surgeons should be aware of influencing the risks of patellofermoral complications by the choice of the prosthesis design.

  14. The function of the earth observing system - Data information system Distributed Active Archive Centers

    NASA Technical Reports Server (NTRS)

    Lapenta, C. C.

    1992-01-01

    The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.

  15. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography.

    PubMed

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-07-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10 degrees ) mode up to 60 degrees. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (V(T))]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived V(T) performed in all patients during three predefined positions (supine, 60 degrees-left dependent and 60 degrees-right-dependent) showed a significant correlation between V(T) in supine, left and right lateral positions with the corresponding AUs (r(2) = 0.356, P<0.05). Changes in V(T) were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of V(T) with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients.

  16. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography

    PubMed Central

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-01-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10°) mode up to 60°. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (VT)]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived VT performed in all patients during three predefined positions (supine, 60°-left dependent and 60°-right-dependent) showed a significant correlation between VT in supine, left and right lateral positions with the corresponding AUs (r2 = 0·356, P<0·05). Changes in VT were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of VT with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients. PMID:20491842

  17. Changing Arctic ecosystems--the role of ecosystem changes across the Boreal-Arctic transition zone on the distribution and abundance of wildlife populations

    USGS Publications Warehouse

    McNew, Lance; Handel, Colleen M.; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary

    2013-01-01

    Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.

  18. Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast

    PubMed Central

    2013-01-01

    Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria. PMID:24330615

  19. Clinically significant change in stroke volume in pulmonary hypertension.

    PubMed

    van Wolferen, Serge A; van de Veerdonk, Marielle C; Mauritz, Gert-Jan; Jacobs, Wouter; Marcus, J Tim; Marques, Koen M J; Bronzwaer, Jean G F; Heymans, Martijn W; Boonstra, Anco; Postmus, Pieter E; Westerhof, Nico; Vonk Noordegraaf, Anton

    2011-05-01

    Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory increased heart rate as is the case for cardiac output. For this reason, stroke volume, which can be measured noninvasively, is an important hemodynamic parameter to monitor during treatment. However, the extent of change in stroke volume that constitutes a clinically significant change is unknown. The aim of this study was to determine the minimal important difference (MID) in stroke volume in PH. One hundred eleven patients were evaluated at baseline and after 1 year of follow-up with a 6-min walk test (6MWT) and cardiac MRI. Using the anchor-based method with 6MWT as the anchor, and the distribution-based method, the MID of stroke volume change could be determined. After 1 year of treatment, there was, on average, a significant increase in stroke volume and 6MWT. The change in stroke volume was related to the change in 6MWT. Using the anchor-based method, an MID of 10 mL in stroke volume was calculated. The distribution-based method resulted in an MID of 8 to 12 mL. Both methods showed that a 10-mL change in stroke volume during follow-up should be considered as clinically relevant. This value can be used to interpret changes in stroke volume during clinical follow-up in PH.

  20. Walrus distributional and foraging response to changing ice and benthic conditions in the Chukchi Sea

    USGS Publications Warehouse

    Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.

    2012-01-01

    Arctic species such as the Pacific walrus (Odobenus rosmarus divergens) are facing a rapidly changing environment. Walruses are benthic foragers and may shift their spatial patterns of foraging in response to changes in prey distribution. We used data from satellite radio-tags attached to walruses in 2009-2010 to map walrus foraging locations with concurrent sampling of benthic infauna to examine relationships between distributions of dominant walrus prey and spatial patterns of walrus foraging. Walrus foraging was concentrated offshore in the NE Chukchi Sea, and coastal areas of northwestern Alaska when sea ice was sparse. Walrus foraging areas in August-September were coincident with the biomass of two dominant bivalve taxa (Tellinidae and Nuculidae) and sipunculid worms. Walrusforaging costs associated with increased travel time to higher biomass food patches from land may be significantly higher than the costs from sea ice haul-outs and result in reduced energy storesin walruses. Identifying what resources are selected by walruses and how those resources are distributed in space and time will improve our ability to forecast how walruses might respond to a changing climate.

  1. Understanding the effect of hammering process on the vibration characteristics of cymbals

    NASA Astrophysics Data System (ADS)

    Kuratani, F.; Yoshida, T.; Koide, T.; Mizuta, T.; Osamura, K.

    2016-09-01

    Cymbals are thin domed plates used as percussion instruments. When cymbals are struck, they vibrate and radiate sound. Cymbals are made through spin forming, hammering, and lathing. The spin forming creates the basic shape of the cymbal, which determines its basic vibration characteristics. The hammering and lathing produce specific sound adjustments by changing the cymbal's vibration characteristics. In this study, we study how hammering cymbals affects their vibration characteristics. The hammering produces plastic deformation (small, shallow dents) on the cymbal's surface, generating residual stresses throughout it. These residual stresses change the vibration characteristics. We perform finite element analysis of a cymbal to obtain its stress distribution and the resulting change in vibration characteristics. To reproduce the stress distribution, we use thermal stress analysis, and then with this stress distribution we perform vibration analysis. These results show that each of the cymbal's modes has a different sensitivity to the thermal load (i.e., hammering). This difference causes changes in the frequency response and the deflection shape that significantly improves the sound radiation efficiency. In addition, we explain the changes in natural frequencies by the stress and modal strain energy distributions.

  2. The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China.

    PubMed

    Liu, Yupeng; Yu, Deyong; Xun, Bin; Sun, Yun; Hao, Ruifang

    2014-01-01

    Climate changes may have immediate implications for forest productivity and may produce dramatic shifts in tree species distributions in the future. Quantifying these implications is significant for both scientists and managers. Cunninghamia lanceolata is an important coniferous timber species due to its fast growth and wide distribution in China. This paper proposes a methodology aiming at enhancing the distribution and productivity of C. lanceolata against a background of climate change. First, we simulated the potential distributions and establishment probabilities of C. lanceolata based on a species distribution model. Second, a process-based model, the PnET-II model, was calibrated and its parameterization of water balance improved. Finally, the improved PnET-II model was used to simulate the net primary productivity (NPP) of C. lanceolata. The simulated NPP and potential distribution were combined to produce an integrated indicator, the estimated total NPP, which serves to comprehensively characterize the productivity of the forest under climate change. The results of the analysis showed that (1) the distribution of C. lanceolata will increase in central China, but the mean probability of establishment will decrease in the 2050s; (2) the PnET-II model was improved, calibrated, and successfully validated for the simulation of the NPP of C. lanceolata in China; and (3) all scenarios predicted a reduction in total NPP in the 2050s, with a markedly lower reduction under the a2 scenario than under the b2 scenario. The changes in NPP suggested that forest productivity will show a large decrease in southern China and a mild increase in central China. All of these findings could improve our understanding of the impact of climate change on forest ecosystem structure and function and could provide a basis for policy-makers to apply adaptive measures and overcome the unfavorable influences of climate change.

  3. 75 FR 33502 - Special Local Regulation for Marine Events; Temporary Change of Dates for Recurring Marine Events...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... activities that typically comprise marine events include sailing regattas, power boat races, swim races and... distribution of power and responsibilities between the Federal Government and Indian tribes. Energy Effects We... Affect Energy Supply, Distribution, or Use. We have determined that it is not a ``significant energy...

  4. Tuition Discounting in Challenging Times.

    ERIC Educational Resources Information Center

    Hubbell, Loren Loomis; Lapovsky, Lucie

    2002-01-01

    The twelfth annual tuition discounting survey by the National Association of College and University Business Officers (NACUBO) revealed that tuition discounts are up slightly; it also provided data on participation rates, grant levels, distribution changes, correlation with endowments, shifts on the horizon, and other significant changes. (EV)

  5. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  6. Long-Term Changes in Game Species Over a Long Period of Transformation in the Iberian Mediterranean Landscape

    NASA Astrophysics Data System (ADS)

    Delibes-Mateos, Miguel; Farfán, Miguel Ángel; Olivero, Jesús; Márquez, Ana Luz; Vargas, Juan Mario

    2009-06-01

    Agricultural change has transformed large areas of traditional farming landscapes, leading to important changes in the species community assemblages in most European countries. We suspect that the drastic changes in land-use that have occurred in Andalusia (southern Spain) over recent decades, may have affected the distribution and abundance of game species in this region. This article compares the distribution of the main game species in Andalusia during the 1960s and 1990s, using data from maps available from the Mainland Spanish Fish, Game and National Parks Service and from recent datasets on hunting yield distributions, respectively. Big-game and small-game species were significantly segregated in southern Spain during the 1990s, as two clearly independent chorotypes (groups of species whose abundances are similarly distributed) were obtained from the classification analysis. In contrast, big-game and small-game species were not significantly segregated several decades ago, when there was only one chorotype consisting of small-game species and wild boar. The other three ungulates did not constitute a significant chorotype, as they showed positive correlations with some species in the group mentioned above. These changes seem to be a consequence of the transformations that have occurred in the Iberian Mediterranean landscape over the last few decades. The abandoning of traditional activities, and the consequent formation of dense scrubland and woodland, has led to an expansion of big-game species, and a decrease of small-game species in mountain areas. Moreover, agricultural intensification has apparently depleted small-game species populations in some agricultural areas. On the other hand, the increasingly intensive hunting management could be artificially boosting this segregation between small-game and big-game species. Our results suggest that the conservation and regeneration of traditional agricultural landscapes (like those predominating in the 1960s) should be a priority for the conservation of small-game species.

  7. Climate change vulnerabilities and adaptation options for forest vegetation management in the northwestern USA

    Treesearch

    Jessica Halofsky; David Peterson

    2016-01-01

    Recent vulnerability assessments, conducted in diverse regions in the northwestern United States, indicate that many commonalities exist with respect to projected vulnerabilities to climate change. Dry forests are projected to have significant changes in distribution and abundance of species, partially in response to higher temperature and lower soil moisture, but...

  8. Changes in fire weather distributions: effects on predicted fire behavior

    Treesearch

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  9. A Technique for Merging Areas in Timber Mart-South Data

    Treesearch

    Jeffrey P. Prestemon; John M. Pye

    2000-01-01

    For over 20 yr, TimberMart-South (TMS) has been distributing prices of various wood products from southern forests. In the beginning of 1988, the reporting frequency changed from monthly to quarterly, a change readily addressed through a variety established statistical techniques. A more significant statistical challenge is Timber Mart-South's change in 1992 from...

  10. Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers.

    PubMed

    Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Martínez-Meyer, Enrique; Cuervo-Robayo, Angela P; Berlanga, Humberto; Soberón, Jorge

    2015-05-01

    Numerous climate change effects on biodiversity have been anticipated and documented, including extinctions, range shifts, phenological shifts, and breakdown of interactions in ecological communities, yet the relative balance of different climate drivers and their relationships to other agents of global change (for example, land use and land-use change) remains relatively poorly understood. This study integrated historical and current biodiversity data on distributions of 115 Mexican endemic bird species to document areas of concentrated gains and losses of species in local communities, and then related those changes to climate and land-use drivers. Of all drivers examined, at this relatively coarse spatial resolution, only temperature change had significant impacts on avifaunal turnover; neither precipitation change nor human impact on landscapes had detectable effects. This study, conducted across species' geographic distributions, and covering all of Mexico, thanks to two large-scale biodiversity data sets, could discern relative importance of specific climatic drivers of biodiversity change.

  11. A study of the EMC effect using neutrino and antineutrino interactions in neon and deuterium

    NASA Astrophysics Data System (ADS)

    Guy, J.; Saitta, B.; van Apeldoorn, G.; Allport, P.; Angelini, C.; Armenise, N.; Baldini, A.; Berggren, M.; Bertrand, D.; Bobisut, F.; Brisson, V.; Bullock, F.; Calicchio, M.; Capiluppi, P.; Cirio, R.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Faccini-Turluer, M. L.; Fitch, P.; Frodesen, A. G.; Gerbier, G.; Giacomelli, G.; Hulth, P. O.; Jones, G. T.; Jongejans, B.; Kasper, P.; Klein, H.; Mandrioli, G.; Marage, P.; Marzari-Chiesa, A.; Middleton, R. P.; Miller, D. B.; Morrison, D. R. O.; Mobayyen, M. M.; O'Neale, S. W.; Neveu, M.; Parker, M. A.; Petiau, P.; Romero, A.; Rossi, A. M.; Sacton, J.; Sansum, A.; Sconza, A.; Simopoulou, E.; Schmitz, N.; Tenner, A.; Vallee, C.; van Eijndhoven, N.; Varvell, K.; Vayaki, A.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.

    1987-09-01

    Nearly 40000 neutrino and antineutrino interactions in BEBC are compared to measure the differences between neon and deuterium in the quark and antiquark distributions and in the nucleon structure functions. The ratio of Ne to D cross sections indicates some decrease between x˜0.2 and x˜0.6. The y distributions show there is no significant increase in the neon sea, but prefer a small decrease. Taken altogether, the x and y distributions and the measured total cross-sections indicate some change in the shape of the valence distributions. No significant dependence on A is observed for either the shape of the sea or the ratio of longitudinal to transverse cross-sections.

  12. The Changes of COP and Foot Pressure after One Hour's Walking Wearing High-heeled and Flat Shoes

    PubMed Central

    Ko, Dong Yeol; Lee, Han Suk

    2013-01-01

    [Purpose] This study aimed to determine the most appropriate height for shoe heels by measuring the displacement of the COP (center of pressure) and changes in the distribution of foot pressure after walking in flat (0.5 cm), middle-heeled (4 cm), and high-heeled (9 cm) shoes for 1 hour. [Methods] A single-subject design was used, with 15 healthy women wearing shoes with heels of each height in a random order. The foot pressure and displacement of COP before and after walking in an ordinary environment for 1 hour were measured using an FDM-S (zebris Medical GmbH, Germany). [Results] The distribution of foot pressure did not change significantly after walking in middle-heeled (4 cm) shoes but did change significantly after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. Similarly, the COP was not significantly displaced after walking in middle-heeled (4 cm) shoes but was significantly displaced after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. [Conclusion] Both flat and high-heeled shoes had adverse effects on the body. Middle-heeled (4 cm) shoes are preferable to both flat (0.5 cm) and high-heeled (9 cm) shoes for the health and comfort of the feet. PMID:24259782

  13. Utilizing forest tree genetic diversity for an adaptation of forest to climate change

    NASA Astrophysics Data System (ADS)

    Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti

    2017-04-01

    Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.

  14. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK).

    PubMed

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species' geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies.

  15. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK)

    PubMed Central

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species’ geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies. PMID:29401494

  16. Climate Change Impact Assessment in Pacific North West Using Copula based Coupling of Temperature and Precipitation variables

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Rana, A.; Moradkhani, H.

    2014-12-01

    The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated by the joint precipitation and temperature, will provide useful information/insights for hydrological and climate change predictions.

  17. Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in warm-core rings

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Bishop, James B.; Backus, Richard H.

    1986-11-01

    Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of warm-core rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that core waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in response to changes in environmental properties; rather, the temporal changes we observed are best explained by the physical processes affecting ring structure. No qualitative decrease in NMDSL intensity was observed in 82B between April and August, suggesting that the sound scatterers can tolerate significant changes in depth, temperature and salinity. The gonostomatid fish Cyclothone braueri and the physonect siphonophores are possibly sources of the NMDSLs.

  18. 14 CFR 23.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... load would significantly change the distribution of external or internal loads, this redistribution...) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided...

  19. Flood return level analysis of Peaks over Threshold series under changing climate

    NASA Astrophysics Data System (ADS)

    Li, L.; Xiong, L.; Hu, T.; Xu, C. Y.; Guo, S.

    2016-12-01

    Obtaining insights into future flood estimation is of great significance for water planning and management. Traditional flood return level analysis with the stationarity assumption has been challenged by changing environments. A method that takes into consideration the nonstationarity context has been extended to derive flood return levels for Peaks over Threshold (POT) series. With application to POT series, a Poisson distribution is normally assumed to describe the arrival rate of exceedance events, but this distribution assumption has at times been reported as invalid. The Negative Binomial (NB) distribution is therefore proposed as an alternative to the Poisson distribution assumption. Flood return levels were extrapolated in nonstationarity context for the POT series of the Weihe basin, China under future climate scenarios. The results show that the flood return levels estimated under nonstationarity can be different with an assumption of Poisson and NB distribution, respectively. The difference is found to be related to the threshold value of POT series. The study indicates the importance of distribution selection in flood return level analysis under nonstationarity and provides a reference on the impact of climate change on flood estimation in the Weihe basin for the future.

  20. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin.

    PubMed

    Jore, Solveig; Vanwambeke, Sophie O; Viljugrein, Hildegunn; Isaksen, Ketil; Kristoffersen, Anja B; Woldehiwet, Zerai; Johansen, Bernt; Brun, Edgar; Brun-Hansen, Hege; Westermann, Sebastian; Larsen, Inger-Lise; Ytrehus, Bjørnar; Hofshagen, Merete

    2014-01-08

    Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 - 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.

  1. Specialty distribution of physician assistants and nurse practitioners in North Carolina.

    PubMed

    Fraher, Erin P; Morgan, Perri; Johnson, Anna

    2016-04-01

    Physician workforce projections often include scenarios that forecast physician shortages under different assumptions about the deployment of physician assistants (PAs) and nurse practitioners (NPs). These scenarios generally assume that PAs and NPs are an interchangeable resource and that their specialty distributions do not change over time. This study investigated changes in PA and NP specialty distribution in North Carolina between 1997 and 2013. The data show that over the study period, PAs and NPs practiced in a wide range of specialties, but each profession had a specific pattern. The proportion of PAs-but not NPs-reporting practice in primary care dropped significantly. PAs were more likely than NPs to report practice in urgent care, emergency medicine, and surgical subspecialties. Physician workforce models need to account for the different and changing specialization trends of NPs and PAs.

  2. A centroid model of species distribution with applications to the Carolina wren Thryothorus ludovicianus and house finch Haemorhous mexicanus in the United States

    USGS Publications Warehouse

    Huang, Qiongyu; Sauer, John R.; Swatantran, Anu; Dubayah, Ralph

    2016-01-01

    Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. Many studies have documented recent shifts in species distributions. However, most of these studies are limited to regional scales, and do not consider the abundance structure within species ranges. Developing methods to detect systematic changes in species distributions over their full ranges is critical for understanding the impact of changing environments and for successful conservation planning. Here, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. Yearly abundance-weighted range centroids are estimated. As case studies, we derive annual centroids for the Carolina wren and house finch in their ranges in the U.S. We further evaluate the first-difference correlation between species’ centroid movement and changes in winter severity, total population abundance. We also examined associations of change in centroids from sub-ranges. Change in full-range centroid movements of Carolina wren significantly correlate with snow cover days (r = −0.58). For both species, the full-range centroid shifts also have strong correlation with total abundance (r = 0.65, and 0.51 respectively). The movements of the full-range centroids of the two species are correlated strongly (up to r = 0.76) with that of the sub-ranges with more drastic population changes. Our study demonstrates the usefulness of centroids for analyzing distribution changes in a two-dimensional spatial context. Particularly it highlights applications that associate the centroid with factors such as environmental stressors, population characteristics, and progression of invasive species. Routine monitoring of changes in centroid will provide useful insights into long-term avian responses to environmental changes.

  3. [Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in Southwest Guangxi, China].

    PubMed

    Yuan, Tie-Xiang; Zhang, He-Ping; Ou, Zhi-Yang; Tan, Yi-Bo

    2014-10-01

    Covariance analysis, curve-fitting, and canonical correspondence analysis (CCA) were used to explore the effects of topographic factors on the plant diversity and distribution patterns of ground flora with different growth forms in the karst mountains of Southwest Guangxi, China. A total of 152 ground plants were recorded. Among them, 37 species were ferns, 44 species herbs, 9 species lianas, and 62 species shrubs. Covariance analysis revealed that altitude significantly correlated with the individual number and richness of ground plants, and slope aspect had a significant effect on richness. Statistical analyses showed a highly significant nonlinear correlation between the individual number or richness of ground plants and altitude. Results of CCA revealed that slope aspect had a significant effect on the distribution pattern of ferns, and slope had a significant effect on the distribution patterns of herbs, lianas and shrubs. Ferns were more sensitive than herbs, lianas and shrubs to changes in heat and soil water caused by aspect. The effect of slope was stronger than that of elevation on soil water and nutrients, and it was the most important topographic factor that affected the distribution patterns of herbs, lianas and shrubs in this region.

  4. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.

    PubMed

    Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J

    2009-04-01

    Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.

  5. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Historic distribution and recent loss of tigers in China.

    PubMed

    Kang, Aili; Xie, Yan; Tang, Jirong; Sanderson, Eric W; Ginsberg, Joshua R; Zhang, Endi

    2010-12-01

    Historical records can provide important evidence of changes in distributions of wildlife species. Here we discuss the distribution of the tiger (Panthera tigris Linnaeus, 1758) over the past 2000 years in China based on 2635 historical records. We also compare tiger distributions outlined in these records with ecosystem type maps. Throughout this time period, tigers maintained a broad distribution across 7 biomes (from forests to deserts). However, in recent decades the range has been significantly condensed. Today, only 2 populations remain, neither of which is independently viable. Tigers have completely disappeared from the temperate broadleaf and mixed forests of central China, a region that was traditionally their most important biome in China. The continued presence of wild tigers in China is highly dependent on significant conservation measures. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  7. Liver allocation and distribution: time for a change.

    PubMed

    Deshpande, Ranjit; Hirose, Ryutaro; Mulligan, David

    2017-04-01

    Liver allograft allocation has been a topic of hot debate for over a decade. New redistricting changes have been proposed by the Liver and Intestinal Transplant Committee to the existing United Network for Organ Sharing (UNOS) liver allocation policy. The basis of this new proposal is similar to the old one with an aim to distribute organs in a fair, efficient and equitable fashion. In this review, we plan to look in depth at the redistribution proposals thus far, their merits and how they may help patients who do not have adequate access to livers. Many authors have criticized the proposed changes to organ distribution to reduce geographic disparity in access to liver transplantation. Our focus in this article is to bring forth the most recent literature and proposed changes in the current distribution system. We will also mention two other possible methods that have been proposed to redesign distribution using concentric circles and neighborhoods. In this article, we also look at the economics of the redistricting proposal and its effects on transplant centers. The UNOS Liver and Intestinal Transplant Committee has recommended a proposal using the eight-district model with proximity circles and three additional Model for End-Stage Liver Disease (MELD) points with initial sharing MELD threshold of 25 as a starting point to reduce disparity in patient access to deceased donor livers for transplantation. This proposal has met with significant resistance because of concerns of cost, logistics and impact on existing transplant centers. Other methodologies have also been proposed that have the potential to significantly improve our current disparity of access to life-saving organs. Variation in the supply of donor organs vs. the demand or need for liver transplant by geography and the current defined areas of distribution drive this disparity. Cost benefits to the healthcare system in caring for patients with advanced stages of liver disease may outweigh increased costs of transportation and transplantation. The current allocation boundaries are not optimal for liver distribution, as modeled by all suggested solutions thus far. The need to identify a more optimal and equitable allocation/distribution system is paramount.

  8. 14 CFR 25.301 - Loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... significantly change the distribution of external or internal loads, this redistribution must be taken into... loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit...

  9. Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy

    DTIC Science & Technology

    2002-01-01

    can significantly change the electric behavior. Techniques like Positron Annihilation Spectroscopy [5,6] and Rutherford Backscattering/Channeling... Semiconductor Materials for Optoelectronic Applications Symposium held in Boston, Massachusetts on November 26-29, 2001. To order the complete compilation... Spectroscopy DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Progress in

  10. Response of Arnica dealbata to climate change, nitrogen deposition, and fire

    Treesearch

    Matthew Hurteau; Malcolm North

    2009-01-01

    Predicted changes in climate and increasing nitrogen deposition are likely to have significant impacts on species that have limited distributions or are already experiencing diminished population size. Arnica dealbata (A. Gray, Asteraceae), a listed sensitive species in Yosemite National Park, is endemic to California and has limited...

  11. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    PubMed

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-06-01

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends. Human encounters with these types of creatures are likely to increase, resulting in potential human morbidity and mortality. Temperature extremes and changes to climatic norms may have a dramatic effect on venomous terrestrial species. As climate change affects the distribution, populations, and life histories of these organisms, the chance of encounters could be altered, thus affecting human health and the survivability of these creatures. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  12. Climate induced changes in biome distribution, NPP and hydrology for potential vegetation of the Upper Midwest U.S

    NASA Astrophysics Data System (ADS)

    Motew, M.; Kucharik, C. J.

    2011-12-01

    While much attention is focused on future impacts of climate change on ecosystems, much can be learned about the previous interactions of ecosystems with recent climate change. In this study, we investigated the impacts of climate change on potential vegetation distributions (i.e. grasses, trees, and shrubs) and carbon and water cycling across the Upper Midwest USA from 1948-2007 using the Agro-IBIS dynamic vegetation model. We drove the model using a historical, gridded daily climate data set (temperature, precipitation, humidity, solar radiation, and wind speed) at a spatial resolution of 5 min x 5 min. While trends in climate variables exhibited heterogeneous spatial patterns over the study period, the overall impact of climate change on vegetation productivity was positive. We observed total increases in net primary productivity (NPP) ranging from 20-150 g C m-2, based on linear regression analysis. We determined that increased summer relative humidity, increased annual precipitation and decreased mean maximum summer temperatures were key variables contributing to these positive trends, likely through a reduction in soil moisture stress (e.g., increased available water) and heat stress. Model simulations also illustrated an increase in annual drainage throughout the region of 20-140 mm yr-1, driven by substantial increases in annual precipitation. Evapotranspiration had a highly variable spatial trend over the 60-year period, with total change over the study period ranging between -100 and +100 mm yr-1. We also analyzed potential changes in plant functional type (PFT) distributions at the biome level, but hypothesize that the model may be unable to adequately capture competitive interactions among PFTs as well as the dynamics between upper and lower canopies consisting of trees, grasses and shrubs. An analysis of the bioclimatic envelopes for PFTs common to the region revealed no significant change to the boreal conifer tree climatic domain over the study period, yet did reveal a slightly expanded domain for temperate deciduous broadleaf trees. The location of the Tension Zone, a broad ecotone dividing mixed forests in the north and southern hardwood forests and prairies in the south, was not observed to shift using analyses of both meteorological variables and through the results of simulated vegetation distributions. In general, our results supported the idea that climate change is spatially variable in nature, having significant effects on ecosystem structure and function. Our analysis also revealed interesting relationships among the key climatic quantities driving plant productivity and hydrology in the region. Most notably, while the model suggested that potential biome and PFT distributions have not likely shifted significantly in the past 60 years, climate change has contributed to substantial changes in coupled carbon, water, and energy exchange in natural ecosystems of the Upper Midwest US. We conclude that incorporating recent, high-resolution climate records into ecological studies offers valuable insight into the heterogeneous nature of climate change and its impacts on ecosystems at the local level.

  13. Climate change risks and conservation implications for a threatened small-range mammal species.

    PubMed

    Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian

    2010-04-29

    Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.

  14. Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios

    NASA Astrophysics Data System (ADS)

    Singer, Anja; Millat, Gerald; Staneva, Joanna; Kröncke, Ingrid

    2017-03-01

    Small-scale spatial distribution patterns of seven macrofauna species, seagrass beds and mixed mussel/oyster reefs were modelled for the Jade Bay (North Sea, Germany) in response to climatic and environmental scenarios (representing 2050). For the species distribution models four presence-absence modelling methods were merged within the ensemble forecasting platform 'biomod2'. The present spatial distribution (representing 2009) was modelled by statistically related species presences, true species absences and six high-resolution environmental grids. The future spatial distribution was then predicted in response to expected climate change-induced ongoing (1) sea-level rise and (2) water temperature increase. Between 2009 and 2050, the present and future prediction maps revealed a significant range gain for two macrofauna species (Macoma balthica, Tubificoides benedii), whereas the species' range sizes of five macrofauna species remained relatively stable across space and time. The predicted probability of occurrence (PO) of two macrofauna species (Cerastoderma edule, Scoloplos armiger) decreased significantly under the potential future habitat conditions. In addition, a clear seagrass bed extension (Zostera noltii) on the lower intertidal flats (mixed sediments) and a decrease in the PO of mixed Mytilus edulis/Crassostrea gigas reefs was predicted for 2050. Until the mid-21st century, our future climatic and environmental scenario revealed significant changes in the range sizes (gains-losses) and/or the PO (increases-decreases) for seven of the 10 modelled species at the study site.

  15. Comparative phylogeography of a coevolved community: concerted population expansions in Joshua trees and four yucca moths

    USGS Publications Warehouse

    Smith, Christopher Irwin; Tank, Shantel; Godsoe, William; Levenick, Jim; Strand, Eva; Esque, Todd C.; Pellmyr, Olle

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes.

  16. Comparative phylogeography of a coevolved community: Concerted population expansions in Joshua trees and four Yucca moths

    USGS Publications Warehouse

    Smith, C.I.; Tank, S.; Godsoe, W.; Levenick, J.; Strand, Espen; Esque, T.; Pellmyr, O.

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community - Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes.

  17. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China.

    PubMed

    Zhang, Pingyang; Zou, Yeai; Xie, Yonghong; Zhang, Hong; Liu, Xiangkui; Gao, Dali; Yi, Feiyue

    2018-04-24

    Studies on distribution dynamics of waterbirds and the relation with hydrological changes are essential components of ecological researches. East Dongting Lake is a Ramsar site and especially important wintering ground for herbivorous geese along the East Asian-Australasian Flyway. In this paper, based on annual (2008/09-2016/17) waterbird census data, we investigated the spatial-temporal distributions of three herbivorous goose species (Lesser White-fronted Goose Anser erythropus, Bean Goose Anser fabalis, and Greater White-fronted Goose Anser albifrons) within East Dongting Lake, and analyzed their distribution dynamics (denoted by percentage similarity index, PSI) relative to variations in hydrological regime. The results demonstrated that the distribution of the globally vulnerable Lesser White-fronted Geese changed obviously between years, whereas that of Bean Geese was more stable. Greater White-fronted Geese suffered drastic distribution variation during the study period. The PSI of Lesser White-fronted Geese was negatively correlated with between-year difference in water recession time and mean water level in October, whereas no obvious trend was found in Bean Geese. The Normalized Difference Vegetation Index (NDVI) was applied to detect changes in food resources of the geese, and significant correlations were also found between NDVI and hydrological factors. It was inferred that the variations in hydrological regime affected the annual distribution dynamics of Lesser White-fronted Geese by changing food conditions; whereas the effect on Bean Geese were not reflected in this study. Species traits may explain the differences in distribution dynamics among the three goose species. It was speculated that Lesser White-fronted Geese might be more sensitive to habitat change, whereas Bean Geese were more resilient. We suggested that regulating hydrological regime was crucial in management works. Our study could offer scientific information for species conservation in the context of habitat changes in East Dongting Lake wetland and provide potential insights into habitat management in this area. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Impact on patients triage distribution utilizing the Australasian Triage Scale compared with its predecessor the National Triage Scale.

    PubMed

    Yousif, Khalid; Bebbington, Jane; Foley, Bernard

    2005-01-01

    To assess the impact of the change from the National Triage Scale (NTS) to the Australasian Triage Scale (ATS) within a hospital ED. A retrospective audit of consecutive adult patients attending the ED of Auckland Hospital from July to September 2001, during which patients were triaged according to the NTS, were compared with patients triaged according to the ATS during July to September 2002. In total, 8715 patients attended the department during July to September 2001 compared with 9047 patients during July to September 2002. There was a significant shift in the triage ratios with patient number increases of 28 and 24% in triage categories two and three, respectively, and decreases of 15 and 67% in categories four and five, respectively. The revision of the ATS has had a significant impact on the triage distribution of patients who present to ED. The change of distribution might have implications for meeting performance criteria and assessing casemix.

  20. Mathematical modelling of flow distribution in the human cardiovascular system

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  1. Multiscale power analysis for heart rate variability

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Liu, Hongxing; Ni, Huangjing; Zhou, Jing; Xia, Lan; Ning, Xinbao

    2015-06-01

    We first introduce multiscale power (MSP) method to assess the power distribution of physiological signals on multiple time scales. Simulation on synthetic data and experiments on heart rate variability (HRV) are tested to support the approach. Results show that both physical and psychological changes influence power distribution significantly. A quantitative parameter, termed power difference (PD), is introduced to evaluate the degree of power distribution alteration. We find that dynamical correlation of HRV will be destroyed completely when PD>0.7.

  2. The impact of Japan's 2004 postgraduate training program on intra-prefectural distribution of pediatricians in Japan.

    PubMed

    Sakai, Rie; Wang, Wei; Yamaguchi, Norihiro; Tamura, Hiroshi; Goto, Rei; Kawachi, Ichiro

    2013-01-01

    Inequity in physician distribution poses a challenge to many health systems. In Japan, a new postgraduate training program for all new medical graduates was introduced in 2004, and researchers have argued that this program has increased inequalities in physician distribution. We examined the trends in the geographic distribution of pediatricians as well as all physicians from 1996 to 2010 to identify the impact of the launch of the new training program. The Gini coefficient was calculated using municipalities as the study unit within each prefecture to assess whether there were significant changes in the intra-prefectural distribution of all physicians and pediatricians before and after the launch of the new training program. The effect of the new program was quantified by estimating the difference in the slope in the time trend of the Gini coefficients before and after 2004 using a linear change-point regression design. We categorized 47 prefectures in Japan into two groups: 1) predominantly urban and 2) others by the definition from OECD to conduct stratified analyses by urban-rural status. The trends in physician distribution worsened after 2004 for all physicians (p value<.0001) and pediatricians (p value = 0.0057). For all physicians, the trends worsened after 2004 both in predominantly urban prefectures (p value = 0.0012) and others (p value<0.0001), whereas, for pediatricians, the distribution worsened in others (p value = 0.0343), but not in predominantly urban prefectures (p value =0.0584). The intra-prefectural distribution of physicians worsened after the launch of the new training program, which may reflect the impact of the new postgraduate program. In pediatrics, changes in the Gini trend differed significantly before and after the launch of the new training program in others, but not in predominantly urban prefectures. Further observation is needed to explore how this difference in trends affects the health status of the child population.

