Sample records for distribution control phase

  1. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  2. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  3. A wide-band fiber optic frequency distribution system employing thermally controlled phase compensation

    NASA Technical Reports Server (NTRS)

    Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George

    1993-01-01

    An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.

  4. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  5. Phase control in coherent population distribution in molecules

    NASA Astrophysics Data System (ADS)

    Datta, Avijit

    2018-06-01

    A chirped laser pulse transfers population from one level to another level accessible by one photon dipole transition. We have used a pair of phase-locked chirped pulses of same frequency instead of a single chirped pulse to achieve phase control over the population transfer and thus creating coherent population distribution in hydrogen molecule. Simultaneous actions of the phase controlled interference and rapid adiabatic passages due to chirped pulses lead to the control in population transfer from the ground X(v = 0, j = 0) level to the C(v = 2, j = 1) level. We have extended this two-level system to a three-level 1 + 1 ladder system for population transfer from the X level to the J(v = 2, j = 2) level via the C intermediate level using two pairs of phase-locked laser chirped pulses and have achieved laudable control over the coherent population distribution.

  6. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  7. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  8. Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2014-10-01

    The existing distributed quantum gates required physical particles to be transmitted between two distant nodes in the quantum network. We here demonstrate the possibility to implement distributed quantum computation without transmitting any particles. We propose a scheme for a distributed controlled-phase gate between two distant quantum-dot electron-spin qubits in optical microcavities. The two quantum-dot-microcavity systems are linked by a nested Michelson-type interferometer. A single photon acting as ancillary resource is sent in the interferometer to complete the distributed controlled-phase gate, but it never enters the transmission channel between the two nodes. Moreover, we numerically analyze the effect of experimental imperfections and show that the present scheme can be implemented with high fidelity in the ideal asymptotic limit. The scheme provides further evidence of quantum counterfactuality and opens promising possibilities for distributed quantum computation.

  9. Numerical natural rubber curing simulation, obtaining a controlled gradient of the state of cure in a thick-section part

    NASA Astrophysics Data System (ADS)

    El Labban, A.; Mousseau, P.; Bailleul, J. L.; Deterre, R.

    2007-04-01

    Although numerical simulation has proved to be a useful tool to predict the rubber vulcanization process, few applications in the process control have been reported. Because the end-use rubber properties depend on the state of cure distribution in the parts thickness, the prediction of the optimal distribution remains a challenge for the rubber industry. The analysis of the vulcanization process requires the determination of the thermal behavior of the material and the cure kinetics. A nonisothermal vulcanization model with nonisothermal induction time is used in this numerical study. Numerical results are obtained for natural rubber (NR) thick-section part curing. A controlled gradient of the state of cure in the part thickness is obtained by a curing process that consists not only in mold heating phase, but also a forced convection mold cooling phase in order to stop the vulcanization process and to control the vulcanization distribution. The mold design that allows this control is described. In the heating phase, the state of cure is mainly controlled by the chemical kinetics (the induction time), but in the cooling phase, it is the heat diffusion that controls the state of cure distribution. A comparison among different cooling conditions is shown and a good state of cure gradient control is obtained.

  10. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  11. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  12. Automatic phase control in solar power satellite systems

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.

    1978-01-01

    Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.

  13. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  14. Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.

    PubMed

    Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan

    2017-08-13

    Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  15. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.

    1988-11-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less

  16. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.

  17. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  18. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE PAGES

    Xiao, Bailu; Hang, Lijun; Mei, Jun; ...

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  19. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  20. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.

  1. On Per-Phase Topology Control and Switching in Emerging Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mousavi, Mirrasoul J.

    This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less

  2. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  3. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  4. SPS phase control system performance via analytical simulation

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.

    1979-01-01

    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.

  5. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  6. Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.

    PubMed

    Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József

    2010-03-07

    Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.

  7. Cryptographic robustness of a quantum cryptography system using phase-time coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-01-15

    A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less

  8. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  9. Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    DOE PAGES

    Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.

    2015-12-10

    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less

  10. Research on Three-phase Four-wire Inverter

    NASA Astrophysics Data System (ADS)

    Xin, W. D.; Li, X. K.; Huang, G. Z.; Fan, X. C.; Gong, X. J.; Sun, L.; Wang, J.; Zhu, D. W.

    2017-05-01

    The concept of Voltage Source Converter (VSC) based hybrid AC and DC distribution system architecture is proposed, which can solve the traditional AC distribution power quality problems and respond to the request of DC distribution development. At first, a novel VSC system structure combining the four-leg based three-phase four-wire with LC filter is adopted, using the overall coordination control scheme of the AC current tracking compensation based grid-interfaced VSC. In the end, the 75 kW simulation experimental system is designed and tested to verify the performance of the proposed VSC under DC distribution, distributed DC sources conditions, as well as power quality management of AC distribution.

  11. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.

    PubMed

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji

    2013-03-01

    Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.

  12. Case study: Use of isothiazolinone and nitro-morpholine biocides to control microbial contamination in diesel and gasoline storage and distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesneau, H.L.; Passman, F.J.; Daniels, D.

    1995-05-01

    Responding to feed-back from its retail outlet network, a major, vertically integrated petroleum company undertook to diagnose and remediate diesel and gasoline performance problems. Analysis of samples from tanks at refinery, distribution terminal and retail outlet sites established that uncontrolled microbial contamination was rampant throughout the distribution system. The company then developed and instituted a two-phase action plan. During Phase I, all tanks received corrective (shock) biocide treatment preceding mechanical tank cleaning and fuel polishing. An ongoing Phase II program currently includes routine sampling and analysis combined with periodic preventive biocide treatment. This paper describes the initial problem diagnosis, correctivemore » action plan and preventive program; recommending the Phase II program as a model for all companies involved with refining, distribution or retailing gasoline.« less

  13. Few-cycle carrier envelope phase-dependent stereo detection of electrons.

    PubMed

    Verhoef, Aart J; Fernández, Alma; Lezius, Matthias; O'Keeffe, Kevin; Uiberacker, Matthias; Krausz, Ferenc

    2006-12-01

    The spatial distribution of electrons emitted from atoms by few-cycle optical fields is known to be dependent on the carrier envelope phase, i.e., the phase of the field with respect to the pulse envelope. With respect to Paulus et al. [Phys. Rev. Lett.91, 253004 (2003)] we propose a greatly simplified device to measure and control the carrier envelope phase of few-cycle pulses with an accuracy of better than pi/10 based on this principle. We compared different schemes to control the carrier envelope phase of our pulses.

  14. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  15. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification

    PubMed Central

    Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene

    2017-01-01

    Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification. PMID:28367991

  16. Room-Temperature Quantum Cloning Machine with Full Coherent Phase Control in Nanodiamond

    PubMed Central

    Chang, Yan-Chun; Liu, Gang-Qin; Liu, Dong-Qi; Fan, Heng; Pan, Xin-Yu

    2013-01-01

    In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices. PMID:23511233

  17. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.

  18. Influences of misalignment of control mirror of axisymmetric-structural CO2 laser on phase locking.

    PubMed

    Xu, Yonggen; Li, Yude; Qiu, Yi; Feng, Ting; Fu, Fuxing; Guo, Wei

    2008-11-20

    Based on the principle of phase locking of an axisymmetric-fold combination CO2 laser under the normal state condition, the mechanisms of phase locking are analyzed when the control mirror is misaligned. Then the overlapping rate (OR) of the mode volume is introduced: the main influences on phase locking are the OR, the average life of the light wave, the root mean square phase error, and the mode coupling coefficient; these influences on phase locking are studied. The distribution of the light intensity reflects the effect of phase locking. It is shown that the misaligned angle has little influence on the phase locking if it is within tolerance.

  19. Annular beam with segmented phase gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shubo; Wu, Liang; Tao, Shaohua, E-mail: eshtao@csu.edu.cn

    2016-08-15

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owingmore » to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.« less

  20. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security wasmore » accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offers can be made electronically without human intervention. A suite of software was developed by DR SOC enabling DER usage in real time and day-ahead: Generation information file exchange with PI and the utility power flow A utility day-ahead information file Energy Offer Web Service Market Result Web Service Real-Time Meter Data Web Service Real-Time Notification Web Service Registered over 20 DER with MISO in Demand Response Market and demonstrated electronic sale to MISO.« less

  1. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less

  2. Effects of sensorimotor foot training on the symmetry of weight distribution on the lower extremities of patients in the chronic phase after stroke

    PubMed Central

    Goliwas, Magdalena; Kocur, Piotr; Furmaniuk, Lech; Majchrzycki, Marian; Wiernicka, Marzena; Lewandowski, Jacek

    2015-01-01

    [Purpose] To assess the effects of sensorimotor foot stimulation on the symmetry of weight distribution on the feet of patients in the chronic post-stroke phase. [Subjects and Methods] This study was a prospective, single blind, randomized controlled trial. In the study we examined patients with chronic stroke (post-stroke duration > 1 year). They were randomly allocated to the study group (n=8) or to the control group (n=12). Both groups completed a standard six-week rehabilitation programme. In the study group, the standard rehabilitation programme was supplemented with sensorimotor foot stimulation training. Each patient underwent two assessments of symmetry of weight distribution on the lower extremities with and without visual control, on a treadmill, with stabilometry measurements, and under static conditions. [Results] Only the study group demonstrated a significant increase in the weight placed on the leg directly affected by stroke, and a reduction in asymmetry of weight-bearing on the lower extremities. [Conclusion] Sensorimotor stimulation of the feet enhanced of weight bearing on the foot on the side of the body directly affected by stroke, and a decreased asymmetry of weight distribution on the lower extremities of patients in the chronic post-stroke phase. PMID:26504326

  3. Effects of sensorimotor foot training on the symmetry of weight distribution on the lower extremities of patients in the chronic phase after stroke.

    PubMed

    Goliwas, Magdalena; Kocur, Piotr; Furmaniuk, Lech; Majchrzycki, Marian; Wiernicka, Marzena; Lewandowski, Jacek

    2015-09-01

    [Purpose] To assess the effects of sensorimotor foot stimulation on the symmetry of weight distribution on the feet of patients in the chronic post-stroke phase. [Subjects and Methods] This study was a prospective, single blind, randomized controlled trial. In the study we examined patients with chronic stroke (post-stroke duration > 1 year). They were randomly allocated to the study group (n=8) or to the control group (n=12). Both groups completed a standard six-week rehabilitation programme. In the study group, the standard rehabilitation programme was supplemented with sensorimotor foot stimulation training. Each patient underwent two assessments of symmetry of weight distribution on the lower extremities with and without visual control, on a treadmill, with stabilometry measurements, and under static conditions. [Results] Only the study group demonstrated a significant increase in the weight placed on the leg directly affected by stroke, and a reduction in asymmetry of weight-bearing on the lower extremities. [Conclusion] Sensorimotor stimulation of the feet enhanced of weight bearing on the foot on the side of the body directly affected by stroke, and a decreased asymmetry of weight distribution on the lower extremities of patients in the chronic post-stroke phase.

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Control of the angular distribution of the radiation emitted by phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Kachurin, O. R.; Lebedev, F. V.; Napartovich, M. A.; Khlynov, M. E.

    1991-03-01

    A numerical investigation was made of the influence of the number and packing density of a linear array of periodically arranged coherent sources on the efficiency of redistributing the radiation power from the side lobes to the main lobe of the angular distribution of the emitted radiation by using a binary phase corrector mounted in the image-doubling plane. The results are given of experimental investigations of a new device for improving the radiation pattern of phase-locked laser arrays.

  5. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  6. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    PubMed Central

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798

  7. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    PubMed

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  8. Temperature dependence of the magneto-controllable first-order phase transition in dilute magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.

    2017-11-01

    Experimental study was carried out to investigate the influence of particle size distribution function on the temperature dependent magneto-controllable first-order phase transition of the "gas-liquid" type in magnetic fluids. The study resolves one crisis situation in ferrohydrodynamic experiment made by several research groups in the 1980-1990s. It is shown that due to polydispersity magnetic fluids exhibit phase diagrams which are divided into three regions by vaporus and liquidus curves. Granulometric data states the primary role of the width of the particle size distribution function in the process of spinodal decomposition. New modified Langevin parameter is introduced for unification of liquidus curves of different ferrofluids despite the significant difference between the curves (one order of magnitude) in (H, T) coordinates.

  9. Resonance controlled transport in phase space

    NASA Astrophysics Data System (ADS)

    Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton

    2018-02-01

    We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.

  10. Using Hybrid Angle/Distance Information for Distributed Topology Control in Vehicular Sensor Networks

    PubMed Central

    Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu

    2014-01-01

    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506

  11. Data Concentrator

    NASA Technical Reports Server (NTRS)

    Willett, Mike

    2015-01-01

    Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.

  12. Gas-phase and particle-phase PCDD/F congener distributions in the flue gas from an iron ore sintering plant.

    PubMed

    Liu, Xiaolong; Ye, Meng; Wang, Xue; Liu, Wen; Zhu, Tingyu

    2017-04-01

    The activated carbon injection-circulating fluidized bed (ACI-CFB)-bag filter coupling technique was studied in an iron ore sintering plant. For comparison, the removal efficiencies under the conditions without or with ACI technology were both evaluated. It was found that the polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) removal efficiency for total international toxic equivalence quantity (I-TEQ) concentration was improved from 91.61% to 97.36% when ACI was employed, revealing that ACI was very conducive to further controlling the PCDD/F emissions. Detailed congener distributions of PCDD/Fs in the gas-phase and particle-phase of the Inlet and Outlet samples were determined. Additionally, the PCDD/F distribution for the Fly ash-with ACI sample of was also studied. Copyright © 2016. Published by Elsevier B.V.

  13. Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling

    2018-02-01

    A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.

  14. Phase transitions in distributed control systems with multiplicative noise

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément

    2018-01-01

    Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.

  15. Advanced Distribution Network Modelling with Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a three-phase optimal power flow method is developed. The formulation has the capability to provide optimal solutions for distribution system control variables, for a chosen objective function, subject to required constraints. It can, therefore, be utilised for numerous technologies and applications. The three-phase optimal power flow is employed to manage various distributed resources, such as photovoltaics and storage, as well as distribution equipment, including tap changers and switches. The flexibility of the methodology allows it to be applied in both an operational and a planning capacity. The three-phase optimal power flow is employed in an operational planning capacity to determine volt-var curves for distributed photovoltaic inverters. The formulation finds optimal reactive power settings for a number of load and solar scenarios and uses these reactive power points to create volt-var curves. Volt-var curves are determined for 10 PV systems on a test feeder. A universal curve is also determined which is applicable to all inverters. The curves are validated by testing them in a power flow setting over a 24-hour test period. The curves are shown to provide advantages to the feeder in terms of reduction of voltage deviations and unbalance, with the individual curves proving to be more effective. It is also shown that adding a new PV system to the feeder only requires analysis for that system. In order to represent the uncertainties that inherently occur on distribution systems, an information gap decision theory method is also proposed and integrated into the three-phase optimal power flow formulation. This allows for robust network decisions to be made using only an initial prediction for what the uncertain parameter will be. The work determines tap and switch settings for a test network with demand being treated as uncertain. The aim is to keep losses below a predefined acceptable value. The results provide the decision maker with the maximum possible variation in demand for a given acceptable variation in the losses. A validation is performed with the resulting tap and switch settings being implemented, and shows that the control decisions provided by the formulation keep losses below the acceptable value while adhering to the limits imposed by the network.

  16. Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase

    NASA Astrophysics Data System (ADS)

    Banerjee, Amitava

    2017-11-01

    In this numerical work, we have systematically studied the dynamical phase transitions in the Kuramoto-Sakaguchi model of synchronizing phase oscillators controlled by disorder in the Sakaguchi phases. We derive the numerical steady state phase diagrams for quenched and annealed kinds of disorder in the Sakaguchi parameters, using the conventional order parameter and other such statistical quantities as strength of incoherence and discontinuity measures. We have also considered the correlation profile of the local order parameter fluctuations in the various phases identified. The phase diagrams for quenched disorder are qualitatively much different from those in the global coupling regime. The order of various transitions is confirmed by a study of the distribution of the order parameter and its fourth order Binder’s cumulant across the transition for an ensemble of initial distribution of phases. For the annealed type of disorder, in contrast to the case with quenched disorder, the system is almost insensitive to the amount of disorder. We also elucidate the role of chimeralike states in the synchronizing transition of the system, and study the effect of disorder on these states. Finally, we seek justification of our results from simulations guided by the Ott-Antonsen ansatz.

  17. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  18. Description of a 20 kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  19. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  20. Solar Power Satellite (SPS) fiber optic link assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.

  1. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  2. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  3. Entraining the topology and the dynamics of a network of phase oscillators

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  4. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  5. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  6. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  7. Generation of spiral optical beams using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Rodrigo, Peter J.; Alonzo, Carlo A.; Gluckstad, Jesper

    2005-08-01

    Recently, a new type of beam termed "spiral optical beam" has been introduced [Alonzo, et al., Opt. Express 13, 1749 (2005)]. Spiral beams are created from multiplicative mixtures of helical and conical phase distributions. Helico-conical phase fronts that generate these novel beams are not achieved with a sequence of a corkscrew wave-plate and an axicon (as this sequence gives a sum of helical and conical phase terms). Nevertheless, the availability of phase-only spatial light modulators (SLM) allows one to directly imprint helico-conical phase functions on an incident plane wave and provides an easy way to modify the profile of the encoded phase. Focusing the phase-modified field results in spiral intensity distributions that may find use for optical manipulation of mesoscopic particles. In this paper, we have extended the discussion to translation and rotation (as well as chirality switching) of the spiral beams using SLM control.

  8. Advanced Aircraft Electrical System Control Technology Demonstrator. Phase I. Requirements Analysis and Conceptual Design.