  3. The Impact of Japan's 2004 Postgraduate Training Program on Intra-Prefectural Distribution of Pediatricians in Japan

    PubMed Central

    Sakai, Rie; Wang, Wei; Yamaguchi, Norihiro; Tamura, Hiroshi; Goto, Rei; Kawachi, Ichiro

    2013-01-01

    Objective Inequity in physician distribution poses a challenge to many health systems. In Japan, a new postgraduate training program for all new medical graduates was introduced in 2004, and researchers have argued that this program has increased inequalities in physician distribution. We examined the trends in the geographic distribution of pediatricians as well as all physicians from 1996 to 2010 to identify the impact of the launch of the new training program. Methods The Gini coefficient was calculated using municipalities as the study unit within each prefecture to assess whether there were significant changes in the intra-prefectural distribution of all physicians and pediatricians before and after the launch of the new training program. The effect of the new program was quantified by estimating the difference in the slope in the time trend of the Gini coefficients before and after 2004 using a linear change-point regression design. We categorized 47 prefectures in Japan into two groups: 1) predominantly urban and 2) others by the definition from OECD to conduct stratified analyses by urban-rural status. Results The trends in physician distribution worsened after 2004 for all physicians (p value<.0001) and pediatricians (p value = 0.0057). For all physicians, the trends worsened after 2004 both in predominantly urban prefectures (p value = 0.0012) and others (p value<0.0001), whereas, for pediatricians, the distribution worsened in others (p value = 0.0343), but not in predominantly urban prefectures (p value = 0.0584). Conclusion The intra-prefectural distribution of physicians worsened after the launch of the new training program, which may reflect the impact of the new postgraduate program. In pediatrics, changes in the Gini trend differed significantly before and after the launch of the new training program in others, but not in predominantly urban prefectures. Further observation is needed to explore how this difference in trends affects the health status of the child population. PMID:24204731

  4. The species velocity of trees in Alaska

    NASA Astrophysics Data System (ADS)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly with minimal loss of optimal habitat. Our results suggest that these species do not exclusively redistribute to higher latitudes and elevations in a warming climate, suggesting that 1) microtopography plays a significant role in the distribution of a species and 2) many species may not be tracking temperature change, but other climate restrictions.

  5. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change

    PubMed Central

    Guo, Yanlong; Lu, Chunyan; Gao, Bei

    2016-01-01

    Climate change will significantly affect plant distribution as well as the quality of medicinal plants. Although numerous studies have analyzed the effect of climate change on future habitats of plants through species distribution models (SDMs), few of them have incorporated the change of effective content of medicinal plants. Schisandra sphenanthera Rehd. et Wils. is an endangered traditional Chinese medical plant which is mainly located in the Qinling Mountains. Combining fuzzy theory and a maximum entropy model, we obtained current spatial distribution of quality assessment for S. spenanthera. Moreover, the future quality and distribution of S. spenanthera were also projected for the periods 2020s, 2050s and 2080s under three different climate change scenarios (SRES-A1B, SRES-A2 and SRES-B1 emission scenarios) described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that the moderately suitable habitat of S. sphenanthera under all climate change scenarios remained relatively stable in the study area. The highly suitable habitat of S. sphenanthera would gradually decrease in the future and a higher decline rate of the highly suitable habitat area would occur under climate change scenarios SRES-A1B and SRES-A2. The result suggested that in the study area, there would be no more highly suitable habitat areas for S. sphenanthera when the annual mean temperature exceeds 20 °C or its annual precipitation exceeds 1,200 mm. Our results will be influential in the future ecological conservation and management of S. sphenanthera and can be taken as a reference for habitat suitability assessment research for other medicinal plants. PMID:27781160

  6. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  7. Assessment of Climate Change and Vector-borne Diseases in the United States

    NASA Astrophysics Data System (ADS)

    Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.

    2016-12-01

    Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.

  8. Rapid Temporal Changes of Midtropospheric Winds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1997-01-01

    The statistical distribution of the magnitude of the vector wind change over 0.25-, 1-, 2-. and 4-h periods based on data from October 1995 through March 1996 over central Florida is presented. The wind changes at altitudes from 6 to 17 km were measured using the Kennedy Space Center 50-MHz Doppler radar wind profiler. Quality controlled profiles were produced every 5 min for 112 gates, each representing 150 m in altitude. Gates 28 through 100 were selected for analysis because of their significance to ascending space launch vehicles. The distribution was found to be lognormal. The parameters of the lognormal distribution depend systematically on the time interval. This dependence is consistent with the behavior of structure functions in the f(exp 5/3) spectral regime. There is a small difference between the 1995 data and the 1996 data, which may represent a weak seasonal effect.

  9. [Projection of potential geographic distribution of Apocynum venetum under climate change in northern China].

    PubMed

    Yang, Hui-Feng; Zheng, Jiang-Hua; Jia, Xiao-Guang; Li, Xiao-Jin

    2017-03-01

    Apocynum venetum belongs to apocynaceae and is a perennial medicinal plant, its stem is an important textile raw materials. The projection of potential geographic distribution of A. venetum has an important significance for the protection and sustainable utilization of the plant. This study was conducted to determine the potential geographic distribution of A. venetum and to project how climate change would affect its geographic distribution. The projection geographic distribution of A. venetum under current bioclimatic conditions in northern China was simulated using MaxEnt software based on species presence data at 44 locations and 19 bioclimatic parameters. The future distributions of A. venetum were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The result showed that min air temperature of the coldest month, annual mean air temperature, precipitation of the coldest quarter and mean air temperature of the wettest quarter dominated the geographic distribution of A. venetum. Under current climate, the suitable habitats of A. venetum is 11.94% in China, the suitable habitats are mainly located in the middle of Xinjiang, in the northern part of Gansu, in the southern part of Neimeng, in the northern part of Ningxia, in the middle and northern part of Shaanxi, in the southern part of Shanxi, in the middle and northern part of Henan, in the middle and southern part of Hebei, Shandong, Tianjin, in the southern part of Liaoning and part of Beijing. From 2050 to 2070, the model outputs indicated that the suitable habitats of A. venetum would decrease under the climate change scenarios of RCP2.6 and RCP8.5. Copyright© by the Chinese Pharmaceutical Association.

  10. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  11. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  12. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s costmore » and organizational structure.« less

  13. Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia

    NASA Astrophysics Data System (ADS)

    Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.

    2016-12-01

    One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.

  14. Age-related changes in vertebral and iliac crest 3D bone microstructure--differences and similarities.

    PubMed

    Thomsen, J S; Jensen, M V; Niklassen, A S; Ebbesen, E N; Brüel, A

    2015-01-01

    Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes. The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between the bone microstructure at these skeletal sites. Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19-96 years) and 39 men (23-95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified. For both women and men, bone volume per total volume (BV/TV), connectivity density (CD), and trabecular number (Tb.N) decreased significantly, while structure model index (SMI) and trabecular separation (Tb.Sp) increased significantly with age at either skeletal site. Vertebral trabecular thickness (Tb.Th) was independent of age for both women and men, while iliac Tb.Th decreased significantly with age for men, but not for women. In general, the vertebral and iliac age-related changes were similar. The 95th percentile of the Tb.Th distribution increased significantly with age for women but was independent of age for men at the vertebral body, while it was independent of age for either sex at the iliac crest. The Tb.Th probability density functions at the two skeletal sites became significantly more similar with age for women, but not for men. The microstructural parameters at the iliac crest and the vertebral bodies were only moderately correlated from r = 0.38 for SMI in women to r = 0.75 for Tb.Sp in men. Age-related changes in vertebral and iliac bone microstructure were in general similar. The iliac and vertebral Tb.Th distributions became more similar with age for women. Despite the overall similar age-related changes in trabecular bone microstructure, the vertebral and iliac bone microstructural measures were only weakly correlated (r = 0.38 to 0.75).

  15. Climate change and fishing: a century of shifting distribution in North Sea cod.

    PubMed

    Engelhard, Georg H; Righton, David A; Pinnegar, John K

    2014-08-01

    Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913-2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod - mostly in the deeper, northern- and north-easternmost parts of the North Sea - is almost opposite to that during most of the Twentieth Century - mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3 1/2 decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. © 2013 Crown copyright. Global Change Biology published by John Wiley & Sons Ltd. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  16. Temperature tracking by North Sea benthic invertebrates in response to climate change.

    PubMed

    Hiddink, Jan G; Burrows, Michael T; García Molinos, Jorge

    2015-01-01

    Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in benthic biodiversity. © 2014 John Wiley & Sons Ltd.

  17. Verification regarding changing construction in accumulation of fat for BMI based on change with age estimated from body composition balance.

    PubMed

    Fujii, Katsunori; Tanaka, Nozomi; Mishima, Takaaki

    2013-12-01

    In the present study, a regression analysis of BMI and body fat percentage in each school year was performed with cross-sectional data in school-aged children. The qualitative changes in physique during the school-age years were examined by showing the changes in the level of body fat accu- mulation with age. The subjects were 789 boys and girls (469 boys, 320 girls) aged 7 to 14 years who participated in regular sports activities. Height, weight and body fat percentage were measured. Fat free mass was calculated by subtracting fat mass from body weight. BMI was calculated as body weight (kg) divided by the square of height (m). Regression analysis was conducted for fat percentage against BMI in boys and girls of all school years, and the level of body fat accumulation was considered, the distributions of the frequency of age change were examined. As a result, in the frequency distribution charts there was a shift from excessive fat to low fat from age 7 to 14 years. A χ2 test was then performed for these frequency distribution charts, and the results showed a significant difference in the frequency distribution in each year (P < 0.01). This trend was clearly in boys, and meaning was found in clarifying the changes with age in the body composition balance in boys and girls.

  18. Rapid variation in the circumstellar 10 micron emission of Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.

    1985-01-01

    The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.

  19. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin

    PubMed Central

    2014-01-01

    Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487

  20. Vertical distribution of archaeal communities associated with anaerobic degradation of pentabromodiphenyl ether (BDE-99) in river-based groundwater recharge with reclaimed water.

    PubMed

    Yan, Yulin; Ma, Mengsi; Liu, Xiang; Ma, Weifang; Li, Yangyao

    2018-02-01

    When groundwater is recharged with reclaimed water, the presence of trace amounts of biorefractory pentabromodiphenyl ether (PBDE, specifically BDE-99) might cause potential groundwater pollution. A laboratory-scale column was designed to investigate the distribution of the community of archaea in this scenario and the associated anaerobic degradation of BDE-99. The concentration of BDE-99 decreased significantly as soil depth increased, and fluorescence in situ hybridization (FISH) analysis suggested that archaea exerted significant effects on the biodegradation of PBDE. Through 454 pyrosequencing of 16s rRNA genes, we found that the distribution and structure of the archaeal community associated with anaerobic degradation of BDE-99 in the river-based aquifer media changed significantly between different soil depths. The primary debrominated metabolites varied with changes in the vertically distributed archaeal community. The archaea in the surface layer were dominated by Methanomethylovorans, and the middle layer was mainly composed of Nitrososphaera. Nitrosopumilus and Nitrososphaera were equally abundant in the bottom layer. In addition, Methanomethylovorans abundance depended on the depth of soil, and the relative abundance of Nitrosopumilus increased with increasing depth, which was associated with the oxidation-reduction potential and the content of intermediate metabolites. We propose that Nitrososphaera and Nitrosopumilus might be the key archaeal taxa mediating the biodegradation of BDE-99.

  1. The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes

    NASA Astrophysics Data System (ADS)

    Kulawardhana, Ranjani W.; Feagin, Rusty A.; Popescu, Sorin C.; Boutton, Thomas W.; Yeager, Kevin M.; Bianchi, Thomas S.

    2015-03-01

    Spartina alterniflora salt marshes are among the most productive ecosystems on earth, and represent a substantial global carbon sink. Understanding the spatial heterogeneity in the distribution of both above- and below-ground carbon in these wetland ecosystems is especially important considering their potential in carbon sequestration projects, as well as for conservation efforts in the context of a changing climate and rising sea-level. Through the use of extensive field sampling and remote sensing data (Light Detection and Ranging - LiDAR, and aerial images), we sought to map and explain how vegetation biomass and soil carbon are related to elevation and relative sea-level change in a S. alterniflora dominated salt marsh on Galveston Island, Texas. The specific objectives of this study were to: 1) understand the relationship between elevation and the distribution of salt marsh vegetation percent cover, plant height, plant density, above-and below-ground biomass, and carbon, and 2) evaluate the temporal changes in relative sea-level history, vegetation transitions, and resulting changes in the patterns of soil carbon distribution. Our results indicated a clear zonation of terrain and vegetation characteristics (i.e., height, cover and biomass). In the soil profile, carbon concentrations and bulk densities showed significant and abrupt change at a depth of ∼10-15 cm. This apparent transition in the soil characteristics coincided temporally with a transformation of the land cover, as driven by a rapid increase in relative sea-level around this time at the sample locations. The amounts of soil carbon stored in recently established S. alterniflora intertidal marshes were significantly lower than those that have remained in situ for a longer period of time. Thus, in order to quantify and predict carbon in coastal wetlands, and also to understand the heterogeneity in the spatial distribution of carbon stocks, it is essential to understand not only the elevation, the relative sea-level rise rate, and the vertical accretion rate - but also the history of land cover change and vegetation transition.

  2. Below-ground biotic interactions moderated the postglacial range dynamics of trees.

    PubMed

    Pither, Jason; Pickles, Brian J; Simard, Suzanne W; Ordonez, Alejandro; Williams, John W

    2018-05-17

    Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  3. BMI and BMI SDS in childhood: annual increments and conditional change.

    PubMed

    Brannsether, Bente; Eide, Geir Egil; Roelants, Mathieu; Bjerknes, Robert; Júlíusson, Pétur Benedikt

    2017-02-01

    Background Early detection of abnormal weight gain in childhood may be important for preventive purposes. It is still debated which annual changes in BMI should warrant attention. Aim To analyse 1-year increments of Body Mass Index (BMI) and standardised BMI (BMI SDS) in childhood and explore conditional change in BMI SDS as an alternative method to evaluate 1-year changes in BMI. Subjects and methods The distributions of 1-year increments of BMI (kg/m 2 ) and BMI SDS are summarised by percentiles. Differences according to sex, age, height, weight, initial BMI and weight status on the BMI and BMI SDS increments were assessed with multiple linear regression. Conditional change in BMI SDS was based on the correlation between annual BMI measurements converted to SDS. Results BMI increments depended significantly on sex, height, weight and initial BMI. Changes in BMI SDS depended significantly only on the initial BMI SDS. The distribution of conditional change in BMI SDS using a two-correlation model was close to normal (mean = 0.11, SD = 1.02, n = 1167), with 3.2% (2.3-4.4%) of the observations below -2 SD and 2.8% (2.0-4.0%) above +2 SD. Conclusion Conditional change in BMI SDS can be used to detect unexpected large changes in BMI SDS. Although this method requires the use of a computer, it may be clinically useful to detect aberrant weight development.

  4. Significance of stress transfer in time-dependent earthquake probability calculations

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    A sudden change in stress is seen to modify earthquake rates, but should it also revise earthquake probability? Data used to derive input parameters permits an array of forecasts; so how large a static stress change is require to cause a statistically significant earthquake probability change? To answer that question, effects of parameter and philosophical choices are examined through all phases of sample calculations, Drawing at random from distributions of recurrence-aperiodicity pairs identifies many that recreate long paleoseismic and historic earthquake catalogs. Probability density funtions built from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts under a point process renewal model. Consequences of choices made in stress transfer calculations, such as different slip models, fault rake, dip, and friction are, tracked. For interactions among large faults, calculated peak stress changes may be localized, with most of the receiving fault area changed less than the mean. Thus, to avoid overstating probability change on segments, stress change values should be drawn from a distribution reflecting the spatial pattern rather than using the segment mean. Disparity resulting from interaction probability methodology is also examined. For a fault with a well-understood earthquake history, a minimum stress change to stressing rate ratio of 10:1 to 20:1 is required to significantly skew probabilities with >80-85% confidence. That ratio must be closer to 50:1 to exceed 90-95% confidence levels. Thus revision to earthquake probability is achievable when a perturbing event is very close to the fault in question or the tectonic stressing rate is low.

  5. Agricultural chemicals in alluvial aquifers in Missouri after the 1993 flood

    USGS Publications Warehouse

    Heimann, D.C.; Richards, J.M.; Wilkison, D.H.

    1997-01-01

    Intense rains produced flooding during the spring and summer of 1993 over much of the midwestern USA including many agricultural areas of Missouri. Because of potential contamination from floodwater, an investigation was conducted to determine the changes in concentrations of agricultural chemicals in water samples from alluvial wells in Missouri after the flood. Water samples from 80 alluvial wells with historical data were collected in March, July, and November 1994, and analyzed for dissolved herbicides, herbicide metabolites, and nitrate (NO3). There were no statistically significant differences in the distribution of alachlor ((2,chloro-2'-6'-diethyl-N-[methoxymethyl]acetanilide), atrazine (2-chloro- 4-ethylamino-6-isopropylamino-1, 3, 5 triazine), and nitrate concentrations between pre- and postflood samples (?? = 0.05). The detection frequency of alachlor and atrazine in postflood samples was generally lower than the frequency in preflood samples. Analyses of agricultural chemicals in water samples from an intensely sampled well field indicate significant differences between the distribution of dissolved P concentrations in pre- and postflood samples (?? = 0.05). However, no significant differences were detected between the pre- and postflood distributions of NO3 or ammonia concentrations. Because of the numerous sources of temporal variability and the relatively short record of water-quality data for the study wells, a cause-and-effect relation between changes in agricultural chemical concentrations and a single factor of the 1993 flood is difficult to determine. Based on the results of this study, the 1993 flood did not cause widespread or long-term significant changes in concentrations of agricultural chemicals in water from alluvial aquifers in Missouri.

  6. The Earth's Gravity and Its Geological Significance.

    ERIC Educational Resources Information Center

    Cook, A. H.

    1980-01-01

    Discussed is the earth's gravity and its geological significance. Variations of gravity around the earth can be produced by a great variety of possible distributions of density within the earth. Topics discussed include isostasy, local structures, geological exploration, change of gravity in time, and gravity on the moon and planets. (DS)

  7. Bacteriological status of beef carcasses at a commercial abattoir before and after slaughterline improvements.

    PubMed Central

    Hudson, W. R.; Roberts, T. A.; Whelehan, O. P.

    1987-01-01

    The bacteriological status of beef carcasses was monitored at a commercial abattoir before and after two stages of modernization to the beef slaughterline which included changing from cradle dressing to dressing on an overhead rail, and the introduction of hot water spray cleaning of carcasses. Although small significant (P less than 0.05) differences in bacterial count occurred among carcass sites within modernization stages, significant visit within stage variation and stage X site interactions prevented any significant change in overall count being observed among stages and carcass sites. Principal components analysis revealed small changes in the distribution of bacterial numbers on the sites sampled. PMID:3556439

  8. The effects of nicotine exposure and PFC transection on the time-frequency distribution of VTA DA neurons' firing activities.

    PubMed

    Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin

    2011-05-01

    We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.

  9. Impact of Extraperitoneal Dioxyde Carbon Insufflation on Respiratory Function in Anesthetized Adults: A Preliminary Study Using Electrical Impedance Tomography and Wash-out/Wash-in Technic

    PubMed Central

    Bordes, Julien; Mazzeo, Cecilia; Gourtobe, Philippe; Cungi, Pierre Julien; Antonini, Francois; Bourgoin, Stephane; Kaiser, Eric

    2015-01-01

    Background: Extraperitoneal laparoscopy has become a common technique for many surgical procedures, especially for inguinal hernia surgery. Investigations of physiological changes occurring during extraperitoneal carbon dioxide (CO2) insufflation mostly focused on blood gas changes. To date, the impact of extraperitoneal CO2 insufflation on respiratory mechanics remains unknown, whereas changes in respiratory mechanics have been extensively studied in intraperitoneal insufflation. Objectives: The aim of this study was to investigate the effects of extraperitoneal CO2 insufflation on respiratory mechanics. Patients and Methods: A prospective and observational study was performed on nine patients undergoing laparoscopic inguinal hernia repair. Anesthetic management and intraoperative care were standardized. All patients were mechanically ventilated with a tidal volume of 8 mL/kg using an Engström Carestation ventilator (GE Healthcare). Ventilation distribution was assessed by electrical impedance tomography (EIT). End-expiratory lung volume (EELV) was measured by a nitrogen wash-out/wash-in method. Ventilation distribution, EELV, ventilator pressures and hemodynamic parameters were assessed before extraperitoneal insufflation, and during insufflation with a PEEP of 0 cmH2O, 5 cmH20 and of 10 cmH20. Results: EELV and thoracopulmonary compliance were significantly decreased after extraperitoneal insufflation. Ventilation distribution was significantly higher in ventral lung regions during general anesthesia and was not modified after insufflation. A 10 cmH20 PEEP application resulted in a significant increase in EELV, and a shift of ventilation toward the dorsal lung regions. Conclusions: Extraperitoneal insufflation decreased EELV and thoracopulmonary compliance. Application of a 10 cmH20 PEEP increased EELV and homogenized ventilation distribution. This preliminary clinical study showed that extraperitoneal insufflation worsened respiratory mechanics, which may justify further investigations to evaluate the clinical impact. PMID:25789238

  10. Changes in Body Fat Distribution on Dual-Energy X-Ray Absorptiometry in Black South Africans Starting First-Line Antiretroviral Therapy.

    PubMed

    Abrahams, Zulfa; Levitt, Naomi; Lesosky, Maia; Maartens, Gary; Dave, Joel

    2016-10-01

    Long-term use of antiretroviral therapy (ART) increases the risk of developing lipodystrophy. Few studies from Africa have used longitudinal data to assess the development of lipoatrophy and lipohypertrophy. We use clinical anthropometry and dual-energy X-ray absorptiometry (DEXA) to describe changes in body fat distribution over a 24-month period in individuals initiated on ART. A convenience sample of black South Africans (55 men and 132 women) were recruited and followed for 24 months after commencing ART. Body fat distribution was assessed using anthropometric measurements and DEXA scans at baseline and then at 3, 6, 12, 18, and 24 months after commencing ART. DEXA was also used to estimate abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Women gained more overall weight and more regional fat in all areas analyzed on DEXA scans. Women, not men, experienced a significant increasing trend in trunk fat and a significant decreasing trend in limb fat, when expressed as a percentage of total body fat. In men, the risk of developing lipoatrophy was more than two times greater than that of women, after adjusting for age, baseline body mass index, and ART regimen. Lipohypertrophy occurred similarly in men and women. VAT and SAT increased significantly in men and women, with women gaining considerably more than men. These findings are of great concern as an increased waist circumference is associated with increased mortality in HIV-infected populations. Further investigation is required to understand the mechanisms underlying the sex differences in changes in body fat distribution and its effects on cardiovascular risk.

  11. The changing distribution and determinants of obesity in the neighborhoods of New York City, 2003-2007.

    PubMed

    Black, Jennifer L; Macinko, James

    2010-04-01

    Obesity (body mass index >or=30 kg/m(2)) is a growing urban health concern, but few studies have examined whether, how, or why obesity prevalence has changed over time within cities. This study characterized the individual- and neighborhood-level determinants and distribution of obesity in New York City from 2003 to 2007. Individual-level data from the Community Health Survey (n = 48,506 adults, 34 neighborhoods) were combined with neighborhood measures. Multilevel regression assessed changes in obesity over time and associations with neighborhood-level income and food and physical activity amenities, controlling for age, racial/ethnic identity, education, employment, US nativity, and marital status, stratified by gender. Obesity rates increased by 1.6% (P < 0.05) each year, but changes over time differed significantly between neighborhoods and by gender. Obesity prevalence increased for women, even after controlling for individual- and neighborhood-level factors (prevalence ratio = 1.021, P < 0.05), whereas no significant changes were reported for men. Neighborhood factors including increased area income (prevalence ratio = 0.932) and availability of local food and fitness amenities (prevalence ratio = 0.889) were significantly associated with reduced obesity (P < 0.001). Findings suggest that policies to reduce obesity in urban environments must be informed by up-to-date surveillance data and may require a variety of initiatives that respond to both individual and contextual determinants of obesity.

  12. Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus.

    PubMed

    Nicastro, Katy R; Zardi, Gerardo I; Teixeira, Sara; Neiva, João; Serrão, Ester A; Pearson, Gareth A

    2013-01-23

    Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species.We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).

  13. Climate change and fishing: a century of shifting distribution in North Sea cod

    PubMed Central

    Engelhard, Georg H; Righton, David A; Pinnegar, John K

    2014-01-01

    Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern- and north-easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. PMID:24375860

  14. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  15. The influence of non-Gaussian distribution functions on the time-dependent perpendicular transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Lasuik, J.; Shalchi, A.

    2018-06-01

    In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.

  16. Body size distributions signal a regime shift in a lake ecosystem

    USGS Publications Warehouse

    Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.; Stow, Craig A.; Sundstrom, Shana M.

    2016-01-01

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana, USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts.

  17. SU-F-BRD-04: Robustness Analysis of Proton Breast Treatments Using An Alpha-Stable Distribution Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Heuvel, F; Hackett, S; Fiorini, F

    Purpose: Currently, planning systems allow robustness calculations to be performed, but a generalized assessment methodology is not yet available. We introduce and evaluate a methodology to quantify the robustness of a plan on an individual patient basis. Methods: We introduce the notion of characterizing a treatment instance (i.e. one single fraction delivery) by describing the dose distribution within an organ as an alpha-stable distribution. The parameters of the distribution (shape(α), scale(γ), position(δ), and symmetry(β)), will vary continuously (in a mathematical sense) as the distributions change with the different positions. The rate of change of the parameters provides a measure ofmore » the robustness of the treatment. The methodology is tested in a planning study of 25 patients with known residual errors at each fraction. Each patient was planned using Eclipse with an IBA-proton beam model. The residual error space for every patient was sampled 30 times, yielding 31 treatment plans for each patient and dose distributions in 5 organs. The parameters’ change rate as a function of Euclidean distance from the original plan was analyzed. Results: More than 1,000 dose distributions were analyzed. For 4 of the 25 patients the change in scale rate (γ) was considerably higher than the lowest change rate, indicating a lack of robustness. The sign of the shape change rate (α) also seemed indicative but the experiment lacked the power to prove significance. Conclusion: There are indications that this robustness measure is a valuable tool to allow a more patient individualized approach to the determination of margins. In a further study we will also evaluate this robustness measure using photon treatments, and evaluate the impact of using breath hold techniques, and the a Monte Carlo based dose deposition calculation. A principle component analysis is also planned.« less

  18. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  20. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGES

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  1. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.

    PubMed

    Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua

    2015-01-01

    Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.

  2. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    PubMed

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelekis, Alexios, E-mail: akelekis@med.uoa.gr; Filippiadis, Dimitrios K., E-mail: dfilippiadis@yahoo.gr; Vergadis, Chrysovalantis, E-mail: valvergadis@yahoo.gr

    PurposeThrough a prospective comparison of patients with vertebral fractures and normal population, we illustrate effect of percutaneous vertebroplasty (PV) upon projection of load distribution changes.MethodsVertebroplasty group (36 symptomatic patients with osteoporotic vertebral fractures) was evaluated on an electronic baropodometer registering projection of weight bearing areas on feet. Load distribution between right and left foot (including rear-front of the same foot) during standing and walking was recorded and compared before (group V1) and the day after (group V2) PV. Control group (30 healthy asymptomatic volunteers-no surgery record) were evaluated on the same baropodometer.ResultsMean value of load distribution difference between rear-front ofmore » the same foot was 9.45 ± 6.79 % (54.72–45.28 %) upon standing and 14.76 ± 7.09 % (57.38–42.62 %) upon walking in the control group. Respective load distribution values before PV were 16.52 ± 11.23 and 30.91 ± 19.26 % and after PV were 10.08 ± 6.26 and 14.25 ± 7.68 % upon standing and walking respectively. Mean value of load distribution variation between the two feet was 6.36 and 14.6 % before and 4.62 and 10.4 % after PV upon standing and walking respectively. Comparison of load distribution variation (group V1–V2, group V1-control group) is statistically significant. Comparison of load distribution variation (group V2-control group) is not statistically significant. Comparison of load distribution variation among the two feet is statistically significant during walking but not statistically significant during standing.ConclusionsThere is a statistically significant difference when comparing load distribution variation prior vertebroplasty and that of normal population. After vertebroplasty, this difference normalizes in a statistically significant way. PV is efficient on equilibrium-load distribution improvement as well.« less

  4. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of distribution and abundance. Thus, boundary dynamics may be important in determining the distribution of shrubland-obligate species but insignificant relative to the mechanisms causing the pattern of habitat and bird distribution. Because of the dichotomy in responses, Intermountain shrubsteppe systems present a unique challenge in understanding how landscape composition, configuration, and change influence bird population dynamics.

  5. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.

  6. Pharmacokinetics in pregnancy; clinical significance.

    PubMed

    Koren, Gideon

    2011-01-01

    In pharmacokinetics drug absorption, distribution, clearance, and bioequivalence are usually considered, but during pregnancy the most important variable is adherence or compliance. Pharmacokinetic changes during pregnancy that may lead to changes in maternal drug use are described through presentation of cases highlighting the relevance of these changes. Non-invasive methods of pharmacokinetic analysis, such as determining concentrations of drug in hair, are now being tested and used.Pharmacokinetics are important, but one needs to consider the entire pregnant state and its circumstances when treating women. One treats people, not a "volume of distribution" or a drug level. Therapy should be individualized as much as possible, addressing kinetic changes in the context of dynamic alterations and the effects of underlying medical conditions. To ensure that women are not orphaned from advances in drug therapy, much more research is needed into the determinants of pharmacokinetic and pharmacodynamic changes in pregnancy.

  7. Population trends influence species ability to track climate change.

    PubMed

    Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I

    2017-04-01

    Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.

  8. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.

    PubMed

    Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K

    2016-03-01

    Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.

  9. Effects of powder characteristics on injection molding and burnout cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, G.; French, K.W.

    Silicon nitride particle size and size distributions were varied widely to determine their effects on burnout cracking of injection-molded test parts containing thick and thin sections. Elimination of internal cracking required significant burnout shrinkage, which did not occur by changes of particle size and size distribution. However, isopressing of test parts after burnout provided the dimensional shrinkage necessary for producing crack-free components.

  10. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.

    PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.

  11. Distribution System Pricing with Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hledik, Ryan; Lazar, Jim; Schwartz, Lisa

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoidsmore » unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.« less

  12. Projecting the global distribution of the emerging amphibian fungal pathogen, batrachochytrium dendrobatidis, based on IPCC climate futures

    Treesearch

    Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...

  13. Assessing Climate Change Impacts for DoD installations in the Southwest United States During the Warm Season

    DTIC Science & Technology

    2017-03-10

    20 4. Statistical analysis methods to characterize distributions and trends...duration precipitation diagram from convective- permitting simulations for Barry Goldwater Range, Arizona. ix Figure 60: Statistically ...Same as Fig. 60 for other DoD facilities in the Southwest as labeled. Figure 62: Statistically significant model ensemble changes in rainfall

  14. [Effects of land use change on soil active organic carbon in deep soils in Hilly Loess Plateau region of Northwest China].

    PubMed

    Zhang, Shuai; Xu, Ming-Xiang; Zhang, Ya-Feng; Wang, Chao-Hua; Chen, Gai

    2015-02-01

    Response of soil active organic carbon to land-use change has become a hot topic in current soil carbon and nutrient cycling study. Soil active organic carbon distribution characteristics in soil profile under four land-use types were investigated in Ziwuling forest zone of the Hilly Loess Plateau region. The four types of land-use changes included natural woodland converted into artificial woodland, natural woodland converted into cropland, natural shrubland converted into cropland and natural shrubland converted into revegetated grassland. Effects of land-use changes on soil active organic carbon in deep soil layers (60-200 cm) were explored by comparison with the shallow soil layers (0-60 cm). The results showed that: (1) The labile organic carbon ( LOC) and microbial carbon (MBC) content were mainly concentrated in the shallow 0-60 cm soil, which accounted for 49%-66% and 71%-84% of soil active organic carbon in the profile (0-200 cm) under different land-use types. Soil active organic carbon content in shallow soil was significantly varied for the land-use changes types, while no obvious difference was observed in soil active organic carbon in deep soil layer. (2) Land-use changes exerted significant influence on soil active organic carbon, the active organic carbon in shallow soil was more sensitive than that in deep soil. The four types of land-use changes, including natural woodland to planted woodland, natural woodland to cropland, natural shrubland to revegetated grassland and natural shrubland to cropland, LOC in shallow soil was reduced by 10%, 60%, 29%, 40% and LOC in the deep layer was decreased by 9%, 21%, 12%, 1%, respectively. MBC in the shallow soil was reduced by 24% 73%, 23%, 56%, and that in the deep layer was decreased by 25%, 18%, 8% and 11%, respectively. (Land-use changes altered the distribution ratio of active organic carbon in soil profile. The ratio between LOC and SOC in shallow soil increased when natural woodland and shrubland were converted into farmland, but no obvious difference was observed in deep soil. The ratio of MBC/SOC in shallow soil decreased when natural shrubland was converted into farmland, also, no significant difference was detected in the ratio of MBC/SOC for other land-use change types. The results suggested that land-use change exerted significant influence on soil active organic carbon content and distribution proportion in soil profile. Soil organic carbon in deep soil was more stable than that in shallow soil.

  15. [Potential distribution of Panax ginseng and its predicted responses to climate change.

    PubMed

    Zhao, Ze Fang; Wei, Hai Yan; Guo, Yan Long; Gu, Wei

    2016-11-18

    This study utilized Panax ginseng as the research object. Based on BioMod2 platform, with species presence data and 22 climatic variables, the potential geographic distribution of P. ginseng under the current conditions in northeast China was simulated with ten species distribution model. And then with the receiver-operating characteristic curve (ROC) as weights, we build an ensemble model, which integrated the results of 10 models, using the ensemble model, the future distributions of P. ginseng were also projected for the periods 2050s and 2070s under the climate change scenarios of RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 emission scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that for the entire region of study area, under the present climatic conditions, 10.4% of the areas were identified as suitable habitats, which were mainly located in northeast Changbai Mountains area and the southeastern region of the Xiaoxing'an Mountains. The model simulations indicated that the suitable habitats would have a relatively significant change under the different climate change scenarios, and generally the range of suitable habitats would be a certain degree of decrease. Meanwhile, the goodness-of-fit, predicted ranges, and weights of explanatory variables was various for each model. And according to the goodness-of-fit, Maxent had the highest model performance, and GAM, RF and ANN were followed, while SRE had the lowest prediction accuracy. In this study we established an ensemble model, which could improve the accuracy of the existing species distribution models, and optimization of species distribution prediction results.

  16. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  17. Stress distributions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis

    PubMed Central

    Ajami, Shabnam; Mina, Ahmad; Nabavizadeh, Seyed Amin

    2016-01-01

    Objectives: To evaluate the effect of moments and the combination of forces and moments on the mechanical properties of a bracket type miniscrew, resembling engagement of a rectangular wire by three-dimensional (3D) finite element study. Materials and Methods: By solid work software (Dassaunlt systems solid works, concord, Mass), a 3D miniscrew model of 6, 8, 10 mm lengths was designed and inserted in the osseous block, consisted of the cortical, and cancellous bones. The stress distributions, maximum stresses, and deflections of the miniscrew were evaluated for all parts using ANSYS (Work Bench, 2014). Results: As the magnitudes of the load increased from 100 to 200, 400 and 800 grf-mm, the peak of stresses in the 6 mm long miniscrew were increased from 7.7 to 61.5 Mpa. The maximum values of Von Mises in the cancellous bone were tremendously lower in comparison to the cortical bone by one hundredth. As the length of the miniscrew in contact with the bone was increased, the amounts and patterns of stress distribution in the cortical bone and the miniscrew did not change significantly. Conclusions: As the moment magnitude increased, the pick stresses increased linearly. The existence of cancellous bone was not significantly responsible for the stress distribution. The pattern of stress distribution did not change by the length of the miniscrew. PMID:27127753

  18. Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.

    PubMed

    Carmichael, Gregory R; Adhikary, Bhupesh; Kulkarni, Sarika; D'Allura, Alessio; Tang, Youhua; Streets, David; Zhang, Qiang; Bond, Tami C; Ramanathan, Veerabhadran; Jamroensan, Aditsuda; Marrapu, Pallavi

    2009-08-01

    Aerosol distributions in Asia calculated over a 4-year period and constrained by satellite observations of aerosol optical depth (AOD) are presented. Vast regions in Asia that include > 80% of the population have PM2.5 concentrations that exceed on an annual basis the WHO guideline of 10 microg/m3, often by factors of 2 to 4. These high aerosol loadings also have important radiative effects, causing a significant dimming at the surface, and mask approximately 45% of the warming by greenhouse gases. Black carbon (BC) concentrations are high throughout Asia, representing 5-10% of the total AOD, and contributing significantly to atmospheric warming (its warming potential is approximately 55% of that due to CO2). PM levels and AODs in year 2030, estimated based on simulations that consider future changes in emissions, are used to explore opportunities for win-win strategies built upon addressing air quality and climate change together. It is found that in 2030 the PM2.5 levels in significant parts of Asia will increase and exacerbate health impacts; but the aerosols will have a larger masking effect on radiative forcing, due to a decrease in BC and an increase in SO2 emissions.

  19. Invasive termites in a changing climate: A global perspective.

    PubMed

    Buczkowski, Grzegorz; Bertelsmeier, Cleo

    2017-02-01

    Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human-made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species-rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.

  20. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2017-10-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  1. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios.

    PubMed

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-04-10

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 10 6  km 2 , 0.14 × 10 6  km 2 , and 0.11 × 10 6  km 2 , respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.

  2. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

    NASA Astrophysics Data System (ADS)

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-04-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.

  3. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

    PubMed Central

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-01-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species. PMID:28393865

  4. Solute location in a nanoconfined liquid depends on charge distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu

    2015-07-28

    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar,more » excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.« less

  5. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    PubMed

    Williams, Stephen E; Bolitho, Elizabeth E; Fox, Samantha

    2003-09-22

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change.

  6. Effectiveness of the Flipped Classroom Model in Anatomy and Physiology Laboratory Courses at a Hispanic Serving Institution

    NASA Astrophysics Data System (ADS)

    Sanchez, Gerardo

    A flipped laboratory model involves significant preparation by the students on lab material prior to entry to the laboratory. This allows laboratory time to be focused on active learning through experiments. The aim of this study was to observe changes in student performance through the transition from a traditional laboratory format, to a flipped format. The data showed that for both Anatomy and Physiology (I and II) laboratories a more normal distribution of grades was observed once labs were flipped and lecture grade averages increased. Chi square and analysis of variance tests showed grade changes to a statistically significant degree, with a p value of less than 0.05 on both analyses. Regression analyses gave decreasing numbers after the flipped labs were introduced with an r. 2 value of .485 for A&P I, and .564 for A&P II. Results indicate improved scores for the lecture part of the A&P course, decreased outlying scores above 100, and all score distributions approached a more normal distribution.

  7. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  8. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  9. Two-year changes in circulating adiponectin, ectopic fat distribution and body composition in response to weight-loss diets: the POUNDS Lost Trial.

    PubMed

    Ma, W; Huang, T; Wang, M; Zheng, Y; Wang, T; Heianza, Y; Sun, D; Smith, S R; Bray, G A; Sacks, F M; Qi, L

    2016-11-01

    Adiponectin has a pivotal role in linking fat distribution with cardiometabolic disorders. We investigated the associations of long-term changes in circulating adiponectin with body composition and fat distribution at different abdominal depots in response to weight-loss dietary interventions, as well as the modification effect of sex. In the 2-year Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) Trial, 811 overweight or obese adults were randomly assigned to one of four diets varying in macronutrient intakes. Circulating concentrations of adiponectin were repeatedly measured at baseline, 6 months and 2 years. Body composition and fat distribution were repeatedly measured by dual-energy X-ray absorptiometry scan (n=424) and computed tomography (n=195). Over the 2-year intervention, after adjustment for age, sex, ethnicity, follow-up time, diet group, baseline body mass index and baseline level of respective outcome trait, increase of adiponectin was significantly associated with reduction of total fat mass (FM), total fat-free mass (FFM), whole body total percentage of fat mass (FM%), percentage of trunk fat (TF%), total adipose tissue (TAT), and adipose tissue mass at different depots including visceral (VAT), deep subcutaneous (DSAT) and superficial subcutaneous (SSAT; P<0.03 for each). The relations with FM, FM%, TF%, VAT and DSAT were significantly modified by sex (P for interaction=0.02, 0.005 and <0.001, 0.002, 0.03, respectively) with greater reductions associated with increase of adiponectin in men than in women. Long-term changes in circulating adiponectin were differentially associated with improvement of body composition and abdominal fat distribution in men and women.

  10. Evaluating the Significance of Paleophylogeographic Species Distribution Models in Reconstructing Quaternary Range-Shifts of Nearctic Chelonians

    PubMed Central

    Flecks, Morris; Ahmadzadeh, Faraham; Dambach, Johannes; Engler, Jan O.; Habel, Jan Christian; Hartmann, Timo; Hörnes, David; Ihlow, Flora; Schidelko, Kathrin; Stiels, Darius; Polly, P. David

    2013-01-01

    The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5–10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles). These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i) phylogeographic differentiation; (ii) morphological variation; (iii) physiological tolerances; and (iv) intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i) reconstruct past geographic range modifications, (ii) identify geographic processes that result in genetic bottlenecks; and (iii) predict threats due to anthropogenic climate change in the future. PMID:24130664

  11. Predicting watershed acidification under alternate rainfall conditions

    USGS Publications Warehouse

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, U.S.A. using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soil water flux will result in larger increases in soil- adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distribution of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading.

  12. Spatio-temporal distribution of dengue fever under scenarios of climate change in the southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2014-05-01

    Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.

  13. Nutritional education and carbohydrate counting in children with type 1 diabetes treated with continuous subcutaneous insulin infusion: the effects on dietary habits, body composition and glycometabolic control.

    PubMed

    Marigliano, Marco; Morandi, Anita; Maschio, Maddalena; Sabbion, Alberto; Contreas, Giovanna; Tomasselli, Francesca; Tommasi, Mara; Maffeis, Claudio

    2013-12-01

    Carbohydrate counting (CHC) in combination with nutritional education has been used to optimize the insulin dose in patients with type 1 diabetes (T1D). The aim of this study was to test the impact of CHC and nutritional education on changes in dietary habits, body composition and body fat distribution in children with T1D treated with insulin pumps (CSII). Twenty-five children with T1D and CSII were recruited and valuated at baseline and after 18 months of follow-up. They were trained in CHC and following standard nutrition education program (based on American Diabetes Association and International Society of Pediatric and Adolescent Diabetes guidelines); clinical, biochemical and nutritional variables were measured. In the total population, body composition, body fat distribution and biochemical variables did not change, at follow-up; HbA1c was significantly reduced (8.50 ± 0.77 vs 7.92 ± 0.74 %; p < 0.001) without changing insulin/kg/day requirement. In the sub-group of patients with a significant HbA1c reduction (ΔHbA1c ≥ 0.5 %, n = 12), the carbohydrate (CHO) intake was significantly higher at follow-up (53.0 ± 4.0 vs 57.6 ± 2.5 %; p < 0.01); on the contrary, fat (31.3 ± 3.6 vs 28.5 ± 1.6 %; p < 0.05) and protein intake (15.4 ± 1.8 vs 13.3 ± 1.6 %; p < 0.01) significantly decreased. Patients without a significant HbA1c reduction did not show any difference. CHC, in combination with nutritional education, does not affect dietary habits, body composition and body fat distribution in children with T1D treated with CSII. Moreover, the sub-group of subjects showing a significant improvement in glycometabolic control reported an increase in CHO intake and a reduction in fat and protein intake.

  14. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Stewart, Emma M.; Smith, Travis

    This report addresses the potential use of phasor measurement units (PMUs) within electricity distribution systems, and was written to assess whether or not PMUs could provide significant benefit, at the national level. We analyze examples of present and emerging distribution-system issues related to reliability, integration of distributed energy resources, and the changing electrical characteristics of load. We find that PMUs offer important and irreplaceable advantages over present approaches. However, we also find that additional research and development for standards, testing and calibration, demonstration projects, and information sharing is needed to help industry capture these benefits.

  16. Land Cover Change in the Vicinity of MT. Qomolangma (everest), Central High Himalayas Since 1976

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nie, Y.; Liu, L.; Wang, Z.; Ding, M.; Zhang, J.

    2010-12-01

    Under the background of global environmental change, the Mt. Qomolangma (Everest) region becomes the ideal place for the research of earth-atmosphere system, water and energy change, ecosystem patterns and processes change due to its sensitive and fragile natural environment. Land change science has emerged as a fundamental component of global environmental change and sustainability research. In this paper, geography, spatial information, climate science and other related theories and methods were applied, with the help of remote sensing, GIS, GPS, combining with a large number of RS data, field survey data and meteorological observation data to build 3 periods (1976, 1988 and 2006) of land cover, 30 periods (1970-2009) of major lakes data and long time-series NDVI change data from 1982 to 2009 in the Mt. Qomolangma region. The main results are as follows: 1. The land cover types in Mt. Qomolangma region are rich and with distinctive alpine features. The main land cover types include: closed to open grassland, alpine sparse vegetation, bare rock, closed grassland, forbs and glaciers (each percentage larger than 7%) with the area of 8274.27 km2, 7515.15 km2, 5450.82 km2, 5215.85 km2, 2782.66 km2 and 2710.17 km2 respectively in 2006. 2. The distribution of the main cover types are of obvious vertical zonallity. The transition of land cover types is forest→shrubland→grassland→meadow→sparse grassland→bare rock →glacier in order as the altitude arises with basically Gaussian distribution and assending peak in each elevation zone of types. The dominant natural zones distributed from bottom to top are: forest dominated zone (1500 ~ 3900 m), shrubland dominated zone (3900 ~ 4100 m), grassland dominated zone (4100 ~ 5000 m), sparse vegetation dominated zone (5000 ~ 5600 m), bare land dominated zone (5600 ~ 5900 m) and glacier (>5900 m). The altitude distribution of forest, shrubland and grassland in north and south slope are generally consistent. The range of vegetation at vertical distribution in the Sagamasha area located in the southern slope is slightly higer than than in the Mt. Qomolangma region due to its better regional water and heat conditions. 3. The distribution patterns of the main land cover types in the Mt. Qomolangma region during 1976-2006 don’t change greatly. The land cover changes during the two periods (1976-1988, 1988-2006) have shown a good consistency. The most prominent changing characteristics are: significant glacier retreat, more bare rock outcrops, rapid expansion of glacial lake covered bare rock, lakes shrinking and wetlands growth, wetlands being reclaimed as farmland in the prior period and significant reduce of cultivated land in the latter period. The research have been analyzed the glaciers, wetland and other cover types that are sensitive to climate change. The relationship between the land cover types and climate change, the impacts of human activities on land cover change and the effectiveness of protected area have been discussed. Foundation: The National Basic Research Program of China, Grant No.2005CB422006 & 2010CB951704; External Cooperation Program of the Chinese Academy of Sciences, No.GJHZ0954

  17. GAS EXCHANGE OF ALGAE. I. EFFECTS OF TIME, LIGHT INTENSITY, AND SPECTRAL-ENERGY DISTRIBUTION ON THE PHOTOSYNTHETIC QUOTIENT OF CHLORELLA PYRENOIDOSA.

    PubMed

    AMMANN, E C; LYNCH, V H

    1965-07-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO(2)/O(2)) and O(2) values during 6 months of observations. The PQ for the entire study was 0.90 +/- 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O(2) production (0.90 +/- 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 +/- 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O(2) values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use.

  18. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system.

    PubMed

    Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia

    2017-03-30

    The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cytherellid species (Ostracoda) and their significance to the Late Quaternary events in the Santos Basin, Brazil

    USGS Publications Warehouse

    Bergue, C.T.; Coimbra, J.C.; Cronin, T. M.

    2007-01-01

    Four autochthonous cytherellid species (Cytherella serratula (BRADY, 1880), C. hermargentina WHATLEY et al. 1998, C. pleistocenica sp. nov. and C. santosensis sp. nov.) have been identified from two offshore cores (44 samples) within the Santos Basin. The distribution of these ostracodes is controlled by local hydrological conditions such as the temperature and, possibly, the oxygen minimum zone (OMZ). However, these factors cannot explain completely the species occurrence in the analysed cores, and relative sea level changes and productivity variation driven by climatic changes are proposed as additional explanations for the faunal distribution pattern. ?? E. Schweizerbart'sche Verlagsbuchhandlung (Na??gele u. Obermiller), 2007.

  20. Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    PubMed Central

    Smith, Christopher Irwin; Tank, Shantel; Godsoe, William; Levenick, Jim; Strand, Eva; Esque, Todd; Pellmyr, Olle

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes. PMID:22028785

  1. Transition in the waiting-time distribution of price-change events in a global socioeconomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Guannan; McDonald, Mark; Fenn, Dan; Williams, Stacy; Johnson, Nicholas; Johnson, Neil F.

    2013-12-01

    The goal of developing a firmer theoretical understanding of inhomogeneous temporal processes-in particular, the waiting times in some collective dynamical system-is attracting significant interest among physicists. Quantifying the deviations between the waiting-time distribution and the distribution generated by a random process may help unravel the feedback mechanisms that drive the underlying dynamics. We analyze the waiting-time distributions of high-frequency foreign exchange data for the best executable bid-ask prices across all major currencies. We find that the lognormal distribution yields a good overall fit for the waiting-time distribution between currency rate changes if both short and long waiting times are included. If we restrict our study to long waiting times, each currency pair’s distribution is consistent with a power-law tail with exponent near to 3.5. However, for short waiting times, the overall distribution resembles one generated by an archetypal complex systems model in which boundedly rational agents compete for limited resources. Our findings suggest that a gradual transition arises in trading behavior between a fast regime in which traders act in a boundedly rational way and a slower one in which traders’ decisions are driven by generic feedback mechanisms across multiple timescales and hence produce similar power-law tails irrespective of currency type.

  2. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    PubMed

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neuropeptide Y genotype, central obesity, and abdominal fat distribution: the POUNDS LOST trial.

    PubMed

    Lin, Xiaochen; Qi, Qibin; Zheng, Yan; Huang, Tao; Lathrop, Mark; Zelenika, Diana; Bray, George A; Sacks, Frank M; Liang, Liming; Qi, Lu

    2015-08-01

    Neuropeptide Y is a key peptide affecting adiposity and has been related to obesity risk. However, little is known about the role of NPY variations in diet-induced change in adiposity. The objective was to examine the effects of NPY variant rs16147 on central obesity and abdominal fat distribution in response to dietary interventions. We genotyped a functional NPY variant rs16147 among 723 participants in the Preventing Overweight Using Novel Dietary Strategies trial. Changes in waist circumference (WC), total abdominal adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue (SAT) from baseline to 6 and 24 mo were evaluated with respect to the rs16147 genotypes. Genotype-dietary fat interaction was also examined. The rs16147 C allele was associated with a greater reduction in WC at 6 mo (P < 0.001). In addition, the genotypes showed a statistically significant interaction with dietary fat in relation to WC and SAT (P-interaction = 0.01 and 0.04): the association was stronger in individuals with high-fat intake than in those with low-fat intake. At 24 mo, the association remained statistically significant for WC in the high-fat diet group (P = 0.02), although the gene-dietary fat interaction became nonsignificant (P = 0.30). In addition, we found statistically significant genotype-dietary fat interaction on the change in total abdominal adipose tissue, visceral adipose tissue, and SAT at 24 mo (P = 0.01, 0.05, and 0.04): the rs16147 T allele appeared to associate with more adverse change in the abdominal fat deposition in the high-fat diet group than in the low-fat diet group. Our data indicate that the NPY rs16147 genotypes affect the change in abdominal adiposity in response to dietary interventions, and the effects of the rs16147 single-nucleotide polymorphism on central obesity and abdominal fat distribution were modified by dietary fat. © 2015 American Society for Nutrition.

  4. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.

    PubMed

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  5. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  6. Early indicators of change: divergent climate envelopes between tree life stages imply range shifts in the western United States

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Our results indicated that climate-induced contractions and shifts in seedling distribution in response to recent change are already under way and are particularly severe in montane tree species. While adult trees may persist for hundreds of years without significant regeneration, tree species ranges will eventually contract where tree regeneration fails.

  7. 40 CFR 717.12 - Significant adverse reactions that must be recorded.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (1) Gradual or sudden changes in the composition of animal life or plant life, including fungal or..., whether crops or livestock. (5) Alterations in the behavior or distribution of a species. (6) Long lasting...

  8. 40 CFR 717.12 - Significant adverse reactions that must be recorded.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (1) Gradual or sudden changes in the composition of animal life or plant life, including fungal or..., whether crops or livestock. (5) Alterations in the behavior or distribution of a species. (6) Long lasting...

  9. Experimental study on infrared radiation temperature field of concrete under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Lou, Quan; He, Xueqiu

    2018-05-01

    Infrared thermography, as a nondestructive, non-contact and real-time monitoring method, has great significance in assessing the stability of concrete structure and monitoring its failure. It is necessary to conduct in depth study on the mechanism and application of infrared radiation (IR) of concrete failure under loading. In this paper, the concrete specimens with size of 100 × 100 × 100 mm were adopted to carry out the uniaxial compressions for the IR tests. The distribution of IR temperatures (IRTs), surface topography of IRT field and the reconstructed IR images were studied. The results show that the IRT distribution follows the Gaussian distribution, and the R2 of Gaussian fitting changes along with the loading time. The abnormities of R2 and AE counts display the opposite variation trends. The surface topography of IRT field is similar to the hyperbolic paraboloid, which is related to the stress distribution in the sample. The R2 of hyperbolic paraboloid fitting presents an upward trend prior to the fracture which enables to change the IRT field significantly. This R2 has a sharp drop in response to this large destruction. The normalization images of IRT field, including the row and column normalization images, were proposed as auxiliary means to analyze the IRT field. The row and column normalization images respectively show the transverse and longitudinal distribution of the IRT field, and they have clear responses to the destruction occurring on the sample surface. In this paper, the new methods and quantitative index were proposed for the analysis of IRT field, which have some theoretical and instructive significance for the analysis of the characteristics of IRT field, as well as the monitoring of instability and failure for concrete structure.

  10. Exercise-induced changes in blood minerals, associated proteins and hormones in women athletes.

    PubMed

    Deuster, P A; Kyle, S B; Singh, A; Moser, P B; Bernier, L L; Yu-Yahiro, J A; Schoomaker, E B

    1991-12-01

    The acute effects of prolonged exercise on the body's distribution of trace minerals in women athletes has not been examined. To this end, plasma concentrations of zinc, copper, and iron; erythrocyte zinc (EZn) and copper (ECu); and the associated proteins, ceruloplasmin and transferrin were measured in 38 highly trained women runners under resting conditions and again after running a competitive 26.2 mile marathon. The hormones, cortisol (C), estradiol (E2), prolactin (Prl), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured because of reported effects of hormones on trace mineral distribution. Menstrual status was assessed by questionnaire: 8 women were in the follicular phase, 13 in mid-cycle, 8 in the luteal phase and 9 were amenorrheic (AM). Significant post-race increases were noted for all plasma minerals, associated proteins, and the hormones C and Prl, whereas EZn decreased. No significant changes in ECu, E2, FSH or LH were noted. Menstrual status in terms of cycle phase or amenorrhea did not appear to modify the response. Exercise-induced changes in minerals may reflect release from other tissues and/or changes in the concentration of associated proteins. Whether these changes serve adaptive and/or specific functions during exercise is unknown.

  11. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  12. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century.

    PubMed

    Higdon, Jeff W; Ferguson, Steven H

    2009-07-01

    Killer whales (Orcinus orca) are major predators that may reshape marine ecosystems via top-down forcing. Climate change models predict major reductions in sea ice with the subsequent expectation for readjustments of species' distribution and abundance. Here, we measure changes in killer whale distribution in the Hudson Bay region with decreasing sea ice as an example of global readjustments occurring with climate change. We summarize records of killer whales in Hudson Bay, Hudson Strait, and Foxe Basin in the eastern Canadian Arctic and relate them to an historical sea ice data set while accounting for spatial and temporal autocorrelation in the data. We find evidence for "choke points," where sea ice inhibits killer whale movement, thereby creating restrictions to their Arctic distribution. We hypothesize that a threshold exists in seasonal sea ice concentration within these choke points that results in pulses in advancements in distribution of an ice-avoiding predator. Hudson Strait appears to have been a significant sea ice choke point that opened up .approximately 50 years ago allowing for an initial punctuated appearance of killer whales followed by a gradual advancing distribution within the entire Hudson Bay region. Killer whale sightings have increased exponentially and are now reported in the Hudson Bay region every summer. We predict that other choke points will soon open up with continued sea ice melt producing punctuated predator-prey trophic cascades across the Arctic.

  13. A testable model of earthquake probability based on changes in mean event size

    NASA Astrophysics Data System (ADS)

    Imoto, Masajiro

    2003-02-01

    We studied changes in mean event size using data on microearthquakes obtained from a local network in Kanto, central Japan, from a viewpoint that a mean event size tends to increase as the critical point is approached. A parameter describing changes was defined using a simple weighting average procedure. In order to obtain the distribution of the parameter in the background, we surveyed values of the parameter from 1982 to 1999 in a 160 × 160 × 80 km volume. The 16 events of M5.5 or larger in this volume were selected as target events. The conditional distribution of the parameter was estimated from the 16 values, each of which referred to the value immediately prior to each target event. The distribution of the background becomes a function of symmetry, the center of which corresponds to no change in b value. In contrast, the conditional distribution exhibits an asymmetric feature, which tends to decrease the b value. The difference in the distributions between the two groups was significant and provided us a hazard function for estimating earthquake probabilities. Comparing the hazard function with a Poisson process, we obtained an Akaike Information Criterion (AIC) reduction of 24. This reduction agreed closely with the probability gains of a retrospective study in a range of 2-4. A successful example of the proposed model can be seen in the earthquake of 3 June 2000, which is the only event during the period of prospective testing.

  14. Uneven reductions in high school students' alcohol use from 2007 to 2012 by age, sex, and socioeconomic strata.

    PubMed

    Jackson, Nicki; Denny, Simon; Sheridan, Janie; Fleming, Terry; Clark, Terryann; Peiris-John, Roshini; Ameratunga, Shanthi

    2017-01-01

    Many Western countries have reported declines in adolescent alcohol use. This study examined changes in adolescent alcohol use in New Zealand between 2007 and 2012 and explored variations across sociodemographic strata. Data from 2 nationally representative, cross-sectional high school surveys conducted in 2007 (n = 7709) and 2012 (n = 7266) were examined. Changes in the prevalence of drinking in the past 4 weeks were examined among the total sample, as well as the frequency of drinking in the past 4 weeks and typical drinking-occasion quantity among drinkers. Only students residing in urban areas were included. Variation in changes was investigated across 4 demographic groups characterized by age (<16 years, ≥16 years) and sex. Interactions with household- and neighborhood-level socioeconomic position (SEP) identified any differential changes between socioeconomic strata. From 2007 to 2012, significantly fewer students consumed alcohol in the past 4 weeks. Interaction analyses demonstrated that, among young females (<16 years), declines were significantly greater among those of high household SEP when compared with those of low household SEP. Among drinkers, reductions in the frequency of drinking were found among all demographic groups and SEP strata. Interaction analyses revealed that only young males (<16 years) showed significantly reduced typical drinking-occasion quantities. Among young females, significant interactions revealed a shift towards increasing typical drinking-occasion quantities among those of low household and neighborhood SEP, whereas their more advantaged counterparts showed no significant change over time. Fewer drinking occasions characterized the major declines in adolescent drinking between 2007 and 2012. Whereas young males showed reductions in the typical quantity consumed, young females of low household and neighborhood SEP progressed towards higher typical quantities. To address the uneven distribution of alcohol-related harm and improve the targeting of harm reduction initiatives, it remains imperative to examine changes in both the overall shift and shape of the distribution curve.

  15. Suppression of nucleation mode particles by biomass burning in an urban environment: a case study.

    PubMed

    Agus, Emily L; Lingard, Justin J N; Tomlin, Alison S

    2008-08-01

    Measurements of concentrations and size distributions of particles 4.7 to 160 nm were taken using an SMPS during the bonfire and firework celebrations on Bonfire Night in Leeds, UK, 2006. These celebrations provided an opportunity to study size distributions in a unique atmospheric pollution situation during and following a significant emission event due to open biomass burning. A log-normal fitting program was used to determine the characteristics of the modal groups present within hourly averaged size distributions. Results from the modal fitting showed that on bonfire night the smallest nucleation mode, which was present before and after the bonfire event and on comparison weekends, was not detected within the size distribution. In addition, there was a significant shift in the modal diameters of the remaining modes during the peak of the pollution event. Using the concept of a coagulation sink, the atmospheric lifetimes of smaller particles were significantly reduced during the pollution event, and thus were used to explain the disappearance of the smallest nucleation mode as well as changes in particle count mean diameters. The significance for particle mixing state is discussed.

  16. Recent benthic foraminifera and sedimentary facies distribution of the Abu Dhabi (United Arab Emirates) coastline

    NASA Astrophysics Data System (ADS)

    Fiorini, Flavia; Lokier, Stephen W.

    2014-05-01

    The distribution of benthic foraminifera and sedimentary facies from Recent coastline environments adjacent to the coastline of Abu Dhabi (UAE) was studied in detail with the aim to: 1) provide reliable analogs for understanding and interpreting the depositional environment of ancient shallow-marine sediments from the UAE; 2) assess any modifications in the distribution of benthic environments and sedimentary facies in an area affected by significant anthropogenic activities - particular construction and land reclamation. A total of 100 sea-floor sediment samples were collected in different shallow-marine sedimentary environments (nearshore shelf, beach-front, channels, ooid shoals, lagoon and mangals) close to the coastline of Abu Dhabi Island. Where possible, we revisited the sampling sites used in several studies conducted in the middle of last century (prior to any significant anthropogenic activities) to assess temporal changes in Recent benthic foraminifera and sedimentary facies distribution during the last 50 years. Five foraminiferal assemblages were recognized in the studied area. Species with a porcellaneous test mainly belonging to the genera Quinqueloculina, Triloculina, Spiroloculina, Sigmoilinita are common in all studied areas. Larger benthic foraminifera Peneroplis and Spirolina are particularly abundant in samples collected on seaweed. Hyaline foraminifera mostly belonging to the genera Elphidium, Ammonia, Bolivina and Rosalina are also common together with Miliolidae in the nearshore shelf and beach front. Agglutinated foraminifera (Clavulina, Textularia, Ammobaculites and Reophax) are present in low percentages. The species belonging to the genera Ammobaculites and Reophax are present only in the finest grain samples particularly in lagoons and mangal environments and have not been reported previously in the studied area. The majority of the ooid shoal sediments, the coarser sediments of the beach-front and samples collected in dredged channels do not contain living foraminifera and the dead assemblage is mostly composed of a few specimens of coarse-sized Miliolidae with fragmented or abraded tests, probably transported from nearby environments. While the shallow-water settings of the Abu Dhabi coastline continue to be areas of active carbonate sedimentation, there have been significant changes in facies distributions over the last 50 years. In particular: × The opportunistic genera Ammonia and Elphidium have become more abundant. Reophax and Ammobaculites are reported in the area for the first time. × With anthropogenic activities some environments, such as inner lagoons, are lost whilst other areas show resilience to anthropogenic activities with little change in sedimentary facies distribution and foraminiferal assemblage. × No living foraminifera are found in dredged channels. The detailed analysis of these changes in foraminifera distribution and sedimentary facies allows us to further our understanding of the effects of anthropogenic activities on shallow-marine environments. By so doing, we are better able to distinguish between those changes that result from anthropogenic activities and those that are a result of naturally-occurring environmental perturbations.

  17. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod

    PubMed Central

    Opdal, Anders Frugård; Jørgensen, Christian

    2015-01-01

    Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866–1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. PMID:25336028

  18. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    PubMed

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline.

    PubMed

    Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming

    2016-11-01

    Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.

  20. Impacts of Environmental Heterogeneity on Moss Diversity and Distribution of Didymodon (Pottiaceae) in Tibet, China.

    PubMed

    Song, Shanshan; Liu, Xuehua; Bai, Xueliang; Jiang, Yanbin; Zhang, Xianzhou; Yu, Chengqun; Shao, Xiaoming

    2015-01-01

    Tibet makes up the majority of the Qinghai-Tibet Plateau, often referred to as the roof of the world. Its complex landforms, physiognomy, and climate create a special heterogeneous environment for mosses. Each moss species inhabits its own habitat and ecological niche. This, in combination with its sensitivity to environmental change, makes moss species distribution a useful indicator of vegetation alteration and climate change. This study aimed to characterize the diversity and distribution of Didymodon (Pottiaceae) in Tibet, and model the potential distribution of its species. A total of 221 sample plots, each with a size of 10 × 10 m and located at different altitudes, were investigated across all vegetation types. Of these, the 181 plots in which Didymodon species were found were used to conduct analyses and modeling. Three noteworthy results were obtained. First, a total of 22 species of Didymodon were identified. Among these, Didymodon rigidulus var. subulatus had not previously been recorded in China, and Didymodon constrictus var. constrictus was the dominant species. Second, analysis of the relationships between species distributions and environmental factors using canonical correspondence analysis revealed that vegetation cover and altitude were the main factors affecting the distribution of Didymodon in Tibet. Third, based on the environmental factors of bioclimate, topography and vegetation, the distribution of Didymodon was predicted throughout Tibet at a spatial resolution of 1 km, using the presence-only MaxEnt model. Climatic variables were the key factors in the model. We conclude that the environment plays a significant role in moss diversity and distribution. Based on our research findings, we recommend that future studies should focus on the impacts of climate change on the distribution and conservation of Didymodon.

  1. Impacts of Environmental Heterogeneity on Moss Diversity and Distribution of Didymodon (Pottiaceae) in Tibet, China

    PubMed Central

    Song, Shanshan; Bai, Xueliang; Jiang, Yanbin; Zhang, Xianzhou; Yu, Chengqun

    2015-01-01

    Tibet makes up the majority of the Qinghai-Tibet Plateau, often referred to as the roof of the world. Its complex landforms, physiognomy, and climate create a special heterogeneous environment for mosses. Each moss species inhabits its own habitat and ecological niche. This, in combination with its sensitivity to environmental change, makes moss species distribution a useful indicator of vegetation alteration and climate change. This study aimed to characterize the diversity and distribution of Didymodon (Pottiaceae) in Tibet, and model the potential distribution of its species. A total of 221 sample plots, each with a size of 10 × 10 m and located at different altitudes, were investigated across all vegetation types. Of these, the 181 plots in which Didymodon species were found were used to conduct analyses and modeling. Three noteworthy results were obtained. First, a total of 22 species of Didymodon were identified. Among these, Didymodon rigidulus var. subulatus had not previously been recorded in China, and Didymodon constrictus var. constrictus was the dominant species. Second, analysis of the relationships between species distributions and environmental factors using canonical correspondence analysis revealed that vegetation cover and altitude were the main factors affecting the distribution of Didymodon in Tibet. Third, based on the environmental factors of bioclimate, topography and vegetation, the distribution of Didymodon was predicted throughout Tibet at a spatial resolution of 1 km, using the presence-only MaxEnt model. Climatic variables were the key factors in the model. We conclude that the environment plays a significant role in moss diversity and distribution. Based on our research findings, we recommend that future studies should focus on the impacts of climate change on the distribution and conservation of Didymodon. PMID:26181326

  2. Future changes in South American biomass distributions, biome distributions and plant trait spectra is dependent on applied atmospheric forcings.

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Scheiter, Simon; Higgins, Steven

    2017-04-01

    It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.

  3. Network-Based Analysis of Software Change Propagation

    PubMed Central

    Wang, Rongcun; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system. PMID:24790557

  4. Network-based analysis of software change propagation.

    PubMed

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  5. Seasonal climate variation and caribou availability: Modeling sequential movement using satellite-relocation data

    USGS Publications Warehouse

    Nicolson, Craig; Berman, Matthew; West, Colin Thor; Kofinas, Gary P.; Griffith, Brad; Russell, Don; Dugan, Darcy

    2013-01-01

    Livelihood systems that depend on mobile resources must constantly adapt to change. For people living in permanent settlements, environmental changes that affect the distribution of a migratory species may reduce the availability of a primary food source, with the potential to destabilize the regional social-ecological system. Food security for Arctic indigenous peoples harvesting barren ground caribou (Rangifer tarandus granti) depends on movement patterns of migratory herds. Quantitative assessments of physical, ecological, and social effects on caribou distribution have proven difficult because of the significant interannual variability in seasonal caribou movement patterns. We developed and evaluated a modeling approach for simulating the distribution of a migratory herd throughout its annual cycle over a multiyear period. Beginning with spatial and temporal scales developed in previous studies of the Porcupine Caribou Herd of Canada and Alaska, we used satellite collar locations to compute and analyze season-by-season probabilities of movement of animals between habitat zones under two alternative weather conditions for each season. We then built a set of transition matrices from these movement probabilities, and simulated the sequence of movements across the landscape as a Markov process driven by externally imposed seasonal weather states. Statistical tests showed that the predicted distributions of caribou were consistent with observed distributions, and significantly correlated with subsistence harvest levels for three user communities. Our approach could be applied to other caribou herds and could be adapted for simulating the distribution of other ungulates and species with similarly large interannual variability in the use of their range.

  6. Optimal Capacitor Bank Capacity and Placement in Distribution Systems with High Distributed Solar Power Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung

    Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less

  7. How digital design shapes political participation: A natural experiment with social information.

    PubMed

    Hale, Scott A; John, Peter; Margetts, Helen; Yasseri, Taha

    2018-01-01

    Political behaviour increasingly takes place on digital platforms, where people are presented with a range of social information-real-time feedback about the behaviour of peers and reference groups-which can stimulate (or depress) participation. This social information is hypothesized to impact the distribution of political activity, stimulating participation in mobilizations that are increasing in popularity, and depressing participation in those that appear to be less popular, leading to a non-normal distribution. Changes to these platforms can generate natural experiments allowing for an estimate of the impact of different kinds of social information on participation. This paper tests the hypothesis that social information shapes the distribution of political mobilizations by examining the introduction of trending information to the homepage of the UK government petition platform. The introduction of the trending feature did not increase the overall number of signatures per day, but the distribution of signatures across petitions changed significantly-the most popular petitions gained more signatures at the expense of those with fewer signatories. We further find significant differences between petitions trending at different ranks on the homepage. This evidence suggests that the ubiquity of trending information on digital platforms is introducing instability into political markets, as has been shown for cultural markets. As well as highlighting the importance of digital design in shaping political behaviour, the findings suggest that a non-negligible group of individuals visit the homepage of the site looking for petitions to sign, without having decided the issues they wish to support in advance. These 'aimless petitioners' are particularly susceptible to changes in social information.