    DTIC Science & Technology

    1981-07-01

    System 13 (7) Flight Critical Power 15 (8) Power Bus Configuration 16 b. System Control and Protection 20...includes the main buses, external power receptacles and distribution feeders. The function of the distribution protection system * is mainly to provide...TechnicaI rea Manager Power Systems Branch Power Systems B nch Aerospace Power Division Aerospace Power Division FOR .AKE D . REAMS Chief,

  9. Ultrasonic phased array controller for hyperthermia applications.

    PubMed

    Benkeser, P J; Pao, T L; Yoon, Y J

    1991-01-01

    Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.

  10. SLURM: Simple Linux Utility for Resource Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jette, M; Dunlap, C; Garlick, J

    2002-04-24

    Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, and scheduling modules. The design also includes a scalable, general-purpose communication infrastructure. Development will take place in four phases: Phase I results in a solid infrastructure; Phase II produces a functional but limited interactive job initiation capability without use of the interconnect/switch; Phase III provides switch support and documentation; Phase IV provides job status, fault-tolerance, and job queuing and control through Livermore's Distributed Productionmore » Control System (DPCS), a meta-batch and resource management system.« less

  11. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  12. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  13. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS

    EPA Science Inventory

    Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...

  14. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2016-08-01

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less

  15. Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2016-11-14

    Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less

  16. Distribution of free and antibody-bound peptide hormones in two-phase aqueous polymer systems

    PubMed Central

    Desbuquois, Bernard; Aurbach, G. D.

    1972-01-01

    Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran–polyethylene glycol and dextran sulphate–polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone–antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions. PMID:4672674

  17. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  18. Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory

    NASA Astrophysics Data System (ADS)

    Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi

    2017-02-01

    This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.

  19. A modular multiple use system for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Adams, W. S.; Lee, G. M.; Bush, R. L.

    1978-01-01

    A modular CAMAC based system is described which was developed to meet a variety of precise time and frequency measurement and distribution needs. The system was based on a generalization of the dual mixer concept. By using a 16 channel 100 ns event clock, the system can intercompare the phase of 16 frequency standards with subpicosecond resolution. The system has a noise floor of 26 fs and a long term stability on the order of 1 ps or better. The system also used a digitally controlled crystal oscillator in a control loop to provide an offsettable 5 MHz output with subpicosecond phase tracking capability. A detailed description of the system is given including theory of operation and performance. A method to improve the performance of the dual mixer technique is discussed when phase balancing of the two input ports cannot be accomplished.

  20. Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.

  1. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.

    PubMed

    Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu

    2017-12-01

    In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.

  2. High-resolution mapping of molecules in an ionic liquid via scanning transmission electron microscopy.

    PubMed

    Miyata, Tomohiro; Mizoguchi, Teruyasu

    2018-03-01

    Understanding structures and spatial distributions of molecules in liquid phases is crucial for the control of liquid properties and to develop efficient liquid-phase processes. Here, real-space mapping of molecular distributions in a liquid was performed. Specifically, the ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI) was imaged using atomic-resolution scanning transmission electron microscopy. Simulations revealed network-like bright regions in the images that were attributed to the TFSI- anion, with minimal contributions from the C2mim+ cation. Simple visualization of the TFSI- distribution in the liquid sample was achieved by binarizing the experimental image.

  3. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  4. Modelling the phase curve and occultation of WASP-43b with SPIDERMAN

    NASA Astrophysics Data System (ADS)

    Louden, Tom

    2017-06-01

    Presenting SPIDERMAN, a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary two dimensional surface brightness distributions. SPIDERMAN uses an exact geometric algorithm to calculate the area of sub-regions of the planet that are occulted by the star, with no loss in numerical precision. The speed of this calculation makes it possible to run MCMCs to marginalise effectively over the underlying parameters controlling the brightness distribution of exoplanets. The code is fully open source and available over Github. We apply the code to the phase curve of WASP-43b using an analytical surface brightness distribution, and find an excellent fit to the data. We are able to place direct constraints on the physics of heat transport in the atmosphere, such as the ratio between advective and radiative timescales at different altitudes.

  5. Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units

    NASA Astrophysics Data System (ADS)

    Chen, Zhaobin; Deng, Hui; Xiong, Qingxu; Liu, Chen

    2018-03-01

    It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor ( Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0-20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0-20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0-18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only - 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.

  6. Controlling Disinfection Residual Losses in Drinking Water Distribution Systems: Results from Experimental Studies

    EPA Science Inventory

    It is generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical and/or microbiological in nature. Perhaps one of the most serious aspects of water quality...

  7. Controlling Disinfection Residual Losses in Drinking Water Distribution Systems: Results from Experimental Studies

    EPA Science Inventory

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical and/or microbiological in nature. Perhaps one of the most serious aspects of water...

  8. "Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-26

    Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.

  9. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  10. On the issues of probability distribution of GPS carrier phase observations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In common practice the observables related to Global Positioning System (GPS) are assumed to follow a Gauss-Laplace normal distribution. Actually, full knowledge of the observables' distribution is not required for parameter estimation by means of the least-squares algorithm based on the functional relation between observations and unknown parameters as well as the associated variance-covariance matrix. However, the probability distribution of GPS observations plays a key role in procedures for quality control (e.g. outlier and cycle slips detection, ambiguity resolution) and in reliability-related assessments of the estimation results. Under non-ideal observation conditions with respect to the factors impacting GPS data quality, for example multipath effects and atmospheric delays, the validity of the normal distribution postulate of GPS observations is in doubt. This paper presents a detailed analysis of the distribution properties of GPS carrier phase observations using double difference residuals. For this purpose 1-Hz observation data from the permanent SAPOS

  11. Nanometric Scale Investigation of Phase Transformations in Advanced Steels for Automotive Application

    NASA Astrophysics Data System (ADS)

    Drillet, Josée; Valle, Nathalie; Iung, Thierry

    2012-12-01

    The current trend toward producing lighter vehicles in the automotive industry is driven by the need to conform to the new exhaust emission control regulations. This objective presents a challenge to steel manufacturers. The difficulty lies in designing new alloys with an optimum strength/formability/cost balance for the various components. Here, the key to success lies in controlling the steel microstructure and especially the phase transformations at the smallest possible scale. Among the different alloying elements, light elements such as carbon and boron are of prime importance due to their major effects on the kinetics of phase transformations. Characterization tools combining high spatial and analytical resolution such as secondary ion mass spectrometry (SIMS) and field emission gun-transmission electron microscopy (TEM) were used. In this article, the examples presented are as follows. (1) Boron segregation and precipitation effects to control hardenability in martensitic steels. (2) Local carbon distribution in advanced high-strength steels, with a specific emphasis on martensite tempering. Links have been established between the boron and carbon distribution and the formability.

  12. Spatially modulated structural colour in bird feathers.

    PubMed

    Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R

    2015-12-21

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  13. Spatially modulated structural colour in bird feathers

    PubMed Central

    Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.

    2015-01-01

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. PMID:26686280

  14. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-01-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  15. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior

    NASA Astrophysics Data System (ADS)

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  16. Ground Truthing the 'Conventional Wisdom' of Lead Corrosion Control Using Mineralogical Analysis

    EPA Science Inventory

    For drinking water distribution systems (DWDS) with lead-bearing plumbing materials some form of corrosion control is typically necessary, with the goal of mitigating lead release by forming adherent, stable corrosion scales composed of low-solubility mineral phases. Conventional...

  17. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  18. Berry phase in controlled light propagation and storage

    NASA Astrophysics Data System (ADS)

    Raczyński, Andrzej; Zaremba, Jarosław; Zielińska-Raczyńska, Sylwia

    2018-04-01

    It is shown that during light storage in an atomic medium in the Λ configuration, with not only the amplitude of the control field but also its phase changing adiabatically, a photon gains a Berry (geometric) phase. In the case of the tripod configuration with two probe fields the Berry phase is replaced by a 2 ×2 matrix. The probe fields are shown to be superpositions of two modes, each of them being characterized not only by its own velocity but also by its own Berry phase. If after light storage photons are released backwards, the contributions of the two modes interfere and the distribution of the outgoing photons can be steered by changing the difference between the Berry phases of the modes, due to the choice of the control field at the storage and release stages. In particular, one can turn a single photon of one of the probe fields into a photon of the other field or essentially modify coherent states of the incoming pulses.

  19. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

    PubMed Central

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-01-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μm to 5 μm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites. PMID:27877687

  20. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    PubMed

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  1. Phase space manipulation in high-brightness electron beams

    NASA Astrophysics Data System (ADS)

    Rihaoui, Marwan M.

    Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.

  2. A distributed finite-element modeling and control approach for large flexible structures

    NASA Technical Reports Server (NTRS)

    Young, K. D.

    1989-01-01

    An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.

  3. Evolution and control of the phase competition morphology in a manganite film

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  4. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  5. Analysis of Photonic Phase-Shifting Technique Employing Amplitude-Controlled Fiber-Optic Delay Lines

    DTIC Science & Technology

    2012-01-13

    Controlled Fiber-Optic Delay Lines January 13, 2012 Approved for public release; distribution is unlimited. Meredith N. draa ViNceNt J. Urick keith J...Draa, Vincent J. Urick , and Keith J. Williams Naval Research Laboratory, Code 5652 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR/5650--12...9376 Approved for public release; distribution is unlimited. Unclassified Unclassified Unclassified UU 29 Vincent J. Urick (202) 767-9352 Fiber optics

  6. Arctic Mixed-phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.

    2008-01-01

    Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.

  7. Manipulating dispersion and distribution of graphene in PLA through Novel Interface Engineering for improved conductive properties

    USDA-ARS?s Scientific Manuscript database

    This study aimed to enhance the conductive properties of PLA nanocomposite by controlling the dispersion and distribution of graphene within the minor phase of the polymer blend. Functionalized graphene (f-GO) was achieved by reacting graphene oxide (GO) with various silanes under the aid of an ioni...

  8. Manipulating dispersion and distribution of graphene in PLA through novel interface engineering for improved conductive properties

    USDA-ARS?s Scientific Manuscript database

    This study aimed to enhance the conductive properties of PLA nanocomposite by controlling the dispersion and distribution of graphene within the minor phase of the polymer blend. Functionalized graphene (f-GO) was achieved by reacting graphene oxide (GO) with various silanes under the aid of an ioni...

  9. Ground Truthing the ‘Conventional Wisdom’ of Lead Corrosion Control Using Mineralogical Analysis

    EPA Science Inventory

    For drinking water distribution systems (DWDS) with lead-bearing plumbing materials some form of corrosion control is typically necessary, with the goal of mitigating lead release by forming adherent, stable corrosion scales composed of low-solubility mineral phases. Conventional...

  10. Distribution of light in the human retina under natural viewing conditions

    NASA Astrophysics Data System (ADS)

    Gibert, Jorge C.

    Age-related macular degeneration (AMD) is the leading cause of blindness inAmerica. The fact that AMD wreaks most of the damage in the center of the retina raises the question of whether light, integrated over long periods, is more concentrated in the macula. A method, based on eye-tracking, was developed to measure the distribution of light in the retina under natural viewing conditions. The hypothesis was that integrated over time, retinal illumination peaked in the macula. Additionally a possible relationship between age and retinal illumination was investigated. The eye tracker superimposed the subject's gaze position on a video recorded by a scene camera. Five informed subjects were employed in feasibility tests, and 58 naive subjects participated in 5 phases. In phase 1 the subjects viewed a gray-scale image. In phase 2, they observed a sequence of photographic images. In phase 3 they viewed a video. In phase 4, they worked on a computer; in phase 5, the subjects walked around freely. The informed subjects were instructed to gaze at bright objects in the field of view and then at dark objects. Naive subjects were allowed to gaze freely for all phases. Using the subject's gaze coordinates, and the video provided by the scene camera, the cumulative light distribution on the retina was calculated for ˜15° around the fovea. As expected for control subjects, cumulative retinal light distributions peaked and dipped in the fovea when they gazed at bright or dark objects respectively. The light distribution maps obtained from the naive subjects presented a tendency to peak in the macula for phases 1, 2, and 3, a consistent tendency in phase 4 and a variable tendency in phase 5. The feasibility of using an eye-tracker system to measure the distribution of light in the retina was demonstrated, thus helping to understand the role played by light exposure in the etiology of AMD. Results showed that a tendency for light to peak in the macula is a characteristic of some individuals and of certain tasks. In these situations, risk of AMD could be increased. No significant difference was observed based on age.

  11. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGES

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; ...

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  12. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  13. Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL

    NASA Astrophysics Data System (ADS)

    Ghosh, J.; Tick, G. R.

    2011-12-01

    The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.

  14. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.

    PubMed

    Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2018-05-14

    We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

  15. Lead distribution in coastal and estuarine sediments around India.

    PubMed

    Chakraborty, Sucharita; Chakraborty, Parthasarathi; Nath, B Nagender

    2015-08-15

    This study describes the geochemical distribution of lead (Pb) and identifies the critical factors that significantly control Pb distribution and speciation in coastal and estuarine sediments around India by using published data from the literature. Crustal sources influence the abundance of Pb in coastal sediment from the south-east and central-west coast of India. Parts of north-east, north-west, and south-west coast of India were polluted by Pb. Distribution of Pb in sediments, from the north-east and north-west coasts of India, were controlled by Fe-Mn oxyhydroxide mineral phases of the sediments. However, organic carbon (OC) seemed to be a dominant factor in controlling the distribution of Pb in sediments from the central-east and south-west coasts of India. The outcome of this study may help in decision-making to predict the levels of Pb from natural and anthropogenic sources and to control Pb pollution in coastal and estuarine sediments around India. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Direct numerical simulation of turbulent channel flow with spanwise alternatively distributed strips control

    NASA Astrophysics Data System (ADS)

    Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng

    2018-05-01

    The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.

  17. Flow Distribution Control Characteristics in Marine Gas Turbine Waste-Heat Recovery Systems. Phase I. Flow Distribution Characteristics and Control in Diffusers.

    DTIC Science & Technology

    1981-08-01

    provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing

  18. Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Arya, Sabha Raj

    2014-01-01

    This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.

  19. Research on MMC-SST Oriented AC/DC Distribution System

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Zuo, Jianglin; Zhang, Zhigang

    2018-01-01

    A modular multilevel converter-solid state transformer (MMC-SST) oriented AC/DC Distribution System is designed. Firstly, the topology structure is introduced, MMC is adopted in the input stage, multiple DC-DC converters are adopted in the isolation stage, and a Three-Phase Four-Leg inverter is adopted in the output stage. Then, the control strategy is analysed. Finally, simulation model and an experimental prototype of MMC-SST are built, simulation and experimental results show that topology and control strategy of MMC-SST are feasible.

  20. Exactly solvable random graph ensemble with extensively many short cycles

    NASA Astrophysics Data System (ADS)

    Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.

    2018-02-01

    We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.

  1. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation.

  2. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less

  3. Phase noise cancellation in polarisation-maintaining fibre links

    NASA Astrophysics Data System (ADS)

    Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.

    2018-03-01

    The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.

  4. Chromium Distribution between Liquid Slag and Matte Phases

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman

    The distribution of chromium between liquid silicate slags and copper-iron-nickel matte phases encountered in electric smelting of PGM containing South African sulphide concentrates were experimentally studied under controlled partial pressures of oxygen and sulphur. The reported experiments were conducted under silica saturation through the use of silica crucibles. Seven representative slag compositions were equilibrated with a typical sulphur deficient matte containing 18% Ni, 11% Cu, 42% Fe and 29% S. The slag constituents varied in the following ranges: SiO2: 42-58%, Al2O3: 3.5-9.0%, Fe2O3: 13-21%, MgO: 15.6-25%, CaO: 2-15%, Cr2O3: 0.2-3.5%. The slag and matte samples were synthetically prepared from pure components. The chromium content of the two phases was analysed chemically. According to the present available results of this ongoing research it was found that the partition of chromium to the matte phase decreased with an increase in the partial pressures of both oxygen and sulphur where the value of the distribution coefficient of chromium between the matte and the slag phase varied from as low as 0.07 to as high as 5.5.

  5. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  6. New insight on the formation of whey protein microbeads by a microfluidic system

    NASA Astrophysics Data System (ADS)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  7. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE PAGES

    Xu, Yilun; Wilcox, Russell; Byrd, John; ...

    2017-11-20

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  8. Thermally-actuated, phase change flow control for microfluidic systems.

    PubMed

    Chen, Zongyuan; Wang, Jing; Qian, Shizhi; Bau, Haim H

    2005-11-01

    An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.

  9. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yilun; Wilcox, Russell; Byrd, John

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  10. Distributed Planning and Control for Teams of Cooperating Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.E.

    2004-06-15

    This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of the control approaches for distributed planning and cooperation in multi-robot teams.