  8. Caries and background factors in Swedish 4-year-old children with special reference to immigrant status.

    PubMed

    Stecksén-Blicks, Christina; Hasslöf, Pamela; Kieri, Catarina; Widman, Kjerstin

    2014-11-01

    This study assesses the prevalence of caries and some background factors in 4-year-old children in the city of Umeå, northern Sweden, and compares this with data from earlier studies to reveal changes over time. Children from the catchment areas of three Public Dental Health Service clinics in Umeå (n = 224) born during the third quarter of 2008 were invited to undergo a clinical dental examination. Decayed surfaces (including both dentine and enamel, except for enamel lesions on buccal and lingual surfaces), missing and filled surfaces (dmfs) were recorded using the same methods and criteria as in a series of earlier studies performed between 1980-2007. Background data were collected in a case-history and a questionnaire. Results. The proportion of children with caries significantly decreased from 2007 (38%) to 2012 (22%) (p < 0.05). In addition, the distribution of dmfs differed significantly between these years (p < 0.05). More immigrant children had caries (42%) than non-immigrant children (15%) (p < 0.05). For children with caries, there were no significant changes in the distribution of dmfs between 1980-2012 (p > 0.05). An immigrant background was associated with a lower frequency of tooth brushing and a higher intake of ice cream, sweets and chocolate drinks (p < 0.05). Although the proportion of children with caries declined between 2007-2012, this decline was limited to non-immigrant children. Since 1980 the distribution of dmfs remained unchanged among children with caries. More research on interventions for changing oral health behaviours is needed, specifically for immigrant children.

  9. Effect of exercise on age-related changes in collagen fibril diameter distributions in the common digital extensor tendons of young horses.

    PubMed

    Edwards, Lindsey J; Goodship, Allen E; Birch, Helen L; Patterson-Kane, Janet C

    2005-04-01

    To determine whether specific treadmill exercise regimens would accelerate age-related changes in collagen fibril diameter distributions in the common digital extensor tendon (CDET) of the forelimbs of young Thoroughbreds. 24 female Thoroughbreds. Horses were trained for 18 weeks (6 horses; short term) or 18 months (5 horses; long term) on a high-speed treadmill; 2 age-matched control groups (6 horses/group) performed walking exercise only. Horses were (mean +/- SD) 24 +/- 1 months and 39 +/- 1 months old at termination of the short-term and long-term regimens, respectively. Midmetacarpal CDET specimens were obtained and processed for transmission electron microscopy. Diameter and area of at least 1,000 collagen fibrils/specimen were measured by use of computerized image analysis. Mass-average diameter (MAD) of collagen fibrils and collagen fibril index were calculated for each horse. Collagen fibril MAD for the older horses was significantly less than that for the younger horses. Exercise did not significantly affect fibril diameter or distributions in either age group, and collagen fibril index did not differ significantly between groups. Age-related reduction in collagen fibril MAD agreed with findings for other tendons and species. Training did not accelerate age-related change in the CDET in contrast to a reported decrease in collagen fibril MAD in the superficial digital flexor tendon of horses trained long term. Our results support the concept that the functionally distinct nature of the CDET and superficial digital flexor tendon in horses results in fundamentally different responses to high-speed exercise regimens.

  10. The transport of nitric oxide in the upper atmosphere by planetary waves and the zonal mean circulation

    NASA Technical Reports Server (NTRS)

    Jones, G. A.; Avery, S. K.

    1982-01-01

    A time-dependent numerical model was developed and used to study the interaction between planetary waves, the zonal mean circulation, and the trace constituent nitric oxide in the region between 55 km and 120 km. The factors which contribute to the structure of the nitric oxide distribution were examined, and the sensitivity of the distribution to changes in planetary wave amplitude was investigated. Wave-induced changes in the mean nitric oxide concentration were examined as a possible mechanism for the observed winter anomaly. Results indicate that vertically-propagating planetary waves induce a wave-like structure in the nitric oxide distribution and that at certain levels, transports of nitric oxide by planetary waves could significantly affect the mean nitric oxide distribution. The magnitude and direction of these transports at a given level was found to depend not only on the amplitude of the planetary wave, but also on the loss rate of nitric oxide at that level.

  11. The distributions of Chinese yak breeds in response to climate change over the past 50 years.

    PubMed

    Wu, Jianguo

    2016-07-01

    The effects of prior climate change on yak breed distributions are uncertain. Here, we measured changes in the distributions of 12 yak breeds over the past 50 years in China and examined whether the changes could be attributed to climate change. Long-term records of yak breed distribution, grey relational analysis, fuzzy sets classification techniques and attribution methods were used. Over the past 50 years, the distributions of several yak breeds have changed in multiple directions, mainly shifting northward or westward, and most of these changes are related to the thermal index. Driven by climate change over the past years, the suitable range and the distribution centers of certain yak breeds have changed with fluctuation and have mainly shifted northward, eastward or southward. The consistency of observed versus predicted changes in distribution boundaries or distribution centers is higher for certain yak breeds. Changes in the eastern distribution boundary of two yak breeds over the past 50 years can be attributed to climate change. © 2015 Japanese Society of Animal Science.

  12. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  13. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence.

    PubMed

    Daszak, Peter; Zambrana-Torrelio, Carlos; Bogich, Tiffany L; Fernandez, Miguel; Epstein, Jonathan H; Murray, Kris A; Hamilton, Healy

    2013-02-26

    Emerging infectious diseases (EIDs) pose a significant threat to human health, economic stability, and biodiversity. Despite this, the mechanisms underlying disease emergence are still not fully understood, and control measures rely heavily on mitigating the impact of EIDs after they have emerged. Here, we highlight the emergence of a zoonotic Henipavirus, Nipah virus, to demonstrate the interdisciplinary and macroecological approaches necessary to understand EID emergence. Previous work suggests that Nipah virus emerged due to the interaction of the wildlife reservoir (Pteropus spp. fruit bats) with intensively managed livestock. The emergence of this and other henipaviruses involves interactions among a suite of anthropogenic environmental changes, socioeconomic factors, and changes in demography that overlay and interact with the distribution of these pathogens in their wildlife reservoirs. Here, we demonstrate how ecological niche modeling may be used to investigate the potential role of a changing climate on the future risk for Henipavirus emergence. We show that the distribution of Henipavirus reservoirs, and therefore henipaviruses, will likely change under climate change scenarios, a fundamental precondition for disease emergence in humans. We assess the variation among climate models to estimate where Henipavirus host distribution is most likely to expand, contract, or remain stable, presenting new risks for human health. We conclude that there is substantial potential to use this modeling framework to explore the distribution of wildlife hosts under a changing climate. These approaches may directly inform current and future management and surveillance strategies aiming to improve pathogen detection and, ultimately, reduce emergence risk.

  14. Climate Change Impact on Variability of Rainfall Intensity in Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, L. Y.

    2015-12-01

    Extreme rainfall events are major problems in Ethiopia with the resulting floods that usually could cause significant damage to agriculture, ecology, infrastructure, disruption to human activities, loss of property, loss of lives and disease outbreak. The aim of this study was to explore the likely changes of precipitation extreme changes due to future climate change. The study specifically focuses to understand the future climate change impact on variability of rainfall intensity-duration-frequency in Upper Blue Nile basin. Precipitations data from two Global Climate Models (GCMs) have been used in the study are HadCM3 and CGCM3. Rainfall frequency analysis was carried out to estimate quantile with different return periods. Probability Weighted Method (PWM) selected estimation of parameter distribution and L-Moment Ratio Diagrams (LMRDs) used to find the best parent distribution for each station. Therefore, parent distributions for derived from frequency analysis are Generalized Logistic (GLOG), Generalized Extreme Value (GEV), and Gamma & Pearson III (P3) parent distribution. After analyzing estimated quantile simple disaggregation model was applied in order to find sub daily rainfall data. Finally the disaggregated rainfall is fitted to find IDF curve and the result shows in most parts of the basin rainfall intensity expected to increase in the future. As a result of the two GCM outputs, the study indicates there will be likely increase of precipitation extremes over the Blue Nile basin due to the changing climate. This study should be interpreted with caution as the GCM model outputs in this part of the world have huge uncertainty.

  15. The relative impacts of climate and land-use change on conterminous United States bird species from 2001 to 2075

    USGS Publications Warehouse

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be "suitable" for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges.

  16. The Relative Impacts of Climate and Land-Use Change on Conterminous United States Bird Species from 2001 to 2075

    PubMed Central

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be “suitable” for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges. PMID:25372571

  17. Contrast Dispersion Pattern and Efficacy of Corticosteroid at the Glenohumeral Joint in Adhesive Capsulitis.

    PubMed

    Kim, Sang Jun; Choi, Yu Seong

    2015-01-01

    Corticosteroid injection has a wide range of success in adhesive capsulitis but the reason for this has not yet been explained. We hypothesized that this difference might be due to the distribution of the corticosteroids injected into the joint cavity because particulate steroid deposits in the capsule and will not be moved over time by shoulder motion. The purpose of this study is to determine whether the therapeutic efficacy of particulate corticosteroid injection into the glenohumeral joint differs according to the dispersion pattern. Prospective evaluation. Outpatient clinics at a tertiary university hospital. Seventy-two patients diagnosed as having adhesive capsulitis received a corticosteroid injection at the glenohumeral joint. The posterior capsule and the subscapular bursa were selected as dispersion sites and the dispersion of contrast dye was expressed as a ratio (%). Two weeks and 3 months after the injection clinical improvement ("not improved," "slightly improved," "much improved"), numeric rating scale (NRS), and passive range of motions (PROM) were evaluated. The dispersion of the contrast dye was compared according to the clinical improvements by an analysis of variance test. Pearson correlation test was done to find the relationship between PROM and the dispersion and between change of NRS and the dispersion. The distribution in the subscapular area was 30.0% in the "much improved" group, 22.0% in the "slightly improved" group, and 37.1% in the "no improvement" group which was not significantly different (P = 0.179). Correlations between changes of NRS and the dye distribution were not statistically significant (P = 0.429 at 2 weeks and P = 0.629 at 3 months). The change of passive external rotation 3 months after the injection was significantly correlated with the dye distribution (P = 0.035). Because of diverse pathologic findings in adhesive capsulitis, further studies will be needed to address the effect of the dye distribution on the pain improvement according to pathologic findings revealed by magnetic resonance imaging (MRI). External rotation of the shoulder in adhesive capsulitis has greater improvement as the corticosteroid solutions injected into the glenohumeral joint are increasingly dispersed to the subscapularis area. However, this does not affect the pain improvement after the injection.

  18. Distributed scaffolding: Wiki collaboration among Latino high school chemistry students

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Edwin Duncan, Jr.

    The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first research question asked if there is a difference in academic achievement between a treatment and control group on selected concepts from the topics of bonding, physical changes, and chemical changes, when Latino high school chemistry students collaborate on a quasi-natural wiki project. Overall results for all three activities (Bonding, Physical Changes, and Chemical Changes) indicated no significant difference between the wiki and control group. However, students performing the chemical changes activity did significantly better than their respective control group. Furthermore, there was a significant association, with large effect size, between group membership and ability to overcome the misconception that aqueous ionic reactants in precipitation reactions exist as molecular pairs of ions. Qualitative analysis of classroom and computer lab dialogue, discussion board communication, student focus groups, teacher interviews, and wiki content attributes the better performance of the chemical changes wiki group to favorable differences in intersubjectivity and calibrated assistance, as well as learning about submicroscopic representations of precipitation reactions in multiple contexts. Furthermore, the nonsignificant result overall points to an aversion to peer editing as a possible cause. Drawing considerably on Vygotsky and Piaget, the results are discussed within the context of how distributed scaffolding facilitated medium levels of cognitive conflict. The second research question asked what the characteristics of distributed metacognitive scaffolding are when Latino high school chemistry students collaborate on a quasi-natural wiki project. Results suggested a higher frequency of metacognitive scaffolding by the teacher, over peers, for content knowledge and making connections knowledge. Teacher metacognitive scaffolding often took the form of posting discussion board questions designed to stimulate student reflection on their content or creativity. On the other hand, both teacher and peer metacognitive scaffolding for general goals knowledge and strategy knowledge was relatively infrequent. Recommendations are offered for improving teacher and peer metacognitive scaffolding.

  19. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  20. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China.

    PubMed

    Luo, Zhenhua; Zhou, Surong; Yu, Wendi; Yu, Huiliang; Yang, Jingyuan; Tian, Yanhong; Zhao, Mian; Wu, Hua

    2015-02-01

    Understanding the effects of climate change on primate ranging patterns is crucial for conservation planning. Rhinopithecus roxellana is an endangered primate species distributed in mountainous forests at the elevation of 1500-3500 m a.s.l. in China. Our study site, the Shennongjia National Nature Reserve, represents the eastern-most distribution of this species. This area has experienced significant habitat loss and fragmentation because of human population growth, increased farming and logging, and climate change. To estimate how changes in temperature and rainfall will affect the presumed future distribution of this species, we examined eco-geographic factors including bioclimate, habitat (vegetation type, landcover, etc.), topography, and human impact (human population, gross domestic product, etc.), and provide suggestions for management and conservation. We used a maximum entropy approach to predict the location and distribution of habitats suitable for R. roxellana in the present, 2020, 2050, and 2080 based on 33 environmental parameters, three general circulation models, three emissions scenarios, and two dispersal hypotheses. According to the ensemble modeling, we found range reductions of almost 30% by 2020, 70% by 2050, and over 80% by 2080. Although no obvious differences were found in distribution change based on full and zero dispersal assumptions, our results revealed range reductions in response to elevational, latitudinal, and longitudinal gradients, with the monkeys forced to migrate to higher elevations over time. Bioclimte factors, such as temperature, precipitation, evapo-transpiration, and aridity condition, were dominant contributors to range shifting. As habitat loss due to human influence and climate change is likely to be even more severe in the future, we considered three conservation hot-spots in the Shennongjia area and recommended: (i) securing existing reserves and establishing new reserves, (ii) re-designing management systems to include the Shenongjia reserve and the surrounding reserves and highlighting ecosystem protection at higher elevations, and (iii) using finer-scale research to guide the conservation planning and education in order to enhance protection and awareness in the local community. National and provincial conservation policies should integrate projections of climate change in making effective conservation strategies. © 2014 Wiley Periodicals, Inc.

  1. Global Weirding? - Using Very Large Ensembles and Extreme Value Theory to assess Changes in Extreme Weather Events Today

    NASA Astrophysics Data System (ADS)

    Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.

    2014-12-01

    A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.

  2. Long-term change in a behavioural trait: truncated spawning distribution and demography in Northeast Arctic cod.

    PubMed

    Opdal, Anders Frugård; Jørgensen, Christian

    2015-04-01

    Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866-1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. Families, time, and well-being in Canada.

    PubMed

    Burton, Peter; Phipps, Shelley

    2011-01-01

    We study changes in time and money available to families with children from 1971 to 2006. Increases in incomes at the top of the Canadian income distribution since the mid-1990s have taken place without any significant increases in total family hours of paid work. On the other hand, for families in the middle of the income distribution, family income has stagnated, despite the fact that parents jointly supply significantly higher hours of paid work. If both time and money are valuable resources for the production of well-being for family members, these findings suggest that inequality in well-being has increased even more than inequality of income.

  4. [Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi Province, China].

    PubMed

    Zhang, Yin Bo; Gao, Chen Hong; Qin, Hao

    2018-04-01

    Understanding the responses of the habitats of endangered species to climate change is of great significance for biodiversity conservation and the maintenance of the integrity of ecosystem function. In this study, the potential suitable distribution habitats of Elaeagnus mollis in Shanxi Province was simulated by the maximum entropy model, based on 73 occurrence field records and 35 environmental factors under the current climate condition. Moreover, with the Fifth Assessment Report of Intergovernmental Panel on Climate Change, the dynamics of distribution pattern was analyzed for E. mollis under different climate scenarios. The results showed that the area under the receiver operating characteristic curve (AUC) value was 0.987, indicating that the data fitted the model very well and that the prediction was highly reliable. Results from the Jackknife test showed that the main environmental variables affecting the E. mollis distribution were the precipitation seasonality, the range of annual temperature, annual mean temperature, isothermality, annual precipitation, and pH of topsoil, with the cumulative contribution reaching 94.8%. At present, the potential suitable habitats of E. mollis are mainly located in two regions, the southern of Lyuliang Mountain and Zhongtiao Mountain in Shanxi Province. Under different climate scenarios, the total suitable area of E. mollis would shrink in 2070s. In RCP 2.6 the suitable area would firstly increase and then decrease, while in RCP 4.5 and RCP 8.5 it would response sensitively and first decrease and then increase. Its spatial distribution in two suitable regions would show divergent responses to climate change. The distribution in southern Lyuliang Mountain would fluctuate slightly in latitudinal direction, while that in Zhongtiao Mountain would migrate along elevation.

  5. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  6. Flood defence in the Blackwater Estuary, Essex, UK: the impact of sedimentological and geochemical changes on salt marsh development in the Tollesbury Managed Realignment site.

    PubMed

    Chang, Y H; Scrimshaw, M D; Macleod, C L; Lester, J N

    2001-06-01

    Recent changes in the UK's coastal defence strategy have resulted in the introduction of Managed Realignment (MR), a technique which attempts to establish salt marshes on low-lying coastal farmland. This work investigates the impact of MR, in particular on the interactions between sediment movement, changes in heavy metal concentrations and salt marsh development. Pre- and post-inundation samples were collected and analysed between 1995 and 1997. Sediment transport patterns (1996) demonstrated that sediment particles were distributed by tides around the site, resulting in a change in the spatial distribution of the metals which was related to the sediment particle size distribution. Despite the presence of some metal contaminants found within the MR site, vegetated salt marsh has developed since 1997. However, heavy metals such as Cu, Mn, Ni, Pb and Zn exhibited relative depletion in the sediment developing with salt marsh in 1997, which is in agreement with data indicating that concentrations of metals within sediments is related to frequency of tidal inundation. During initial development of the site, sediment transport was the main factor controlling metal distribution, however, subsequently the frequency of tidal inundation became the most significant factor. Further work may allow for prediction of how future MR sites will develop with respect to redistribution of sediments and subsequent transport of contaminants in the dissolved phase.

  7. Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women

    PubMed Central

    2010-01-01

    Background This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss. Methods One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg•m-2, 44.8 ± 4.2% fat) were randomized to either no diet + no exercise control group (CON) a no diet + exercise control (ND), or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP]) in addition to beginning a 3x•week-1 supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate. Results All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass) and body composition via DXA (fat mass and % fat) changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength) occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non-diet/non-exercise groups. Conclusions Overall and over the entire test period, all diet groups which restricted their caloric intake and exercised experienced similar responses to each other. Regular exercise and modest caloric restriction successfully promoted anthropometric and body composition improvements along with various markers of muscular fitness. Significant increases in relative energy expenditure and reductions in circulating leptin were found in response to all exercise and diet groups. Macronutrient distribution may impact circulating levels of insulin and overall ability to improve strength levels in obese women who follow regular exercise. PMID:21092228

  8. Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium?

    PubMed Central

    Pitzer, Virginia E.; Bilcke, Joke; Heylen, Elisabeth; Crawford, Forrest W.; Callens, Michael; De Smet, Frank; Van Ranst, Marc; Zeller, Mark; Matthijnssens, Jelle

    2015-01-01

    Vaccination can place selective pressures on viral populations, leading to changes in the distribution of strains as viruses evolve to escape immunity from the vaccine. Vaccine-driven strain replacement is a major concern after nationwide rotavirus vaccine introductions. However, the distribution of the predominant rotavirus genotypes varies from year to year in the absence of vaccination, making it difficult to determine what changes can be attributed to the vaccines. To gain insight in the underlying dynamics driving changes in the rotavirus population, we fitted a hierarchy of mathematical models to national and local genotype-specific hospitalization data from Belgium, where large-scale vaccination was introduced in 2006. We estimated that natural- and vaccine-derived immunity was strongest against completely homotypic strains and weakest against fully heterotypic strains, with an intermediate immunity amongst partially heterotypic strains. The predominance of G2P[4] infections in Belgium after vaccine introduction can be explained by a combination of natural genotype fluctuations and weaker natural and vaccine-induced immunity against infection with strains heterotypic to the vaccine, in the absence of significant variation in strain-specific vaccine effectiveness against disease. However, the incidence of rotavirus gastroenteritis is predicted to remain low despite vaccine-driven changes in the distribution of genotypes. PMID:26687288

  9. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    NASA Technical Reports Server (NTRS)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  10. Climate change in Australian tropical rainforests: an impending environmental catastrophe.

    PubMed Central

    Williams, Stephen E; Bolitho, Elizabeth E; Fox, Samantha

    2003-01-01

    It is now widely accepted that global climate change is affecting many ecosystems around the globe and that its impact is increasing rapidly. Many studies predict that impacts will consist largely of shifts in latitudinal and altitudinal distributions. However, we demonstrate that the impacts of global climate change in the tropical rainforests of northeastern Australia have the potential to result in many extinctions. We develop bioclimatic models of spatial distribution for the regionally endemic rainforest vertebrates and use these models to predict the effects of climate warming on species distributions. Increasing temperature is predicted to result in significant reduction or complete loss of the core environment of all regionally endemic vertebrates. Extinction rates caused by the complete loss of core environments are likely to be severe, nonlinear, with losses increasing rapidly beyond an increase of 2 degrees C, and compounded by other climate-related impacts. Mountain ecosystems around the world, such as the Australian Wet Tropics bioregion, are very diverse, often with high levels of restricted endemism, and are therefore important areas of biodiversity. The results presented here suggest that these systems are severely threatened by climate change. PMID:14561301

  11. Changes in the frequency distribution of energy deposited in short pathlengths as a function of energy degradation of the primary beam.

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Steigerwalt, J. E.; Hilbert, J. W.

    1972-01-01

    The frequency distributions of event size in the deposition of energy over small pathlengths have been measured after penetration of 44.3 MeV protons through various thicknesses of tissue-equivalent material. Results show that particle energy straggling of an initially monoenergetic proton beam after passage through an absorber causes the frequency distributions of energy deposited in short pathlengths of low atomic number materials to remain broad. In all cases investigated, the ratio of the most probable to the average energy losses has been significantly less than unity.

  12. Deforestation changes land-atmosphere interactions across South American biomes

    NASA Astrophysics Data System (ADS)

    Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive

    2016-04-01

    South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.

  13. Structure-function relationships in the stem cell's mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure.

    PubMed

    Chang, Hana; Knothe Tate, Melissa L

    2011-12-01

    In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that the spatiotemporal organization of tubulin and actin elements of the cytoskeleton changes in response to volume and shape changing stresses emulating those during development, prior to the first beating of the heart or twitching of muscle. Our approach was to quantify the change over baseline in spatiotemporal distribution of actin and tubulin in live C3H/10T1/2 model stem cells subjected to volume changing stresses induced by seeding at density as well as low magnitude, short duration, shape changing (shear) stresses induced by fluid flow (0.5 or 1.0 dyne/cm2 for 30/60/90 minutes). Upon exposure to fluid flow, both tubulin thickness (height) and concentration (fluorescence intensity) change significantly over baseline, as a function of proximity to neighboring cells (density) and the substrate (apical-basal height). Given our recently published studies showing amplification of stress gradients (flow velocity) with increasing distance to nearest neighbors and the substrate, i.e. with decreasing density and toward the apical side of the cell, tubulin adaptation appears to depend significantly on the magnitude of the stress to which the cell is exposed locally. In contrast, adaptation of actin to the changing mechanical milieu is more global, exhibiting less significant differences attributable to nearest neighbors or boundaries than differences attributable to magnitude of the stress to which the cell is exposed globally (0.5 versus 1.0 dyne/cm2). Furthermore, changes in the actin cytoskeletal distribution correlate positively with one pre-mesenchymal condensation marker (Msx2) and negatively with early markers of chondrogenesis (ColIIaI alone, indicative of pre-hypertrophic chondrogenesis) and osteogenesis (Runx2). Changes in the tubulin cytoskeletal distribution correlate positively with a marker of pericondensation (Sox9 alone), negatively with chondrogenesis (ColIIaI) and positively with adipogenesis (Ppar-gamma 2). Taken as a whole, exposure of MSCs to volume and shape changing stresses results in emergent anisotropy of cytoskeletal architecture (structure), which relate to emergent cell fate (function).

  14. Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight

    PubMed Central

    Hufford, Matthew B.; Martínez-Meyer, Enrique; Gaut, Brandon S.; Eguiarte, Luis E.; Tenaillon, Maud I.

    2012-01-01

    Background The species Zea mays includes both domesticated maize (ssp. mays) and its closest wild relatives known as the teosintes. While genetic and archaeological studies have provided a well-established history of Z. mays evolution, there is currently minimal description of its current and past distribution. Here, we implemented species distribution modeling using paleoclimatic models of the last interglacial (LI; ∼135,000 BP) and the last glacial maximum (LGM; ∼21,000 BP) to hindcast the distribution of Zea mays subspecies over time and to revisit current knowledge of its phylogeography and evolutionary history. Methodology/Principal Findings Using a large occurrence data set and the distribution modeling MaxEnt algorithm, we obtained robust present and past species distributions of the two widely distributed teosinte subspecies (ssps. parviglumis and mexicana) revealing almost perfect complementarity, stable through time, of their occupied distributions. We also investigated the present distributions of primitive maize landraces, which overlapped but were broader than those of the teosintes. Our data reinforced the idea that little historical gene flow has occurred between teosinte subspecies, but maize has served as a genetic bridge between them. We observed an expansion of teosinte habitat from the LI, consistent with population genetic data. Finally, we identified locations potentially serving as refugia for the teosintes throughout epochs of climate change and sites that should be targeted in future collections. Conclusion/Significance The restricted and highly contrasting ecological niches of the wild teosintes differ substantially from domesticated maize. Variables determining the distributions of these taxa can inform future considerations of local adaptation and the impacts of climate change. Our assessment of the changing distributions of Zea mays taxa over time offers a unique glimpse into the history of maize, highlighting a strategy for the study of domestication that may prove useful for other species. PMID:23155371

  15. Climate-mediated competition in a high-elevation salamander community

    USGS Publications Warehouse

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  16. Tick-borne protozoa

    USDA-ARS?s Scientific Manuscript database

    Tick-borne protozoa impose a significant health burden on humans and animals throughout the world. The virulence of tick-borne protozoa, and the geographic distribution of their tick vectors and vertebrate hosts remain in flux as they adapt to changing environmental and climatic conditions. Babesios...

  17. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  18. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  19. Long-term changes in the benthic communities of the Pomeranian Bay (Southern Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Kube, J.; Gosselck, F.; Powilleit, M.; Warzocha, J.

    1998-02-01

    Long-term changes in the macrofauna of the Pomeranian Bay were studied by comparing survey data from the 1950s, 1980s, and 1990s. The study area has undergone significant eutrophication during the period of investigation. Biomass of filter-feeding bivalves increased significantly. Spatial distribution patterns of several species have changed. Strong decreases in species richness were caused by oxygen depletion at stations deeper than 15 m. Saduria entomon, Monoporeia affinis, and Pontoporeia femorata vanished entirely between 1981 and 1993. Although a causal relationship between simultaneous increases of nutrient levels and macrobenthic biomass cannot be verified, eutrophication is proposed to be the major process affecing changes in macrofauna assemblages. In addition, changes in hydrography and climate increased frequency and severity of oxygen depletion events in the Pomeranian Bay since the mid 1980s.

  20. A Doubly Stochastic Change Point Detection Algorithm for Noisy Biological Signals.

    PubMed

    Gold, Nathan; Frasch, Martin G; Herry, Christophe L; Richardson, Bryan S; Wang, Xiaogang

    2017-01-01

    Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

  1. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Local structural behavior of PbZr0.5Ti0.5O3 during electric field application via in situ pair distribution function study

    NASA Astrophysics Data System (ADS)

    Zhao, Changhao; Hou, Dong; Chung, Ching-Chang; Yu, Yingying; Liu, Wenfeng; Li, Shengtao; Jones, Jacob L.

    2017-11-01

    The local structural behavior of PbZr0.5Ti0.5O3 (PZT 50/50) ceramics during application of an electric field was investigated using pair distribution function (PDF) analysis. In situ synchrotron total scattering was conducted, and the PDFs were calculated from the Fourier transform of the total scattering data. The PDF refinement of the zero-field data suggests a local-structure model with [001] Ti-displacement and negligible Zr-displacement. The directional PDFs at different field amplitudes indicate the bond-length distribution of the nearest Pb-B (B = Zr/Ti) pair changes significantly with the field. The radial distribution functions (RDFs) of a model for polarization rotation were calculated. The calculated and the experimental RDFs are consistent. This result suggests the changes in Pb-B bond-length distribution could be dominantly caused by polarization rotation. Peak fitting of the experimental RDFs was also conducted. The peak position trends with increasing field are mostly in agreement with the calculation result of the polarization rotation model. The area ratio of the peaks in the experimental RDFs also changed with field amplitude, indicating that Zr atoms have a detectable displacement driven by the electric field. Our study provides an experimental observation of the behaviors of PZT 50/50 under field at a local scale which supports the polarization rotation mechanism.

  3. Genetic consequences of Quaternary climatic oscillations in the Himalayas: Primula tibetica as a case study based on restriction site-associated DNA sequencing.

    PubMed

    Ren, Guangpeng; Mateo, Rubén G; Liu, Jianquan; Suchan, Tomasz; Alvarez, Nadir; Guisan, Antoine; Conti, Elena; Salamin, Nicolas

    2017-02-01

    The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the distribution were found to be more vulnerable and responded in different ways to past climatic changes. These results illustrate how past climatic changes affected the demographic history of Himalayan organisms. Our findings highlight the significance of combining genomic approaches with environmental data when evaluating the effects of past climatic changes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Distributional changes in the western Burrowing Owl (Athene cunicularia hypugaea) in North America from 1967 to 2008

    USGS Publications Warehouse

    Macias-Duarte, Alberto; Conway, Courtney J.

    2015-01-01

    The quantification of shifts in bird distributions in response to climate change provides an opportunity to gain a deeper understanding of the processes that influence species persistence. We used data from the North American Breeding Bird Survey (BBS) to document changes in the distributional limits of the western Burrowing Owl (Athene cunicularia hypugaea) from 1967 to 2008. We used logistic regression to model presence probability (p) as a function of longitude, latitude, and year. We modeled a linear trend in logit(p) through time with slope and intercept modeled as a double Fourier series of longitude and latitude. We found that the western Burrowing Owl has experienced an intriguing southward shift in the northern half of its breeding range, contrary to what is predicted by most species niche models and what has been observed for many other species in North America. The breeding range of the Burrowing Owl has been shrinking near its northern, western, and eastern edges. Our model detected the population declines that were observed in California and eastern Washington, in locations where maps based on route-specific estimating equations had predicted significant population increases. We suggest that the northern boundary of the breeding distribution of the western Burrowing Owl has contracted southward and the southern boundary of the species' breeding distribution has expanded southward into areas of northern Mexico that were formerly used only by wintering migrants.

  5. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    NASA Astrophysics Data System (ADS)

    King, Linda L.; Repeta, Daniel J.

    1994-10-01

    The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.

  6. Screening method based on walking plantar impulse for detecting musculoskeletal senescence and injury.

    PubMed

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Newman, Tony; Lv, Changsheng; Zhou, Yi

    2013-01-01

    No consensus has been reached on how musculoskeletal system injuries or aging can be explained by a walking plantar impulse. We standardize the plantar impulse by defining a principal axis of plantar impulse. Based upon this standardized plantar impulse, two indexes are presented: plantar pressure record time series and plantar-impulse distribution along the principal axis of plantar impulse. These indexes are applied to analyze the plantar impulse collected by plantar pressure plates from three sources: Achilles tendon ruptures; elderly people (ages 62-71); and young people (ages 19-23). Our findings reveal that plantar impulse distribution curves for Achilles tendon ruptures change irregularly with subjects' walking speed changes. When comparing distribution curves of the young, we see a significant difference in the elderly subjects' phalanges plantar pressure record time series. This verifies our hypothesis that a plantar impulse can function as a means to assess and evaluate musculoskeletal system injuries and aging.

  7. Response of the European ecosystems to climate change: a modelling approach for the 21st century.

    NASA Astrophysics Data System (ADS)

    Dury, Marie; Warnant, Pierre; François, Louis; Henrot, Alexandra; Favre, Eric; Hambuckers, Alain

    2010-05-01

    According to projections, over the 21st century, significant climatic changes appear and will be strengthened all over the world with the continuing increase of the atmospheric CO2 level. Climate will be generally warmer with notably changes in the seasonality and in the precipitation regime. These changes will have major impacts on the environment and on the biodiversity of natural ecosystems. Geographic distribution of ecosystems may be modified since species will be driven to migrate towards more suitable areas (e. g., shifting of the arctic tree lines). The CARAIB dynamic vegetation model (Carbon Assimilation in the Biosphere) forced with 21st century climate scenarios of the IPCC (ARPEGE-Climat model) is used to illustrate and analyse the potential impacts of climate change on tree species distribution and productivity over Europe. Changes in hydrological budget (e. g., runoff) and fire effects on forests will also be shown. Transient runs (1975-2100) with a new dynamic module introduced in CARAIB are performed to follow the future evolutions. In the new module, the processes of species establishment, competition and mortality due to stresses and disturbances have been improved. Among others, increased atmospheric CO2 and warmer climate increase tree productivity while drier conditions decrease it. Regions with more severe droughts will also be affected by an increase of wildfire frequency, which may have large impacts on vegetation density and distribution.

  8. Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Ghassemi, Ahmad

    2017-12-01

    One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.

  9. Effects of Different Levels of Molybdenum on Rumen Microbiota and Trace Elements Changes in Tissues from Goats.

    PubMed

    Zhou, Sihui; Zhang, Caiying; Xiao, Qingyang; Zhuang, Yu; Gu, Xiaolong; Yang, Fan; Xing, Chenghong; Hu, Guoliang; Cao, Huabin

    2016-11-01

    Molybdenum (Mo) is an essential trace element for animals and human beings. However, the negative effects on rumen function and distribution of trace elements in tissues induced by excessive Mo have not been well understood. Therefore, the purpose of present study was to investigate the impact of Mo on rumen microbiota, distribution of trace elements in various organs, and hematological parameters of goats. A total of 36 goats were randomly distributed into three groups with equal number and low-Mo and high-Mo groups were orally administered ammonium molybdate at 15 and 45 mg · Mo · kg -1  · BW respectively, while the control group received corresponding quantitative deionized water. The results showed that the total number of ciliate and protozoa protein concentration decreased significantly (P < 0.01) on days 25 and 50. Concentrations of ammonia nitrogen and bacterial protein were significantly higher (P < 0.05) in low-Mo group, while they were lower (P < 0.05) in high-Mo group than the control group on days 25 and 50. In addition, Mo accumulated in serum and all detected tissues. Copper (Cu) and zinc (Zn) contents significantly decreased (P < 0.05) in hair and serum on days 25 and 50, while Cu contents increased (P < 0.05) and the change of Zn contents were not obvious (P > 0.05) in other tissues on days 25 and 50. Besides, there was no obvious variation in iron (Fe) contents during whole experiment period (P > 0.05). Furthermore, excessive Mo content had no significant effect on red blood cell (RBC) counts and hemoglobin (HGB) concentration (P > 0.05) on days 25 and 50, while white blood cell (WBC) counts increased significantly (P < 0.05) on day 50. These results indicated that excessive Mo content could impact the balance of ruminal microorganisms and interfere with the absorption and distribution of Mo and Cu mainly.

  10. Optimal Operation and Dispatch of Voltage Regulation Devices Considering High Penetrations of Distributed Photovoltaic Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hodge, Brian S; Cho, Gyu-Jung

    Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation ofmore » the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.« less

  11. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    PubMed

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  12. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  13. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  14. Reliability of Baropodometry on the Evaluation of Plantar Load Distribution: A Transversal Study.

    PubMed

    Baumfeld, Daniel; Baumfeld, Tiago; da Rocha, Romário Lopes; Macedo, Benjamim; Raduan, Fernando; Zambelli, Roberto; Alves Silva, Thiago Alexandre; Nery, Caio

    2017-01-01

    Introduction . Baropodometry is used to measure the load distribution on feet during rest and walking. The aim of this study was to evaluate changes in plantar foot pressures distribution due to period of working and due to stretching exercises of the posterior muscular chain. Methods . In this transversal study, all participants were submitted to baropodometric evaluation at two different times: before and after the working period and before and after stretching the muscles of the posterior chain. Results . We analyzed a total of 54 feet of 27 participants. After the working period, there was an average increase in the forefoot pressure of 0.16 Kgf/cm 2 and an average decrease in the hindfoot pressure of 0.17 Kgf/cm 2 . After stretching the posterior muscular chain, the average increase in the forefoot pressure was 0.56 Kgf/cm 2 and the hindfoot average pressure decrease was 0.56 Kgf/cm 2 . These changes were not statistically significant. Discussion . It was reported that the strength of the Achilles tendon generates greater forefoot load transferred from the hindfoot. In our study, no significant variation in the distribution of plantar pressure was observed. It can be inferred that baropodometry was a reliable instrument to determine the plantar pressure, regardless of the tension of the posterior chain muscles.

  15. Empowerment for the Right to Health: The Use of the "Most Significant Change" Methodology in Monitoring.

    PubMed

    Polet, Fanny; Malaise, Geraldine; Mahieu, Anuschka; Utrera, Eulalia; Montes, Jovita; Tablang, Rosalinda; Aytin, Andrew; Kambale, Erick; Luzala, Sylvie; Al-Ghoul, Daoud; Darkhawaja, Ranin Ahed; Rodriguez, Roxana Maria; Posada, Margarita; De Ceukelaire, Wim; De Vos, Pol

    2015-12-10

    Quantitative evaluations might be insufficient for measuring the impact of interventions promoting the right to health, particularly in their ability to contribute to a greater understanding of processes at the individual, community, and larger population level through which certain results are obtained. This paper discusses the application of a qualitative approach, the "most significant change" (MSC) methodology, in the Philippines, Palestine, the Democratic Republic of the Congo, and El Salvador between 2010 and 2013 by Third World Health Aid and its partner organizations. MSC is based on storytelling through which the central question--what changes occurred?--is developed in terms of, "who did what, when, why, and why was it important?" The approach focuses on personal stories that reflect on experiences of change for individuals over time. MSC implementation over several years allowed the organizations to observe significant change, as well as evolving types of change. Participants shifted their stories from "how the programs helped them" and "what they could do to help others benefit from the programs" to "what they could do to help their organizations." The MSC technique is useful as a complement to quantitative methods, as it is a slow, participatory, and intensive endeavor that builds capacity while being applied. This makes MSC a useful monitoring tool for programs with participatory and empowering objectives. Copyright © 2015 Polet, Malaise, Mahieu, Utrera, Montes, Tablang, Aytin, Kambale, Luzala, Al-Ghoul, Darkhawaja, Rogriguez, Posada, De Ceukelaire, De Vos. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  16. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I)more » significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.« less

  17. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda.

    PubMed

    Grueter, Cyril C; Ndamiyabo, Ferdinand; Plumptre, Andrew J; Abavandimwe, Didier; Mundry, Roger; Fawcett, Katie A; Robbins, Martha M

    2013-03-01

    Monitoring temporal and spatial changes in the resource availability of endangered species contributes to their conservation. The number of critically endangered mountain gorillas (Gorilla beringei beringei) in the Virunga Volcano population has doubled over the past three decades, but no studies have examined how food availability has changed during that period. First, we assessed if the plant species consumed by the gorillas have changed in abundance and distribution during the past two decades. In 2009-2010, we replicated a study conducted in 1988-1989 by measuring the frequency, density, and biomass of plant species consumed by the gorillas in 496 plots (ca. 6 km(2)) in the Karisoke study area in Volcanoes National Park, Rwanda. We expected to observe a decreased presence of major gorilla food plants as a likely result of density-dependent overharvesting by gorillas. Among the five most frequently consumed species (composing approximately 70% of the gorilla's diet, excluding bamboo), two have decreased in availability and abundance, while three have increased. Some species have undergone shifts in their altitudinal distribution, possibly due to regional climatic changes. Second, we made baseline measurements of food availability in a larger area currently utilized by the gorillas. In the extended sampling (n = 473 plots) area (ca. 25 km(2) ), of the five most frequently consumed species, two were not significantly different in frequency from the re-sampled area, while two occurred significantly less frequently, and one occurred significantly more frequently. We discuss the potential impact of gorilla-induced herbivory on changes of vegetation abundance. The changes in the species most commonly consumed by the gorillas could affect their nutrient intake and stresses the importance of monitoring the interrelation among plant population dynamics, species density, and resource use. © 2012 Wiley Periodicals, Inc.

  18. Habitat compression and expansion of sea urchins in response to changing climate conditions on the California continental shelf and slope (1994-2013)

    NASA Astrophysics Data System (ADS)

    Sato, Kirk N.; Levin, Lisa A.; Schiff, Kenneth

    2017-03-01

    Echinoid sea urchins with distributions along the continental shelf and slope of the eastern Pacific often dominate the megafauna community. This occurs despite their exposure to naturally low dissolved oxygen (DO) waters (<60 μmol kg-1) associated with the Oxygen Limited Zone and low-pH waters undersaturated with respect to calcium carbonate (ΩCaCO3<1). Here we present vertical depth distribution and density analyses of historical otter trawl data collected in the Southern California Bight (SCB) from 1994 to 2013 to address the question: Do changes in echinoid density and species' depth distributions along the continental margin in the SCB reflect observed secular or interannual changes in climate? Deep-dwelling burrowing urchins (Brissopsis pacifica, Brisaster spp. and Spatangus californicus), which are adapted to low-DO, low-pH conditions appeared to have expanded their vertical distributions and populations upslope over the past decade (2003-2013), and densities of the deep pink urchin, Strongylocentrotus fragilis, increased significantly in the upper 500 m of the SCB. Conversely, the shallower urchin, Lytechinus pictus, exhibited depth shoaling and density decreases within the upper 200 m of the SCB from 1994 to 2013. Oxygen and pH in the SCB also vary inter-annually due to varying strengths of the El Niño Southern Oscillation (ENSO). Changes in depth distributions and densities were correlated with bi-monthly ENSO climate indices in the region. Our results suggest that both a secular trend in ocean deoxygenation and acidification and varying strength of ENSO may be linked to echinoid species distributions and densities, creating habitat compression in some and habitat expansion in others. Potential life-history mechanisms underlying depth and density changes observed over these time periods include migration, mortality, and recruitment. These types of analyses are needed for a broad suite of benthic species in order to identify and manage climate-sensitive species on the margin.

  19. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.

    PubMed

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Drazen, Jeffrey C

    2017-03-01

    Climate change is expected to impact all aspects of marine ecosystems, including fisheries. Here, we use output from a suite of 11 earth system models to examine projected changes in two ecosystem-defining variables: temperature and food availability. In particular, we examine projected changes in epipelagic temperature and, as a proxy for food availability, zooplankton density. We find that under RCP8.5, a high business-as-usual greenhouse gas scenario, increasing temperatures may alter the spatial distribution of tuna and billfish species richness across the North Pacific basin. Furthermore, warmer waters and declining zooplankton densities may act together to lower carrying capacity for commercially valuable fish by 2-5% per decade over the 21st century. These changes have the potential to significantly impact the magnitude, composition, and distribution of commercial fish catch across the pelagic North Pacific. Such changes will in turn ultimately impact commercial fisheries' economic value. Fishery managers should anticipate these climate impacts to ensure sustainable fishery yields and livelihoods. © 2016 John Wiley & Sons Ltd.

  20. Historic changes in fish assemblage structure in midwestern nonwadeable rivers

    USGS Publications Warehouse

    Parks, Timothy P.; Quist, Michael C.; Pierce, Clay L.

    2014-01-01

    Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.

  1. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska

    USGS Publications Warehouse

    Ward, David H.; Markon, Carl J.; Douglas, David C.

    1997-01-01

    Spatial change in eelgrass meadows, Zostera marina L., was assessed between 1978 and 1987 and between 1987 and 1995 at Izembek Lagoon, Alaska. Change in total extent was evaluated through a map to map comparison of data interpreted from a 1978 Landsat multi-spectral scanner image and 1987 black and white aerial photographs. A ground survey in 1995 was used to assess spatial change from 1987. Eelgrass beds were the predominant vegetation type in the lagoon, comprising 44-47% (15000-16000 ha) of the total area in 1978 and 1987. Izembek Lagoon contains the largest bed of seagrass along the Pacific Coast of North America and largest known single stand of eelgrass in the world. There was a high degree of overlap in the spatial distribution of eelgrass among years of change detection. The overall net change was a 6% gain between, 1978 and 1987 and a <1% gain between 1987 and 1995. The lack of significant change in eelgrass cover suggests that eelgrass meadows in Izembek Lagoon have been stable during the 17-year period of our study.

  2. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of life becoming more variable, growth in years of life two and older becoming correlated (P < 0.05), and growth spurts in year of life three. Copyright ?? 2008 AEHMS.

  3. The Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)) target diseases in face of climate change.

    PubMed

    Yang, Guo-Jing; Utzinger, Jürg; Lv, Shan; Qian, Ying-Jun; Li, Shi-Zhu; Wang, Qiang; Bergquist, Robert; Vounatsou, Penelope; Li, Wei; Yang, Kun; Zhou, Xiao-Nong

    2010-01-01

    Climate change-according to conventional wisdom-will result in an expansion of tropical parasitic diseases in terms of latitude and altitude, with vector-borne diseases particularly prone to change. However, although a significant rise in temperature occurred over the past century, there is little empirical evidence whether climate change has indeed favoured infectious diseases. This might be explained by the complex relationship between climate change and the frequency and the transmission dynamics of infectious diseases, which is characterised by nonlinear associations and countless other complex factors governing the distribution of infectious diseases. Here, we explore whether and how climate change might impact on diseases targeted by the Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)). We start our review with a short summary of the current evidence-base how climate change affects the distribution of infectious diseases. Next, we introduce biology-based models for predicting the distribution of infectious diseases in a future, warmer world. Two case studies are presented: the classical RNAS(+) disease schistosomiasis and an emerging disease, angiostrongyliasis, focussing on their occurrences in the People's Republic of China. Strengths and limitations of current models for predicting the impact of climate change on infectious diseases are discussed, and we propose model extensions to include social and ecological factors. Finally, we recommend that mitigation and adaptation strategies to diminish potential negative effects of climate change need to be developed in concert with key stakeholders so that surveillance and early-warning systems can be strengthened and the most vulnerable population groups protected. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.

    PubMed

    Pan, Hong-Wei; Lei, Hong-Jun; He, Xiao-Song; Xi, Bei-Dou; Han, Yu-Ping; Xu, Qi-Gong

    2017-04-01

    To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil-groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.

  5. Smith-Purcell radiation from concave dotted gratings

    NASA Astrophysics Data System (ADS)

    Sergeeva, D. Yu.; Tishchenko, A. A.; Aryshev, A. S.; Strikhanov, M. N.

    2018-02-01

    We present the first-principles theory of Smith-Purcell effect from the concave dotted grating consisting of bent chains of separated micro- or nanoparticles. The numerical analysis demonstrates that the obtained spectral-angular distributions change significantly depending on the structure of the grating.

  6. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe.

    PubMed

    Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R

    2016-03-01

    Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary control strategies, and potentially drive local adaptation to climate change in parasite populations. © 2015 John Wiley & Sons Ltd.

  7. Bone mineralization changes of the glenoid in shoulders with symptomatic rotator cuff tear.

    PubMed

    Harada, Yohei; Yokoya, Shin; Akiyama, Yuji; Mochizuki, Yu; Ochi, Mitsuo; Adachi, Nobuo

    2018-06-06

    Computed tomography osteoabsorptiometry (CTO) is a method to analyze the stress distribution in joints by measuring the subchondral bone density. The purpose of this study was to evaluate the bone mineralization changes of the glenoid in shoulders with rotator cuff tears by CTO and to evaluate whether rotator cuff tears are associated with stress changes in the glenoid. In total, 32 patients, who were diagnosed with unilateral rotator cuff tears and underwent arthroscopic rotator cuff repair, were enrolled in this study. They underwent CT scanning of both shoulders pre-operatively and the glenoid was evaluated using CTO. Hounsfield units (HU) in seven areas of the glenoid were compared between the affected and unaffected sides. The central area of the glenoid on the affected side had significantly lower HU than on the unaffected side among all patients. Focusing on the rotator cuff tear size and the subscapularis tendon, only patients with larger cuff tears or with subscapularis tendon tears showed significantly lower HU in the central area of the affected side. This study showed a decrease in bone mineralization density in the central glenoid in shoulders with rotator cuff tear. This change was observed in the case of larger cuff tears and subscapularis tendon tears. Our results help clarify the changes in stress distribution in the shoulder joint caused by symptomatic rotator cuff tears.

  8. Human-experienced temperature changes exceed global average climate changes for all income groups

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The distribution of temperature changes experienced by the world population between 2011-2030 and 2080-2099. Lower 3 panels: Temperatures experienced 2011-2030 (dashed, circle = mean) and 2080-2099 (solid, cross = mean) by income tercile. The poor do not experience larger changes than the wealthy. However, the poor begin the 21st century at higher temperatures.

  9. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  10. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  11. The impact of European harmonisation on Norwegian drug policy.

    PubMed

    Norris, P

    1998-01-01

    Although not a member of the European Union (EU), Norway is part of the European internal market as a result of the European economic area (EEA) agreement. Before 1994, Norway had a distinctive set of arrangements for the licensing and distribution of medicines. Many of these have undergone considerable change as a result of European harmonisation. This paper describes the previous arrangements and the impact of European harmonisation on them. Significant changes have been made to the Norwegian marketing authorisation system because of the loss of the 'need clause' and changes in price control. These are described and an attempt is made to evaluate their impact. The development of parallel importing and the introduction of private wholesaling companies have led to the development of new players in the Norwegian drug market and an increase in competition both within and between levels of the pharmaceutical distribution chain. New co-operatives have also arisen to increase the negotiating power of purchasers, particularly hospitals. Further significant changes are likely to occur in the Norwegian pharmaceutical sector in the future. The Norwegian case study provides an opportunity to look at the impact of European harmonisation on a particular set of regulatory arrangements and sheds light on the difficulty of implementing European policy in a national setting.

  12. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity.

    PubMed

    Janes, Tara A; Xu, Fenglian; Syed, Naweed I

    2015-07-01

    Respiratory behaviour relies critically upon sensory feedback from peripheral oxygen chemoreceptors. During environmental or systemic hypoxia, chemoreceptor input modulates respiratory central pattern generator activity to produce reflex-based increases in respiration and also shapes respiratory plasticity over longer timescales. The best-studied oxygen chemoreceptors are undoubtedly the mammalian carotid bodies; however, questions remain regarding this complex organ's role in shaping respiration in response to varying oxygen levels. Furthermore, many taxa possess distinct oxygen chemoreceptors located within the lungs, airways and cardiovasculature, but the functional advantage of multiple chemoreceptor sites is unclear. In this study, it is demonstrated that a distributed network of peripheral oxygen chemoreceptors exists in Lymnaea stagnalis and significantly modulates aerial respiration. Specifically, Lymnaea breath frequency and duration represent parameters that are shaped by interactions between hypoxic severity and its time-course. Using a combination of behaviour and electrophysiology approaches, the chemosensory pathways underlying hypoxia-induced changes in breath frequency/duration were explored. The current findings demonstrate that breath frequency is uniquely modulated by the known osphradial ganglion oxygen chemoreceptors during moderate hypoxia, while a newly discovered area of pneumostome oxygen chemoreception serves a similar function specifically during more severe hypoxia. Together, these findings suggest that multiple oxygen chemosensory sites, each with their own sensory and modulatory properties, act synergistically to form a functionally distributed network that dynamically shapes respiration in response to changing systemic or environmental oxygen levels. These distributed networks may represent an evolutionarily conserved strategy vis-à-vis respiratory adaptability and have significant implications for the understanding of fundamental respiratory control systems. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Local Colonization-Extinction Dynamics Generate Lags in the Response to Climate Change in Eastern North American Forests

    NASA Astrophysics Data System (ADS)

    Talluto, M. V.; Boulangeat, I.; Vissault, S.; Gravel, D.

    2015-12-01

    Climate change is likely to push many species to the limits of their ecological niches and lead to mismatches between species ranges and local environmental conditions. Forested ecosystems in particular may have difficulty tracking climate change due to slow growth and dispersal rates. Correlative species distribution models (SDMs), commonly used to predict the response of species distributions to climate change, relate species occurrences to climate to describe the present niche; however they often project into the future without accounting for slow processes that might produce lags in the response to climate change. An alternative type of model that analyzes patch-scale colonization and extinction (C-E) rates along an environmental gradient has been successful in describing species range limits in theoretical studies. Because the model is stochastic and dynamic, it is more robust to changes in the environmental gradient than static SDMs. We applied such a model to 40 of the most abundant trees in eastern North American forests, using repeated observations across multiple decades to parameterize the C-E rates. We show that C-E rates for many species respond to climate in a manner that generates predicted range limits when the species is at equilibrium with the environment. Moreover, current distributions of many species are significantly out of equilibrium with the present climate, with predicted range limits shifted 10s to 100s of km northward from the present distribution. These results suggest that present warming has already exceeded the thermal tolerance at the southern range limits for the dominant trees of eastern North American forests, producing millions of ha of newly suitable areas north of the present distribution of these species that have not yet been colonized, as well as large southern regions where species are present but expected to be lost in the long-term as dead trees are not replaced, even if no further climate warming occurs.

  14. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia

    PubMed Central

    Sakaguchi, Shota; Bowman, David M. J. S.; Prior, Lynda D.; Crisp, Michael D.; Linde, Celeste C.; Tsumura, Yoshihiko; Isagi, Yuji

    2013-01-01

    Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia. PMID:24174110

  15. Soil organic matter persistence as a stochastic process: age and transit time distributions of carbon in soils

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos

    2017-04-01

    The question of why some organic matter is more persistent than other that decomposes quickly in soils has sparkled a large amount of research in recent years. Persistence is commonly characterized as the turnover or mean residence time of specific compounds or soil organic matter (SOM) pools. However, turnover and residence times are ambiguous measures of persistence, which is better characterized by the probability distribution of ages in the system and in particular pools. We calculated age distributions for a wide range of SOM models, which showed long-tail distributions far from the mean value. Age and transit time distributions from a variety of models also showed: 1) transit times are lower than ages of SOM, 2) turnover times differ significantly from mean ages in slow cycling pools, 3) change in the inputs, without changes in the allocation of photosynthetic products, has no effect on transit times, but does affect system and pool ages. We propose an index to assess persistence of C in soils that can be derived from observations alone or from models. We also ask whether random chance is an important contributor to the persistence of SOM.

  16. Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur.

    PubMed

    Zhang, Wen; Lin, Kuangfei; Zhou, Jian; Zhang, Wei; Liu, Lili; Zhang, Qianqian

    2014-01-01

    Changes in cadmium (Cd) accumulation, distribution, and chemical form in rice seedling in the joint presence of different concentrations of sulfur (S) remain almost unknown. Therefore, the indoor experiments were performed to determine the accumulation, sub-cellular distribution and chemical forms of Cd under three S levels in rice seedling for the first time. The result showed that Cd accumulation in rice roots was more than in shoots. Sub-cellular distribution of Cd in rice roots and shoots indicated that the largest proportion of Cd accumulated in cell walls and soluble fractions. As S supply increased, the proportion of Cd in cell walls reduced, while it increased in the soluble fractions. The majority of Cd existed in inorganic form, and then gradually changed to organic forms that included pectates and proteins with increased S supply. The results showed that S supply significantly influenced Cd accumulation, distribution, and chemical forms, suggesting that S might provide the material for the synthesis of sulfhydryl protein and thereby affect Cd stress on plants. These observations provided a basic understanding of potential ecotoxicological effects of joint Cd and S exposure in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Influence of changes in supply on the distribution of pediatric subspecialty care.

    PubMed

    Mayer, Michelle L; Skinner, Asheley Cockrell

    2009-12-01

    To examine whether recently certified pediatric subspecialists enter markets that previously lacked subspecialists and to determine whether changes in overall supply are associated with changes in geographic availability of care. Multiple cross-sectional analyses. United States. Physician data for 2003 and 2006 from the American Board of Pediatrics. Main Exposure New entrants, defined as subspecialists who first obtained certification after 2003. We examined the following: (1) whether new entrants were more likely to practice in locations lacking certified subspecialists; (2) changes in the percentage of hospital referral regions (HRRs) with at least 1 subspecialist; and (3) changes in the number of subspecialists per HRR. Ten pediatric subspecialties experienced increases in supply and 5 experienced decreases. For 8 of the 15 pediatric subspecialties studied, new entrants were more likely than previously certified physicians to locate in an HRR that lacked a subspecialist in 2003. The percentage of HRRs with a subspecialist increased significantly for 3 of the 10 pediatric subspecialties with increases in supply. Among HRRs with a subspecialist in 2003, the average number of subspecialists per HRR increased between 2003 and 2006 for 6 of the 10 pediatric subspecialties with total supply increases and decreased for 4 of the 5 subspecialties with decreases in supply. Increases in the number of pediatric subspecialists generally did not lead to improvements in distribution and may actually reinforce the existing distribution for certain pediatric subspecialties. However, because newly certified subspecialists are more likely to enter an HRR that previously lacked a subspecialist, long-term increases in supply may lead to improvements in distribution.

  18. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    NASA Astrophysics Data System (ADS)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  19. In Vitro Quantification of the Radiopacity of Onyx during Embolization.

    PubMed

    Jiang, Yuan Yuan; Jo, Ye-Eun; Woo, Jung Min; Lim, Ok Kyun; Hwang, Changmo; Maeng, Jun Young; Kim, Jieun; Kim, Namkug; Lee, Deok Hee

    2017-03-01

    Onyx has been successfully applied in the treatment of various neurovascular lesions. However, some experience is required to get accustomed to its unpredictable fluoroscopic visibility during injection. This in vitro study aimed to evaluate the characteristics of radiopacity change in a simulated embolization procedure. Using a bench-top Onyx injection experiment simulating a typical brain arteriovenous malformation embolization, nine cycles of casting modes (continuous injection) and plugging modes (injection with intermittent pauses) were performed. Radiodensity of Onyx droplets collected from the microcatheter tip and the distal head portion of the microcatheter were measured as time lapsed. Distribution of droplet radiodensity (radiodensity) and distribution of radiographic grade (grade) were analyzed and compared by repeated measurements. Within-group analysis revealed no significant radiodensity change with time (P>0.05). The radiodensity was significantly higher in the casting mode than in the plugging mode (P<0.01). The lateral radiograph of the microcatheter showed higher radiopacity (P<0.01) and better evenness (P<0.01) in the casting mode than in the plugging mode. A significant difference in microcatheter attenuation (both radiographic grade mean and SD; P<0.01) was noted between the two modes. Radiodensity had a significant influence on the radiopacity and radiopacity evenness of the microcatheter. The radiopacity of the Onyx can vary significantly over time because of early precipitation of tantalum powder. Radiopacity decreased significantly during plugging modes, characterized by pauses between injections.

  20. Effect of the lung allocation score on lung transplantation in the United States.

    PubMed

    Egan, Thomas M; Edwards, Leah B

    2016-04-01

    On May 4, 2005, the system for allocation of deceased donor lungs for transplant in the United States changed from allocation based on waiting time to allocation based on the lung allocation score (LAS). We sought to determine the effect of the LAS on lung transplantation in the United States. Organ Procurement and Transplantation Network data on listed and transplanted patients were analyzed for 5 calendar years before implementation of the LAS (2000-2004), and compared with data from 6 calendar years after implementation (2006-2011). Counts were compared between eras using the Wilcoxon rank sum test. The rates of transplant increase within each era were compared using an F-test. Survival rates computed using the Kaplan-Meier method were compared using the log-rank test. After introduction of the LAS, waitlist deaths decreased significantly, from 500/year to 300/year; the number of lung transplants increased, with double the annual increase in rate of lung transplants, despite no increase in donors; the distribution of recipient diagnoses changed dramatically, with significantly more patients with fibrotic lung disease receiving transplants; age of recipients increased significantly; and 1-year survival had a small but significant increase. Allocating lungs for transplant based on urgency and benefit instead of waiting time was associated with fewer waitlist deaths, more transplants performed, and a change in distribution of recipient diagnoses to patients more likely to die on the waiting list. Copyright © 2016 International Society for Heart and Lung Transplantation. All rights reserved.

  1. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. The framework was successfully tested in two use scenarios of the GEOSS AIP-2 Climate Change and Biodiversity WG aiming to predict species distribution changes due to Climate Change factors, with the scientific patronage of the University of Colorado and the University of Alaska. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop .

  2. 43 CFR 418.35 - Efficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of entitlement water actually delivered at the headgates. Since most of the distribution system losses such as evaporation and seepage do not change significantly with the amount of water delivered (i.e., these losses are principally a function of water surface area and the wetted perimeter of the...

  3. 43 CFR 418.35 - Efficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of entitlement water actually delivered at the headgates. Since most of the distribution system losses such as evaporation and seepage do not change significantly with the amount of water delivered (i.e., these losses are principally a function of water surface area and the wetted perimeter of the...

  4. 43 CFR 418.35 - Efficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of entitlement water actually delivered at the headgates. Since most of the distribution system losses such as evaporation and seepage do not change significantly with the amount of water delivered (i.e., these losses are principally a function of water surface area and the wetted perimeter of the...

  5. 43 CFR 418.35 - Efficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of entitlement water actually delivered at the headgates. Since most of the distribution system losses such as evaporation and seepage do not change significantly with the amount of water delivered (i.e., these losses are principally a function of water surface area and the wetted perimeter of the...

  6. 43 CFR 418.35 - Efficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of entitlement water actually delivered at the headgates. Since most of the distribution system losses such as evaporation and seepage do not change significantly with the amount of water delivered (i.e., these losses are principally a function of water surface area and the wetted perimeter of the...

  7. Some aspects of the modular organization of the primary visual cortex of the cat: patterns of cytochrome oxidase activity.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2008-10-01

    The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity ("spots"). There was a significant increase in the contrast of the "spots" from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.

  8. Effects of polymers on the spatial structure of turbulent flows

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ballouz, Joseph G.; Ouellette, Nicholas T.

    2017-11-01

    It is well known that the addition of minor amounts of polymers to a turbulent water flow can significantly change its properties. One of the most prominent effects is the observed drastic reduction of drag in wall-bounded flows that is utilized in many engineering applications. Much of the research on polymers in turbulence has focused on their influence on the turbulent energy cascade and their interaction with the energy transfer processes. Much less investigated are their effects on the spatial structure of turbulent flows. In a classical von-Kárman swirling flow setup, we used Lagrangian particle tracking to obtain three-dimensional particle trajectories, velocities, and accelerations and find that polymers have a significant effect on Lagrangian measures of the turbulence structure such as radial distribution functions and the curvature of particle trajectories. We find that not only do the statistical distributions change, but also that polymers appear to affect the spatial statistics well beyond the size of the polymers themselves.

  9. Environmental impacts on the southern Florida coastal waters: a history of change in Florida Bay

    USGS Publications Warehouse

    Brewster-Wingard, G. L.; Ishman, S. E.; Holmes, C. W.

    1998-01-01

    Analyses of four cores located in the northern transitional, eastern, and central portions of Florida Bay reveal historical patterns of change in salinity and seagrass distribution. Salinity and the distribution of seagrass beds are two critical issues for the restoration of Florida Bay. The distribution of benthic fauna in Bob Allen 6A and Russell Bank 19B cores illustrates changes in environmental parameters prior to 1900. Natural fluctuations occur in salinity, but the amplitude of those fluctuations was limited to a 15–20% shift about the mean. Subtle changes occur in the benthic fauna around 1910, but beginning around 1940, the pattern of salinity fluctuation departs substantially from the pre-1900 pattern. Post-1940, the salinity oscillates 40–60% about the mean. This pattern is seen in all indicators measured. Around 1970, a significant but short term decline occurred in salinity. The Taylor Creek T24 core from the northern transitional zone reflects changes in freshwater flow that have occurred during this century. The upper portion of the core records a significant increase in salinity, with a slight decrease occurring in recent years. The Pass Key 37 core represents an area of very high sedimentation rates; an increase in salinity occurs in the upper portion of the core. Natural fluctuations in seagrass distribution are inferred from the shifts in relative abundance of epiphytal species preserved in the cores. All four cores show an increase in epiphytes and therefore in seagrass coverage during this century. An increase also occurs in epiphytal species that can dwell on either Thalassia or macro-algal mats associated with Thalassia beds. These data suggest an increase in algal-mats has occurred during this century. The Bob Allen 6A core records an extensive period during the 1800's of little to no vegetative cover of the substrate based on the near absence of epiphytic species in that segment of the core. Following this period, the epiphytal species increase rapidly in abundance, implying that vegetation may have the ability to disseminate rapidly.

  10. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  11. The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity

    NASA Astrophysics Data System (ADS)

    Lee, Yichao; Chang, Shuiping

    2017-05-01

    Spirogyra is a genus of widely distributed, large green fresh water algae. This study discovered that changes in salinity can induce Spirogyra fluviatilis to produce amounts of extracellular polymeric substance (EPS) when controlling other environmental conditions. If culturing S. fluviatilis with salinity greater than a 3.0‰ medium for 4 hours, the secretion EPS will be changed. And the level of polysaccharides and proteins, the primary components of EPS, is slightly increased in accordance with the increase in the salinity. But the proteins to polysaccharides ratio changes are not significantly

  12. Assessment of corneal properties based on statistical modeling of OCT speckle.

    PubMed

    Jesus, Danilo A; Iskander, D Robert

    2017-01-01

    A new approach to assess the properties of the corneal micro-structure in vivo based on the statistical modeling of speckle obtained from Optical Coherence Tomography (OCT) is presented. A number of statistical models were proposed to fit the corneal speckle data obtained from OCT raw image. Short-term changes in corneal properties were studied by inducing corneal swelling whereas age-related changes were observed analyzing data of sixty-five subjects aged between twenty-four and seventy-three years. Generalized Gamma distribution has shown to be the best model, in terms of the Akaike's Information Criterion, to fit the OCT corneal speckle. Its parameters have shown statistically significant differences (Kruskal-Wallis, p < 0.001) for short and age-related corneal changes. In addition, it was observed that age-related changes influence the corneal biomechanical behaviour when corneal swelling is induced. This study shows that Generalized Gamma distribution can be utilized to modeling corneal speckle in OCT in vivo providing complementary quantified information where micro-structure of corneal tissue is of essence.

  13. Determinants of change in body weight and body fat distribution over 5.5 years in a sample of free-living black South African women.

    PubMed

    Chantler, Sarah; Dickie, Kasha; Micklesfield, Lisa K; Goedecke, Julia H

    To identify socio-demographic and lifestyle determinants of weight gain in a sample of premenopasual black South African (SA) women. Changes in body composition (dual-energy X-ray absorptiometry, computerised tomography), socio-economic status (SES) and behavioural/lifestyle factors were measured in 64 black SA women at baseline (27 ± 8 years) and after 5.5 years. A lower body mass index (BMI) and nulliparity, together with access to sanitation, were significant determinants of weight gain and change in body fat distribution over 5.5 years. In addition, younger women increased their body weight more than their older counterparts, but this association was not independent of other determinants. Further research is required to examine the effect of changing SES, as well as the full impact of childbearing on weight gain over time in younger women with lower BMIs. This information will suggest areas for possible intervention to prevent long-term weight gain in these women.

  14. Loss of adaptive variation during evolutionary responses to climate change.

    PubMed

    Buckley, James; Bridle, Jon R

    2014-10-01

    The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae-dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate-driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation. © 2014 John Wiley & Sons Ltd/CNRS.

  15. The ecology of climate change and infectious diseases

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2009-01-01

    The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.

  16. Effect of Artificial Selection on Runs of Homozygosity in U.S. Holstein Cattle

    PubMed Central

    Kim, Eui-Soo; Cole, John B.; Huson, Heather; Wiggans, George R.; Van Tassell, Curtis P.; Crooker, Brian A.; Liu, George; Da, Yang; Sonstegard, Tad S.

    2013-01-01

    The intensive selection programs for milk made possible by mass artificial insemination increased the similarity among the genomes of North American (NA) Holsteins tremendously since the 1960s. This migration of elite alleles has caused certain regions of the genome to have runs of homozygosity (ROH) occasionally spanning millions of continuous base pairs at a specific locus. In this study, genome signatures of artificial selection in NA Holsteins born between 1953 and 2008 were identified by comparing changes in ROH between three distinct groups under different selective pressure for milk production. The ROH regions were also used to estimate the inbreeding coefficients. The comparisons of genomic autozygosity between groups selected or unselected since 1964 for milk production revealed significant differences with respect to overall ROH frequency and distribution. These results indicate selection has increased overall autozygosity across the genome, whereas the autozygosity in an unselected line has not changed significantly across most of the chromosomes. In addition, ROH distribution was more variable across the genomes of selected animals in comparison to a more even ROH distribution for unselected animals. Further analysis of genome-wide autozygosity changes and the association between traits and haplotypes identified more than 40 genomic regions under selection on several chromosomes (Chr) including Chr 2, 7, 16 and 20. Many of these selection signatures corresponded to quantitative trait loci for milk, fat, and protein yield previously found in contemporary Holsteins. PMID:24348915

  17. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  18. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  19. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  20. Changes in the Occurrence and Distribution of Extreme Precipitation Events at the Paleocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Carmichael, M.; Pancost, R. D.; Lunt, D. J.