  11. Solar power satellite system definition study, phase 2.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.

  12. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  13. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  14. Ultra narrow flat-top filter based on multiple equivalent phase shifts

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong

    2008-11-01

    Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Michael L M; Chan, Anthony T C; The Chinese University of Hong Kong

    Purpose: To develop a formulation for 4D treatment planning for a tumour tracking volumetric modulated arc therapy treatment (VMAT) plan for lung cancer. Methods: A VMAT plan was optimized based on a reference phase of the 4DCT of a lung cancer patient. The PTV was generated from the GTV of the reference phase. The collimator angle was set to 90 degrees such that the MLC travels along superior-inferior direction which is the main component of movement of a lung tumour. Then, each control point of the VMAT plan was assigned to a particular phase of the 4DCT in chronological order.more » The MLC positions of each control point were shifted according to the position of the tumour centroid of its assigned phase to form a tumour tracking VMAT plan. The control points of the same phase were grouped to form a pseudo VMAT plan for that particular phase. Dose calculation was performed for each pseudo VMAT plan on the corresponding phase of the 4DCT. The CTs of all phases were registered to the reference phase CT according to the displacement of the tumour centroid. The individual dose distributions of the pseudo VMAT plans were summed up and displayed on the reference phase of the 4DCT. A control VMAT plan was optimized based on a PTV generated from the ITV of all phases and compared with the tumour tracking VMAT plan. Results: Both plans achieved >95% volume coverage at the prescription dose level (96% for the tumour tracking plan and 97% for the control plan). But the normal lung volume irradiated at the prescription dose level was 39% less for the tumour tracking plan than the control plan. Conclusion: A formulation of 4D treatment planning for tumour tracking VMAT plans for lung cancer was developed.« less

  16. Omega flight-test data reduction sequence. [computer programs for reduction of navigation data

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1974-01-01

    Computer programs for Omega data conversion, summary, and preparation for distribution are presented. Program logic and sample data formats are included, along with operational instructions for each program. Flight data (or data collected in flight format in the laboratory) is provided by the Ohio University Omega receiver base in the form of 6-bit binary words representing the phase of an Omega station with respect to the receiver's local clock. All eight Omega stations are measured in each 10-second Omega time frame. In addition, an event-marker bit and a time-slot D synchronizing bit are recorded. Program FDCON is used to remove data from the flight recorder tape and place it on data-processing cards for later use. Program FDSUM provides for computer plotting of selected LOP's, for single-station phase plots, and for printout of basic signal statistics for each Omega channel. Mean phase and standard deviation are printed, along with data from which a phase distribution can be plotted for each Omega station. Program DACOP simply copies the Omega data deck a controlled number of times, for distribution to users.

  17. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.

    PubMed

    Basse, Britta; Ubezio, Paolo

    2007-07-01

    We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity < t < infinity. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t

  18. Controlling geometric phase optically in a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  19. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report alsomore » analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.« less

  20. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  1. Distributed optical signal processing for microwave photonics subsystems.

    PubMed

    Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert

    2016-03-07

    We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.

  2. Tube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.

    PubMed

    Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2014-01-01

    A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.

  3. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling

    NASA Astrophysics Data System (ADS)

    Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2018-04-01

    Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.

  5. Multi-functional optical signal processing using optical spectrum control circuit

    NASA Astrophysics Data System (ADS)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  6. Properties of two-mode squeezed number states

    NASA Technical Reports Server (NTRS)

    Chizhov, Alexei V.; Murzakhmetov, B. K.

    1994-01-01

    Photon statistics and phase properties of two-mode squeezed number states are studied. It is shown that photon number distribution and Pegg-Barnett phase distribution for such states have similar (N + 1)-peak structure for nonzero value of the difference in the number of photons between modes. Exact analytical formulas for phase distributions based on different phase approaches are derived. The Pegg-Barnett phase distribution and the phase quasiprobability distribution associated with the Wigner function are close to each other, while the phase quasiprobability distribution associated with the Q function carries less phase information.

  7. Proceedings of the Annual Symposium on Frequency Control (39th) Held in Philadelphia, Pennsylvania on 29-31 May 1985

    DTIC Science & Technology

    1985-05-01

    distribution, was evaluation of phase shift through best fit of assumed to be the beam response to the microwave theoretical curves and experimental...vibration sidebands o Acceleration as shown in the lower calculated curve . o High-Temperature Exposure o Thermal Vacuum Two of the curves show actual phase ...conclude that the method to measure the phase noise with spectrum estimation is workable, and it has no principle limitation. From the curve it has been

  8. A distributed data base management capability for the deep space network

    NASA Technical Reports Server (NTRS)

    Bryan, A. I.

    1976-01-01

    The Configuration Control and Audit Assembly (CCA) is reported that has been designed to provide a distributed data base management capability for the DSN. The CCA utilizes capabilities provided by the DSN standard minicomputer and the DSN standard nonreal time high level management oriented programming language, MBASIC. The characteristics of the CCA for the first phase of implementation are described.

  9. Control of polarization rotation in nonlinear propagation of fully structured light

    NASA Astrophysics Data System (ADS)

    Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.

    2018-03-01

    Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.

  10. Design considerations for high-power VHF radar transceivers: Phase matching long coaxial cables using a cable radar

    NASA Technical Reports Server (NTRS)

    Johnson, P. E.; Ecklund, W. L.

    1983-01-01

    The Poker Flat 49.92-MHz MST radar uses 64 phase-controlled transmitters in individual shelters distributed throughout the antenna array. Phase control is accomplished by sampling the transmitted pulse at the directional coupler of each transmitter and sending the sample pulse back to a phase-control unit. This method requires phase matching 64 long (256 meter) coaxial cables (RG-213) to within several electrical degrees. Tests with a time domain reflectometer showed that attenuation of high frequency components in the long RG-213 cable rounded the leading edge of the reflected pulse so that the cables could only be measured to within 50 cm (about 45 deg at 49.92 MHz). Another measurement technique using a vector voltmeter to compare forward and reflected phase required a directional coupler with unattainable directivity. Several other techniques were also found lacking, primarily because of loss in the long RG-213 cables. At this point it was realized that what was needed was a simple version of the phase-coherent clear-air radar, i.e., a cable radar. The design and operation of this cable are described.

  11. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  12. Autonomous Decentralized Control of Supply and Demand by Inverter Based Distributed Generations in Isolated Microgrid

    NASA Astrophysics Data System (ADS)

    Shiki, Akira; Yokoyama, Akihiko; Baba, Jyunpei; Takano, Tomihiro; Gouda, Takahiro; Izui, Yoshio

    Recently, because of the environmental burden mitigation, energy conservations, energy security, and cost reductions, distributed generations are attracting our strong attention. These distributed generations (DGs) have been already installed to the distribution system, and much more DGs will be expected to be connected in the future. On the other hand, a new concept called “Microgrid” which is a small power supply network consisting of only DGs was proposed and some prototype projects are ongoing in Japan. The purpose of this paper is to develop the three-phase instantaneous valued digital simulator of microgrid consisting of a lot of inverter based DGs and to develop a supply and demand control method in isolated microgrid. First, microgrid is modeled using MATLAB/SIMULINK. We develop models of three-phase instantaneous valued inverter type CVCF generator, PQ specified generator, PV specified generator, PQ specified load as storage battery, photovoltaic generation, fuel cell and inverter load respectively. Then we propose an autonomous decentralized control method of supply and demand in isolated microgrid where storage batteries, fuel cells, photovoltaic generations and loads are connected. It is proposed here that the system frequency is used as a means to control DG output. By changing the frequency of the storage battery due to unbalance of supply and demand, all inverter based DGs detect the frequency fluctuation and change their own outputs. Finally, a new frequency control method in autonomous decentralized control of supply and demand is proposed. Though the frequency is used to transmit the information on the supply and demand unbalance to DGs, after the frequency plays the role, the frequency finally has to return to a standard value. To return the frequency to the standard value, the characteristic curve of the fuel cell is shifted in parallel. This control is carried out corresponding to the fluctuation of the load. The simulation shows that the frequency can be controlled well and has been made clear the effectiveness of the frequency control system.

  13. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 3, Issue 1

    DTIC Science & Technology

    2011-01-01

    release; distribution is unlimited. Multiscale Modeling of Materials The rotating reflector antenna associated with airport traffic control systems is...batteries and phased-array antennas . Power and efficiency studies evaluate on-board HPC systems and advanced image processing applications. 2010 marked...giving way in some applications to a newer technology called the phased array antenna system (sometimes called a beamformer, example shown at right

  14. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Wang, Bo; Cao, Ye

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less

  15. EMC and power quality standards for 20-kHz power distribution

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1987-01-01

    The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.

  16. Ground support system methodology and architecture

    NASA Technical Reports Server (NTRS)

    Schoen, P. D.

    1991-01-01

    A synergistic approach to systems test and support is explored. A building block architecture provides transportability of data, procedures, and knowledge. The synergistic approach also lowers cost and risk for life cycle of a program. The determination of design errors at the earliest phase reduces cost of vehicle ownership. Distributed scaleable architecture is based on industry standards maximizing transparency and maintainability. Autonomous control structure provides for distributed and segmented systems. Control of interfaces maximizes compatibility and reuse, reducing long term program cost. Intelligent data management architecture also reduces analysis time and cost (automation).

  17. Manipulation of Micro Scale Particles in an Optical Trap Using Interferometry

    NASA Technical Reports Server (NTRS)

    Seibel, Robin

    2002-01-01

    This research shows that micro particles can be manipulated via interferometric patterns superimposed on an optical tweezers beam. Interferometry allows the manipulation of intensity distributions, and thus, force distributions on a trapped particle. To demonstrate the feasibility of such manipulation, 458 nm light, from an argon-ion laser, was injected into a Mach Zender interferometer. One mirror in the interferometer was oscillated with a piezoelectric phase modulator. The light from the interferometer was then injected into a microscope to trap a 9.75 micron polystyrene sphere. By varying the phase modulation, the sphere was made to oscillate in a controlled fashion.

  18. Interaction between Two Timing MicroRNAs Controls Trichome Distribution in Arabidopsis

    PubMed Central

    Xue, Xue-Yi; Zhao, Bo; Chao, Lu-Men; Chen, Dian-Yang; Cui, Wen-Rui; Mao, Ying-Bo; Wang, Ling-Jian; Chen, Xiao-Ya

    2014-01-01

    The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted LOST MERISTEMS 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets. PMID:24699192

  19. Spatial intensity distribution of controlled-NOT gate carrying orbital angular momentum via photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun

    2018-07-01

    By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.

  20. Crisis-Expectant Planning for Crisis Relocation.

    DTIC Science & Technology

    1981-10-01

    WORK UNIT NUmBERS Human Sciences Research, Inc. 7710 Old Springhouse Road Work Unit 482 1G McLean, Virginia 22102 It. CONTROLLING OFFICE NAME AND... Controlling Office) UNCLASSUIFIEDS.(1 ereot I Sm. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATE64ENT (of &hs .1. oer) Approved for Pttblic...preattack relocation period. 4. Improved population control with respect to orchestrating or phasing the evacuation movement, the post-evacuation

  1. Magnetic Control of Locked Modes in Present Devices and ITER

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.

    2014-10-01

    The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.

  2. Spoof surface plasmon polaritons excitation and wavefront control by Pancharatnam–Berry phase manipulating metasurface

    NASA Astrophysics Data System (ADS)

    Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo

    2018-05-01

    Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.

  3. Power Hardware-in-the-Loop Testing of a Smart Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige

    This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less

  4. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  5. Cable delay compensator for microwave signal distribution over optical fibers

    NASA Astrophysics Data System (ADS)

    Primas, Lori E.

    1990-12-01

    The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.

  6. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    PubMed

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  7. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  8. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  9. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  10. Electrochemical synthesis of a surface-porous Mg70.5Al29.5 eutectic alloy in a neutral aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng

    2018-03-01

    A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.

  11. The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter

    NASA Astrophysics Data System (ADS)

    Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid

    2018-03-01

    Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.

  12. Qualitative human body composition analysis assessed with bioelectrical impedance.

    PubMed

    Talluri, T

    1998-12-01

    Body composition is generally aiming at quantitative estimates of fat mass, inadequate to assess nutritional states that on the other hand are well defined by the intra/extra cellular masses proportion (ECM/BCM). Direct measures performed with phase sensitive bioelectrical impedance analyzers can be used to define the current distribution in normal and abnormal populations. Phase angle and reactance nomogram is directly reflecting the ECM/BCM pathways proportions and body impedance analysis (BIA) is also validated to estimate the individual content of body cell mass (BCM). A new body cell mass index (BCMI) obtained dividing the weight of BCM in kilograms by the body surface in square meters is confronted to the scatterplot distribution of phase angle and reactance values obtained from controls and patients, and proposed as a qualitative approach to identify abnormal ECM/BCM ratios and nutritional states.

  13. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  14. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  15. Signal acquisition and scale calibration for beam power density distribution of electron beam welding

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong

    2017-06-01

    The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.

  16. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    PubMed

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  17. A New Signaling Architecture THREP with Autonomous Radio-Link Control for Wireless Communications Systems

    NASA Astrophysics Data System (ADS)

    Hirono, Masahiko; Nojima, Toshio

    This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.

  18. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  20. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  1. A multichannel amplitude and relative-phase controller for active sound quality control

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for multiple listeners within a cavity.

  2. Analysis of Noise Mechanisms in Cell-Size Control.

    PubMed

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and heavy-tailed cell-size distributions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Carrier-envelope-phase control of asymmetries in the multiphoton ionization of xenon atoms by ultrashort bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2018-06-01

    We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.

  4. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  5. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    PubMed

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-22

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  6. Space Station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Sundberg, Gale R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  7. Space station 20-kHz power management and distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Sundberg, G. R.

    1986-01-01

    During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.

  8. Social influence in small-world networks

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Mao, Xiao-Ming; Ouyang, Qi

    2002-12-01

    We report on our numerical studies of the Axelrod model for social influence in small-world networks. Our simulation results show that the topology of the network has a crucial effect on the evolution of cultures. As the randomness of the network increases, the system undergoes a transition from a highly fragmented phase to a uniform phase. We also find that the power-law distribution at the transition point, reported by Castellano et al, is not a critical phenomenon; it exists not only at the onset of transition but also for almost any control parameters. All these power-law distributions are stable against perturbations. A mean-field theory is developed to explain these phenomena.

  9. Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping

    NASA Astrophysics Data System (ADS)

    Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.

    2018-05-01

    We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.

  10. Phase-locking of annular-combination CO2 laser

    NASA Astrophysics Data System (ADS)

    Qi, Tingxiang; Chen, Mei; Zhang, Rongzhu; Xiao, Qianyi

    2015-07-01

    A new annular-combination resonator structure adopting the external-injection phase-locking technology is presented theoretically for that the beam quality of stable annular resonator is not satisfying. The phase-locking principle and feasibility are characterized by energy density of injection beam and coupling coefficient. Based on the diffraction theory, output mode of the resonator with phase-locking is deduced and simulated. Results also confirm that injection beam have a good control effect on output mode. The intensity distributions of output beam are studied briefly and indicate that this new resonator which is adaptable to annular gain media can produce high-power laser beam with high quality.

  11. Phase distribution of spliceosomal introns: implications for intron origin

    PubMed Central

    Nguyen, Hung D; Yoshihama, Maki; Kenmochi, Naoya

    2006-01-01

    Background The origin of spliceosomal introns is the central subject of the introns-early versus introns-late debate. The distribution of intron phases is non-uniform, with an excess of phase-0 introns. Introns-early explains this by speculating that a fraction of present-day introns were present between minigenes in the progenote and therefore must lie in phase-0. In contrast, introns-late predicts that the nonuniformity of intron phase distribution reflects the nonrandomness of intron insertions. Results In this paper, we tested the two theories using analyses of intron phase distribution. We inferred the evolution of intron phase distribution from a dataset of 684 gene orthologs from seven eukaryotes using a maximum likelihood method. We also tested whether the observed intron phase distributions from 10 eukaryotes can be explained by intron insertions on a genome-wide scale. In contrast to the prediction of introns-early, the inferred evolution of intron phase distribution showed that the proportion of phase-0 introns increased over evolution. Consistent with introns-late, the observed intron phase distributions matched those predicted by an intron insertion model quite well. Conclusion Our results strongly support the introns-late hypothesis of the origin of spliceosomal introns. PMID:16959043

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Ryan; Marger, Bernard L.; Chiu, Ailsa

    During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.

  13. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    NASA Astrophysics Data System (ADS)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  14. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    PubMed

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  15. Synthoil hydrodynamics. Combined third and fourth quarterly report, December 1, 1975--May 31, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenner, H.; Prieve, D.C.; Fitch, B.

    1977-08-01

    This report deals with two-phase flow (gas and liquid) in a packed bed in the synthoil process reactor and preheater; in particular, nonuniform radial distribution of the liquid phase is studied. In addition, temperature profiles and possible instability of control due to the exothermic reactions are studied with respect to the synthoil reactor. This factor may limit the reactor diameter to about six inches. (LTN)

  16. Studies of Environmental Risk Factors in Amyotrophic Lateral Sclerosis (ALS) and a Phase I Clinical Trial of L-Serine.

    PubMed

    Bradley, Walter G; Miller, R X; Levine, T D; Stommel, E W; Cox, P A

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) has been linked to Guam ALS/PDC and shown to produce neurodegeneration in vitro and in vivo (Drosophila, mice, rats, primates). BMAA misincorporation into neuroproteins produces protein misfolding and is inhibited by L-serine. Case-control studies in Northern New England indicate that living near to water-bodies with cyanobacterial blooms increases the risk of developing amyotrophic lateral sclerosis (ALS). The distribution of addresses of ALS cases in New Hampshire, Vermont, and Florida was compared to that of controls. Areas of statistically significantly increased numbers of ALS cases were examined for sources of environmental toxins. A phase I trial of oral L-serine was performed in 20 ALS patients (0.5 to 15 g twice daily). Safety and tolerability were assessed by comparing the rate of deterioration with 430 matched placebo controls. The distribution of residential addresses of ALS cases in New England and Florida revealed many areas where the age- and gender-adjusted frequency of ALS was greater than expected (P < 0.01). GIS studies of these "hot spots" in relation to sources of environmental pollutants, like cyanobacterial blooms, Superfund and Brownfield sites, and landfills, are ongoing. In the phase I trial of L-serine, two patients withdrew from because of gastrointestinal side effects. Three patients died during the study, which was about the expected number. The ALSFRS-R in the L-serine-treated patients showed a dose-related decrease in the rate of progression (34% reduction in slope, P = 0.044). The non-random distribution of addresses of ALS patients suggests that residential exposure to environmental pollutants may play an important role in the etiology of ALS. L-Serine in doses up to 15 g twice daily appears to be safe in patients with ALS. Exploratory studies of efficacy suggested that L-serine might slow disease progression. A phase II trial is planned.

  17. Combining nonoverlap and trend for single-case research: Tau-U.

    PubMed

    Parker, Richard I; Vannest, Kimberly J; Davis, John L; Sauber, Stephanie B

    2011-06-01

    A new index for analysis of single-case research data was proposed, Tau-U, which combines nonoverlap between phases with trend from within the intervention phase. In addition, it provides the option of controlling undesirable Phase A trend. The derivation of Tau-U from Kendall's Rank Correlation and the Mann-Whitney U test between groups is demonstrated. The equivalence of trend and nonoverlap is also shown, with supportive citations from field leaders. Tau-U calculations are demonstrated for simple AB and ABA designs. Tau-U is then field tested on a sample of 382 published data series. Controlling undesirable Phase A trend caused only a modest change from nonoverlap. The inclusion of Phase B trend yielded more modest results than simple nonoverlap. The Tau-U score distribution did not show the artificial ceiling shown by all other nonoverlap techniques. It performed reasonably well with autocorrelated data. Tau-U shows promise for single-case applications, but further study is desirable. Copyright © 2011. Published by Elsevier Ltd.

  18. Effects of δ phase and cold drawing ratio on the LCF properties of alloy 718 wire

    NASA Astrophysics Data System (ADS)

    Jeong, Yong-Kwon; Jo, Chang-Yong; Kim, In-Bae

    2000-10-01

    The effects of the amount and distribution of δ particles on the low cycle fatigue (LCF) properties of alloy 718 wire were investigated. The amount and distribution of δ particles were controlled by cold drawing followed by a variety of agings. As the cold drawing ratio and aging time at 1116K increased, the well developed granular δ particles increased in amount and their distribution at grain/twin boundaries became more uniform. Regardless of the aging conditions, the LCF life increased as the cold drawing ratio increased. The granular particles precipitated along the grain boundary also improved the LCF life of alloy 718 wire since they inhibited crack propagation. After Merrick heat treatment, 50% of the cold drawn wire displayed lower 698K tensile and yield strength than 30% of the cold drawn wire. This was because the higher strain induced by the cold drawing prior to the first aging at 1116K appeared to promote the precipitation of the δ phase during aging, which has no influence on the strength of the material but has same stoichiometry with the γ phase as Ni3Nb and, as a result, the higher strain precipitated a smaller quantity of γ particles with subsequent aging, which is a major hardening phase of the alloy. Cold drawing also lowered the precipitation temperature of the δ phase.

  19. Space shuttle guidance, navigation and control design equations. Volume 4: Deorbit and atmospheric operations

    NASA Technical Reports Server (NTRS)

    Cox, K. J.

    1971-01-01

    A baseline set of equations which fulfill the computation requirements for guidance, navigation, and control of the space shuttle orbiter vehicle is presented. All shuttle mission phases are covered from prelaunch through landing/rollout. The spacecraft flight mode and the aircraft flight mode are addressed. The baseline equations may be implemented in a single guidance, navigation, and control computer or may be distributed among several subsystem computers.

  20. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE PAGES

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; ...

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  1. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  2. A comparison of electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry for flow measurements

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Stricker, J.

    1985-01-01

    Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.

  3. Entropic determination of the phase transition in a coevolving opinion-formation model.

    PubMed

    Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J

    2015-03-01

    We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.

  4. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  5. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    PubMed

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  6. Sound transmission through an acoustic porous metasurface with periodic structures

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Zhang, Xin; Zhou, Jie

    2017-04-01

    We report an analytical, numerical, and experimental study of sound transmission through a metasurface fabricated by porous materials, detailing systematically the factors that influence acoustic properties. The design of the metasurface is composed of four elements with varying properties, which are aligned in a periodic manner. The structures are carefully designed to form a uniform phase shift profile in one period. It is able to refract an incidence wave in an anomalous yet controllable way. A good agreement of refraction behavior between simulated and experimental results is achieved by the study. Furthermore, we systemically summarize the relationships between the refraction and the incidence angles for structures with various ratios of wavelengths and period lengths. Remarkably, the study proves that the propagation directions and the number of refracted waves are only affected by period lengths at a specified frequency. The phase shift profile only has an influence on energy distribution in the refraction region. The study suggests that a careful design of phase shift profile plays an important role in controlling sound energy distribution of the periodic structure, which is vital for applying this kind of porous metasurface in sound absorption and isolation in the future.

  7. Self-consistent simulation of high-frequency driven plasma sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.

  8. COUPLED GEOPHYSICAL-HYDROLOGICAL MODELING OF A CONTROLLED NAPL SPILL

    EPA Science Inventory

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data

    ...

  9. Electronic holography using binary phase modulation

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu

    2014-06-01

    A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.

  10. Application of interleaved flyback micro inverter in a grid connected system

    NASA Astrophysics Data System (ADS)

    Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam

    2018-04-01

    The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.

  11. Automated aberration compensation in high numerical aperture systems for arbitrary laser modes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hering, Julian; Waller, Erik H.; von Freymann, Georg

    2017-02-01

    Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF's quality is crucial for the application's performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1-3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. of Microscopy 216(1), 32-48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). 3. A. Jesacher and M. J. Booth, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction," Opt. Express 18(20), 21090-21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35(2), 237-246 (1972).

  12. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  13. Design considerations for a backlight with switchable viewing angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny

    2006-08-01

    Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.

  14. Spacelab data management subsystem phase B study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Spacelab data management system is described. The data management subsystem (DMS) integrates the avionics equipment into an operational system by providing the computations, logic, signal flow, and interfaces needed to effectively command, control, monitor, and check out the experiment and subsystem hardware. Also, the DMS collects/retrieves experiment data and other information by recording and by command of the data relay link to ground. The major elements of the DMS are the computer subsystem, data acquisition and distribution subsystem, controls and display subsystem, onboard checkout subsystem, and software. The results of the DMS portion of the Spacelab Phase B Concept Definition Study are analyzed.

  15. Distributional properties of relative phase in bimanual coordination.

    PubMed

    James, Eric; Layne, Charles S; Newell, Karl M

    2010-10-01

    Studies of bimanual coordination have typically estimated the stability of coordination patterns through the use of the circular standard deviation of relative phase. The interpretation of this statistic depends upon the assumption of a von Mises distribution. The present study tested this assumption by examining the distributional properties of relative phase in three bimanual coordination patterns. There were significant deviations from the von Mises distribution due to differences in the kurtosis of distributions. The kurtosis depended upon the relative phase pattern performed, with leptokurtic distributions occurring in the in-phase and antiphase patterns and platykurtic distributions occurring in the 30° pattern. Thus, the distributional assumptions needed to validly and reliably use the standard deviation are not necessarily present in relative phase data though they are qualitatively consistent with the landscape properties of the intrinsic dynamics.

  16. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  17. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  18. The Effect of Metal Composition on Fe-Ni Partition Behavior between Olivine and FeNi-Metal, FeNi-Carbide, FeNi-Sulfide at Elevated Pressure

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2005-01-01

    Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.

  19. Thermodynamic behavior of a phase transition in a model for sympatric speciation

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.

    2006-08-01

    We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.

  20. Processing industrial wastes with the liquid-phase reduction romelt process

    NASA Astrophysics Data System (ADS)

    Romenets, V.; Valavin, V.; Pokhvisnev, Yu.; Vandariev, S.

    1999-08-01

    The Romelt technology for liquid-phase reduction has been developed for processing metallurgical wastes containing nonferrousmetal components. Thermodynamic calculations were made to investigate the behavior of silver, copper, zinc, manganese, vanadium, chrome, and silicon when reduced from the slag melt into the metallic solution containing iron. The process can be applied to all types of iron-bearing wastes, including electric arc furnace dust. The distribution of elements between the phases can be controlled by adjusting the slag bath temperature. Experiments at a pilot Romelt plant proved the possibility of recovering the metallurgical wastes and obtaining iron.

  1. Lattice-Boltzmann simulation of coalescence-driven island coarsening

    USGS Publications Warehouse

    Basagaoglu, H.; Green, C.T.; Meakin, P.; McCoy, B.J.

    2004-01-01

    The first-order phase separation in a thin fluid film was simulated using a two-dimensional lattice-Boltzman model (LBM) with fluid-fluid interactions. The effects of the domain size on the intermediate asymptotic island size distribution were also discussed. It was observed that the overall process is dominated by coalescence which is independent of island mass. The results show that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations.

  2. Spatiotemporal Distribution of Location and Object Effects in Primary Motor Cortex Neurons during Reach-to-Grasp

    PubMed Central

    Rouse, Adam G.

    2016-01-01

    Reaching and grasping typically are considered to be spatially separate processes that proceed concurrently in the arm and the hand, respectively. The proximal representation in the primary motor cortex (M1) controls the arm for reaching, while the distal representation controls the hand for grasping. Many studies of M1 activity therefore have focused either on reaching to various locations without grasping different objects, or else on grasping different objects all at the same location. Here, we recorded M1 neurons in the anterior bank and lip of the central sulcus as monkeys performed more naturalistic movements, reaching toward, grasping, and manipulating four different objects in up to eight different locations. We quantified the extent to which variation in firing rates depended on location, on object, and on their interaction—all as a function of time. Activity proceeded largely in two sequential phases: the first related predominantly to the location to which the upper extremity reached, and the second related to the object about to be grasped. Both phases involved activity distributed widely throughout the sampled territory, spanning both the proximal and the distal upper extremity representation in caudal M1. Our findings indicate that naturalistic reaching and grasping, rather than being spatially segregated processes that proceed concurrently, each are spatially distributed processes controlled by caudal M1 in large part sequentially. Rather than neuromuscular processes separated in space but not time, reaching and grasping are separated more in time than in space. SIGNIFICANCE STATEMENT Reaching and grasping typically are viewed as processes that proceed concurrently in the arm and hand, respectively. The arm region in the primary motor cortex (M1) is assumed to control reaching, while the hand region controls grasping. During naturalistic reach–grasp–manipulate movements, we found, however, that neuron activity proceeds largely in two sequential phases, each spanning both arm and hand representations in M1. The first phase is related predominantly to the reach location, and the second is related to the object about to be grasped. Our findings indicate that reaching and grasping are successive aspects of a single movement. Initially the arm and the hand both are projected toward the object's location, and later both are shaped to grasp and manipulate. PMID:27733614

  3. A model for migration and accumulation of hydrocarbons in the Thamama and Arab reservoirs in Abu Dhabi, U.A.E.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawas, M.F.; Takezaki, H.

    1995-08-01

    The distribution of hydrocarbons in the Lower Cretaceous Thamama Group and Upper Jurassic Arab Formation in Abu Dhabi is influenced by the development of the intervening Hith anhydrites. The geochemical analysis of Thamama and Arab hydrocarbons indicate that they were generated from a common source rock: the Upper Jurassic Diyab Formation. Studies carried out on the Miocene sabkha anhydrites in the coastal flat west of Abu Dhabi supported a model for vertical migration through the Hith anhydrites under certain conditions. The established model implies that the Diyab oil and gas had migrated essentially vertically and individually which means that themore » oil migrated prior to the gas and their distribution is controlled by the differential sealing potential of the anhydrites at each migration phase: a Hith anhydrite bed of more than 30 feet (ft.) thick was a perfect seal for hydrocarbon migration into the Arab reservoirs. In this case, oils could not break through to the overlying Thamama group. But where the anhydride bed thicknesses dropped below 30 ft. thick, this permitted oil migration through to the overlying Thamama reservoirs during the oil generation phase in the Turonian time. At a later stage, with additional depth of burial and progressive diagenesis anhydrite beds as thin as 8 ft. thick became effective seals. These controlled the distribution of the gas during the gas generation phase in the Eocene time.« less

  4. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    NASA Astrophysics Data System (ADS)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  5. Controllable Terahertz Radiation from a Linear-Dipole Array Formed by a Two-Color Laser Filament in Air.

    PubMed

    Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2016-12-09

    We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.

  6. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network.

    PubMed

    Taborri, Juri; Rossi, Stefano; Palermo, Eduardo; Patanè, Fabrizio; Cappa, Paolo

    2014-09-02

    In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM) applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs) during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98) for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95) when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.

  7. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  8. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  9. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure

    NASA Astrophysics Data System (ADS)

    Yan, Qi-Long; Song, Zhen-Wei; Shi, Xiao-Bing; Yang, Zhi-Yuan; Zhang, Xiao-Hong

    2009-03-01

    In order to evaluate the actual pros and cons in the use of new nitroamines for solid rocket applications, the combustion properties of double-base propellants containing nitrogen heterocyclic nitroamines such as RDX, TNAD, HMX and DNP are investigated by means of high-speed photography technique, Non-contact wavelet-based measurement of flame temperature distribution. The chemical reactions in different combustion zone which control the burning characteristics of the double-base propellant containing nitrogen heterocyclic nitroamines were systematically investigated and descriptions of the detailed thermal decomposition mechanisms from solid phase to liquid phase or to gas phase are also included. It was indicated that the thermodynamic phase transition consisting of both evaporation and condensation of NC+NG, HMX, TNAD, RDX and DNP, are considered to provide a complete description of the mass transfer process in the combustion of these double-base propellants, and the combustion mechanisms of them are mainly involved with the oxidation mechanism of the NO 2, formaldehyde (CH 2O) and hydrogen cyanide (HCN). The entire oxidation reaction rate might be dependent on the pressure of the combustion chamber and temperature of the gas phase.

  10. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  11. CASE STUDIES IN THE INTEGRATED USE OF SCALE ANALYSES TO SOLVE LEAD PROBLEMS

    EPA Science Inventory

    All methods of controlling lead corrosion involve immobilizing lead into relatively insoluble compounds that deposit on the interior wall of water pipes. Many different solid phases can form under the disparate conditions that exist in distribution systems, which range in how the...

  12. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less

  13. Phase control of austenitic chrome-nickel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  14. An Event Related Field Study of Rapid Grammatical Plasticity in Adult Second-Language Learners

    PubMed Central

    Bastarrika, Ainhoa; Davidson, Douglas J.

    2017-01-01

    The present study used magnetoencephalography (MEG) to investigate how Spanish adult learners of Basque respond to morphosyntactic violations after a short period of training on a small fragment of Basque grammar. Participants (n = 17) were exposed to violation and control phrases in three phases (pretest, training, generalization-test). In each phase participants listened to short Basque phrases and they judged whether they were correct or incorrect. During the pre-test and generalization-test, participants did not receive any feedback. During the training blocks feedback was provided after each response. We also ran two Spanish control blocks before and after training. We analyzed the event-related magnetic- field (ERF) recorded in response to a critical word during all three phases. In the pretest, classification was below chance and we found no electrophysiological differences between violation and control stimuli. Then participants were explicitly taught a Basque grammar rule. From the first training block participants were able to correctly classify control and violation stimuli and an evoked violation response was present. Although the timing of the electrophysiological responses matched participants' L1 effect, the effect size was smaller for L2 and the topographical distribution differed from the L1. While the L1 effect was bilaterally distributed on the auditory sensors, the L2 effect was present at right frontal sensors. During training blocks two and three, the violation-control effect size increased and the topography evolved to a more L1-like pattern. Moreover, this pattern was maintained in the generalization test. We conclude that rapid changes in neuronal responses can be observed in adult learners of a simple morphosyntactic rule, and that native-like responses can be achieved at least in small fragments of second language. PMID:28174530

  15. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  16. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  17. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  18. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  19. Effect of chronic lead intoxication on the distribution and elimination of amoxicillin in goats

    PubMed Central

    Soliman, Ahmed M.; Abu-Basha, Ehab A.; Youssef, Salah A. H.; Amer, Aziza M.; Murphy, Patricia A.; Hauck, Catherine C.; Gehring, Ronette

    2013-01-01

    A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lead intoxication. The intoxicated goats had increased serum concentrations of liver enzymes (alanine aminotransferase and γ-glutamyl transferase), blood urea nitrogen, and reactivated δ-aminolevulinic acid dehydratase compared to the controls. Following intravenous amoxicillin (10 mg/kg bw) in control and lead-intoxicated goats, elimination half-lives were 4.14 and 1.26 h, respectively. The volumes of distribution based on the terminal phase were 1.19 and 0.38 L/kg, respectively, and those at steady-state were 0.54 and 0.18 L/kg, respectively. After intramuscular (IM) amoxicillin (10 mg/kg bw) in lead-intoxicated goats and control animals, the absorption, distribution, and elimination of the drug were more rapid in lead-intoxicated goats than the controls. Peak serum concentrations of 21.89 and 12.19 µg/mL were achieved at 1 h and 2 h, respectively, in lead-intoxicated and control goats. Amoxicillin bioavailability in the lead-intoxicated goats decreased 20% compared to the controls. After amoxicillin, more of the drug was excreted in the urine from lead-intoxicated goats than the controls. Our results suggested that lead intoxication in goats increases the rate of amoxicillin absorption after IM administration and distribution and elimination. Thus, lead intoxication may impair the therapeutic effectiveness of amoxicillin. PMID:23820209

  20. Effect of chronic lead intoxication on the distribution and elimination of amoxicillin in goats.

    PubMed

    Soliman, Ahmed M; Abu-Basha, Ehab A; Youssef, Salah A H; Amer, Aziza M; Murphy, Patricia A; Hauck, Catherine C; Gehring, Ronette; Hsu, Walter H

    2013-01-01

    A study of amoxicillin pharmacokinetics was conducted in healthy goats and goats with chronic lead intoxication. The intoxicated goats had increased serum concentrations of liver enzymes (alanine aminotransferase and γ-glutamyl transferase), blood urea nitrogen, and reactivated δ-aminolevulinic acid dehydratase compared to the controls. Following intravenous amoxicillin (10 mg/kg bw) in control and lead-intoxicated goats, elimination half-lives were 4.14 and 1.26 h, respectively. The volumes of distribution based on the terminal phase were 1.19 and 0.38 L/kg, respectively, and those at steady-state were 0.54 and 0.18 L/kg, respectively. After intramuscular (IM) amoxicillin (10 mg/kg bw) in lead-intoxicated goats and control animals, the absorption, distribution, and elimination of the drug were more rapid in lead-intoxicated goats than the controls. Peak serum concentrations of 21.89 and 12.19 μg/mL were achieved at 1 h and 2 h, respectively, in lead-intoxicated and control goats. Amoxicillin bioavailability in the lead-intoxicated goats decreased 20% compared to the controls. After amoxicillin, more of the drug was excreted in the urine from lead-intoxicated goats than the controls. Our results suggested that lead intoxication in goats increases the rate of amoxicillin absorption after IM administration and distribution and elimination. Thus, lead intoxication may impair the therapeutic effectiveness of amoxicillin.