    2015-12-01

    The study of the sensitivity of the hydrological cycle to episodes of global warmth in the geologic past is receiving increased attention, but knowledge of the occurrence of hydrological extremes remains limited. A range of geomorphological, microfossil and biomarker proxies indicate significant hydrological change accompanied the PETM hyperthermal at ~55.8 Ma, many of which have been interpreted to reflect changes to Mean Annual Precipitation (MAP) or runoff. Recently, changes in the occurrence of intense, episodic precipitation has been suggested at some sites, but it is currently unknown whether such regions were particularly susceptible to extremes, or whether proxies from other regions require further interpretation. In this work, we seek to understand whether a numerical climate model is capable of simulating changes in the frequency and global distribution of intense precipitation events by analysing GCM-simulated hourly precipitation rates. Our Eocene simulations are performed at x2 and x4 preindustrial CO2 using a coupled atmosphere-ocean GCM, HadCM3L. Climatological differences between high- and low-CO2 may be considered analogous to the PETM. We find that changes in storm characteristics and extremes are highly regionalised. In particular, our simulations support that extreme events occurred with a reduced return period at the PETM in tropical regions of Africa and South America, whilst in the mid-latitudes the importance of extremes varies significantly between sites in close proximity. We also identify regions where changes in extreme behaviour are decoupled from those of MAP, which may represent important proxy acquisition targets. Given that tropical precipitation distributions are highly sensitive to GCM parameterisation scheme and given biases in the representation of sub-daily precipitation within HadCM3L, there is a clear need for further modelling work to fully characterise the Eocene hydrological cycle. However, our results indicate that the interpretation of existing proxies must consider the influences of both changes in mean annual precipitation rate, but also the occurrence of intense, high impact events.

  1. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE PAGES

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    2017-01-01

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  2. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  3. Emmetropisation and the aetiology of refractive errors

    PubMed Central

    Flitcroft, D I

    2014-01-01

    The distribution of human refractive errors displays features that are not commonly seen in other biological variables. Compared with the more typical Gaussian distribution, adult refraction within a population typically has a negative skew and increased kurtosis (ie is leptokurtotic). This distribution arises from two apparently conflicting tendencies, first, the existence of a mechanism to control eye growth during infancy so as to bring refraction towards emmetropia/low hyperopia (ie emmetropisation) and second, the tendency of many human populations to develop myopia during later childhood and into adulthood. The distribution of refraction therefore changes significantly with age. Analysis of the processes involved in shaping refractive development allows for the creation of a life course model of refractive development. Monte Carlo simulations based on such a model can recreate the variation of refractive distributions seen from birth to adulthood and the impact of increasing myopia prevalence on refractive error distributions in Asia. PMID:24406411

  4. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  5. Stress Distribution in a Rigidly Clamped Composite Plate with Locally Curved Structures under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2001-09-01

    A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading

  6. Neuropeptide Y genotype, central obesity, and abdominal fat distribution: the POUNDS LOST trial1,2

    PubMed Central

    Lin, Xiaochen; Qi, Qibin; Zheng, Yan; Huang, Tao; Lathrop, Mark; Zelenika, Diana; Bray, George A; Sacks, Frank M; Liang, Liming; Qi, Lu

    2015-01-01

    Background: Neuropeptide Y is a key peptide affecting adiposity and has been related to obesity risk. However, little is known about the role of NPY variations in diet-induced change in adiposity. Objective: The objective was to examine the effects of NPY variant rs16147 on central obesity and abdominal fat distribution in response to dietary interventions. Design: We genotyped a functional NPY variant rs16147 among 723 participants in the Preventing Overweight Using Novel Dietary Strategies trial. Changes in waist circumference (WC), total abdominal adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue (SAT) from baseline to 6 and 24 mo were evaluated with respect to the rs16147 genotypes. Genotype–dietary fat interaction was also examined. Results: The rs16147 C allele was associated with a greater reduction in WC at 6 mo (P < 0.001). In addition, the genotypes showed a statistically significant interaction with dietary fat in relation to WC and SAT (P-interaction = 0.01 and 0.04): the association was stronger in individuals with high-fat intake than in those with low-fat intake. At 24 mo, the association remained statistically significant for WC in the high-fat diet group (P = 0.02), although the gene–dietary fat interaction became nonsignificant (P = 0.30). In addition, we found statistically significant genotype–dietary fat interaction on the change in total abdominal adipose tissue, visceral adipose tissue, and SAT at 24 mo (P = 0.01, 0.05, and 0.04): the rs16147 T allele appeared to associate with more adverse change in the abdominal fat deposition in the high-fat diet group than in the low-fat diet group. Conclusion: Our data indicate that the NPY rs16147 genotypes affect the change in abdominal adiposity in response to dietary interventions, and the effects of the rs16147 single-nucleotide polymorphism on central obesity and abdominal fat distribution were modified by dietary fat. This trial was registered at clinicaltrials.gov as NCT00072995. PMID:26156739

  7. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  8. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development.

    PubMed

    Jang, Yu Kyung; Jung, Eun Sung; Lee, Hyun-Ah; Choi, Doil; Lee, Choong Hwan

    2015-11-04

    Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.

  9. Sensitivity of NTCP parameter values against a change of dose calculation algorithm.

    PubMed

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.

  10. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    PubMed

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.

  11. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-15

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis withmore » those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.« less

  12. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  13. Twenty years of changes in spatial association and community structure among desert perennials.

    PubMed

    Miriti, Maria N

    2007-05-01

    I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.

  14. Body frame size in school children is related to the amount of adipose tissue in different depots but not to adipose distribution.

    PubMed

    Guzmán-de la Garza, Francisco J; González Ayala, Alejandra E; Gómez Nava, Marisol; Martínez Monsiváis, Leislie I; Salinas Martínez, Ana M; Ramírez López, Erik; Mathiew Quirós, Alvaro; Garcia Quintanilla, Francisco

    2017-09-10

    The main aim of this study was to test the hypothesis that body frame size is related to the amount of fat in different adipose tissue depots and to fat distribution in schoolchildren. Children aged between 5 and 10 years were included in this cross-sectional study (n = 565). Body frame size, adiposity markers (anthropometric, skinfolds thickness, and ultrasound measures), and fat distribution indices were analyzed. Correlation coefficients adjusted by reliability were estimated and analyzed by sex; the significance of the difference between two correlation coefficients was assessed using the Fisher z-transformation. The sample included primarily urban children; 58.6% were normal weight, 16.1% overweight, 19.6% obese, and the rest were underweight. Markers of subcutaneous adiposity, fat mass and fat-free mass, and preperitoneal adiposity showed higher and significant correlations with the sum of the biacromial + bitrochanteric diameter than with the elbow diameter, regardless of sex. The fat distribution conicity index presented significant but weak correlations; and visceral adipose tissue, hepatic steatosis, and the waist-for-hip ratio were not significantly correlated with body frame size measures. Body frame size in school children was related to the amount of adipose tissue in different depots, but not adipose distribution. More studies are needed to confirm this relationship and its importance to predict changes in visceral fat deposition during growth. © 2017 Wiley Periodicals, Inc.

  15. Trend analysis for daily rainfall series of Barcelona

    NASA Astrophysics Data System (ADS)

    Ortego, M. I.; Gibergans-Báguena, J.; Tolosana-Delgado, R.; Egozcue, J. J.; Llasat, M. C.

    2009-09-01

    Frequency analysis of hydrological series is a key point to acquire an in-depth understanding of the behaviour of hydrologic events. The occurrence of extreme hydrologic events in an area may imply great social and economical impacts. A good understanding of hazardous events improves the planning of human activities. A useful model for hazard assessment of extreme hydrologic events in an area is the point-over-threshold (POT) model. Time-occurrence of events is assumed to be Poisson distributed, and the magnitude X of each event is modeled as an arbitrary random variable, whose excesses over the threshold x0, Y = X - x0, given X > x0, have a Generalized Pareto Distribution (GPD), ( ? )- 1? FY (y|β,?) = 1 - 1+ βy , 0 ? y < ysup , where ysup = +? if ? 0, and ysup = -β? ? if ? < 0. The limiting distribution for ? = 0 is an exponential one. Independence between this magnitude and occurrence in time is assumed, as well as independence from event to event. In order to take account for uncertainty of the estimation of the GPD parameters, a Bayesian approach is chosen. This approach allows to include necessary conditions on the parameters of the distribution for our particular phenomena, as well as propagate adequately the uncertainty of estimations to the hazard parameters, such as return periods. A common concern is to know whether magnitudes of hazardous events have changed in the last decades. Long data series are very appreciated in order to properly study these issues. The series of daily rainfall in Barcelona (1854-2006) has been selected. This is one of the longer european daily rainfall series available. Daily rainfall is better described using a relative scale and therefore it is suitably treated in a log-scale. Accordingly, log-precipitation is identified with X. Excesses over a threshold are modeled by a GPD with a limited maximum value. An additional assumption is that the distribution of the excesses Y has limited upper tail and, therefore, ? < 0, ysup = -β?. Such a long data series provides valuable information about the phenomena on hand, and therefore a very first step is to have a look to its reliability. The first part of the work focuses on the possible existence of abrupt changes in the parameters of the GPD. These abrupt changes may be due to changes in the location of the observatories and/or technological advances introduced in the measuring instruments. The second part of the work examines the possible existence of trends. The parameters of the model are considered as a function of time. A new parameterisation of the GPD distribution is suggested, in order to parsimoniously deal with this climate variation, ? = ln(-? ?;β) and ? = ln(-? ? β) The classical scale and shape parameters of the GPD (β,?) are reformulated as a location parameter ? "linked to the upper limit of the distribution", and a shape parameter ?. In this reparameterisation, the parsimonious choice is to consider shape as a linear function of time, ?(t) = ?0 + t? while keeping location fixed, ?(t) = ?0. Then, the climate change is assessed by checking the hypothesis ? 0. Results show no significant abrupt changes in excesses distribution of the Barcelona daily rainfall series but suggest a significant change for the parameters, and therefore the existence of a trend in daily rainfall for this period.

  16. The chromosphere of VV cephei and the distribution of circumstellar dust around red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Bauer, Wendy Hagen

    1992-01-01

    The work on this project has followed two separate paths of inquiry. The first project was entitled 'the Chromosphere of VV Cephei.' The examination of the archival spectra revealed significant changes in the spectra. Therefore, we obtained additional observing time with IUE to monitor the system during the summer of 1991. Short-term changes continue to be seen in both the overall spectrum and individual line profiles. Work continues on this object. The second project was entitled 'the Distribution of Circumstellar Dust around Red Giants and Supergiants.' A number of cool evolved stars are surrounded by dust shells of sufficient angular size as to appear extended in the IRAS survey data. The aim of this project has been to convolve the predictions of the flux distribution from model dust shells with the IRAS beam profiles in order to reproduce the observed IRAS scans. At the time of the last status report, the cross-scan profiles of the IRAS detectors had just been added to the modeling procedure. For scans in which the star passed near the detector center, there was no significant variation in predicted scan profile for different detectors. Scans in which the detector did not pass over the bright central star had been anticipated to be particularly useful in determining the dust distribution; however, significant differences in the predicted scan profiles were seen for different detector profiles. For this reason, and due to the cross-talk effects discussed in the previous status report, further work on the scans not including a central star has been postponed in favor of further analysis of scans passing over the central star.

  17. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed Central

    Wu, Jianguo; Zhang, Guobin

    2015-01-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals. PMID:26078858

  18. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed

    Wu, Jianguo; Zhang, Guobin

    2015-06-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals.

  19. The changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men.

    PubMed

    Huang, Rui; Zhu, Wei-Jie; Li, Jing; Gu, Yi-Qun

    2014-12-01

    To evaluate the changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men. Point counting method was used to analyze the stereological parameters of Leydig cells. The stage number of seminiferous epithelium cycle was calculated in the same testicular tissue samples which were used for Leydig cell stereological analysis. The aging group had shown more severe pathological changes as well as higher pathologic scores than the young group. Compared with the control group, the volume density (VV) and surface density (NA) of Leydig cells in the aging group were increased significantly. The stage number of seminiferous epithelium cycle in the aging group was decreased coincidently compared to the young group. Leydig cell Vv in the young group has a positive relationship with stages I, II, III, V and VI of seminiferous epithelium cycle, and Leydig cell NA and numerical density (NV) were positively related to stage IV. However, only the correlation between NV and stage II was found in the aging group. The stage number of seminiferous epithelium cycle was decreased in aging testes. Changes in the stage distribution in aging testes were related to the Leydig cell stereological parameters which presented as a sign of morphological changes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. The impact of climate change and aeroallergens on children's health.

    PubMed

    Schmier, Jordana K; Ebi, Kristie L

    2009-01-01

    There are unequivocal data that climate change is occurring and that there are resulting health impacts. Climate change can affect the prevalence and severity of allergic and respiratory disorders through projected increases in the temporal and spatial distribution and concentrations of some aeroallergens. This study was designed to critique and summarize existing knowledge on asthma-related impacts of aeroallergen exposure on children in the United States and to provide suggestions about reducing the negative impacts of climate change through increasing education, adapting current management strategies, and modifying distribution channels. A review and synthesis of published literature was performed. Five studies identified evaluated the relationship between aeroallergens and particular symptoms and six evaluated use of the emergency department and hospital care for asthma. Little is known about the relationship between aeroallergens and particular asthma symptoms. However, overall, there appears to be evidence that weed pollen is significantly associated with asthma exacerbations and use of emergency and hospital services. Activities that can help mitigate the impact of additional climate change-induced respiratory disease include continued research, physician and patient education, optimizing production and distribution, and actively considering the budgetary impact of increased prevalence and severity of respiratory disease. Although more research is needed on aeroallergens and respiratory disease, existing studies suggest that it will be essential to consider the health impacts on children. Strategies to reduce the impacts should be developed and implemented now.

  1. Three-component ambient noise beamforming in the Parkfield area

    NASA Astrophysics Data System (ADS)

    Löer, Katrin; Riahi, Nima; Saenger, Erik H.

    2018-06-01

    We apply a three-component beamforming algorithm to an ambient noise data set recorded at a seismic array to extract information about both isotropic and anisotropic surface wave velocities. In particular, we test the sensitivity of the method with respect to the array geometry as well as to seasonal variations in the distribution of noise sources. In the earth's crust, anisotropy is typically caused by oriented faults or fractures and can be altered when earthquakes or human activities cause these structures to change. Monitoring anisotropy changes thus provides time-dependent information on subsurface processes, provided they can be distinguished from other effects. We analyse ambient noise data at frequencies between 0.08 and 0.52 Hz recorded at a three-component array in the Parkfield area, California (US), between 2001 November and 2002 April. During this time, no major earthquakes were identified in the area and structural changes are thus not expected. We compute dispersion curves of Love and Rayleigh waves and estimate anisotropy parameters for Love waves. For Rayleigh waves, the azimuthal source coverage is too limited to perform anisotropy analysis. For Love waves, ambient noise sources are more widely distributed and we observe significant and stable surface wave anisotropy for frequencies between 0.2 and 0.4 Hz. Synthetic data experiments indicate that the array geometry introduces apparent anisotropy, especially when waves from multiple sources arrive simultaneously at the array. Both the magnitude and the pattern of apparent anisotropy, however, differ significantly from the anisotropy observed in Love wave data. Temporal variations of anisotropy parameters observed at frequencies below 0.2 Hz and above 0.4 Hz correlate with changes in the source distribution. Frequencies between 0.2 and 0.4 Hz, however, are less affected by these variations and provide relatively stable results over the period of study.

  2. Changes in Breast Cancer Risk Distribution Among Vermont Women Using Screening Mammography

    PubMed Central

    Bolton, Kenyon C.; Mace, John L.; Vacek, Pamela M.; Herschorn, Sally D.; James, Ted A.; Tice, Jeffrey A.; Kerlikowske, Karla; Geller, Berta M.; Weaver, Donald L.

    2014-01-01

    Background Screening mammography utilization in Vermont has declined since 2009 during a time of changing screening guidelines and increased interest in personalized screening regimens. This study evaluates whether the breast cancer risk distribution of the state’s screened population changed during the observed decline. Methods We examined the breast cancer risk distribution among screened women between 2001 and 2012 using data from the Vermont Breast Cancer Surveillance System. We estimated each screened woman’s 5-year risk of breast cancer using the Breast Cancer Surveillance Consortium risk calculator. Annual screening counts by risk group were normalized and age-adjusted to the Vermont female population by direct standardization. Results The normalized rate of low-risk (5-year breast cancer risk of <1%) women screened increased 8.3% per year (95% confidence interval [CI] = 4.8 to 11.9) between 2003 and 2008 and then declined by −5.4% per year (95% CI = −8.1 to −2.6) until 2012. When stratified by age group, the rate of low-risk women screened declined −4.4% per year (95% CI = −8.8 to 0.1; not statistically significant) for ages 40 to 49 years and declined a statistically significant −7.1% per year (95% CI = −12.1 to −2.0) for ages 50 to 74 years during 2008 to 2012. These declines represented the bulk of overall decreases in screening after 2008, with rates for women categorized in higher risk levels generally exhibiting small annual changes. Conclusions The observed decline in women screened in Vermont in recent years is largely attributable to reductions in screening visits by women who are at low risk of developing breast cancer. PMID:24957223

  3. Approaches for estimating minimal clinically important differences in systemic lupus erythematosus.

    PubMed

    Rai, Sharan K; Yazdany, Jinoos; Fortin, Paul R; Aviña-Zubieta, J Antonio

    2015-06-03

    A minimal clinically important difference (MCID) is an important concept used to determine whether a medical intervention improves perceived outcomes in patients. Prior to the introduction of the concept in 1989, studies focused primarily on statistical significance. As most recent clinical trials in systemic lupus erythematosus (SLE) have failed to show significant effects, determining a clinically relevant threshold for outcome scores (that is, the MCID) of existing instruments may be critical for conducting and interpreting meaningful clinical trials as well as for facilitating the establishment of treatment recommendations for patients. To that effect, methods to determine the MCID can be divided into two well-defined categories: distribution-based and anchor-based approaches. Distribution-based approaches are based on statistical characteristics of the obtained samples. There are various methods within the distribution-based approach, including the standard error of measurement, the standard deviation, the effect size, the minimal detectable change, the reliable change index, and the standardized response mean. Anchor-based approaches compare the change in a patient-reported outcome to a second, external measure of change (that is, one that is more clearly understood, such as a global assessment), which serves as the anchor. Finally, the Delphi technique can be applied as an adjunct to defining a clinically important difference. Despite an abundance of methods reported in the literature, little work in MCID estimation has been done in the context of SLE. As the MCID can help determine the effect of a given therapy on a patient and add meaning to statistical inferences made in clinical research, we believe there ought to be renewed focus on this area. Here, we provide an update on the use of MCIDs in clinical research, review some of the work done in this area in SLE, and propose an agenda for future research.

  4. Uniform background assumption produces misleading lung EIT images.

    PubMed

    Grychtol, Bartłomiej; Adler, Andy

    2013-06-01

    Electrical impedance tomography (EIT) estimates an image of conductivity change within a body from stimulation and measurement at body surface electrodes. There is significant interest in EIT for imaging the thorax, as a monitoring tool for lung ventilation. To be useful in this application, we require an understanding of if and when EIT images can produce inaccurate images. In this paper, we study the consequences of the homogeneous background assumption, frequently made in linear image reconstruction, which introduces a mismatch between the reference measurement and the linearization point. We show in simulation and experimental data that the resulting images may contain large and clinically significant errors. A 3D finite element model of thorax conductivity is used to simulate EIT measurements for different heart and lung conductivity, size and position, as well as different amounts of gravitational collapse and ventilation-associated conductivity change. Three common linear EIT reconstruction algorithms are studied. We find that the asymmetric position of the heart can cause EIT images of ventilation to show up to 60% undue bias towards the left lung and that the effect is particularly strong for a ventilation distribution typical of mechanically ventilated patients. The conductivity gradient associated with gravitational lung collapse causes conductivity changes in non-dependent lung to be overestimated by up to 100% with respect to the dependent lung. Eliminating the mismatch by using a realistic conductivity distribution in the forward model of the reconstruction algorithm strongly reduces these undesirable effects. We conclude that subject-specific anatomically accurate forward models should be used in lung EIT and extra care is required when analysing EIT images of subjects whose background conductivity distribution in the lungs is known to be heterogeneous or exhibiting large changes.

  5. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    PubMed

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  6. Climate change and the decline of a once common bird.

    PubMed

    McClure, Christopher J W; Rolek, Brian W; McDonald, Kenneth; Hill, Geoffrey E

    2012-02-01

    Climate change is predicted to negatively impact wildlife through a variety of mechanisms including retraction of range. We used data from the North American Breeding Bird Survey and regional and global climate indices to examine the effects of climate change on the breeding distribution of the Rusty Blackbird (Euphagus carolinus), a formerly common species that is rapidly declining. We found that the range of the Rusty Blackbird retracted northward by 143 km since the 1960s and that the probability of local extinction was highest at the southern range margin. Furthermore, we found that the mean breeding latitude of the Rusty Blackbird was significant and positively correlated with the Pacific Decadal Oscillation with a lag of six years. Because the annual distribution of the Rusty Blackbird is affected by annual weather patterns produced by the Pacific Decadal Oscillation, our results support the hypothesis that directional climate change over the past 40 years is contributing to the decline of the Rusty Blackbird. Our study is the first to implicate climate change, acting through range retraction, in a major decline of a formerly common bird species.

  7. Phorbin steryl esters in Black Sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.L.; Repeta, D.J.

    1994-10-01

    The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less

  8. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  9. Investigating the effect of storm events on the particle size distribution in a combined sewer simulator.

    PubMed

    Biggs, C A; Prall, C; Tait, S; Ashley, R

    2005-01-01

    The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.

  10. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ning; Yearsley, John; Baptiste, Marisa

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution.more » DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 ºC), TSS load (up to 182%), and TP load (up to 74%).« less

  11. A cognitive-consistency based model of population wide attitude change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakkaraju, Kiran; Speed, Ann Elizabeth

    Attitudes play a significant role in determining how individuals process information and behave. In this paper we have developed a new computational model of population wide attitude change that captures the social level: how individuals interact and communicate information, and the cognitive level: how attitudes and concept interact with each other. The model captures the cognitive aspect by representing each individuals as a parallel constraint satisfaction network. The dynamics of this model are explored through a simple attitude change experiment where we vary the social network and distribution of attitudes in a population.

  12. How to introduce climate change into extreme precipitation predetermination? First attempts to tamper with the MEWP method.

    NASA Astrophysics Data System (ADS)

    Gérardin, Maxime; Brigode, Pierre; Bernardara, Pietro; Gailhard, Joël; Garçon, Rémy; Paquet, Emmanuel; Ribstein, Pierre

    2013-04-01

    The MEWP (Multi-Exponential Weather Pattern, Garavaglia et al. 2010) distribution is part of the operational method in use at EDF (Electricité de France) for computing dam spillways design floods, i.e. the magnitude of the flood that occurs at a given return period. The return periods of interest lie in the 100 - 10,000 years range. Relying on a purposely-designed classification of atmospheric circulations into weather patterns, and assigning a catchment-specific asymptotical coefficient to each of these patterns, the MEWP distribution provides the daily areal rainfall as a function of the return period. In its current state, the method relies on the implicit assumption of climate stationnarity. In this work we seek to introduce climate change into the MEWP framework. Since the MEWP distribution basically contains two sorts of parameters, namely frequencies of the weather patterns, and magnitudes of the events occurring within each of these patterns, we examine the plausible evolution of these two sets of parameters under climate change, and the sensitivity of the final result to these two sorts of changes. On the one hand, the future frequencies are assessed thanks to GCM outputs from CMIP5, and significant, albeit not greater than the internal variability, changes are observed. On the other hand, the future magnitudes can be suspected to follow the Clausius-Clapeyron relationship (e.g. Pall et al., 2007, and Lenderink et van Meijgaard, 2008). We assess the validity of this hypothesis on the observed daily areal precipitation series for more than a hundred catchments in France. The sensitivity analysis shows that, for the return periods at stake, the impact of frequency changes is small relative to that of magnitude changes, while this would not be true for smaller return periods. Therefore, we propose to incorporate climate change into the MEWP distribution in a simple but realistic way, by taking account of the magnitude change only. We conclude with some insights into the next steps that will allow a more sophisticated representation of climate change in the MEWP distribution. References: Garavaglia, F., J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. 2010. "Introducing a Rainfall Compound Distribution Model Based on Weather Patterns Sub-sampling." Hydrology and Earth System Sciences 14 (6): 951-964. doi:10.5194/hess-14-951-2010. Lenderink, Geert, and Erik van Meijgaard. 2008. "Increase in Hourly Precipitation Extremes Beyond Expectations from Temperature Changes." Nature Geoscience 1 (8) (July 20): 511-514. doi:10.1038/ngeo262. Pall, P., MR Allen, and DA Stone. 2007. "Testing the Clausius-Clapeyron Constraint on Changes in Extreme Precipitation Under CO 2 Warming." Climate Dynamics 28 (4): 351-363.

  13. A Planning and Development Proposal.

    ERIC Educational Resources Information Center

    Schachter, Rebeca

    In view of the rapidly changing hardware technology along with the quality and quantity of software and general attitudes toward educational technology, the configuration of the Audio-Visual Distribution System and the Science and Engineering Library (SEL) should be flexible enough to incorporate these variables. SEL has made significant thrusts…

  14. Projected impacts of climate change on habitat availability for an endangered parakeet.

    PubMed

    Hermes, Claudia; Keller, Klaus; Nicholas, Robert E; Segelbacher, Gernot; Schaefer, H Martin

    2018-01-01

    In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.

  15. Projected impacts of climate change on habitat availability for an endangered parakeet

    PubMed Central

    Keller, Klaus; Nicholas, Robert E.; Segelbacher, Gernot; Schaefer, H. Martin

    2018-01-01

    In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes. PMID:29364949

  16. CHANGES IN LIPID-ENCAPSULATED MICROBUBBLE POPULATION DURING CONTINUOUS INFUSION AND METHODS TO MAINTAIN CONSISTENCY

    PubMed Central

    KAYA, MEHMET; GREGORY, THOMAS S.; DAYTON, PAUL A.

    2009-01-01

    Stabilized microbubbles are utilized as ultrasound contrast agents. These micron-sized gas capsules are injected into the bloodstream to provide contrast enhancement during ultrasound imaging. Some contrast imaging strategies, such as destruction-reperfusion, require a continuous injection of microbubbles over several minutes. Most quantitative imaging strategies rely on the ability to administer a consistent dose of contrast agent. Because of the buoyancy of these gas-filled agents, their spatial distribution within a syringe changes over time. The population of microbubbles that is pumped from a horizontal syringe outlet differs from initial population as the microbubbles float to the syringe top. In this manuscript, we study the changes in the population of a contrast agent that is pumped from a syringe due to microbubble floatation. Results are presented in terms of change in concentration and change in mean diameter, as a function of time, suspension medium, and syringe diameter. Data illustrate that the distribution of contrast agents injected from a syringe changes in both concentration and mean diameter over several minutes without mixing. We discuss the application of a mixing system and viscosity agents to keep the contrast solution more evenly distributed in a syringe. These results are significant for researchers utilizing microbubble contrast agents in continuous-infusion applications where it is important to maintain consistent contrast agent delivery rate, or in situations where the injection syringe cannot be mixed immediately prior to administration. PMID:19632760

  17. Not all space is created equal: distribution of free space and its influence on heat-stress and the limpet Patelloida latistrigata.

    PubMed

    Lathlean, Justin A

    2014-12-01

    For most marine benthic communities unoccupied primary substrata, or free space, is considered the principle limiting resource. Substratum temperatures, desiccation rates and hydrodynamic characteristics of free space, however, may vary depending on patch size and isolation and therefore potentially influence biotic processes. This paper investigates the relationship between small-scale changes in the availability and configuration of free space, heat stress and abundance of the small rocky intertidal gastropod Patelloida latistrigata within southeastern Australia. Using infrared thermography I show that heat stress of rocky intertidal communities increased linearly with increasing amounts of free space on three neighbouring shores during four separate sampling intervals from October 2009 to January 2010. Abundances of P. latistrigata generally declined with increasing availability of free space and the associated increases in heat stress. An experimental manipulation that altered the configuration but not the availability of free space demonstrated that both heat stress and P. latistrigata abundance are not affected by small-scale changes in the configuration of free space. The small-scale distribution of P. latistrigata, however, was significantly influenced by differences in the configuration of free space with limpets displaying bimodal distributions within areas characterised by unevenly distributed free space. Since the distribution of Patelloida varies depending on the configuration of free space but thermal properties at the scale of individual limpets do not then we might expect Patelloida to be responding to changes in other abiotic factors, such as hydrodynamic forces and desiccation rates, which may change with the configuration of free space. This study highlights the dynamic and usually unexamined relationship between abiotic stress and the availability and acquisition of resources by marine benthic invertebrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China

    PubMed Central

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954

  19. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.

    PubMed

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.

  20. Evaluating the Impact of Changes in Oceanic Dissolved Oxygen on Marine Nitrous Oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Schmidtko, Sunke; Andrews, Oliver; LeQuere, Corinne

    2013-04-01

    Emissions of the greenhouse gas nitrous-oxide (N2O) from oceanic oxygen minimum zones (OMZs) in the Equatorial Pacific and Northwest Indian Ocean are believed to provide a significant portion of the global oceanic flux to the atmosphere. Mechanisms of marine N2O production and consumption in these regions display significant sensitivity to ambient oxygen, with high yields at low oxygen levels (O2 < 50 micromol/L), and N2O depletion via denitrification in anoxic zones. These OMZ regions display large gradients in sub-surface N2O, and high rates of N2O turnover that far exceed those observed in the open ocean. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate, could lead to significant changes in N2O emissions from these zones. In this analysis we employ a global ocean biogeochemistry model (NEMO-PlankTOM), which includes representation of the marine N2O cycle, to explore the impact of changes in dissolved oxygen on the ocean-atmosphere N2O flux. We focus on the period 1960-2000, and evaluate the impact of estimated changes in ocean oxygen from two alternative sources : (a) the observationally-based upper-ocean oxygen distributions and trends of Stramma et al. [2012]; (b) simulated oxygen distributions and temporal variations from a set of CMIP5 Earth System models. We will inter-compare the oceanic N2O estimates derived from these alternative scenarios of ocean de-oxygenation. We will also discuss the implications of our results for the ability to reliably predict changes in N2O emissions under potential expansion of oceanic OMZs, particularly in view of the recently noted discrepancies between observed and modeled trends in oceanic oxygen by Stramma et al. [2012].

  1. Tidal effects on aquifer thermal regime: An analytical solution for coastal ecosystem management

    NASA Astrophysics Data System (ADS)

    Niroshana Gunawardhana, Luminda; Kazama, So

    2009-10-01

    SummaryAn analytical model was developed to estimate the groundwater temperature change in the transition zone (intermediate zone between seawater and fresh groundwater) due to seawater and fresh groundwater temperature change in coastal aquifers. A set of type curves was developed in such a way that the curves account for the advection effect of groundwater flow and can be applied under different aquifer and tidal conditions to estimate the resulting temperature distribution. The proposed method will be important in evaluating the long-term effects of urbanization and climate change on coastal ecosystems where limited observation wells are available. The practical applicability of the composed methodology was tested in the Sendai plain. Continuous 1-h water level (from April, 2005 to July, 2007) and temperature (from May, 2007 to February, 2008) observations were made at three aquifer depths in each observation well at four locations to examine the temporal and spatial variations. Time series analysis was performed to find the correlations of the tidal and groundwater level fluctuations. Results of the preliminary analysis and the time series analysis indicated that the groundwater level within 20 m depth from the ground surface is more sensitive to the recharge from precipitation, while the depths below 20 m are greatly influenced by the tidal fluctuations. Reasonably high cross correlation (0.74) was found in tides with water level fluctuations, and it was also noted that the tidal effect on groundwater level fluctuation and temperature distribution significantly decays as the distance from the coast increases. The simulated temperature distribution from the proposed analytical solution shows good agreement with the observed temperature records. Among the hydrogeologic parameters, hydraulic conductivity has a robust influence in determining the pattern of temperature distribution within the sea water and fresh groundwater boundaries. Verified results in the Sendai plain indicated that the individual effect of seawater temperature change has a more profound effect on temperature change near to the coast than a fresh groundwater temperature change. Combined effects of temperature change at two boundaries within the range of ±1 °C will lead to a 0.4-1 °C temperature change at a distance 500 m away from the coast where in general, the coastal wetlands are located. These figures may be significant for maintaining or achieving the ecological balance of coastal ecosystems, and the findings of this research will assist planners and decision-makers in coastal environment management programs.

  2. Landscape Patterns in Rainforest Phylogenetic Signal: Isolated Islands of Refugia or Structured Continental Distributions?

    PubMed Central

    Kooyman, Robert M.; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W.

    2013-01-01

    Objectives Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. Methods We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Results Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Conclusions/Significance Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances. PMID:24312493

  3. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages.

    PubMed

    Kleisner, Kristin M; Fogarty, Michael J; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A; Lucey, Sean M; McGuire, Christopher; Odell, Jay; Saba, Vincent S; Smith, Laurel; Weaver, Katherine J; Pinsky, Malin L

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.

  4. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages

    PubMed Central

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A.; Lucey, Sean M.; McGuire, Christopher; Odell, Jay; Saba, Vincent S.; Smith, Laurel; Weaver, Katherine J.; Pinsky, Malin L.

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf. PMID:26901435

  5. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    PubMed

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  6. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach

    PubMed Central

    Qin, Yaochen; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention. PMID:28950027

  7. Changes in the extreme wave heights over the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Nadia; Soomere, Tarmo

    2017-04-01

    Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.

  8. Recent Changes in Tree Species Abundance: Patterns, Trends, and Drivers Across Northeastern US Forests

    NASA Astrophysics Data System (ADS)

    Gudex-Cross, D.; Pontius, J.; Adams, A.

    2017-12-01

    Monitoring trends in the abundance and distribution of tree species is essential to understanding potential impacts of climate change on forested ecosystems. Related studies to date have largely focused on modeling distributional shifts according to future climate scenarios or used field inventory data to examine compositional changes across broader landscapes. Here, we leverage a novel remote sensing technique that utilizes field data, multitemporal Landsat imagery, and spectral unmixing to model regional changes in the abundance (percent basal area) of key northeastern US species over a 30-year period (1985-2015). We examine patterns in how species abundance has changed, as well as their relationship with climate, landscape, and soil characteristics using spatial regression models. Results show significant declines in overall abundance for sugar maple ( 8.6% 30-yr loss), eastern hemlock ( 7.8% 30-yr loss), balsam fir ( 5.0% 30-yr loss), and red spruce ( 3.8% total 30-yr loss). Species that saw significant increasing abundance include American beech ( 7.0% 30-yr gain) and red maple ( 2.5% 30-yr gain). However, these changes were not consistent across the landscape. For example, red spruce is increasing at upper elevations with concurrent losses in balsam fir and birch species. Similarly, sugar maple decreases are concentrated at lower elevations, likely due to increases in American beech. Various abiotic factors were significantly associated with changes in species composition including landscape position (e.g. longitude, elevation, and heat load index) and ecologically-relevant climate variables (e.g. growing season precipitation and annual temperature range). Interestingly, there was a stronger relationship in abundance changes across longitudes, rather than latitudes or elevations as predicted in modeled species migration scenarios.These results indicate that the dominant composition of northeastern forests is changing in ways that run counter to accepted successional patterns and land use history effects. We hypothesize that climate change and other anthropogenic stress agents (e.g. acid deposition legacy) are likely altering the competitive relationships among co-occurring species, with potential implications for forest management and ecosystem modeling efforts.