  1. Zeroth-order phase-contrast technique.

    PubMed

    Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves

    2007-11-01

    What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

  2. Analysis of nonuniformity in intron phase distribution.

    PubMed Central

    Fedorov, A; Suboch, G; Bujakov, M; Fedorova, L

    1992-01-01

    The distribution of different intron groups with respect to phases has been analyzed. It has been established that group II introns and nuclear introns have a minimum frequency of phase 2 introns. Since the phase of introns is an extremely conservative measure the observed minimum reflects evolutionary processes. A sample of all known, group I introns was too small to provide a valid characteristic of their phase distribution. The findings observed for the unequal distribution of phases cannot be explained solely on the basis of the mobile properties of introns. One of the most likely explanations for this nonuniformity in the intron phase distribution is the process of exon shuffling. It is proposed that group II introns originated at the early stages of evolution and were involved in the process of exon shuffling. PMID:1598214

  3. Quantifying the entropic cost of cellular growth control

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2017-07-01

    Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are, in some sense, optimal. Here we quantify the amount of regulation required to control a cell's growth rate by a maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover, we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and (iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human cells are found to be remarkably consistent with empirical evidence.

  4. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.

    PubMed

    Allaire, S E; Yates, S R; Ernst, F F; Gan, J

    2002-01-01

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

  5. Structure and Chemistry in Halide Lead-Tellurite Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Lipton, Andrew S.

    2013-02-11

    A series of TeO2-PbO glasses were fabricated with increasing fractions of mixed alkali, alkaline earth, and lanthanide chlorides. The glass and crystal structure was studied with Raman spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction, and electron microscopy. As the chloride fraction increased, the medium-range order in the glass decreased up to a critical point (~14 mass% of mixed chlorides), above which the glasses became phase-separated. Resulting phases are a TeO2/PbO-rich phase and a crystalline phase rich in alkali chlorides. The 125Te NMR indicates, contrary to previous studies, that Te site distribution did not change with increased concentrations of M+, M2+,more » and M3+ cations, but rather is controlled by the Te/Pb molar ratio. The 207Pb NMR shows that two Pb species exist and their relative concentration changes nearly linearly with addition of the mixed chlorides, indicating that the additives to the TeO2-PbO glass are accommodated by changing the Pb species. The 23Na and 35Cl NMR indicate that Na and Cl are distributed in the single-phase glass phase up to the critical point, and at higher concentrations partition to crystalline phases. Transmission electron microscopy shows that the sample at the critical point contains ~10 nm seed nuclei that increase in size and concentration with exposure to the electron beam.« less

  6. Phase walk analysis of leptokurtic time series.

    PubMed

    Schreiber, Korbinian; Modest, Heike I; Räth, Christoph

    2018-06-01

    The Fourier phase information play a key role for the quantified description of nonlinear data. We present a novel tool for time series analysis that identifies nonlinearities by sensitively detecting correlations among the Fourier phases. The method, being called phase walk analysis, is based on well established measures from random walk analysis, which are now applied to the unwrapped Fourier phases of time series. We provide an analytical description of its functionality and demonstrate its capabilities on systematically controlled leptokurtic noise. Hereby, we investigate the properties of leptokurtic time series and their influence on the Fourier phases of time series. The phase walk analysis is applied to measured and simulated intermittent time series, whose probability density distribution is approximated by power laws. We use the day-to-day returns of the Dow-Jones industrial average, a synthetic time series with tailored nonlinearities mimicing the power law behavior of the Dow-Jones and the acceleration of the wind at an Atlantic offshore site. Testing for nonlinearities by means of surrogates shows that the new method yields strong significances for nonlinear behavior. Due to the drastically decreased computing time as compared to embedding space methods, the number of surrogate realizations can be increased by orders of magnitude. Thereby, the probability distribution of the test statistics can very accurately be derived and parameterized, which allows for much more precise tests on nonlinearities.

  7. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  8. NLC Special Projects

    Science.gov Websites

    Measurement (with NLC RF group) LCLS and related technologies (LCLS work related to NLC work) Collimation Systems (with Beam Delivery group) Combined Laser System (with NLC sources group) Polarized Positron Sources (with NLC sources group) Crab Cavity Phase Control System Timing and RF distribution System (with

  9. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  10. Distribution and Marketing Syllabus.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The distributive education program for grades 7 to 12 is organized around three career education phases: the career education phase (grades 7-10), the distributive phase (grade 11), and the competency cluster phase (grade 12). The grade 11 syllabus provides a six-page introduction which covers scheduling, cooperative work experience, the school…

  11. Laser Safety Summary of the Large Aircraft Infrared Countermeasure (LAIRCM) Viper Laser, Phase 1

    DTIC Science & Technology

    2003-03-06

    Item Requirement Yes/ No Comment 2a Does such label contain the following statement? (4.2.2) CAUTION This electronic product has been exempted from...9 Distribution A: Approved for public release; distribution unlimited. PA Case No: TSRL-PA-2016-0214 Item Requirement Yes/ No Comment 8 Is the laser... No Comment 14 Is system designed per MIL-STD-454, MIL-STD-882, and MIL-STD-2036? (4.2.10) YES Personnel hazard control is specified and implemented

  12. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.

    PubMed

    Qiu, Huaxin; Duan, Haibin

    2017-11-01

    Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGES

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  14. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture

    PubMed Central

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-01-01

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO2 content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture. PMID:29702579

  15. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture.

    PubMed

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-04-27

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO₂ content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  16. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.

    PubMed

    Cao, Wenyi; Muñoz, Antonio; Palffy-Muhoray, Peter; Taheri, Bahman

    2002-10-01

    Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.

  17. A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth

    NASA Astrophysics Data System (ADS)

    Crist, David J. D.

    Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.

  18. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  19. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less

  20. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less

  1. The eigenvalue problem in phase space.

    PubMed

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  3. Hardware/software codesign for embedded RISC core

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    2001-12-01

    This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.

  4. Optoelectronic frequency discriminated phase tuning technology and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2000-07-01

    By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.

  5. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  6. Azimuthal phase retardation microscope for visualizing actin filaments of biological cells

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Shin, Sang-Mo

    2011-09-01

    We developed a new theory-based azimuthal phase retardation microscope to visualize distributions of actin filaments in biological cells without having them with exogenous dyes, fluorescence labels, or stains. The azimuthal phase retardation microscope visualizes distributions of actin filaments by measuring the intensity variations of each pixel of a charge coupled device camera while rotating a single linear polarizer. Azimuthal phase retardation δ between two fixed principal axes was obtained by calculating the rotation angles of the polarizer at the intensity minima from the acquired intensity data. We have acquired azimuthal phase retardation distributions of human breast cancer cell, MDA MB 231 by our microscope and compared the azimuthal phase retardation distributions with the fluorescence image of actin filaments by the commercial fluorescence microscope. Also, we have observed movement of human umbilical cord blood derived mesenchymal stem cells by measuring azimuthal phase retardation distributions.

  7. Ion probe measurements of carbon and nitrogen in iron meteorites

    NASA Astrophysics Data System (ADS)

    Sugiura, Naoji

    1998-05-01

    Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of carbon except for IAB irons where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of nitrogen in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe,Ni)4N) are present. Carbon and nitrogen distributions in taenite are well correlated, unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. 1) These elements are enriched at the center of taenite (convex type). 2) They are enriched at the edge of taenite (concave type). 3) They are enriched near but some distance away from the edge of taenite (complex type). The case 1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M- shape nickel concentration profile. The case 2) seems to be best explained as diffusion controlled C and N distributions. In the case 3), the interior of taenite has been transformed to the a phase (kamacite or martensite). C and N were expelled from the a phase and enriched near the inner border of the remaining g phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt.% in some irons. Nitride (carlsbergite and roaldite) is present in meteorites with high nitrogen concentrations in taenite, suggesting that the nitride was formed due to supersaturation of the metallic phases with nitrogen. The same tendency is generally observed for carbon, i.e. high C concentrations in taenite correlate with the presence of carbide and/or graphite. Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible, because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of carbon transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass-spectrometry.

  8. A study of aerodynamic heating distributions on a tip-fin controller installed on a Space Shuttle Orbiter model

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1982-01-01

    The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.

  9. Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Dixit, S N; Genin, F Y

    2004-01-05

    Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less

  10. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation.

    PubMed

    Kowalski, M E; Jin, J M

    2003-03-07

    A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.

  11. Delayed Sleep Phase Disorder In Temporal Isolation

    PubMed Central

    Campbell, Scott S.; Murphy, Patricia J.

    2007-01-01

    Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395

  12. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  13. Extension of Ostwald Ripening Theory

    NASA Technical Reports Server (NTRS)

    Baird, J.; Naumann, R.

    1985-01-01

    The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.

  14. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  15. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    NASA Technical Reports Server (NTRS)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  16. Detailed study on the statistical properties of optimized phase distribution in focusing light through turbid media

    NASA Astrophysics Data System (ADS)

    Zhang, Xicheng; Fang, Longjie; Zuo, Haoyi; Du, Jinglei; Gao, Fuhua; Pang, Lin

    2018-07-01

    It is studied in detail that whether the optimized phase distributions obtained from different approaches have relations in focusing light through turbid media. A view is proposed that there exists a strong correlation among the optimized phase distributions from different approaches. The numeric simulations and experiments indicate that the larger the number of segments is, the greater the correlation coefficient of optimized phase distributions from different approaches will be. This study might give an important insight into the essence of focusing light through turbid media by phase modulation.

  17. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    PubMed

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  18. A statistical model of false negative and false positive detection of phase singularities.

    PubMed

    Jacquemet, Vincent

    2017-10-01

    The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.

  19. Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2017-05-17

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  20. Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Staroselskaya, E. I.; Douguet, N.; Bartschat, K.

    2018-01-01

    We investigate the coherent control of the photoelectron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs). In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schrödinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either 2 p -3 s or 2 p -4 s excitation. The contribution of the nonresonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.

  1. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method

    NASA Astrophysics Data System (ADS)

    Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.

    2016-02-01

    In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).

  2. Phase behavior of binary and polydisperse suspensions of compressible microgels controlled by selective particle deswelling

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Gasser, U.; Herman, E. S.; Han, Jun; Menzel, A.; Lyon, L. A.; Fernandez-Nieves, A.

    2017-09-01

    We investigate the phase behavior of suspensions of poly(N -isopropylacrylamide) (pNIPAM) microgels with either bimodal or polydisperse size distribution. We observe a shift of the fluid-crystal transition to higher concentrations depending on the polydispersity or the fraction of large particles in suspension. Crystallization is observed up to polydispersities as high as 18.5%, and up to a number fraction of large particles of 29% in bidisperse suspensions. The crystal structure is random hexagonal close-packed as in monodisperse pNIPAM microgel suspensions. We explain our experimental results by considering the effect of bound counterions. Above a critical particle concentration, these cause deswelling of the largest microgels, which are the softest, changing the size distribution of the suspension and enabling crystal formation in conditions where incompressible particles would not crystallize.

  3. Nitrogen Incorporation Effects On Site-Controlled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Pelucchi, E.

    2011-12-01

    We report here on the optical properties of site-controlled diluted nitride In0.25Ga0.75As1-xNx quantum dots grown by metalorganic vapour phase epitaxy (MOVPE). We show photoluminescence energy shift as a function of nitrogen precursor U-dimethylhydrazine, with a maximum value of 35 meV achieved. Optical features, substantially different from the counterpart nitrogen-free dots, are presented: an antibinding biexciton, a large distribution of lifetimes, significantly reduced fine structure splitting.

  4. Combined discrete particle and continuum model predicting solid-state fermentation in a drum fermentor.

    PubMed

    Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A

    2004-05-20

    The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.

  5. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    PubMed

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  6. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  7. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  8. A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network

    PubMed Central

    Taborri, Juri; Rossi, Stefano; Palermo, Eduardo; Patanè, Fabrizio; Cappa, Paolo

    2014-01-01

    In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM) applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs) during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98) for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95) when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints. PMID:25184488

  9. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  10. Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal

    PubMed Central

    Dicko, Ahmadou H.; Lancelot, Renaud; Seck, Momar T.; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J. B.; Lefrançois, Thierry; Fonta, William M.; Peck, Steven L.; Bouyer, Jérémy

    2014-01-01

    Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models’ results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs. PMID:24982143

  11. Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal.

    PubMed

    Dicko, Ahmadou H; Lancelot, Renaud; Seck, Momar T; Guerrini, Laure; Sall, Baba; Lo, Mbargou; Vreysen, Marc J B; Lefrançois, Thierry; Fonta, William M; Peck, Steven L; Bouyer, Jérémy

    2014-07-15

    Tsetse flies are vectors of human and animal trypanosomoses in sub-Saharan Africa and are the target of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). Glossina palpalis gambiensis (Diptera: Glossinidae) is a riverine species that is still present as an isolated metapopulation in the Niayes area of Senegal. It is targeted by a national eradication campaign combining a population reduction phase based on insecticide-treated targets (ITTs) and cattle and an eradication phase based on the sterile insect technique. In this study, we used species distribution models to optimize control operations. We compared the probability of the presence of G. p. gambiensis and habitat suitability using a regularized logistic regression and Maxent, respectively. Both models performed well, with an area under the curve of 0.89 and 0.92, respectively. Only the Maxent model predicted an expert-based classification of landscapes correctly. Maxent predictions were therefore used throughout the eradication campaign in the Niayes to make control operations more efficient in terms of deployment of ITTs, release density of sterile males, and location of monitoring traps used to assess program progress. We discuss how the models' results informed about the particular ecology of tsetse in the target area. Maxent predictions allowed optimizing efficiency and cost within our project, and might be useful for other tsetse control campaigns in the framework of the PATTEC and, more generally, other vector or insect pest control programs.

  12. Testing of a controller for a hybrid capillary pumped loop thermal control system

    NASA Technical Reports Server (NTRS)

    Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave

    1989-01-01

    A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Alfonsi; C. Rabiti; D. Mandelli

    The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less

  14. Plasma 17-alpha-OH-progesterone in female workers exposed to urban pollutants.

    PubMed

    Ciarrocca, M; Cerratti, D; Capozzella, A; Rosati, M V; Anzani, M F; Bernardini, A; Casale, T; Pimpinella, B; Tomei, G; Monti, C; Tomao, E; Tomei, F

    2006-01-01

    The aim of this study is to evaluate whether occupational exposure to urban pollutants could cause alteration in plasma 17-alpha-OH-P levels in female workers. After excluding the subjects with the principal confounding factors, traffic police and controls were matched by age, working life, age of menarche, menstrual cycle day, BMI, drinking habits, habitual consumption of soy and Italian coffee. 68 traffic police and 82 controls (7th day; follicular phase of the ovarian cycle), 37 traffic police and 20 controls (21st day; lutheal phase of the ovarian cycle) were included in the study and matched for the above mentioned variables. In follicular and lutheal phase of ovarian cycle, 17-alpha-OH-P mean levels and the distribution of 17-alpha-OH-P values were significantly higher in traffic police vs. controls. A higher instance of mental health disorders in traffic police vs. controls was found, although the difference was not significant. Considering that the potential confounding effect of extraneous factors was controlled by restricting the study population and by matching traffic police vs. controls on the above mentioned variables, our results suggest that occupational exposure to urban pollutants may alter plasma 17-alpha-OH-P concentrations. 17-alpha-OH-P could be used in an occupational setting as an early biomarker of exposure to urban pollutants, valuable for a group, even before the onset of related pathologies.

  15. Design of bifunctional metasurface based on independent control of transmission and reflection.

    PubMed

    Zhuang, Yaqiang; Wang, Guangming; Cai, Tong; Zhang, Qingfeng

    2018-02-05

    Multifunctional metasurface integrating different functions can significantly save the occupied space, although most of bifunctional metasurfaces reported to date only control the wave in either reflection or transmission regime. In this paper, we propose a scheme that allows one to independently control the reflection and transmission wavefront under orthogonal polarizations. For demonstration, we design a bifunctional metasurface that simultaneously realizes a diffusion reflection and a focusing transmission. The diffusion reflection is realized using a random phase distribution, which was implemented by randomly arranging two basic coding unit cells with the aid of an ergodic algorithm. Meanwhile, the hyperbolic phase distribution was designed to realize the focusing functionality in the transmission regime. To further show the potential applications, a high-gain lens antenna was designed by assembling the proposed metasurface with a proper feed. Both simulation and measurement results have been carried out, and the agreement between the two results demonstrates the validity of the performance as expected. The backward scattering can be reduced more than 5 dB within 6.4-10 GHz compared with the metallic plate. Moreover, the lens antenna has a gain of 20 dB (with around 13 dB enhancement in comparison with the bare feeding antenna) and an efficiency of 32.5%.

  16. Level 1 environmental assessment performance evaluation. Final report jun 77-oct 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, E.D.; Smith, F.; Wagoner, D.E.

    1979-02-01

    The report gives results of a two-phased evaluation of Level 1 environmental assessment procedures. Results from Phase I, a field evaluation of the Source Assessment Sampling System (SASS), showed that the SASS train performed well within the desired factor of 3 Level 1 accuracy limit. Three sample runs were made with two SASS trains sampling simultaneously and from approximately the same sampling point in a horizontal duct. A Method-5 train was used to estimate the 'true' particulate loading. The sampling systems were upstream of the control devices to ensure collection of sufficient material for comparison of total particulate, particle sizemore » distribution, organic classes, and trace elements. Phase II consisted of providing each of three organizations with three types of control samples to challenge the spectrum of Level 1 analytical procedures: an artificial sample in methylene chloride, an artificial sample on a flyash matrix, and a real sample composed of the combined XAD-2 resin extracts from all Phase I runs. Phase II results showed that when the Level 1 analytical procedures are carefully applied, data of acceptable accuracy is obtained. Estimates of intralaboratory and interlaboratory precision are made.« less

  17. Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap

    NASA Astrophysics Data System (ADS)

    Goto, Hayato; Viegas, Eduardo; Jensen, Henrik Jeldtoft; Takayasu, Hideki; Takayasu, Misako

    2018-06-01

    The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region.

  18. Bonabeau model on a fully connected graph

    NASA Astrophysics Data System (ADS)

    Malarz, K.; Stauffer, D.; Kułakowski, K.

    2006-03-01

    Numerical simulations are reported on the Bonabeau model on a fully connected graph, where spatial degrees of freedom are absent. The control parameter is the memory factor f. The phase transition is observed at the dispersion of the agents power hi. The critical value fC shows a hysteretic behavior with respect to the initial distribution of hi. fC decreases with the system size; this decrease can be compensated by a greater number of fights between a global reduction of the distribution width of hi. The latter step is equivalent to a partial forgetting.

  19. Conserved directed percolation: exact quasistationary distribution of small systems and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    César Mansur Filho, Júlio; Dickman, Ronald

    2011-05-01

    We study symmetric sleepy random walkers, a model exhibiting an absorbing-state phase transition in the conserved directed percolation (CDP) universality class. Unlike most examples of this class studied previously, this model possesses a continuously variable control parameter, facilitating analysis of critical properties. We study the model using two complementary approaches: analysis of the numerically exact quasistationary (QS) probability distribution on rings of up to 22 sites, and Monte Carlo simulation of systems of up to 32 000 sites. The resulting estimates for critical exponents β, \\beta /\

  20. On the importance of an accurate representation of the initial state of the system in classical dynamics simulations

    NASA Astrophysics Data System (ADS)

    García-Vela, A.

    2000-05-01

    A definition of a quantum-type phase-space distribution is proposed in order to represent the initial state of the system in a classical dynamics simulation. The central idea is to define an initial quantum phase-space state of the system as the direct product of the coordinate and momentum representations of the quantum initial state. The phase-space distribution is then obtained as the square modulus of this phase-space state. The resulting phase-space distribution closely resembles the quantum nature of the system initial state. The initial conditions are sampled with the distribution, using a grid technique in phase space. With this type of sampling the distribution of initial conditions reproduces more faithfully the shape of the original phase-space distribution. The method is applied to generate initial conditions describing the three-dimensional state of the Ar-HCl cluster prepared by ultraviolet excitation. The photodissociation dynamics is simulated by classical trajectories, and the results are compared with those of a wave packet calculation. The classical and quantum descriptions are found in good agreement for those dynamical events less subject to quantum effects. The classical result fails to reproduce the quantum mechanical one for the more strongly quantum features of the dynamics. The properties and applicability of the phase-space distribution and the sampling technique proposed are discussed.

  1. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  2. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  3. Stochastic many-particle model for LFP electrodes

    NASA Astrophysics Data System (ADS)

    Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang

    2018-02-01

    In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.

  4. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    NASA Astrophysics Data System (ADS)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  5. Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Matsubae, Kazuyo; Nakajima, Kenichi; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2016-06-01

    Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

  6. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia

    NASA Astrophysics Data System (ADS)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia

    2018-01-01

    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations in the coeval topography, potential structural traps, and distribution of oil-bearing sandstone reservoirs.

  7. A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2017-12-01

    Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including reservoir production, carbon storage and sequestration, and hazardous waste sequestration. A reliable prediction of capillary trapping, for instance, can determine the fracture fluid saturation subsequent to hydraulic fracturing of unconventional formations or the efficacy of water flooding in fractured reservoirs.

  8. Regenerable non-venting cooler for protective suit

    NASA Technical Reports Server (NTRS)

    Roebelen, Jr., George J. (Inventor); Bayes, Stephen A. (Inventor)

    1992-01-01

    A life support back pack 14 for use during extravehicular activity in space incorporates a cooling apparatus 20 comprised of five panels 22 each of which include in layered fashion a LCG coolant heat exchange coil 32, a heat distribution plate 42, and a heat dissipation module 50A or 50B having an outer radiator surface 52. Each module 50A houses a first phase change material 55A, for example hexadecane paraffin, and each module 50B houses a second phase change material 55B, for example tetradecane paraffin, which has a phase change temperature which is less than the phase change temperature of the first phase change material 55A. The cooling apparatus 20 is equipped with a coolant heat exchange circuit provided with mode selection valves 84 and 86 which are operated by a controller 88 to selectively direct the LCG coolant to be cooled through the cooling apparatus in one of three operating modes.

  9. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  10. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  11. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co0.5(Mg0.55Zn0.45)0.5O1-v thin films

    PubMed Central

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin; Zhu, Shimeng; Yang, Wanli; Xia, Weixing; Tian, Yufeng; Liu, Guolei; Yan, Shishen

    2016-01-01

    High quality single-crystal fcc-Cox(MgyZn1-y)1-xO1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Cox(MgyZn1-y)1-xO1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed with both controllable magnetic properties and tunable band-gap, Cox(MgyZn1-y)1-xO1-v films may have promising applications in future spintronics. PMID:27062992

  12. Pore invasion dynamics during fluid front displacement in porous media determine functional pore size distribution and phase entrapment

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-12-01

    Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.

  13. The Global Enery and Water Cycle Experiment Science Strategy

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1997-01-01

    The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.

  14. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    NASA Technical Reports Server (NTRS)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  15. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    PubMed

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to support tissue ingrowth and vascular tissue, and the comparable strength to similar coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Detailed Characterization of Local Field Potential Oscillations and Their Relationship to Spike Timing in the Antennal Lobe of the Moth Manduca sexta

    PubMed Central

    Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.

    2011-01-01

    The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161

  17. Statistical aspects of the TNK-S2B trial of tenecteplase versus alteplase in acute ischemic stroke: an efficient, dose-adaptive, seamless phase II/III design.

    PubMed

    Levin, Bruce; Thompson, John L P; Chakraborty, Bibhas; Levy, Gilberto; MacArthur, Robert; Haley, E Clarke

    2011-08-01

    TNK-S2B, an innovative, randomized, seamless phase II/III trial of tenecteplase versus rt-PA for acute ischemic stroke, terminated for slow enrollment before regulatory approval of use of phase II patients in phase III. (1) To review the trial design and comprehensive type I error rate simulations and (2) to discuss issues raised during regulatory review, to facilitate future approval of similar designs. In phase II, an early (24-h) outcome and adaptive sequential procedure selected one of three tenecteplase doses for phase III comparison with rt-PA. Decision rules comparing this dose to rt-PA would cause stopping for futility at phase II end, or continuation to phase III. Phase III incorporated two co-primary hypotheses, allowing for a treatment effect at either end of the trichotomized Rankin scale. Assuming no early termination, four interim analyses and one final analysis of 1908 patients provided an experiment-wise type I error rate of <0.05. Over 1,000 distribution scenarios, each involving 40,000 replications, the maximum type I error in phase III was 0.038. Inflation from the dose selection was more than offset by the one-half continuity correction in the test statistics. Inflation from repeated interim analyses was more than offset by the reduction from the clinical stopping rules for futility at the first interim analysis. Design complexity and evolving regulatory requirements lengthened the review process. (1) The design was innovative and efficient. Per protocol, type I error was well controlled for the co-primary phase III hypothesis tests, and experiment-wise. (2a) Time must be allowed for communications with regulatory reviewers from first design stages. (2b) Adequate type I error control must be demonstrated. (2c) Greater clarity is needed on (i) whether this includes demonstration of type I error control if the protocol is violated and (ii) whether simulations of type I error control are acceptable. (2d) Regulatory agency concerns that protocols for futility stopping may not be followed may be allayed by submitting interim analysis results to them as these analyses occur.

  18. Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking.

    PubMed

    Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng

    2017-11-01

    This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.

  19. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  20. Continuously active interferometer stabilization and control for time-bin entanglement distribution

    DOE PAGES

    Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...

    2015-02-10

    In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.

  1. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis Shane

    1999-11-01

    Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as Mathcad[2]. The phase screens can then be manipulated and displayed on the LCTV using a computer with an appropriate framegrabber and software. The present system consists of an Epson liquid crystal television (which was optimized to modulate up to 2π of phase), a Macintosh IIci with a framegrabber card, a QuickTime movie consisting of multiple video frames of two dimensional arrays of spatially correlated grayscale images, and two polarizers. The movie is displayed on the television via the framegrabber, and the polarizers are used to operate the television in a mode that mostly modulates the spatial phase distribution of the optical wavefront. The frames of the movie are created using an accepted turbulence model for spatially correlated variations in index of refraction, and each subsequent frame of the movie is calculated following an accepted model for temporally varying turbulence. The model used for generating spatial functions or ``phase screens'' which simulate turbulence is the well known Kolmogorov model. These ``phase screens'' are then used, employing a Taylor's frozen flow model, to simulate temporally varying turbulence. A single ``phase screen'' is given a random velocity vector between 0 and.55 meters per second to simulate temporally varying turbulence. The system is used to distort optical beams as if the beams had propagated through a long pathlength of wavefront distorting medium, such as the atmosphere.

  2. Phase space holes and synchronized BGK modes in autoresonantly driven, Penning-trapped electron clouds

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Fajans, Joel; Bertsche, Will; Wurtele, Jonathan

    2003-10-01

    We study excitation and control of BGK modes in pure electron plasmas in a Penning trap. We apply an oscillating external potential with a negatively chirped frequency. This drive resonates with, and phase-locks to, a group of axially bouncing electrons in the trap. All initially phase-locked electrons remain phase-locked during the chirp (the autoresonance phenomenon), while some new particles are added to the resonant group, as the bucket moves through the phase space. This creates an oscillating in space and slowly evolving in energy hole in the phase space distribution of the electrons. The electron density perturbation associated with this evolving hole yields a BGK mode synchronized with the drive. The local depth of the hole in phase space, and, thus, the amplitude of the mode are controlled by the external parameter (the driving frequency). The process is reversible, so that the BGK mode can be returned to its nearly initial state, by reversing the direction of variation of the driving frequency. A kinetic theory of this excitation process is developed. The theory uses results on passage through, and capture into, bounce resonance in the system from Monte Carlo simulations of resonant bucket dynamics. We discuss the dependence of the excited BGK mode on the drive frequency chirp rate and other plasma parameters and compare these predictions with experiments.

  3. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  4. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  5. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE PAGES

    Lin, Ye; Fang, Shumin; Su, Dong; ...

    2015-04-10

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  6. Enhancing performance of LCoS-SLM as adaptive optics by using computer-generated holograms modulation software

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh

    2017-05-01

    We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system

  7. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    PubMed Central

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-01-01

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355

  8. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.

    PubMed

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-04-10

    Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.

  9. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ye; Fang, Shumin; Su, Dong

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  10. Studying Cracking and Oil Invasion in Porous Medium During Drying

    NASA Astrophysics Data System (ADS)

    Jin, Qiu

    We study two interesting phenomena occurred during the evaporation of solvent in porous medium: first, the cracking behavior; and second, the expanding mechanism and the collecting methods of the non-evaporative phase. In the first part of this thesis, we visualize the cracking behavior of colloidal suspensions during drying by a confocal microscope. We develop an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. We also find another effect that the emulsion droplets can bring: it varies the speed of air invasion and provides a powerful method to adjust drying rate. Besides, we investigate the samples' fundamental mechanical properties with a rheometer and clarify the underlying physical mechanism for the decreasing of crack amounts. With the effective control over cracking and drying rate, our study may find important applications in many drying and cracking related industrial processes. In the second part of the thesis, we conduct a study on the expanding mechanism and collecting methods of the non-evaporative phase in porous medium, which is inspired by a practical pollution problem that occurs when oil spills to the sandy beach. We build a system in a smaller scale to mimic the practical pollution and investigate the distribution change of the polluting phase as the flushing cycle increases. We find an obvious expansion of the polluting phase after several flushing cycles in both hydrophilic and hydrophobic porous media, but with different distributions and expanding behaviors. We explained this difference by analyzing the pressure distribution in the system at the pore level. Finally, we develop two methods to concentrate the polluting phase in some particular regions, which is beneficial to collect and solve the practical pollution problem.

  11. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data

    NASA Astrophysics Data System (ADS)

    Stockhause, M.; Höck, H.; Toussaint, F.; Lautenschlager, M.

    2012-08-01

    The preservation of data in a high state of quality which is suitable for interdisciplinary use is one of the most pressing and challenging current issues in long-term archiving. For high volume data such as climate model data, the data and data replica are no longer stored centrally but distributed over several local data repositories, e.g. the data of the Climate Model Intercomparison Project Phase 5 (CMIP5). The most important part of the data is to be archived, assigned a DOI, and published according to the World Data Center for Climate's (WDCC) application of the DataCite regulations. The integrated part of WDCC's data publication process, the data quality assessment, was adapted to the requirements of a federated data infrastructure. A concept of a distributed and federated quality assessment procedure was developed, in which the workload and responsibility for quality control is shared between the three primary CMIP5 data centers: Program for Climate Model Diagnosis and Intercomparison (PCMDI), British Atmospheric Data Centre (BADC), and WDCC. This distributed quality control concept, its pilot implementation for CMIP5, and first experiences are presented. The distributed quality control approach is capable of identifying data inconsistencies and to make quality results immediately available for data creators, data users and data infrastructure managers. Continuous publication of new data versions and slow data replication prevents the quality control from check completion. This together with ongoing developments of the data and metadata infrastructure requires adaptations in code and concept of the distributed quality control approach.

  12. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  13. The pH-controlled synthesis of a gold nanoparticle/polymer matrix via electrodeposition at a liquid liquid interface

    NASA Astrophysics Data System (ADS)

    Lepková, K.; Clohessy, J.; Cunnane, V. J.

    2007-09-01

    A controlled synthesis of metal nanoparticles co-deposited in a polymer matrix at various pH conditions has been investigated at the interface between two immiscible phases. The pH value of the aqueous phase is modified, resulting in various types of reaction between the gold compound and the monomer. The types of electrochemical processes and their kinetic parameters are determined using both the method of Nicholson and a method based on the Butler-Volmer equation. Cyclic voltammetry is the experimental method used. A material analysis via transmission electron microscopy and particle size distribution calculations confirm that nanoparticles of different sizes can be synthesized by modification of the system pH. The stability of the generated nanocomposite is also discussed.

  14. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  15. Temporal Decompostion of a Distribution System Quasi-Static Time-Series Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hunsberger, Randolph J

    This paper documents the first phase of an investigation into reducing runtimes of complex OpenDSS models through parallelization. As the method seems promising, future work will quantify - and further mitigate - errors arising from this process. In this initial report, we demonstrate how, through the use of temporal decomposition, the run times of a complex distribution-system-level quasi-static time series simulation can be reduced roughly proportional to the level of parallelization. Using this method, the monolithic model runtime of 51 hours was reduced to a minimum of about 90 minutes. As expected, this comes at the expense of control- andmore » voltage-errors at the time-slice boundaries. All evaluations were performed using a real distribution circuit model with the addition of 50 PV systems - representing a mock complex PV impact study. We are able to reduce induced transition errors through the addition of controls initialization, though small errors persist. The time savings with parallelization are so significant that we feel additional investigation to reduce control errors is warranted.« less

  16. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  17. Saving water in showers

    NASA Astrophysics Data System (ADS)

    Alkhaddar, R. A.; Phipps, D.; Morgan, R.; Karci, B.; Hordesseux, J.

    2007-07-01

    This project is part of a programme aimed at reducing water consumption. Power showers are water inefficient, but in order to persuade the user to accept a lower water use it will be necessary to sustain the "shower experience" to maintain user satisfaction. Previous work has indicated that users' requirements include temperature stability, adequate water volume and distribution, and skin pressure, all of which are substantially controlled by the showerhead. In the present phase of the project several commercially available domestic showerheads have been examined to determine pressure-volume characteristics, radial spray distributions at different flow rates, direct and indirect measures of "skin pressure" and measurements of vertical temperature profiles. Part of the practical work at LJMU has supported extensive theoretical studies by CFD carried out by staff at Arup (consulting engineers) for the Market Transformation Programme. A future phase will study user satisfaction in their own homes where user satisfaction will be surveyed and linked to the physical performance of the shower.

  18. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.

    2011-12-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  19. Microgels: Structure, Dynamics, and Possible Applications.

    NASA Astrophysics Data System (ADS)

    McKenna, John; Streletzky, Kiril

    2007-03-01

    We cross-linked Hydropxypropylcellulose (HPC) polymer chains to produce microgel nanoparticles and studied their structure and dynamics using Dynamic Light Scattering spectroscopy. The complex nature of the fluid and large size distribution of the particles renders typical characterization algorithm CONTIN ineffective and inconsistent. Instead, the particles spectra have been fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single mode. The results of this analysis show that the microgels undergo a transition to a fewer modes around 41C. The CONTIN size distribution analysis shows similar results, but these come with much less consistency and resolution. Our experiments prove that microgel particles shrink under volume phase transition. The shrinkage is reversible and depends on the amount of cross-linker, salt and polymer concentrations and rate of heating. Reversibility of microgel volume phase transition property might be particularly useful for a controlled drug delivery and release.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  1. A sliding-control switch stabilizes synchronized states in a model of actuated cilia

    NASA Astrophysics Data System (ADS)

    Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa

    2017-11-01

    A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.

  2. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  3. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression.

    PubMed

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-11-28

    Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  4. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression

    DOE PAGES

    McDermott, Danielle; Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2016-11-11

    In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements ofmore » particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.« less

  5. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy.