  9. Development, primacy, and systems of cities.

    PubMed

    El-shakhs, S

    1972-10-01

    The relationship between the evolutionary changes in the city size distribution of nationally defined urban systems and the process of socioeconomic development is examined. Attention is directed to the problems of defining and measuring changes in city size distributions, using the results to test empirically the relationship of such changes to the development process. Existing theoretical structures and empirical generalizations which have tried to explain or to describe, respectively, the hierarchical relationships of cities are represented by central place theory and rank size relationships. The problem is not that deviations exist but that an adequate definition is lacking of urban systems on the 1 hand, and a universal measure of city size distribution, which could be applied to any system irrespective of its level of development, on the other. The problem of measuring changes in city size distributions is further compounded by the lack of sufficient reliable information about different systems of cities for the purposes of empirical comparative analysis. Changes in city size distributions have thus far been viewed largely within the framework of classic equilibrium theory. A more differentiated continuum of the development process should replace the bioplar continuum of underdeveloped developed countries in relating changes in city size distribution with development. Implicit in this distinction is the view that processes which influence spatial organization during the early formative stages of development are inherently different from those operating during the more advanced stages. 2 approaches were used to examine the relationship between national levels of development and primacy: a comparative analysis of a large number of countries at a given point in time; and a historical analysis of a limited sample of 2 advanced countries, the US and Great Britain. The 75 countries included in this study cover a wide range of characteristics. The study found a significant association between the degree of primacy of distributions of cities and their socioeconomic level of development; and the form of the primacy curve (or its evolution with development) seemed to follow a consistent pattern in which the peak of primacy obtained during the stages of socioeconomic transition with countries being less primate in either direction from that peak. This pattern is the result of 2 reverse influences of the development process on the spatial structure of countries--centralization and concentration beginning with the rise of cities and a decentralization and spread effect accompanying the increasing influence and importance of the periphery and structural changes in the pattern of authority.

  10. Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area

    NASA Astrophysics Data System (ADS)

    Hsiao, J.; Chang, L.; Ho, C.; Niu, M.

    2010-12-01

    Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.

  11. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  12. Land-Use Conversion Changes the Multifractal Features of Particle-Size Distribution on the Loess Plateau of China

    PubMed Central

    Sun, Caili; Liu, Guobin; Xue, Sha

    2016-01-01

    Analyzing the dynamics of soil particle-size distributions (PSDs), soil nutrients, and erodibility are very important for understanding the changes of soil structure and quality after long-term land-use conversion. We applied multifractal Rényi spectra (Dq) and singularity spectra (f(α)) to characterize PSDs 35 years after conversions from cropland to shrubland with Caragana microphylla (shrubland I), shrubland with Hippophae rhamnoides (shrubland II), forested land, and grassland on the Loess Plateau of China. Multifractal parameters (capacity dimension (D0), entropy dimension (D1), D1/D0, correlation dimension (D2), and Hölder exponent of order zero (α0)) were used to analyze the changes of PSDs. Dq and f(α) characterized the PSDs well and sensitively represented the changes in PSDs after conversion. All types of land-use conversion significantly improved the properties of the topsoil (0–10 cm), but the effect of shrubland I and even forested land decreased with depth. All types of land-use conversion significantly increased D1 and D2 in the topsoil, and D1 and D2 in the 10–50 cm layers of shrubland II, forested land, and grassland and D1 in the 50–100 cm layers of shrubland II were significantly higher relative to the control. Both D1 and D2 were positively correlated with the contents of soil nutrients and fine particles and were negatively correlated with soil erosion, indicating that D1 and D2 were potential indices for quantifying changes in soil properties and erosion. In conclusion, all types of land-use conversion significantly improved the conditions of the topsoil, but conversion from cropland to shrubland II, forested land, and grassland, especially shrubland II and grassland, were more effective for improving soil conditions in deeper layers. PMID:27527201

  13. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners.

    PubMed

    Squadrone, R; Gallozzi, C

    2009-03-01

    The first aim of this study was to assess how changes in the mechanical characteristics of the foot/shoe-ground interface affect spatio-temporal variables, ground pressure distribution, sagittal plane kinematics, and running economy in 8 experienced barefoot runners. The second aim was to assess if a special lightweight shoe (Vibram Fivefingers) was effective in mimic the experience of barefoot running. By using an instrumented treadmill, barefoot running, running with the Fivefingers, and running with standard running shoe were compared, analyzing a large numbers of consecutive steps. Foot/shoe-ground interface pressure distribution, lower limb kinematics, V.O(2) and heart rate data were simultaneously collected. Compared to the standard shod condition when running barefoot the athletes landed in more plantarflexion at the ankle. This caused reduced impact forces and changes in stride kinematics. In particular, significantly shorter stride length and contact times and higher stride frequency were observed (P<0.05). Compared to standard shod condition, V.O(2) and peak impact forces were significantly lower with Fivefingers (P<0.05) and much closer to barefoot running. Lower limb kinematics with Fivefingers was similar to barefoot running with a foot position which was significantly more plantarflexed than in control shoe (P<0.05). The data of this study support the assumption that changes in the foot-ground interface led to changes in running pattern in a group of experienced barefoot runners. The Fivefingers model seems to be effective in imitating the barefoot conditions while providing a small amount of protection.

  14. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. © 2011 American Physiological Society.

  15. A re-examination of the biphasic theory of skeletal muscle growth.

    PubMed Central

    Levine, A S; Hegarty, P V

    1977-01-01

    Because of the importance of fibre diameter measurements it was decided to re-evaluate the biphasic theory of skeletal muscle growth and development. This theory proposes an initial memophasic distribution of muscle fibres which changes to a biphasic distribution during development. The theory is based on observations made on certain muscles in mice, where two distinct populations of fibre diameters (20 and 40 micronm) contribute to the biphasic distribution. In the present investigation corss sections of frozen biceps brachii of mice in rigor mortis were examined. The rigor state was used to avoid complications produced by thaw-rigor contraction. The diameters of the outermost and innermost fibres were found to be significantly different. However, if the outer and inner fibres were combined to form one group, no significant difference between this group and other random groups was found. The distributions of all groups were monophasic. The diameters of isolated fibres from mice and rats also displayed a monophasic distribution. This evidence leads to the conclusion that the biphasic theory of muscle growth is untenable. Some of the variables which may occur in fibre size and shape are discussed. Images Fig. 1 PMID:858691

  16. The Virtual Schoolhouse.

    ERIC Educational Resources Information Center

    Leddo, John; Kolodziej, James

    Significant changes in military training are resulting from pressures to cut costs and move training from the schoolhouse to the field so it can be delivered "just in time" and be more responsive to individual unit training needs. Distributed Interactive Simulation (DIS) allows multiple trainees to interact in real time on a common…

  17. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  18. Urban-Rural Flows of Physicians

    ERIC Educational Resources Information Center

    Ricketts, Thomas C.; Randolph, Randy

    2007-01-01

    Context: Physician supply is anticipated to fall short of national requirements over the next 20 years. Rural areas are likely to lose relatively more physicians. Policy makers must know how to anticipate what changes in distribution are likely to happen to better target policies. Purpose: To determine whether there was a significant flow of…

  19. Result Merging Strategies for a Current News Metasearcher.

    ERIC Educational Resources Information Center

    Rasolofo, Yves; Hawking, David; Savoy, Jacques

    2003-01-01

    Metasearching of online current news services is a potentially useful Web application of distributed information retrieval techniques. Reports experiences in building a metasearcher designed to provide up-to-date searching over a significant number of rapidly changing current news sites, focusing on how to merge results from the search engines at…

  20. Attitudes towards the Elderly among German Adolescents

    ERIC Educational Resources Information Center

    Randler, Christoph; Vollmer, Christian; Wilhelm, David; Flessner, Melanie; Hummel, Eberhard

    2014-01-01

    Many societies are encountering significant changes in their population structure as the number of older people is increasing while children and adolescents become fewer. This study examines pupils' attitudes towards elderly people in Germany. A total of 935 pupils (458 boys, 477 girls) participated in this study. Grade distribution was as…

  1. Making a Significant Difference with Institutional Research.

    ERIC Educational Resources Information Center

    Clagett, Craig A.; Huntington, Robin B.

    Focusing on the changing roles of institutional researchers (IRs) due to the widespread distribution of computer technology, this monograph explores the effective application of IR skills to maximize the impact of research on campus policy making. The discussion is centered around three major principles guiding institutional research: know the…

  2. Controlling vector-borne disease and adapting to climate change with novel research on disease forecasting to target new vector control materials and technologies

    USDA-ARS?s Scientific Manuscript database

    Population growth, frontier agricultural expansion, and urbanization transform the landscape and the surrounding ecosystem, affecting climate and interactions between animals and humans, and significantly influencing the transmission dynamics and geographic distribution of malaria, dengue and other ...

  3. Effect of immobilization and retraining on torque-velocity relationship of human knee flexor and extensor muscles.

    PubMed

    Labarque, V L; Eijnde, B Op 't; Van Leemputte, M

    2002-01-01

    The effect of 2 weeks immobilization of the uninjured right knee and 10 weeks of retraining on muscle torque-velocity characteristics was investigated in nine young subjects. Left and right knee extension and flexion maximal voluntary isometric torque (Tmax) and dynamic torque at 60 degrees s(-1) (T60) and 180 degrees x s(-1) (T180) were measured before (PRE) and after immobilization (POST) and after 3 (R3) and 10 (R10) weeks of dynamic retraining. The torque-velocity relationship was quantified by expressing T60 and T180 relative to Tmax (NT60 and NT180, respectively). For the right extensor muscles, percutaneous biopsy samples were obtained from the vastus lateralis muscle and fibre type distribution was measured. POST extension and flexion torque (mean of Tmax, T60 and T180) decreased by 27% and 11%, respectively. During the course of the experiment, the changes in NT60 and NT180 were similar. POST extensor muscle NTV (mean of NT60 and NT180) was decreased significantly (12%, P<0.05), but no significant change was found for flexor muscle NTV (+ 3%). At R3 Tmax, dynamic torque and NTV were restored to normal. Unlike isometric torque, NTV did not change from R3 to R10. No changes in fibre type distribution were found. The adaptation of muscle length is suggested as the mechanism to explain the change in NTV.

  4. Population and geographic range dynamics: implications for conservation planning

    PubMed Central

    Mace, Georgina M.; Collen, Ben; Fuller, Richard A.; Boakes, Elizabeth H.

    2010-01-01

    Continuing downward trends in the population sizes of many species, in the conservation status of threatened species, and in the quality, extent and connectedness of habitats are of increasing concern. Identifying the attributes of declining populations will help predict how biodiversity will be impacted and guide conservation actions. However, the drivers of biodiversity declines have changed over time and average trends in abundance or distributional change hide significant variation among species. While some populations are declining rapidly, the majority remain relatively stable and others are increasing. Here we dissect out some of the changing drivers of population and geographic range change, and identify biological and geographical correlates of winners and losers in two large datasets covering local population sizes of vertebrates since 1970 and the distributions of Galliform birds over the last two centuries. We find weak evidence for ecological and biological traits being predictors of local decline in range or abundance, but stronger evidence for the role of local anthropogenic threats and environmental change. An improved understanding of the dynamics of threat processes and how they may affect different species will help to guide better conservation planning in a continuously changing world. PMID:20980321

  5. Range shift and introgression of the rear and leading populations in two ecologically distinct Rubus species.

    PubMed

    Mimura, Makiko; Mishima, Misako; Lascoux, Martin; Yahara, Tetsukazu

    2014-10-25

    The margins of a species' range might be located at the margins of a species' niche, and in such cases, can be highly vulnerable to climate changes. They, however, may also undergo significant evolutionary changes due to drastic population dynamics in response to climate changes, which may increase the chances of isolation and contact among species. Such species interactions induced by climate changes could then regulate or facilitate further responses to climatic changes. We hypothesized that climate changes lead to species contacts and subsequent genetic exchanges due to differences in population dynamics at the species boundaries. We sampled two closely related Rubus species, one temperate (Rubus palmatus) and the other subtropical (R. grayanus) near their joint species boundaries in southern Japan. Coalescent analysis, based on molecular data and ecological niche modelling during the Last Glacial Maximum (LGM), were used to infer past population dynamics. At the contact zones on Yakushima (Yaku Island), where the two species are parapatrically distributed, we tested hybridization along altitudinal gradients. Coalescent analysis suggested that the southernmost populations of R. palmatus predated the LGM (~20,000 ya). Conversely, populations at the current northern limit of R. grayanus diverged relatively recently and likely represent young outposts of a northbound range shift. These population dynamics were partly supported by the ensemble forecasting of six different species distribution models. Both past and ongoing hybridizations were detected near and on Yakushima. Backcrosses and advanced-generation hybrids likely generated the clinal hybrid zones along altitudinal gradients on the island where the two species are currently parapatrically distributed. Climate oscillations during the Quaternary Period and the response of a species in range shifts likely led to repeated contacts with the gene pools of ecologically distinct relatives. Such species interactions, induced by climate changes, may bring new genetic material to the marginal populations where species tend to experience more extreme climatic conditions at the margins of the species distribution.

  6. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem

    NASA Astrophysics Data System (ADS)

    Queiros, A. M.

    2016-02-01

    Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.

  7. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem.

    PubMed

    Queirós, Ana M; Fernandes, José A; Faulwetter, Sarah; Nunes, Joana; Rastrick, Samuel P S; Mieszkowska, Nova; Artioli, Yuri; Yool, Andrew; Calosi, Piero; Arvanitidis, Christos; Findlay, Helen S; Barange, Manuel; Cheung, William W L; Widdicombe, Stephen

    2015-01-01

    Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual-level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual-level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local-environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual-level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multiscale responses to multiple stressors, in an ecosystem context. © 2014 John Wiley & Sons Ltd.

  8. Class imbalance in unsupervised change detection - A diagnostic analysis from urban remote sensing

    NASA Astrophysics Data System (ADS)

    Leichtle, Tobias; Geiß, Christian; Lakes, Tobia; Taubenböck, Hannes

    2017-08-01

    Automatic monitoring of changes on the Earth's surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k-means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results with respect to class imbalance while the SOM clustering exhibited a distinct optimization towards a balanced distribution of classes.

  9. Hepatic Effects of Estrogen on Plasma Distribution of Small Dense Low-Density Lipoprotein and Free Radical Production in Postmenopausal Women.

    PubMed

    Nii, Shota; Shinohara, Koichi; Matsushita, Hiroshi; Noguchi, Yasuyuki; Watanabe, Kazushi; Wakatsuki, Akihiko

    2016-07-01

    Hepatic effects of estrogen therapy on low-density lipoprotein (LDL) subfraction or oxidative stress have not been previously evaluated. The purpose of the present study was to investigate whether the differential hepatic effects of estrogen affect plasma distribution of small dense LDL and free radical production in postmenopausal women. In all, 45 postmenopausal women were given 0.625 mg/day of oral conjugated equine estrogen (CEE) (n=15), 1.0 mg/day of oral 17β estradiol (E2) (n=15), or 50 μg/day of transdermal 17βE2 (n=15) for 3 months. Subjects received either estrogen alone or with dydrogesterone at 5 mg/day. Plasma concentrations of sex hormone-binding globulin (SHBG), lipids, metallic ions, and derivatives of reactive oxygen metabolites (d-ROMs) were measured. CEE, but not oral 17βE2, increased the plasma concentrations of triglyceride, copper (Cu), and d-ROMs and the ratio of small dense LDL/total LDL cholesterol, a marker for plasma distribution of small dense LDL. Transdermal 17βE2 decreased d-ROMs concentrations but did not significantly change other parameters. Plasma concentrations of SHBG increased in the 3 groups. Estrogen-induced changes in triglyceride correlated positively either with changes in SHBG (R=0.52, P=0.0002) or the ratio of small dense LDL/total LDL cholesterol (R=0.65, P<0.0001). Changes in Cu also correlated positively either with changes in SHBG (R=0.85, P<0.0001) or d-ROMs (R=0.86, P<0.0001). The hepatic effects of different routes or types of estrogen therapy may be associated with plasma distribution of small dense LDL and free radical production in postmenopausal women.

  10. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal--A Systematic Synthesis of Literature.

    PubMed

    Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich

    2015-01-01

    Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December 2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant.

  11. A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young

    2016-09-01

    The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.

  12. Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World

    PubMed Central

    Anderson, Alexander S.; Storlie, Collin J.; Shoo, Luke P.; Pearson, Richard G.; Williams, Stephen E.

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity. PMID:23936005

  13. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.

    PubMed

    Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.

  14. Impact of future land-cover changes on HNO3 and O3 surface dry deposition

    NASA Astrophysics Data System (ADS)

    Verbeke, T.; Lathière, J.; Szopa, S.; de Noblet-Ducoudré, N.

    2015-12-01

    Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between the present day (2006) and the future (2050) on dry deposition velocities at the surface, with special interest for ozone (O3) and nitric acid (HNO3), two compounds which are characterized by very different physicochemical properties. The 3-D chemistry-transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections, RCPs 2.6, 4.5 and 8.5, and present-day (2007) meteorology. The 2050 RCP 8.5 vegetation distribution leads to a rise of up to 7 % (+0.02 cm s-1) in the surface deposition velocity calculated for ozone (Vd,O3) and a decrease of -0.06 cm s-1 in the surface deposition velocity calculated for nitric acid (Vd,HNO3) relative to the present-day values in tropical Africa and up to +18 and -15 %, respectively, in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land-cover change in Eurasia, Vd,HNO3 increases by up to 20 % (annual-mean value) and reduces Vd,O3 by the same magnitude in this region. When analyzing the impact of surface dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual-mean surface ozone concentration for both the RCP 8.5 and RCP 2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally by up to 5 ppb (+5 %) is calculated on average during the June-August period. This scenario also induces an increase of HNO3 deposited flux exceeding locally 10 % for monthly values. Comparing the impact of land-cover change to the impact of climate change, considering a 0.93 °C increase of global temperature, on dry deposition velocities, we estimate that the strongest increase over lands occurs in the Northern Hemisphere during winter, especially in Eurasia, by +50 % (+0.07 cm s-1) for Vd,O3 and +100 % (+0.9 cm s-1) for Vd,HNO3. However, different regions are affected by both changes, with climate change impact on deposition characterized by a latitudinal gradient, while the land-cover change impact is much more heterogeneous depending on vegetation distribution modification described in the future RCP scenarios. The impact of long-term land-cover changes on dry deposition is shown to be significant and to differ strongly from one scenario to another. It should therefore be considered in biosphere-atmospheric chemistry interaction studies in order to have a fully consistent picture.

  15. Edge effect modeling of small tool polishing in planetary movement

    NASA Astrophysics Data System (ADS)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  16. Enhancement of the efficiency of photodynamic therapy by combination with the microtubule inhibitor vincristine

    NASA Astrophysics Data System (ADS)

    Ma, Li Wei; Berg, Kristian; Danielsen, Havard E.; Iani, Vladimir; Moan, Johan

    1996-01-01

    Combination effects of photodynamic therapy (PDT) with meso-tetra (di-adjacent- sulfonatophenyl) porphine (TPPS2a) and the microtubule (MT) inhibitor, vincristine (VCR), were studied in the CaD2 mouse tumor model in mice. A synergistic effect was found when VCR, at an almost nontoxic dose (1 mg/kg), was injected i.p. into the mice 6 hr before PDT. The data on mitotic index show a 4 - 5 fold accumulation of the cells in mitosis 6 hr after injection of VCR into the mice. Cell cycle and ploidy distributions in tumor tissues were determined by means of image analysis with measurement of integrated optical density after Feulgen reaction on monolayers. Ploidy distribution of the tumors was not significantly changed 6 and 12 hr after administration of VCR only, while an increasing aneuploidy was observed 24 and 48 hr after VCR treatment. No prominent changes of the cell cycle and ploidy distributions were found in the tumor tissues after PDT or PDT combined with VCR.

  17. Introduction and Application of non-stationary Standardized Precipitation Index Considering Probability Distribution Function and Return Period

    NASA Astrophysics Data System (ADS)

    Park, J.; Lim, Y. J.; Sung, J. H.; Kang, H. S.

    2017-12-01

    The widely used meteorological drought index, the Standardized Precipitation Index (SPI) basically assumes stationarity, but recent change in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process has been proposed. The results are evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the shape of probability distribution function wider than before. This understanding implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.

  18. Screening Method Based on Walking Plantar Impulse for Detecting Musculoskeletal Senescence and Injury

    PubMed Central

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Newman, Tony; Lv, Changsheng; Zhou, Yi

    2013-01-01

    No consensus has been reached on how musculoskeletal system injuries or aging can be explained by a walking plantar impulse. We standardize the plantar impulse by defining a principal axis of plantar impulse. Based upon this standardized plantar impulse, two indexes are presented: plantar pressure record time series and plantar-impulse distribution along the principal axis of plantar impulse. These indexes are applied to analyze the plantar impulse collected by plantar pressure plates from three sources: Achilles tendon ruptures; elderly people (ages 62–71); and young people (ages 19–23). Our findings reveal that plantar impulse distribution curves for Achilles tendon ruptures change irregularly with subjects’ walking speed changes. When comparing distribution curves of the young, we see a significant difference in the elderly subjects’ phalanges plantar pressure record time series. This verifies our hypothesis that a plantar impulse can function as a means to assess and evaluate musculoskeletal system injuries and aging. PMID:24386288

  19. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Introduction and application of non-stationary standardized precipitation index considering probability distribution function and return period

    NASA Astrophysics Data System (ADS)

    Park, Junehyeong; Sung, Jang Hyun; Lim, Yoon-Jin; Kang, Hyun-Suk

    2018-05-01

    The widely used meteorological drought index, the Standardized Precipitation Index (SPI), basically assumes stationarity, but recent changes in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process was proposed. The results were evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered that the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite that these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the probability distribution wider than before. This implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.

  1. Long-term changes of the glacial seismicity: case study from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Gajek, Wojciech; Trojanowski, Jacek; Malinowski, Michał

    2016-04-01

    Changes in global temperature balance have proved to have a major impact on the cryosphere, and therefore withdrawing glaciers are the symbol of the warming climate. Our study focuses on year-to-year changes in glacier-generated seismicity. We have processed 7-year long continuous seismological data recorded by the HSP broadband station located in the proximity of Hansbreen glacier (Hornsund, southern Spitsbergen), obtaining seismic activity distribution between 2008 and 2014. We developed a new fuzzy logic algorithm to distinguish between glacier- and non-glacier-origin events. The algorithm takes into account the frequency of seismic signal and the energy flow in certain time interval. Our research has revealed that the number of detected glacier-origin events over last two years has doubled. Annual events distribution correlates well with temperature and precipitation curves, illustrating characteristic yearlong behaviour of glacier seismic activity. To further support our observations, we have analysed 5-year long distribution of glacier-origin tremors detected in the vicinity of the Kronebreen glacier using KBS broadband station located in Ny-Ålesund (western Spitsbergen). We observe a steady increase in the number of detected events. detected each year, however not as significant as for Hornsund dataset.

  2. Lack of significant changes in the herpetofauna of Theodore Roosevelt National Park, North Dakota, since the 1920s

    Treesearch

    Blake R. Hossack; Paul Stephen Corn; David S. Pilliod

    2005-01-01

    We surveyed 88 upland wetlands and 12 1-km river sections for amphibians in Theodore Roosevelt National Park, North Dakota, during 2001–2002 to gather baseline data for future monitoring efforts and to evaluate changes in the distribution of species. We compared our results to collections of herpetofauna made during 1920–1922, 1954 and 1978–1979. The boreal chorus frog...

  3. Charting the Course for Ocean Science in the United States for the Next Decade: An Ocean Research Priorities Plan and Implementation Strategy

    DTIC Science & Technology

    2007-01-26

    ocean affects calcifying organisms, such as corals , with significant effects to reefs , the ecosystems they support, and their ability to pro- tect...water coral reefs , to open- ocean systems. For example, increasing ocean acidity, altered biogeochemistry, changing current patterns, loss of sea ice...for example, large swings in the populations of commercial fisheries, changes in seabird-population distributions, and coral - reef -bleaching events

  4. Mathematical modeling of radiative-conductive heat transfer in semitransparent medium with phase change

    NASA Astrophysics Data System (ADS)

    Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.

    2017-11-01

    A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.

  5. Multi-parameter MRI in the 6-OPRI variant of inherited prion disease

    PubMed Central

    De Vita, Enrico; Ridgway, Gerard R.; Scahill, Rachael I; Caine, Diana; Rudge, Peter; Yousry, Tarek A; Mead, Simon; Collinge, John; Jäger, H R; Thornton, John S; Hyare, Harpreet

    2013-01-01

    Background and Purpose To define the distribution of cerebral volumetric and microstructural parenchymal tissue changes in a specific mutation within inherited human prion diseases (IPD) combining voxel-based morphometry (VBM) with voxel-based analysis (VBA) of cerebral magnetization transfer ratio (MTR) and mean diffusivity (MD). Materials and Methods VBM and VBA of cerebral MTR and MD were performed in 16 healthy controls and 9 patients with the 6-octapeptide repeat insertion (6-OPRI) mutation. An ANCOVA consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. Results On VBM there was significant grey matter (GM) volume reduction in patients compared with controls in the basal ganglia, perisylvian cortex, lingual gyrus and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Conclusions GM and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomical distribution of MTR-VBA and MDVBA changes compared to VBM, likely to reflect regional variations in the type and degree of the respective pathophysiological substrates. Combined analysis of complementary multi-parameter MRI data furthers our understanding of prion disease pathophysiology. PMID:23538406

  6. Multiparameter MR imaging in the 6-OPRI variant of inherited prion disease.

    PubMed

    De Vita, E; Ridgway, G R; Scahill, R I; Caine, D; Rudge, P; Yousry, T A; Mead, S; Collinge, J; Jäger, H R; Thornton, J S; Hyare, H

    2013-09-01

    Inherited prion diseases represent over 15% of human prion cases and are a frequent cause of early onset dementia. The purpose of this study was to define the distribution of changes in cerebral volumetric and microstructural parenchymal tissues in a specific inherited human prion disease mutation combining VBM with VBA of cerebral MTR and MD. VBM and VBA of cerebral MTR and MD were performed in 16 healthy control participants and 9 patients with the 6-OPRI mutation. An analysis of covariance consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. On VBM, there was a significant reduction in gray matter volume in patients compared with control participants in the basal ganglia, perisylvian cortex, lingual gyrus, and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Gray matter and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomic distribution of MTR-VBA and MD-VBA changes compared with VBM, likely to reflect regional variations in the type and degree of the respective pathophysiologic substrates. Combined analysis of complementary multiparameter MR imaging data furthers our understanding of prion disease pathophysiology.

  7. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959

  8. Graded-threshold parametric response maps: towards a strategy for adaptive dose painting

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To modify the single-threshold parametric response map (ST-PRM) method for predicting treatment outcomes in order to facilitate its use for guidance of adaptive dose painting in intensity-modulated radiotherapy. Methods: Multiple graded thresholds were used to extend the ST-PRM method (Nat. Med. 2009;15(5):572-576) such that the full functional change distribution within tumours could be represented with respect to multiple confidence interval estimates for functional changes in similar healthy tissue. The ST-PRM and graded-threshold PRM (GT-PRM) methods were applied to functional imaging scans of 5 patients treated for hepatocellular carcinoma. Pre and post-radiotherapy arterial blood flow maps (ABF) were generated from CT-perfusion scans of each patient. ABF maps were rigidly registered based on aligning tumour centres of mass. ST-PRM and GT-PRM analyses were then performed on overlapping tumour regions within the registered ABF maps. Main findings: The ST-PRMs contained many disconnected clusters of voxels classified as having a significant change in function. While this may be useful to predict treatment response, it may pose challenges for identifying boost volumes or for informing dose-painting by numbers strategies. The GT-PRMs included all of the same information as ST-PRMs but also visualized the full tumour functional change distribution. Heterogeneous clusters in the ST-PRMs often became more connected in the GT-PRMs by voxels with similar functional changes. Conclusions: GT-PRMs provided additional information which helped to visualize relationships between significant functional changes identified by ST-PRMs. This may enhance ST-PRM utility for guiding adaptive dose painting.

  9. Recent shifts in Himalayan vegetation activity trends in response to climatic change and environmental drivers

    NASA Astrophysics Data System (ADS)

    Mishra, N. B.; Mainali, K. P.

    2016-12-01

    Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing interrupted greening, break in trend occurred later compared to areas with interrupted browning where break trend was observed much earlier. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalayas.

  10. Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails.

    PubMed

    Stankowski, Sean; Johnson, Michael S

    2014-01-07

    In island archipelagos, where islands have experienced repeated periods of fragmentation and connection through cyclic changes in sea level, complex among-island distributions might reflect historical distributional changes or local evolution. We test the relative importance of these mechanisms in an endemic radiation of Rhagada land snails in the Dampier Archipelago, a continental archipelago off the coast of Western Australia, where ten morphospecies have complex, overlapping distributions. We obtained partial mtDNA sequence (COI) for 1015 snails collected from 213 locations across 30 Islands, and used Bayesian phylogenetic analysis and Analysis of Molecular Variance (AMOVA) to determine whether geography or the morphological taxonomy best explains the pattern of molecular evolution. Rather than forming distinct monophyletic groups, as would be expected if they had single, independent origins, all of the widely distributed morphospecies were polyphyletic, distributed among several well-supported clades, each of which included several morphospecies. Each mitochondrial clade had a clear, cohesive geographic distribution, together forming a series of parapatric replacements separated by narrow contact zones. AMOVA revealed further incongruence between mtDNA diversity and morphological variation within clades, as the taxonomic hypothesis always explained a low or non-significant proportion of the molecular variation. In contrast, the pattern of mtDNA evolution closely reflected contemporary and historical marine barriers. Despite opportunities for distributional changes during periods when the islands were connected, there is no evidence that dispersal has contributed to the geographic variation of shell form at the broad scale. Based on an estimate of dispersal made previously for Rhagada, we conclude that the periods of connection have been too short in duration to allow for extensive overland dispersal or deep mitochondrial introgression. The result is a sharp and resilient phylogeographic pattern. The distribution of morphotypes among clades and distant islands is explained most simply by their parallel evolution.

  11. Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails

    PubMed Central

    2014-01-01

    Background In island archipelagos, where islands have experienced repeated periods of fragmentation and connection through cyclic changes in sea level, complex among-island distributions might reflect historical distributional changes or local evolution. We test the relative importance of these mechanisms in an endemic radiation of Rhagada land snails in the Dampier Archipelago, a continental archipelago off the coast of Western Australia, where ten morphospecies have complex, overlapping distributions. Results We obtained partial mtDNA sequence (COI) for 1015 snails collected from 213 locations across 30 Islands, and used Bayesian phylogenetic analysis and Analysis of Molecular Variance (AMOVA) to determine whether geography or the morphological taxonomy best explains the pattern of molecular evolution. Rather than forming distinct monophyletic groups, as would be expected if they had single, independent origins, all of the widely distributed morphospecies were polyphyletic, distributed among several well-supported clades, each of which included several morphospecies. Each mitochondrial clade had a clear, cohesive geographic distribution, together forming a series of parapatric replacements separated by narrow contact zones. AMOVA revealed further incongruence between mtDNA diversity and morphological variation within clades, as the taxonomic hypothesis always explained a low or non-significant proportion of the molecular variation. In contrast, the pattern of mtDNA evolution closely reflected contemporary and historical marine barriers. Conclusions Despite opportunities for distributional changes during periods when the islands were connected, there is no evidence that dispersal has contributed to the geographic variation of shell form at the broad scale. Based on an estimate of dispersal made previously for Rhagada, we conclude that the periods of connection have been too short in duration to allow for extensive overland dispersal or deep mitochondrial introgression. The result is a sharp and resilient phylogeographic pattern. The distribution of morphotypes among clades and distant islands is explained most simply by their parallel evolution. PMID:24393567

  12. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  13. Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia Zebrina

    NASA Astrophysics Data System (ADS)

    Batista Florindo, Joao; Landini, Gabriel; Almeida Filho, Humberto; Martinez Bruno, Odemir

    2015-09-01

    Here we propose a method for the analysis of the stomata distribution patterns on the surface of plant leaves. We also investigate how light exposure during growth can affect stomata distribution and the plasticity of leaves. Understanding foliar plasticity (the ability of leaves to modify their structural organization to adapt to changing environmental resources) is a fundamental problem in Agricultural and Environmental Sciences. Most published work on quantification of stomata has concentrated on descriptions of their density per unit of leaf area, however density alone does not provide a complete description of the problem and leaves several unanswered questions (e.g. whether the stomata patterns change across various areas of the leaf, or how the patterns change under varying observational scales). We used two approaches here, to know, multiscale fractal dimension and complex networks, as a means to provide a description of the complexity of these distributions. In the experiments, we used 18 samples from the plant Tradescantia Zebrina grown under three different conditions (4 hours of artificial light each day, 24 hours of artificial light each day, and sunlight) for a total of 69 days. The network descriptors were capable of correctly discriminating the different conditions in 88% of cases, while the fractal descriptors discriminated 83% of the samples. This is a significant improvement over the correct classification rates achieved when using only stomata density (56% of the samples).

  14. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex.

    PubMed

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  15. Thermal stress analysis of a planar SOFC stack

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  16. Farmed Areas Predict the Distribution of Amphibian Ponds in a Traditional Rural Landscape

    PubMed Central

    Hartel, Tibor; von Wehrden, Henrik

    2013-01-01

    Background Traditional rural landscapes of Eastern Europe are undergoing major changes due to agricultural intensification, land abandonment, change in agricultural practices and infrastructural development. Small man-made ponds are important yet vulnerable components of rural landscapes. Despite their important role for biodiversity, these ponds tend to be excluded from conservation strategies. Methodology/Findings Our study was conducted in a traditional rural landscape in Eastern Europe. The aim of this study is twofold: (i) to model the distribution of four major man-made pond types and (ii) to present the importance of man-made ponds for the endangered Yellow Bellied Toad (Bombina variegata) and the Common Toad (Bufo bufo). Six environmental variables were used to model pond distribution: Corine landcover, the heterogeneity of the landcover, slope, road distance, distance to closest village and the human population density. Land cover heterogeneity was the most important driver for the distribution of fishponds. Areas used for agriculture with significant areas of natural vegetation were the most important predictors for the distribution of temporary ponds. In addition, areas covered by transitional woodland and scrub were important for the open cattle ponds. Bombina variegata was found predominantly in the temporary ponds (e.g. ponds created by cattle and buffalo, dirt road ponds and concrete ponds created for livestock drinking) and Bufo bufo in fishponds. Conclusions/Significance Our Maxent models revealed that the highest probability of occurrence for amphibian ponds was in areas used as farmland. The traditional farming practices combined with a low level of infrastructure development produces a large number of amphibian ponds. The challenge is to harmonize economic development and the maintenance of high densities of ponds in these traditional rural landscapes. PMID:23704928

  17. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    NASA Astrophysics Data System (ADS)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  18. A refined method for calculating equivalent effective stratospheric chlorine

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level.