    PubMed

    Taborri, Juri; Scalona, Emilia; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2015-09-23

    Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to avoid the intra-subject one in two, four and six gait-phase models in pediatric subjects. The inter-subject procedure consists in the identification of a standardized parameter set to adapt the model to measurements. We tested the inter-subject procedure both on scalar and distributed classifiers. Ten healthy children and ten hemiplegic children, each equipped with two Inertial Measurement Units placed on shank and foot, were recruited. The sagittal component of angular velocity was recorded by gyroscopes while subjects performed four walking trials on a treadmill. The goodness of classifiers was evaluated with the Receiver Operating Characteristic. The results provided a goodness from good to optimum for all examined classifiers (0 < G < 0.6), with the best performance for the distributed classifier in two-phase recognition (G = 0.02). Differences were found among gait partitioning models, while no differences were found between training procedures with the exception of the shank classifier. Our results raise the possibility of avoiding subject-specific training in HMM for gait-phase recognition and its implementation to control exoskeletons for the pediatric population.

  6. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy

    PubMed Central

    Taborri, Juri; Scalona, Emilia; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2015-01-01

    Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to avoid the intra-subject one in two, four and six gait-phase models in pediatric subjects. The inter-subject procedure consists in the identification of a standardized parameter set to adapt the model to measurements. We tested the inter-subject procedure both on scalar and distributed classifiers. Ten healthy children and ten hemiplegic children, each equipped with two Inertial Measurement Units placed on shank and foot, were recruited. The sagittal component of angular velocity was recorded by gyroscopes while subjects performed four walking trials on a treadmill. The goodness of classifiers was evaluated with the Receiver Operating Characteristic. The results provided a goodness from good to optimum for all examined classifiers (0 < G < 0.6), with the best performance for the distributed classifier in two-phase recognition (G = 0.02). Differences were found among gait partitioning models, while no differences were found between training procedures with the exception of the shank classifier. Our results raise the possibility of avoiding subject-specific training in HMM for gait-phase recognition and its implementation to control exoskeletons for the pediatric population. PMID:26404309

  7. Values of the phase space factors for double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Sabin, E-mail: stoica@theory.nipne.ro; Mirea, Mihai; Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  8. Adaptive optical system for writing large holographic optical elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyutchev, M.V.; Kalyashov, E.V.; Pavlov, A.P.

    1994-11-01

    This paper formulates the requirements imposed on systems for correcting the phase-difference distribution of recording waves over the field of a large-diameter photographic plate ({le}1.5 m) when writing holographic optical elements (HOEs). A technique is proposed for writing large HOEs, based on the use of an adaptive phase-correction optical system of the first type, controlled by the self-diffraction signal from a latent image. The technique is implemented by writing HOEs on photographic plates with an effective diameter of 0.7 m on As{sub 2}S{sub 3} layers. 13 refs., 4 figs.

  9. Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites

    PubMed Central

    2011-01-01

    In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458

  10. Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.; Isbister, Dennis J.

    2001-02-01

    The authors thermostat a qp harmonic oscillator using the two additional control variables ζ and ξ to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional \\{q,p,ζ,ξ\\} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.

  11. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  12. Effect of nitrogen on tensile properties and structures of T-111 (tantalum, 8 percent tungsten, 2 percent hafnium) tubing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1973-01-01

    The effect of controlled nitrogen additions was evaluated on the mechanical properties of T-111 (Ta-8W-2Hf) fuel pin cladding material proposed for use in a lithium-cooled nuclear reactor concept. Additions of 80 to 1125 ppm nitrogen resulted in increased strengthening of T-111 tubular section test specimens at temperatures of 25 to 1200 C. Homogeneous distributions of up to 500 ppm nitrogen did not seriously decrease tensile ductility. Both single and two-phase microstructures, with hafnium nitride as the second phase, were evaluated in this study.

  13. Experimental Demonstration of Coherent Control in Quantum Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2017-01-01

    We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.

  14. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  15. Study of a phase-to-ground fault on a 400 kV overhead transmission line

    NASA Astrophysics Data System (ADS)

    Iagăr, A.; Popa, G. N.; Diniş, C. M.

    2018-01-01

    Power utilities need to supply their consumers at high power quality level. Because the faults that occur on High-Voltage and Extra-High-Voltage transmission lines can cause serious damages in underlying transmission and distribution systems, it is important to examine each fault in detail. In this work we studied a phase-to-ground fault (on phase 1) of 400 kV overhead transmission line Mintia-Arad. Indactic® 650 fault analyzing system was used to record the history of the fault. Signals (analog and digital) recorded by Indactic® 650 were visualized and analyzed by Focus program. Summary of fault report allowed evaluation of behavior of control and protection equipment and determination of cause and location of the fault.

  16. Evolution Models with Conditional Mutation Rates: Strange Plateaus in Population Distribution

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    Cancer is related to clonal evolution with a strongly nonlinear, collective behavior. Here we investigate a slightly advanced version of the popular Crow-Kimura evolution model, suggested recently, by simply assuming a conditional mutation rate. We investigated the steady-state solution and found a highly intriguing plateau in the distribution. There are selective and nonselective phases, with a rather narrow plateau in the distribution at the peak in the first phase, and a wide plateau for many Hamming classes (a collection of genomes with the same number of mutations from the reference genome) in the second phase. We analytically solved the steady state distribution in the selective and nonselective phases, calculating the widths of the plateaus. Numerically, we also found an intermediate phase with several plateaus in the steady-state distribution, related to large finite-genome-length corrections. We assume that the newly observed phenomena should exist in other versions of evolution dynamics when the parameters of the model are conditioned to the population distribution.

  17. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  18. Analysis of a new phase and height algorithm in phase measurement profilometry

    NASA Astrophysics Data System (ADS)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  19. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  20. Advanced Energy Storage Management in Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) andmore » control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.« less

  1. Optimization of active distribution networks: Design and analysis of significative case studies for enabling control actions of real infrastructure

    NASA Astrophysics Data System (ADS)

    Moneta, Diana; Mora, Paolo; Viganò, Giacomo; Alimonti, Gianluca

    2014-12-01

    The diffusion of Distributed Generation (DG) based on Renewable Energy Sources (RES) requires new strategies to ensure reliable and economic operation of the distribution networks and to support the diffusion of DG itself. An advanced algorithm (DISCoVER - DIStribution Company VoltagE Regulator) is being developed to optimize the operation of active network by means of an advanced voltage control based on several regulations. Starting from forecasted load and generation, real on-field measurements, technical constraints and costs for each resource, the algorithm generates for each time period a set of commands for controllable resources that guarantees achievement of technical goals minimizing the overall cost. Before integrating the controller into the telecontrol system of the real networks, and in order to validate the proper behaviour of the algorithm and to identify possible critical conditions, a complete simulation phase has started. The first step is concerning the definition of a wide range of "case studies", that are the combination of network topology, technical constraints and targets, load and generation profiles and "costs" of resources that define a valid context to test the algorithm, with particular focus on battery and RES management. First results achieved from simulation activity on test networks (based on real MV grids) and actual battery characteristics are given, together with prospective performance on real case applications.

  2. Applications of High Speed Networks

    DTIC Science & Technology

    1991-09-01

    plished in order to achieve a dpgree of parallelism by constructing a distributed switch. The type of switch, self -routing, processes the packet...control more than a dozen missiles in flight, and the four Mark 99 target illuminators direct missiles in the terminal phase. The self -contained Phalanx...military installations, weapon system respose and expected missile performance against a threat. Projects are already underway transposing of

  3. Emission and soil distribution of fumigants in forest tree nurseries

    Treesearch

    Dong Wang; Jennifer Juzwik; Stephen Fraedrich

    2005-01-01

    Production of tree seedlings in the majority of forest nurseries in the USA has relied on soil fumigation with methyl bromide (MeBr) to control soil-borne plant pathogens, weeds, parasitic nematodes and insects. Since the announcement of the scheduled MeBr phase-out, a number of nurseries throughout the United States have participated in research programs on MeBr...

  4. Diagnostics for real-time plasma control in PBX-M

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Batha, S.; Bell, R. E.; Bernabei, S.; Hatcher, R.; Kozub, T.; Kugel, H.; Levinton, F.; Okabayashi, M.; Sesnic, S.; von Goeler, S.; Zolfaghari, A.; PBX-M Group

    1995-01-01

    An important issue for future tokamaks is real-time plasma control for the avoidance of magnetohydrodynamic instabilities and other applications that require detailed plasma profile and fluctuation data. Although measurements from diagnostics providing this information require significantly more processing than magnetic flux data, recent advancements could make them practical for adjusting operational settings for plasma heating and current drive systems as well as field coil currents. On the Princeton Beta Experiment-Modification (PBX-M), the lower hybrid current drive phasing can be varied during a plasma shot using digitally programmable ferrite phase shifters, and neural beam functions can be fully computer controlled. PBX-M diagnostics that may be used for control purposes include motional Stark-effect polarimetry for magnetic field pitch angle profiles, soft x-ray arrays for plasma position control and the separation of βp from li, hard x-ray detectors for energetic electron distributions, a multichannel electron cyclotron emission radiometer for ballooning mode identification, and passive plate eddy current monitors for kink stabilization. We will describe the present status of these systems on PBX-M, and discuss their suitability for feedback applications.

  5. Transitioning from Distributed and Traditional to Distributed and Agile: An Experience Report

    NASA Astrophysics Data System (ADS)

    Wildt, Daniel; Prikladnicki, Rafael

    Global companies that experienced extensive waterfall phased plans are trying to improve their existing processes to expedite team engagement. Agile methodologies have become an acceptable path to follow because it comprises project management as part of its practices. Agile practices have been used with the objective of simplifying project control through simple processes, easy to update documentation and higher team iteration over exhaustive documentation, focusing rather on team continuous improvement and aiming to add value to business processes. The purpose of this chapter is to describe the experience of a global multinational company on transitioning from distributed and traditional to distributed and agile. This company has development centers across North America, South America and Asia. This chapter covers challenges faced by the project teams of two pilot projects, including strengths of using agile practices in a globally distributed environment and practical recommendations for similar endeavors.

  6. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a potential application of the method. Molecular weight control was found to be achieved via diffusion of the CFRP agents through the aqueous phase owing to limited water solubilities. The effects of adsorption rate and energy on the droplet size and size distribution of miniemulsions using different surfactants (sodium lauryl sulfate (SLS), sodium dodecylbenzene sulfonate (SDBS), Dowfax 2A1, Aerosol OT-75PG, sodium n-octyl sulfate (SOS), and sodium n-hexadecyl sulfate (SHS)) were analyzed. For this purpose, first, the dynamics of surfactant adsorption at an oil/water interface were examined over a range of surfactant concentrations by the drop volume method and then adsorption rates of the different surfactants were determined for the early stages of adsorption. The results do not show a direct relationship between adsorption rate and miniemulsion droplet size and size distribution. Adsorption energies of these surfactants were also calculated by the Langmuir adsorption isotherm equation and no correlation between adsorption energy and miniemulsion droplet size was found. In order to understand the mechanism of miniemulsification process, the effects of breakage and coalescence processes on droplet size distributions were observed at different surfactant concentrations, monomer ratios, and homogenization conditions. A coalescence and breakup mechanism for miniemulsification is proposed to explain the size distribution of droplets. The multimodal droplet size distribution of ODMA miniemulsions was controlled by the breakage mechanism. The results also showed that, at a surfactant concentration when 100% surface coverage was obtained, the droplet size distribution became unimodal.

  7. The 'North American shale composite' - Its compilation, major and trace element characteristics

    NASA Technical Reports Server (NTRS)

    Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.

    1984-01-01

    North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.

  8. Heat and momentum transfer model studies applicable to once-through, forced convection potassium boiling

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.

    1971-01-01

    A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.

  9. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    NASA Astrophysics Data System (ADS)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  10. The Influence of Topography on Subaqueous Sediment Gravity Flows and the Resultant Deposits: Examples from Deep-water Systems in Offshore Morocco and Offshore Trinidad

    NASA Astrophysics Data System (ADS)

    Deng, H.; Wood, L.; Overeem, I.; Hutton, E.

    2016-12-01

    Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.

  11. Spatial Distribution of Phase Singularities in Optical Random Vector Waves.

    PubMed

    De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L

    2016-08-26

    Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.

  12. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  13. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  14. Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina)

    NASA Astrophysics Data System (ADS)

    Nehrke, G.; Nouet, J.

    2011-12-01

    Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusks) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (~300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystal lattice.

  15. Confocal Raman microscopy as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina)

    NASA Astrophysics Data System (ADS)

    Nehrke, G.; Nouet, J.

    2011-06-01

    Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusk shells) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (∼300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystallographic lattice.

  16. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  17. Modelling healthcare systems with phase-type distributions.

    PubMed

    Fackrell, Mark

    2009-03-01

    Phase-type distributions constitute a very versatile class of distributions. They have been used in a wide range of stochastic modelling applications in areas as diverse as telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival analysis. Their use in modelling systems in the healthcare industry, however, has so far been limited. In this paper we introduce phase-type distributions, give a survey of where they have been used in the healthcare industry, and propose some ideas on how they could be further utilized.

  18. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge.

    PubMed

    Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin

    2018-01-02

    To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.

  19. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-01

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  20. Broadband metasurface holograms: toward complete phase and amplitude engineering

    PubMed Central

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  1. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    PubMed

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  2. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    NASA Astrophysics Data System (ADS)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  3. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  4. Envelope and phase distribution of a resonance transmission through a complex environment

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry V.

    2018-06-01

    A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.

  5. Variability of the occurrence frequency of solar flares as a function of peak hard X-ray rate

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1993-01-01

    We study the occurrence frequency of solar flares as a function of the hard X-ray peak count rate, using observations of the Solar Maximum Mission. The size distributions are well represented by power-law distributions with negative indices. As a better alternative to the conventional method, we devise a maximum likelihood method of determining the power-law index of the size distribution. We find that the power-law index of the size distribution changes with time and with the phase of the 154-day periodicity. The size distribution is steeper during the maximum years of solar cycle 21 (1980 and 1981) than during the declining phase (1982-1984). The size distribution, however, is flatter during the maximum phase of the 154-day periodicity than during the minimum phase. The implications of these findings are discussed.

  6. Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua

    Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Brian; Huque, Aminul; Rogers, Lindsey

    In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less

  8. Distributing Planning and Control for Teams of Cooperating Mobile Robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.E.

    2004-07-19

    This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this researchmore » project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.« less

  9. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE PAGES

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; ...

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  10. Experimental investigation of high-incidence delta-wing flow control

    NASA Astrophysics Data System (ADS)

    Buzica, Andrei; Bartasevicius, Julius; Breitsamter, Christian

    2017-09-01

    The possibility of extending the flight envelope for configurations with slender delta-shaped wings is investigated in this study by means of active flow control through pulsating jets from slot pairs distributed along the leading edge. The experiments comprise stereoscopic particle image velocimetry as well as force and moment measurements on a half-delta wing model. The analysis focuses on three high-incidence regimes: pre-stall, stall, and post-stall. This study also compares different perturbation methods: blowing with spatially constant and variable parameters, frequency and phase. At an incidence of 45°, the unison pulsed blowing facilitates the most significant flow transformation. Here, the separated shear layer reattaches on the wing's suction side, thus increasing the lift. Phase-averaged flow field measurements describe, in this particular case, the underlying physics of the flow-disturbance interaction.

  11. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  12. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  13. Detection of Nonverbal Synchronization through Phase Difference in Human Communication

    PubMed Central

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of “body movement synchronization” is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations. PMID:26208100

  14. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    PubMed

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These results show the difference in nonverbal synchronization between different communication types. Our study indicates that the phase difference distribution is useful in detecting nonverbal synchronization in various human communication situations.

  15. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laser induced hierarchical calcium phosphate structures.

    PubMed

    Kurella, Anil; Dahotre, Narendra B

    2006-11-01

    The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.

  17. Constant-flow ventilation in canine experimental pulmonary emphysema.

    PubMed

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination.

  18. Polarization-multiplexed plasmonic phase generation with distributed nanoslits.

    PubMed

    Lee, Seung-Yeol; Kim, Kyuho; Lee, Gun-Yeal; Lee, Byoungho

    2015-06-15

    Methods for multiplexing surface plasmon polaritons (SPPs) have been attracting much attention due to their potentials for plasmonic integrated systems, plasmonic holography, and optical tweezing. Here, using closely-distanced distributed nanoslits, we propose a method for generating polarization-multiplexed SPP phase profiles which can be applied for implementing general SPP phase distributions. Two independent types of SPP phase generation mechanisms - polarization-independent and polarization-reversible ones - are combined to generate fully arbitrary phase profiles for each optical handedness. As a simple verification of the proposed scheme, we experimentally demonstrate that the location of plasmonic focus can be arbitrary designed, and switched by the change of optical handedness.

  19. Method, memory media and apparatus for detection of grid disconnect

    DOEpatents

    Ye, Zhihong [Clifton Park, NY; Du, Pengwei [Troy, NY

    2008-09-23

    A phase shift procedure for detecting a disconnect of a power grid from a feeder that is connected to a load and a distributed generator. The phase shift procedure compares a current phase shift of the output voltage of the distributed generator with a predetermined threshold and if greater, a command is issued for a disconnect of the distributed generator from the feeder. To extend the range of detection, the phase shift procedure is used when a power mismatch between the distributed generator and the load exceeds a threshold and either or both of an under/over frequency procedure and an under/over voltage procedure is used when any power mismatch does not exceed the threshold.

  20. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  1. Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    NASA Astrophysics Data System (ADS)

    Baldini, V.; Calderone, G.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mégevand, D.; Riva, M.; Santin, P.

    2016-07-01

    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases.