  19. Interannual variability in the gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr

    2018-05-01

    Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.

  20. Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.

    PubMed

    Henderson, A Cortney; Levin, David L; Hopkins, Susan R; Olfert, I Mark; Buxton, Richard B; Prisk, G Kim

    2006-08-01

    Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30 degrees head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 +/- 0.06 pretilt, 1.09 +/- 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.

  1. Similarity of Symbol Frequency Distributions with Heavy Tails

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Font-Clos, Francesc; Altmann, Eduardo G.

    2016-04-01

    Quantifying the similarity between symbolic sequences is a traditional problem in information theory which requires comparing the frequencies of symbols in different sequences. In numerous modern applications, ranging from DNA over music to texts, the distribution of symbol frequencies is characterized by heavy-tailed distributions (e.g., Zipf's law). The large number of low-frequency symbols in these distributions poses major difficulties to the estimation of the similarity between sequences; e.g., they hinder an accurate finite-size estimation of entropies. Here, we show analytically how the systematic (bias) and statistical (fluctuations) errors in these estimations depend on the sample size N and on the exponent γ of the heavy-tailed distribution. Our results are valid for the Shannon entropy (α =1 ), its corresponding similarity measures (e.g., the Jensen-Shanon divergence), and also for measures based on the generalized entropy of order α . For small α 's, including α =1 , the errors decay slower than the 1 /N decay observed in short-tailed distributions. For α larger than a critical value α*=1 +1 /γ ≤2 , the 1 /N decay is recovered. We show the practical significance of our results by quantifying the evolution of the English language over the last two centuries using a complete α spectrum of measures. We find that frequent words change more slowly than less frequent words and that α =2 provides the most robust measure to quantify language change.

  2. In Vitro Quantification of the Radiopacity of Onyx during Embolization

    PubMed Central

    Jiang, Yuan Yuan; Jo, Ye-eun; Woo, Jung Min; Lim, Ok Kyun; Hwang, Changmo; Maeng, Jun Young; Kim, Jieun; Kim, Namkug

    2017-01-01

    Purpose Onyx has been successfully applied in the treatment of various neurovascular lesions. However, some experience is required to get accustomed to its unpredictable fluoroscopic visibility during injection. This in vitro study aimed to evaluate the characteristics of radiopacity change in a simulated embolization procedure. Materials and Methods Using a bench-top Onyx injection experiment simulating a typical brain arteriovenous malformation embolization, nine cycles of casting modes (continuous injection) and plugging modes (injection with intermittent pauses) were performed. Radiodensity of Onyx droplets collected from the microcatheter tip and the distal head portion of the microcatheter were measured as time lapsed. Distribution of droplet radiodensity (radiodensity) and distribution of radiographic grade (grade) were analyzed and compared by repeated measurements. Results Within-group analysis revealed no significant radiodensity change with time (P>0.05). The radiodensity was significantly higher in the casting mode than in the plugging mode (P<0.01). The lateral radiograph of the microcatheter showed higher radiopacity (P<0.01) and better evenness (P<0.01) in the casting mode than in the plugging mode. A significant difference in microcatheter attenuation (both radiographic grade mean and SD; P<0.01) was noted between the two modes. Radiodensity had a significant influence on the radiopacity and radiopacity evenness of the microcatheter. Conclusion The radiopacity of the Onyx can vary significantly over time because of early precipitation of tantalum powder. Radiopacity decreased significantly during plugging modes, characterized by pauses between injections. PMID:28316864

  3. Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus.

    PubMed

    Park, Joon Ha; Choi, Hyun Young; Cho, Jeong-Hwi; Kim, In Hye; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Jung Hoon; Chung, Jin-Young; Lee, Choong-Hyun; Cho, Jun Hwi; Kang, Il Jun; Kim, Jong-Dai

    2016-08-01

    Myelin plays an important role in learning and memory, and degradation of myelin is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. Myelin basic protein (MBP) is one of the most abundant structural proteins in myelin and is essential for myelin formation and compaction. In this study, we first examined changes in the distribution of MBP-immunoreactive myelinated fibers and MBP levels according to hippocampal subregion in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. We found that SCO-induced cognitive impairments, as assayed by the water maze and passive avoidance tests, were significantly reduced 1 week after SCO treatment and the impairments were maintained without any hippocampal neuronal loss. MBP-immunoreactive myelinated fibers were easily detected in the stratum radiatum and lacunosum-moleculare of the hippocampus proper (CA1-3 region) and in the molecular and polymorphic layers of the dentate gyrus. The distribution of MBP-immunoreactive myelinated fibers was not altered 1 week after SCO treatment. However, the density of MBP-immunoreactive myelinated fibers was significantly decreased 2 weeks after SCO treatment; thereafter, the density gradually, though not significantly, decreased with time. In addition, the changing pattern of MBP levels in the hippocampus following SCO treatment corresponded to immunohistochemical changes. In brief, this study shows that chronic systemic treatment with SCO induced significant degradation of MBP in the hippocampus without neuronal loss at least 2 weeks after SCO treatment, although cognitive impairments occurred 1 week after SCO treatment.

  4. The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds

    PubMed Central

    Triviño, Maria; Thuiller, Wilfried; Cabeza, Mar; Hickler, Thomas; Araújo, Miguel B.

    2011-01-01

    Although climate is known to be one of the key factors determining animal species distributions amongst others, projections of global change impacts on their distributions often rely on bioclimatic envelope models. Vegetation structure and landscape configuration are also key determinants of distributions, but they are rarely considered in such assessments. We explore the consequences of using simulated vegetation structure and composition as well as its associated landscape configuration in models projecting global change effects on Iberian bird species distributions. Both present-day and future distributions were modelled for 168 bird species using two ensemble forecasting methods: Random Forests (RF) and Boosted Regression Trees (BRT). For each species, several models were created, differing in the predictor variables used (climate, vegetation, and landscape configuration). Discrimination ability of each model in the present-day was then tested with four commonly used evaluation methods (AUC, TSS, specificity and sensitivity). The different sets of predictor variables yielded similar spatial patterns for well-modelled species, but the future projections diverged for poorly-modelled species. Models using all predictor variables were not significantly better than models fitted with climate variables alone for ca. 50% of the cases. Moreover, models fitted with climate data were always better than models fitted with landscape configuration variables, and vegetation variables were found to correlate with bird species distributions in 26–40% of the cases with BRT, and in 1–18% of the cases with RF. We conclude that improvements from including vegetation and its landscape configuration variables in comparison with climate only variables might not always be as great as expected for future projections of Iberian bird species. PMID:22216263

  5. Distributional potential of the Triatoma brasiliensis species complex at present and under scenarios of future climate conditions

    PubMed Central

    2014-01-01

    Background The Triatoma brasiliensis complex is a monophyletic group, comprising three species, one of which includes two subspecific taxa, distributed across 12 Brazilian states, in the caatinga and cerrado biomes. Members of the complex are diverse in terms of epidemiological importance, morphology, biology, ecology, and genetics. Triatoma b. brasiliensis is the most disease-relevant member of the complex in terms of epidemiology, extensive distribution, broad feeding preferences, broad ecological distribution, and high rates of infection with Trypanosoma cruzi; consequently, it is considered the principal vector of Chagas disease in northeastern Brazil. Methods We used ecological niche models to estimate potential distributions of all members of the complex, and evaluated the potential for suitable adjacent areas to be colonized; we also present first evaluations of potential for climate change-mediated distributional shifts. Models were developed using the GARP and Maxent algorithms. Results Models for three members of the complex (T. b. brasiliensis, N = 332; T. b. macromelasoma, N = 35; and T. juazeirensis, N = 78) had significant distributional predictivity; however, models for T. sherlocki and T. melanica, both with very small sample sizes (N = 7), did not yield predictions that performed better than random. Model projections onto future-climate scenarios indicated little broad-scale potential for change in the potential distribution of the complex through 2050. Conclusions This study suggests that T. b. brasiliensis is the member of the complex with the greatest distributional potential to colonize new areas: overall; however, the distribution of the complex appears relatively stable. These analyses offer key information to guide proactive monitoring and remediation activities to reduce risk of Chagas disease transmission. PMID:24886587

  6. Potential climate impact of black carbon emitted by rockets

    NASA Astrophysics Data System (ADS)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  7. Electrophysiological properties of the membrane and acetylcholine receptor in developing rat and chick myotubes

    PubMed Central

    1975-01-01

    Membrane properties of rat and chick myotubes in various stages of development were studied. Resting membrane potentials (Em) increased from -8 to -55 mV in both rat and chick as the myotubes developed from myoblasts to large multinucleated fibers. In the rat myotubes, this increase was not accompanied by significant changes in specific membrane resistivity or changes in Na+ and K+ ion distribution. Nor have we observed a significant electrogenic component to the resting Em of mature rat myotubes under normal circumstances. A progressive increase in the passive permeability of the membrane to K+ relative to Na+ ions has been observed which can account for the changes in Em with development. In contrast to the changes in the ionic selectivity of the membrane, we have found that the ionic selectivity of the ACh receptor of rat and chick myotubes remains constant during the same period of myotube development. PMID:1176950

  8. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  9. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  10. An asymptotic method for estimating the vertical ozone distribution in the Earth's atmosphere from satellite measurements of backscattered solar UV-radiation

    NASA Technical Reports Server (NTRS)

    Ishov, Alexander G.

    1994-01-01

    An asymptotic approach to solution of the inverse problems of remote sensing is presented. It consists in changing integral operators characteristic of outgoing radiation into their asymptotic analogues. Such approach does not add new principal uncertainties into the problem and significantly reduces computation time that allows to develop the real (or about) time algorithms for interpretation of satellite measurements. The asymptotic approach has been realized for estimating vertical ozone distribution from satellite measurements of backscatter solar UV radiation in the Earth's atmosphere.

  11. Comparison between reflectivity statistics at heights of 3 and 6 km and rain rate statistics at ground level

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1975-01-01

    An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.

  12. Anode current density distribution in a cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  13. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.

    PubMed

    Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir

    2017-02-07

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.

  14. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  15. Thyroglobulin autoantibodies switch to immunoglobulin (Ig)G1 and IgG3 subclasses and preserve their restricted epitope pattern after 131I treatment for Graves' hyperthyroidism: the activity of autoimmune disease influences subclass distribution but not epitope pattern of autoantibodies

    PubMed Central

    Latrofa, F; Ricci, D; Montanelli, L; Piaggi, P; Mazzi, B; Bianchi, F; Brozzi, F; Santini, P; Fiore, E; Marinò, M; Tonacchera, M; Vitti, P

    2014-01-01

    The subclass distribution of thyroglobulin autoantibodies (TgAb) is debated, whereas their epitope pattern is restricted. Radioidine (131I) treatment for Graves' disease (GD) induces a rise in TgAb levels, but it is unknown whether it modifies subclass distribution and epitope pattern of TgAb as well. We collected sera from GD patients before 131I treatment and 3 and 6 months thereafter. We measured total TgAb, TgAb light chains and TgAb subclasses by enzyme-linked immunosorbent assay (ELISA) in 25 patients. We characterized the TgAb epitope pattern in 30 patients by inhibiting their binding to 125-ITg by a pool of four TgAb-Fab (recognizing Tg epitope regions A, B, C and D) and to Tg in ELISA by each TgAb-Fab. Total TgAb immunoglobulin (Ig)G rose significantly (P = 0·024). TgAb κ chains did not change (P = 0·052), whereas TgAb λ chains increased significantly (P = 0·001) and persistently. We observed a significant rise in IgG1 and IgG3 levels after 131I (P = 0·008 and P = 0·006, respectively), while IgG2 and IgG4 levels did not change. The rise of IgG1 was persistent, that of IgG3 transient. The levels of inhibition of TgAb binding to Tg by the TgAb-Fab pool were comparable. A slight, non-significant reduction of the inhibition by the immune-dominant TgAb-Fab A was observed 3 and 6 months after 131I. We conclude that 131I treatment for GD increases the levels of the complement-activating IgG1 and IgG3 subclasses and does not influence significantly the epitope pattern of TgAb. In autoimmune thyroid disease subclass distribution of autoantibodies is dynamic in spite of a stable epitope pattern. PMID:25134846

  16. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps sinensis) in Nepal Himalaya

    PubMed Central

    Shrestha, Uttam Babu; Bawa, Kamaljit S.

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11–4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species. PMID:25180515

  17. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    PubMed

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  18. Changes of Ecosystem Service Value in a Coastal Zone of Zhejiang Province, China, during Rapid Urbanization.

    PubMed

    Cao, Luodan; Li, Jialin; Ye, Mengyao; Pu, Ruiliang; Liu, Yongchao; Guo, Qiandong; Feng, Baixiang; Song, Xiayun

    2018-06-21

    Gains and losses in ecosystem service values (ESV) in coastal zones in Zhejiang Province during rapid urbanization were analyzed in terms of land-use changes. Decision-making on coastal development based on ESV estimation is significant for the sustainable utilization of coastal resource. In this study, coastal land-use changes in Zhejiang Province during rapid urbanization were discussed based on remote-sensing derived land-use maps created in the years 1990, 2000 and 2010. The ESV changes in coastal zones in Zhejiang Province from 1990 to 2010 were estimated by using the established ESV estimation model. The analysis results demonstrate the following: (1) with the continuous acceleration of urbanization, land-use types in coastal zones in Zhejiang Province changed significantly from 1990 to 2010, demonstrated by considerable growth of urban construction land and reduction of forest land and farmland; (2) in the study period, the total ESV in coastal zones in Zhejiang Province continuously decreased in value from RMB 35.278 billion to 29.964 billion, a reduction of 15.06%; (3) in terms of the spatial distribution of ESV, the ESVs in coastal zones in Zhejiang Province were generally converted from a higher ESV to a lower ESV; (4) estimates of ESV for the three years 1990, 2000 and 2010 appear to be relatively stable; and (5) land-use intensity in coastal zones in Zhejiang Province continuously increased during the 20 years. The spatial distribution of land-use intensity was consistent with that of the ESV change rate. Disordered land-use changes from forestland and farmland to urban construction land was a major cause of ESV loss.

  19. Past and future effects of climate change on spatially heterogeneous vegetation activity in China

    NASA Astrophysics Data System (ADS)

    Gao, Jiangbo; Jiao, Kewei; Wu, Shaohong; Ma, Danyang; Zhao, Dongsheng; Yin, Yunhe; Dai, Erfu

    2017-07-01

    Climate change is a major driver of vegetation activity but its complex ecological relationships impede research efforts. In this study, the spatial distribution and dynamic characteristics of climate change effects on vegetation activity in China from the 1980s to the 2010s and from 2021 to 2050 were investigated using a geographically weighted regression (GWR) model. The GWR model was based on combined datasets of satellite vegetation index, climate observation and projection, and future vegetation productivity simulation. Our results revealed that the significantly positive precipitation-vegetation relationship was and will be mostly distributed in North China. However, the regions with temperature-dominated distribution of vegetation activity were and will be mainly located in South China. Due to the varying climate features and vegetation cover, the spatial correlation between vegetation activity and climate change may be altered. There will be different dominant climatic factors for vegetation activity distribution in some regions such as Northwest China, and even opposite correlations in Northeast China. Additionally, the response of vegetation activity to precipitation will move southward in the next three decades. In contrast, although the high warming rate will restrain the vegetation activity, precipitation variability could modify hydrothermal conditions for vegetation activity. This observation is exemplified in the projected future enhancement of vegetation activity in the Tibetan Plateau and weakened vegetation activity in East and Middle China. Furthermore, the vegetation in most parts of North China may adapt to an arid environment, whereas in many southern areas, vegetation will be repressed by water shortage in the future.

  20. Probabilistic properties of injection induced seismicity - implications for the seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Urban, Pawel; Kwiatek, Grzegorz; Martinez-Garzón, Particia

    2017-04-01

    Injection induced seismicity (IIS) is an undesired dynamic rockmass response to massive fluid injections. This includes reactions, among others, to hydro-fracturing for shale gas exploitation. Complexity and changeability of technological factors that induce IIS, may result in significant deviations of the observed distributions of seismic process parameters from the models, which perform well in natural, tectonic seismic processes. Classic formulations of probabilistic seismic hazard analysis in natural seismicity assume the seismic marked point process to be a stationary Poisson process, whose marks - magnitudes are governed by a Gutenberg-Richter born exponential distribution. It is well known that the use of an inappropriate earthquake occurrence model and/or an inappropriate of magnitude distribution model leads to significant systematic errors of hazard estimates. It is therefore of paramount importance to check whether the mentioned, commonly used in natural seismicity assumptions on the seismic process, can be safely used in IIS hazard problems or not. Seismicity accompanying shale gas operations is widely studied in the framework of the project "Shale Gas Exploration and Exploitation Induced Risks" (SHEER). Here we present results of SHEER project investigations of such seismicity from Oklahoma and of a proxy of such seismicity - IIS data from The Geysers geothermal field. We attempt to answer to the following questions: • Do IIS earthquakes follow the Gutenberg-Richter distribution law, so that the magnitude distribution can be modelled by an exponential distribution? • Is the occurrence process of IIS earthquakes Poissonian? Is it segmentally Poissonian? If yes, how are these segments linked to cycles of technological operations? Statistical tests indicate that the Gutenberg-Richter relation born exponential distribution model for magnitude is, in general, inappropriate. The magnitude distribution can be complex, multimodal, with no ready-to-use functional model. In this connection, we recommend to use in hazard analyses non-parametric, kernel estimators of magnitude distribution. The earthquake occurrence process of IIS is not a Poisson process. When earthquakes' occurrences are influenced by a multitude of inducing factors, the interevent time distribution can be modelled by the Weibull distribution supporting a negative ageing property of the process. When earthquake occurrences are due to a specific injection activity, the earthquake rate directly depends on the injection rate and responds immediately to the changes of the injection rate. Furthermore, this response is not limited only to correlated variations of the seismic activity but it also concerns significant changes of the shape of interevent time distribution. Unlike the event rate, the shape of magnitude distribution does not exhibit correlation with the injection rate. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE 16-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  1. Regional Cerebral Blood Flow Analysis in Patients with Multiple Sclerosis Using TC-99M Hmpao and a Three - Spect System.

    NASA Astrophysics Data System (ADS)

    D'Souza, Maximian Felix

    1995-01-01

    The purpose of the present study was to determine the changes in regional cerebral blood flow (rCBF) with a cognitive task of semantic word retrieval (verbal fluency) in patients with multiple sclerosis (MS) and compare with the rCBF distribution of normal controls. Two groups of patients with low and high verbal fluency scores and two groups of normal controls were selected to determine a relationship between rCBF and verbal performance. A three-detector gamma camera (TRIAD 88) was used with radiotracer Tc-99m HMPAO and single photon emission computed tomography (SPECT) to obtain 3D rCBF maps. The performance characteristics of the camera was comprehensively studied before being utilized for clinical studies. In addition, technical improvements were implemented in the form of scatter correction and MRI-SPECT coregistration to potentially enhance the quantitative accuracy of the rCBF data. The performance analysis of the gamma camera showed remarkable consistency among the three-detector heads and yielded results that were consistent with the manufacturer's specification. Measurements of physical objects also showed excellent image quality. The coregistration of SPECT and MRI images allowed more accurate anatomical localization for extraction of regional blood flow information. The validation of the scatter correction technique with physical phantoms indicated marked improvements in quantitative accuracy. There was marked difference in activation patterns between patients and normals. In normals, individually subjects showed either an increase or a decrease in blood flow to left frontal and temporal, however, on average, there was not a statistically significant change. The lack of significant change may suggest large variability among subjects chosen or that the individual changes are not large enough to be significant. The results from MS patients showed several left cortical areas with statistically significant change in blood flow after cognitive activation, especially in the low fluent group, with decreased flow. Scatter corrected data yielded mostly right sided significant increases in blood flow. Further studies must be conducted to further evaluate the scatter correction technique. Additional studies on MS patients must focus on correlating lesion volume, location and number to the rCBF distribution.

  2. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  3. Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau.

    PubMed

    Jin, Zhao; Liang, Wei; Yang, Yuting; Zhang, Weibin; Yan, Jianwu; Chen, Xuejuan; Li, Sha; Mo, Xingguo

    2017-08-15

    Evapotranspiration (ET) is a key ecological process connecting the soil-vegetation-atmosphere system, and its changes seriously affects the regional distribution of available water resources, especially in the arid and semiarid regions. With the Grain-for-Green project implemented in the Loess Plateau (LP) since 1999, water and heat distribution across the region have experienced great changes. Here, we investigate the changes and associated driving forces of ET in the LP from 2000 to 2012 using a remote sensing-based evapotranspiration model. Results show that annual ET significantly increased by 3.4 mm per year (p = 0.05) with large interannual fluctuations during the study period. This trend is higher than coincident increases in precipitation (2.0 mm yr -2 ), implying a possible pressure of water availability. The correlation analysis showed that vegetation change is the major controlling factor on interannual variability of annual ET with ~52.8% of pixels scattered in the strip region from the northeastern to southwestern parts of the LP. Further factorial analysis suggested that vegetation greening is the primary driver of the rises of ET over the study period relative to climate change. Our study can provide an improved understanding of the effects of vegetation and climate change on terrestrial ecosystem ET in the LP.

  4. Mammalian niche conservation through deep time.

    PubMed

    DeSantis, Larisa R G; Beavins Tracy, Rachel A; Koontz, Cassandra S; Roseberry, John C; Velasco, Matthew C

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene "extinction prone" families, and provide valuable insights to understanding mammalian responses to current climate change.

  5. Mammalian Niche Conservation through Deep Time

    PubMed Central

    DeSantis, Larisa R. G.; Beavins Tracy, Rachel A.; Koontz, Cassandra S.; Roseberry, John C.; Velasco, Matthew C.

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ∼2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene “extinction prone” families, and provide valuable insights to understanding mammalian responses to current climate change. PMID:22539985

  6. Background sampling and transferability of species distribution model ensembles under climate change

    NASA Astrophysics Data System (ADS)

    Iturbide, Maialen; Bedia, Joaquín; Gutiérrez, José Manuel

    2018-07-01

    Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive - with projections differing up to a 40% for different realizations - and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.

  7. Effects of Climate on the Zooplankton of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, B. E.

    2007-05-01

    Almost six decades of sampling of the California Current system, carried out by the CalCOFI program (California Cooperative Fisheries Investigation) complemented by a decade of observations from the IMECOCAL program (Investigaciones Mexicanas de la Corriente de California), have revealed changing patterns in zooplankton abundances, species composition, and distributions over interannual through multidecadal time scales. Interannual changes associated with ENSO variability are manifested as strong but transitory perturbations in the mean annual cycle in seasonal abundances (and distributions) of particular species. An investigation of longer- term change, limited to the region off southern California, shows a persistent decline in zooplankton volumes (a proxy for overall biomass of macrozooplankton) between 1977 and 1998 that is considered to be a response to the well documented shift in basin-scale climate forcing that occurred in 1976-77. Further examination of this decline in zooplankton volumes indicates that it was due principally to the disappearance of several salp species after 1977. Other species and functional groups did not decline after the change in climate regime, while some species have followed persistent secular trends that appear to be associated more with the phenomenon of long-term global warming. Differences in the regional responses to climate change throughout the California Current system have also been observed recently in the spatial distribution of zooplankton biomass and changes in latitudinal ranges of certain species. For example, zooplankton biomass in the Baja California region show typical values for the 1997-98 El Niño that were followed by a decrease during the sharp transition to the cool La Niña conditions in 1999. This contrasts with the nearby region off southern California that was characterized by reduced biomass during the El Niño period and the subsequent recovery during the La Niña. Another regional contrast in zooplankton distribution observed recently was the significant presence of subarctic euphausiid species off Baja California during July 2005, while the krill collapsed in the region off Oregon in the same period. It is reasonable to suspect that regional contrasts in the zooplankton abundance and species distributions may increase as a response to latitudinal shifts in habitat character due to global warming.

  8. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  9. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  10. Population genetic signatures of a climate change driven marine range extension.

    PubMed

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Semmens, Jayson M; Souza, Carla A; Strugnell, Jan M

    2018-06-22

    Shifts in species distribution, or 'range shifts', are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone.

  11. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    PubMed Central

    Mantzouki, Evanthia; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Budzyńska, Agnieszka; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Messyasz, Beata; Pełechata, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Karakaya, Nusret; Häggqvist, Kerstin; Beklioğlu, Meryem; Filiz, Nur; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Boscaini, Adriano; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Köker, Latife; Albay, Meriç; Maronić, Dubravka Špoljarić; Stević, Filip; Pfeiffer, Tanja Žuna; Fonvielle, Jeremy; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Trapote, Mari Carmen; Obrador, Biel; Grabowska, Magdalena; Chmura, Damian; Úbeda, Bárbara; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Picazo, Antonio; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Udovič, Marija Gligora; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Kangro, Kersti; Ibelings, Bas W.

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains. PMID:29652856

  12. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    PubMed

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  13. Fewer but not smaller schools in declining fish and krill populations.

    PubMed

    Brierley, Andrew S; Cox, Martin J

    2015-01-05

    Many pelagic species (species that live in the water column), including herring and krill, aggregate to form schools, shoals, or swarms (hereafter simply "schools," although the words are not synonyms). Schools provide benefits to individual members, including locomotory economy and protection from predators that prey on individuals, but paradoxically make schooling species energetically viable and commercially attractive targets for predators of groups and for fishers. Large schools are easier to find and yield greater prey/catch than small schools, and there is a requirement from fields as diverse as theoretical ecology and fisheries management to understand whether and how aggregation sizes change with changing population size. We collated data from vertical echosounder surveys of taxonomically diverse pelagic stocks from geographically diverse ecosystems. The data contain common significant positive linear stock-biomass to school-number relationships. They show that the numbers of schools in the stocks change with changing stock biomass and suggest that the distributions of school sizes do not change with stock biomass. New data that we collected using a multibeam sonar, which can image entire schools, contained the same stock-biomass to school-number relationship and confirm that the distribution of school sizes is not related to changing stock size: put simply, as stocks decline, individuals are distributed among fewer schools, not smaller schools. Since school characteristics affect catchability (the ease or difficulty with which fishers can capture target species) and availability of prey to predators, our findings have commercial and ecological implications, particularly within the aspirational framework of ecosystem-based management of marine systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Adaptation to climate change: Using nighttime lights satellite data to explore human response to flood events

    NASA Astrophysics Data System (ADS)

    Mård, Johanna; Di Baldassarre, Giuliano

    2017-04-01

    To better understand the impact of climate change, we need to uncover how (and to what extent) societies respond and adapt to it. Yet the dynamics resulting from two-way feedbacks between nature and society remain largely unknown. Here we present an interdisciplinary study aiming to uncover one of the least quantified aspects of human-nature interactions, the spatial-temporal distribution of demographic changes following the occurrence of extreme events. To this end, we use nighttime light satellite data in four contrasting case studies in both low- and high-income countries (Lower Limpopo River in Mozambique, Mekong River in Vietnam and Cambodia, Brisbane River in Australia and Mississippi River at St. Louis in USA), and explore the interplay between flooding events and changes in population distribution in the period 1992-2013. Our study shows the challenges and opportunities of nighttime lights in unraveling the way humans adapt to climate change. Specific results show that population distribution of societies that strongly rely on structural measures ("fighting floods" policies) is not significantly affected by the occurrence of flood events. Conversely, learning dynamics emerge in societies that mainly rely on non-structural measures ("living with floods" policies) in terms of relative population in floodplain areas, i.e. reduced human proximity to rivers. Lastly, we propose the development of a novel approach to exploit the growing availability of worldwide information, such as nighttime lights satellite data, to uncover human adaptation to climate change across scales and along gradients of social and natural conditions.

  15. Sleep deprivation and the organization of the behavioral states.

    NASA Technical Reports Server (NTRS)

    Dement, W. C.

    1972-01-01

    Questions concerning the significance of sleep in the developing organism are investigated, together with the mechanisms that underlie the unique distribution of behavioral states at any particular age and during any particular experimental manipulation. It is attempted to define the states of sleep and wakefulness in terms of a temporal confluence of a number of more or less independent processes, taking also into account the functional consequences of these attributes. The results of a selective deprivation of rapid eye movement sleep are explored, giving attention to effects on sleep, behavioral changes, brain excitability, pharmacological changes, and biochemical changes.

  16. Evaluating the Accuracy of MODIS Products in the Southern Scean Using Tagged Marine Predators, and Measuring Significant Change in 12 Years of [Chl-a], Zeu and Cloud Fraction Data.

    NASA Astrophysics Data System (ADS)

    Biermann, L.; Boehme, L.; Guinet, C.

    2016-02-01

    The Southern Ocean is vital to the functioning of our global atmospheric and marine systems. However, this key ocean is also measurably responsive to the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere. Decreased ozone and increases in greenhouse gases appear to be forcing the SAM towards its positive phase, significantly changing wind patterns and, thus, altering mixing and circulation regimes of Southern Ocean waters. Inevitably, these changes must impact on patterns of phytoplankton abundance and distribution. Using remotely sensed data that have been evaluated alongside in situ data collected by tagged southern elephant seals, this work investigates if changes to summer phytoplankton abundance and distribution in the Southern Ocean can already be measured in the 12-year MODIS record. Patterns and trends in surface chlorophyll-a concentration ([Chl-a]), the depth of the 1% light level (Zeu) and mean cloud fraction are examined over time, as well as relative to the SAM. Trends in [Chl-a] and Zeu over the months of October, November and December suggest overall declines in surface phytoplankton, and shifts in timing of blooms. Indeed, by January and February over the 12-year timeseries, trends reverse to suggest increases in phytoplankton abundance. Relative to the increasingly positive SAM, trends of overall decline in phytoplankton abundance are significant only over Decembers. Trends in cloud cover are more difficult to interpret but the Atlantic Ocean appears to be becoming less cloudy, the southern sector of the Pacific Ocean appears to be becoming cloudier, and that the southern sector of the Indian Ocean is most variable over time. Only the increase in cloud over the southern Pacific in Decembers appears to be significantly related to changes to the SAM. Interestingly, in no cases were the changes to [Chl-a], Zeu or cloud cover strictly zonal. The asymmetry of these results reinforces findings from previous studies addressing responses of the MLD (and [Chl-a]) to the SAM.

  17. Optical Coherence Tomography Measurements and Analysis Methods in Optical Coherence Tomography Studies of Diabetic Macular Edema

    PubMed Central

    Browning, David J.; Glassman, Adam R.; Aiello, Lloyd P.; Bressler, Neil M.; Bressler, Susan; Danis, Ronald P.; Davis, Matthew D.; Ferris, Frederick L.; Huang, Suber S.; Kaiser, Peter K.; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U.; Qin, Haijing

    2009-01-01

    Objective To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Design Associations of pairs of OCT variables and results of three analysis methods using data from two studies of DME. Participants Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Methods Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when three measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Main Outcome Measures Concordance of results using different OCT variables and analysis methods. Results Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98–0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. The macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Conclusions Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe. PMID:18675696

  18. Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema.

    PubMed

    Browning, David J; Glassman, Adam R; Aiello, Lloyd P; Bressler, Neil M; Bressler, Susan B; Danis, Ronald P; Davis, Matthew D; Ferris, Frederick L; Huang, Suber S; Kaiser, Peter K; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U; Qin, Haijing

    2008-08-01

    To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Associations of pairs of OCT variables and results of 3 analysis methods using data from 2 studies of DME. Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when 3 measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Concordance of results using different OCT variables and analysis methods. Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98-0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. Macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe.

  19. Determinants of climate change awareness level in upper Nyakach Division, Kisumu County, Kenya.

    PubMed

    Ajuang, Chadwick O; Abuom, Paul O; Bosire, Esna K; Dida, Gabriel O; Anyona, Douglas N

    2016-01-01

    Improving the understanding of climate change awareness is one of the top priorities in climate change research. While the African continent is among the regions with the highest vulnerability to climate change, research on climate knowledge and awareness is lacking. Kenya is already grappling with the impacts of climate change, which are projected to increase in a non-linear and non-predictable manner. This study sought to determine climate change awareness levels among households residing in Upper Nyakach Division, Kisumu County, Kenya using common climate change markers viz heavy rainfall, floods, droughts and temperature. A cross-sectional survey design was adopted in which 384 household heads were selected as respondents from 11 sub-locations; all located within Upper Nyakach Division. A questionnaire was used to collect data. Most (90.9 %) respondents had observed changes in the overall climate. Awareness level of climate change varied significantly across the 11 sub-locations. To further gain insight unto which variables were the most significant determinant of climate change awareness in upper Nyakach division, Kisumu county, a Generalized Linear Model (GLM) with Poisson error distribution was built. The model indicated that sex of the household head, education level and age significantly influenced respondents' awareness to climate change markers. Most (87 %) households reported rising temperatures over the past 20 years. Over half (55.2 %) the respondents had observed declining rains, with significant differences being observed across age groups. Up to 75 % of the respondents reported increased droughts frequency over the last 20 years, with significant differences observed across gender. Most (86.7 %) respondents reported having observed changes in water sources with significant differences reported across age groups. The respondents reported an increased prevalence of malaria with significant differences being observed among the education levels and households' main livelihoods. The general population of the Upper Nyakach Divison is aware of changing global climate. However, more effort is required in mitigating climate change as per the local settings. Awareness campaign aimed at increasing knowledge of climate change markers among community members is recommended.

  20. Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum.

    PubMed

    Nishikawa, Yumiko; Takahashi, Tsutomu; Takayanagi, Yoichiro; Furuichi, Atsushi; Kido, Mikio; Nakamura, Mihoko; Sasabayashi, Daiki; Noguchi, Kyo; Suzuki, Michio

    2016-02-01

    Morphological changes in the orbitofrontal cortex (OFC), such as an altered sulcogyral pattern of the 'H-shaped' orbital sulcus and a shallow olfactory sulcus, have been demonstrated in schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unclear whether patients with schizotypal features exhibit similar OFC changes. This magnetic resonance imaging study examined the OFC sulcogyral pattern (Types I, II, III, and IV) and olfactory sulcus morphology in 102 patients with schizophrenia, 47 patients with schizotypal disorder, and 84 healthy controls. The OFC sulcogyral pattern distribution between the groups was significantly different on the right hemisphere, with the schizophrenia patients showing a decrease in Type I (vs controls and schizotypal patients) and an increase in Type III (vs controls) expression. However, the schizotypal patients and controls did not differ in the OFC pattern. There were significant group differences in the olfactory sulcus depth bilaterally (schizophrenia patients < schizotypal patients < controls). Our findings suggest that schizotypal disorder, a milder form of schizophrenia spectrum disorders, partly shares the OFC changes (i.e., altered depth of the olfactory sulcus) with schizophrenia, possibly reflecting a common disease vulnerability. However, altered distribution of the OFC pattern specific to schizophrenia may at least partly reflect neurodevelopmental pathology related to a greater susceptibility to overt psychosis.

Top