  2. Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness

    PubMed Central

    Liu, Long; Yuan, Fulai; Zhao, Mingchun; Gao, Chengde; Feng, Pei; Yang, Youwen; Yang, Sheng; Shuai, Cijun

    2017-01-01

    The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the formation of Al2Y phase that has a more active potential, which decreased galvanic corrosion resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y contents increased due to the uniform distribution of the Al2Y and Mg17Al12 phases. However, as the Y contents increased further, the formation of excessive Al2Y phase resulted in the increasing of degradation rate and the decreasing of hardness due to its agglomeration. PMID:28772837

  3. Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Caruso, R.; Pal, A.; Rotoli, G.; Longobardi, L.; Pepe, G. P.; Blamire, M. G.; Tafuri, F.

    2017-02-01

    A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (Jc), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low Jc values.

  4. Distributed Knowledge-Based Systems

    DTIC Science & Technology

    1989-03-15

    For example, patients with cerebral palsy , a disease affecting motor control, typically have several muscles that function improperly in different...phases of the gait cycle. The malfunctions in the case of cerebral palsy are improper contractions of the muscles - both in terms of the magnitude and...problem, if true, has serious implications for how knowledge acquisition should be done. Because some knowledge representation must be the target of

  5. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  6. Legacy systems: managing evolution through integration in a distributed and object-oriented computing environment.

    PubMed

    Lemaitre, D; Sauquet, D; Fofol, I; Tanguy, L; Jean, F C; Degoulet, P

    1995-01-01

    Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described.

  7. Hermite-Gaussian beams with self-forming spiral phase distribution

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  8. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  9. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  10. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites.

    PubMed

    Jiao, Y; Huang, L J; Duan, T B; Wei, S L; Kaveendran, B; Geng, L

    2016-09-13

    Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature.

  11. Individual Battery-Power Control for a Battery Energy Storage System Using a Modular Multilevel Cascade Converter

    NASA Astrophysics Data System (ADS)

    Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi

    This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.

  12. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co 0.5(Mg 0.55Zn 0.45) 0.5O 1-v thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin

    2016-04-11

    High quality single-crystal fcc-Co x (Mg y Zn 1-y ) 1-x O 1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Co x (Mg y Zn 1-y ) 1-x O 1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed withmore » both controllable magnetic properties and tunable band-gap, Co x (Mg y Zn 1-y ) 1-x O 1-v films may have promising applications in future spintronics.« less

  13. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  14. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  15. Wigner functions for evanescent waves.

    PubMed

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  16. Thermal analysis of void cavity for heat pipe receiver under microgravity

    NASA Astrophysics Data System (ADS)

    Gui, Xiaohong; Song, Xiange; Nie, Baisheng

    2017-04-01

    Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.

  17. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOEpatents

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  18. Are snakes particles or waves? Scattering of a limbless locomotor through a single slit

    NASA Astrophysics Data System (ADS)

    Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel

    Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.

  19. Directional mass transport in an atmospheric pressure surface barrier discharge.

    PubMed

    Dickenson, A; Morabit, Y; Hasan, M I; Walsh, J L

    2017-10-25

    In an atmospheric pressure surface barrier discharge the inherent physical separation between the plasma generation region and downstream point of application reduces the flux of reactive chemical species reaching the sample, potentially limiting application efficacy. This contribution explores the impact of manipulating the phase angle of the applied voltage to exert a level of control over the electrohydrodynamic forces generated by the plasma. As these forces produce a convective flow which is the primary mechanism of species transport, the technique facilitates the targeted delivery of reactive species to a downstream point without compromising the underpinning species generation mechanisms. Particle Imaging Velocimetry measurements are used to demonstrate that a phase shift between sinusoidal voltages applied to adjacent electrodes in a surface barrier discharge results in a significant deviation in the direction of the plasma induced gas flow. Using a two-dimensional numerical air plasma model, it is shown that the phase shift impacts the spatial distribution of the deposited charge on the dielectric surface between the adjacent electrodes. The modified surface charge distribution reduces the propagation length of the discharge ignited on the lagging electrode, causing an imbalance in the generated forces and consequently a variation in the direction of the resulting gas flow.

  20. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  1. Two statistical mechanics aspects of complex networks

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Biely, Christoly

    2006-12-01

    By adopting an ensemble interpretation of non-growing rewiring networks, network theory can be reduced to a counting problem of possible network states and an identification of their associated probabilities. We present two scenarios of how different rewirement schemes can be used to control the state probabilities of the system. In particular, we review how by generalizing the linking rules of random graphs, in combination with superstatistics and quantum mechanical concepts, one can establish an exact relation between the degree distribution of any given network and the nodes’ linking probability distributions. In a second approach, we control state probabilities by a network Hamiltonian, whose characteristics are motivated by biological and socio-economical statistical systems. We demonstrate that a thermodynamics of networks becomes a fully consistent concept, allowing to study e.g. ‘phase transitions’ and computing entropies through thermodynamic relations.

  2. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-12-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth.

  3. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    PubMed Central

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-01-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth. PMID:28000734

  4. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  5. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  6. Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Lu, Yang; Meng, Zhou

    2017-10-01

    A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.

  7. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America

  8. Topology of Collisionless Relaxation

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2013-04-01

    Using extensive molecular dynamics simulations we explore the fine-grained phase space structure of systems with long-range interactions. We find that if the initial phase space particle distribution has no holes, the final stationary distribution will also contain a compact simply connected region. The microscopic holes created by the filamentation of the initial distribution function are always restricted to the outer regions of the phase space. In general, for complex multilevel distributions it is very difficult to a priori predict the final stationary state without solving the full dynamical evolution. However, we show that, for multilevel initial distributions satisfying a generalized virial condition, it is possible to predict the particle distribution in the final stationary state using Casimir invariants of the Vlasov dynamics.

  9. In search of the best match: probing a multi-dimensional cloud microphysical parameter space to better understand what controls cloud thermodynamic phase

    NASA Astrophysics Data System (ADS)

    Tan, Ivy; Storelvmo, Trude

    2015-04-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that produce the most accurate reproduction of observations of cloud thermodynamic phase, while simultaneously assessing the weaknesses of the parameterizations in the model. We find that the simulated proportion of liquid to ice in mixed-phase clouds is dominated by the fraction of active ice nuclei in the atmosphere and the WBF timescale. In a follow-up to this study, we apply these results to a fully-coupled GCM, CESM, and find that cloud thermodynamic phase has profound ramifications for the uncertainty associated with climate sensitivity estimates.

  10. Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction

    PubMed Central

    Martínez-Sales, Vicenta; Sánchez-Lázaro, Ignacio; Vila, Virtudes; Almenar, Luis; Contreras, Teresa; Reganon, Edelmiro

    2011-01-01

    Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC) have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis. Methods: We studied 32 heart failure patients at hospital admission (acute phase) and at revision after 3 months (stable phase) and 32 controls. Circulating markers of endothelial damage (CEC; von Willebrand factor, vWF and soluble E-selectin, sEsel) and angiogenesis (vascular endothelial growth factor, VEGF and thrombospondin-1) were quantified. Results: Levels of CEC, vWF, sEsel and VEGF are significantly higher in heart failure patients than in controls. Levels of CEC (36.9 ± 15.3 vs. 21.5 ± 10.0 cells/ml; p < 0.001), vWF (325 ± 101 vs. 231 ± 82%; p < 0.001) and VEGF (26.3 ± 15.2 vs. 21.9 ± 11.9 ng/ml; p < 0.001) are significantly higher in the acute phase than in the stable phase of heart failure. CEC levels correlate with vWF and VEGF. Results show than 100% of patients in acute phase and 37.5% in stable phase have levels of CEC higher than the 99th percentile of the distribution of controls (16 cells/ml). Therefore, increases in CEC represent a relative risk of 9.5 for heart failure patients suffering from acute phase. Conclusions: CEC, in addition to being elevated in heart failure, correlate with vWF levels, providing further support for CEC as markers of endothelial damage. Levels of CEC are associated with the acute phase of heart failure and could be used as a marker of the worsening in heart failure. PMID:21897001

  11. Growth and characterization of single phase Cu{sub 2}O by thermal oxidation of thin copper films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis, E-mail: subhagan@yahoo.com

    2016-04-13

    We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can bemore » achieved for oxidation temperatures between 250°C to 320°C. Cu{sub 2}O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.« less

  12. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roitberg, E.; Shemer, L.; Barnea, D.

    Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas-liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connectedmore » to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed. (author)« less

  13. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    PubMed

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  14. Pilot and Controller Workload and Situation Awareness with Three Traffic Management Concept

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Kraut, Joshua; Bacon, Paige; Minakata, Katsumi; Battiste, Vernol; Johnson, Walter

    2010-01-01

    This paper reports on workload and situation awareness of pilots and controllers participating in a human-in-the-loop simulation using three different distributed air-ground traffic management concepts. Eight experimental pilots started the scenario in an en-route phase of flight and were asked to avoid convective weather while performing spacing and merging tasks along with a continuous descent approach (CDA) into Louisville Standiford Airport (SDF). Two controllers managed the sectors through which the pilots flew, with one managing a sector that included the Top of Descent, and the other managing a sector that included the merge point for arrival into SDF. At 3-minute intervals in the scenario, pilots and controllers were probed on their workload or situation awareness. We employed one of three concepts of operation that distributed separation responsibility across human controllers, pilots, and automation to measure changes in operator situation awareness and workload. We found that when pilots were responsible for separation, they had higher levels of awareness, but not necessarily higher levels of workload. When controllers are responsible and actively engaged, they showed higher workload levels compared to pilots and changes in awareness that were dependent on sector characteristics.

  15. Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens

    NASA Astrophysics Data System (ADS)

    Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.

    2017-11-01

    An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).

  16. Phase stability, porosity distribution and microstructural evolution of amorphous Al{sub 50}Ti{sub 50} powders consolidated by electrical resistance sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2015-03-30

    The effect of intensity and duration of the electrical resistance sintering process on the phase stability, porosity distribution and microstructural evolution of Al{sub 50}Ti{sub 50} amorphous powders is studied. The phase transformations during the consolidation process were determined by X-ray diffraction. The porosity distribution was observed by optical and scanning electron microscopy. The amorphous phase is partially transformed to the crystalline phase during the sintering process, and formation of AlTi and AlTi{sub 3} intermetallic compounds occurs for temperatures higher than 300 °C. Finally, it is observed that the compacts core have lower porosity and a higher tendency to the amorphous-crystallinemore » phase transformation than the periphery.« less

  17. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation

    NASA Astrophysics Data System (ADS)

    Alexandrov, Dmitri V.; Ivanov, Alexander A.; Alexandrova, Irina V.

    2018-01-01

    The processes of particle nucleation and their evolution in a moving metastable layer of phase transition (supercooled liquid or supersaturated solution) are studied analytically. The transient integro-differential model for the density distribution function and metastability level is solved for the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs mechanisms for nucleation kinetics are used. We demonstrate that the phase transition boundary lying between the mushy and pure liquid layers evolves with time according to the following power dynamic law: , where Z1(t)=βt7/2 and Z1(t)=βt2 in cases of kinetic and diffusionally controlled scenarios. The growth rate parameters α, β and ε are determined analytically. We show that the phase transition interface in the presence of crystal nucleation and evolution propagates slower than in the absence of their nucleation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  18. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  19. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.

  20. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    PubMed

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantitative phase and texture angularity analysis of brain white matter lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan

    2018-03-01

    Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.

  2. Determination of the distribution constants of aromatic compounds and steroids in biphasic micellar phosphonium ionic liquid/aqueous buffer systems by capillary electrokinetic chromatography.

    PubMed

    Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K

    2013-09-20

    The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan

    NASA Astrophysics Data System (ADS)

    Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu

    2012-12-01

    Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.

  4. Prospects for Practical Applications of a Discharge Chemical HF Laser as a Coherent Source for IR Holography

    NASA Astrophysics Data System (ADS)

    Fedotov, O. G.; Fomin, V. M.

    2018-02-01

    Preliminary experimental results on recording of phase and amplitude holograms using the radiation of electric-discharge HF lasers are presented, and prospects for applications of such lasers in diagnostics of various objects are discussed. It is shown that lasers with homogeneous working medium may generate coherent radiation with a coherence length of greater than 6 m in the absence of mode selection. Methods for control of spatial distribution of electron concentration in excimer and discharge chemical HF (DF) lasers and distributions of the main combustible components are considered. Deposition of holographic identification marks on artworks is studied.

  5. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  6. Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f-noise model

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre

    2016-05-01

    We calculate the joint min-max distribution and the Edwards-Anderson's order parameter for the circular model of 1/f-noise. Both quantities, as well as generalisations, are obtained exactly by combining the freezing-duality conjecture and Jack-polynomial techniques. Numerical checks come with significantly improved control of finite-size effects in the glassy phase, and the results convincingly validate the freezing-duality conjecture. Application to diffusive dynamics is discussed. We also provide a formula for the pre-factor ratio of the joint/marginal Carpentier-Le Doussal tail for minimum/maximum which applies to any logarithmic random energy model.

  7. Stochastic modeling of cell growth with symmetric or asymmetric division

    NASA Astrophysics Data System (ADS)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  8. The Nature of Electrochemical Delithiation of Li-Mg Alloy Electrodes: Neutron Computed Tomography and Modeling of Li Diffusion and Delithiation Phenomenon

    DOE PAGES

    Zhang, Yuxuan; Chandran, K.S. Ravi; Jagannathan, M.; ...

    2016-12-05

    Li-Mg alloys are promising as positive electrodes (anodes) for Li-ion batteries due to the high Li storage capacity and the relatively lower volume change during the lithiation/delithiation process. They also present a unique opportunity to image the Li distribution through the electrode thickness at various delithiation states. In this work, spatial distributions of Li in electrochemically delithiated Li-Mg alloy electrodes have been quantitatively determined using neutron tomography. Specifically, the Li concentration profiles along thickness direction are determined. A rigorous analytical model to quantify the diffusion-controlled delithiation, accompanied by phase transition and boundary movement, has also been developed to explain themore » delithiation mechanism. The analytical modeling scheme successfully predicted the Li concentration profiles which agreed well with the experimental data. It is demonstrated that during discharge Li is removed by diffusion through the solid solution Li-Mg phases and this proceeds with β→α phase transition and the associated phase boundary movement through the thickness of the electrode. This is also accompanied by electrode thinning due to the change in molar volume during delithiation. In conclusion, following the approaches developed here, one can develop a rigorous and quantitative understanding of electrochemical delithiation in electrodes of electrochemical cells, similar to that in the present Li-Mg electrodes.« less

  9. The Nature of Electrochemical Delithiation of Li-Mg Alloy Electrodes: Neutron Computed Tomography and Modeling of Li Diffusion and Delithiation Phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuxuan; Chandran, K.S. Ravi; Jagannathan, M.

    Li-Mg alloys are promising as positive electrodes (anodes) for Li-ion batteries due to the high Li storage capacity and the relatively lower volume change during the lithiation/delithiation process. They also present a unique opportunity to image the Li distribution through the electrode thickness at various delithiation states. In this work, spatial distributions of Li in electrochemically delithiated Li-Mg alloy electrodes have been quantitatively determined using neutron tomography. Specifically, the Li concentration profiles along thickness direction are determined. A rigorous analytical model to quantify the diffusion-controlled delithiation, accompanied by phase transition and boundary movement, has also been developed to explain themore » delithiation mechanism. The analytical modeling scheme successfully predicted the Li concentration profiles which agreed well with the experimental data. It is demonstrated that during discharge Li is removed by diffusion through the solid solution Li-Mg phases and this proceeds with β→α phase transition and the associated phase boundary movement through the thickness of the electrode. This is also accompanied by electrode thinning due to the change in molar volume during delithiation. In conclusion, following the approaches developed here, one can develop a rigorous and quantitative understanding of electrochemical delithiation in electrodes of electrochemical cells, similar to that in the present Li-Mg electrodes.« less

  10. Task allocation model for minimization of completion time in distributed computer systems

    NASA Astrophysics Data System (ADS)

    Wang, Jai-Ping; Steidley, Carl W.

    1993-08-01

    A task in a distributed computing system consists of a set of related modules. Each of the modules will execute on one of the processors of the system and communicate with some other modules. In addition, precedence relationships may exist among the modules. Task allocation is an essential activity in distributed-software design. This activity is of importance to all phases of the development of a distributed system. This paper establishes task completion-time models and task allocation models for minimizing task completion time. Current work in this area is either at the experimental level or without the consideration of precedence relationships among modules. The development of mathematical models for the computation of task completion time and task allocation will benefit many real-time computer applications such as radar systems, navigation systems, industrial process control systems, image processing systems, and artificial intelligence oriented systems.

  11. Controlled decoherence in a quantum Lévy kicked rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2008-06-01

    We develop a theory describing the dynamics of quantum kicked rotators (modeling cold atoms in a pulsed optical field) which are subjected to combined amplitude and timing noise generated by a renewal process (acting as an engineered reservoir). For waiting-time distributions of variable exponent (Lévy noise), we demonstrate the existence of a regime of nonexponential loss of phase coherence. In this regime, the momentum dynamics is subdiffusive, which also manifests itself in a non-Gaussian limiting distribution and a fractional power-law decay of the inverse participation ratio. The purity initially decays with a stretched exponential which is followed by two regimes of power-law decay with different exponents. The averaged logarithm of the fidelity probes the sprinkling distribution of the renewal process. These analytical results are confirmed by numerical computations on quantum kicked rotators subjected to noise events generated by a Yule-Simon distribution.

  12. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    NASA Astrophysics Data System (ADS)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  13. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    PubMed

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    NASA Astrophysics Data System (ADS)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  15. Critical behaviour in charging of electric vehicles

    NASA Astrophysics Data System (ADS)

    Carvalho, Rui; Buzna, Lubos; Gibbens, Richard; Kelly, Frank

    2015-09-01

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on two real-world distribution networks. We show that the system undergoes a continuous phase transition to a congested state as a function of the rate of vehicles plugging to the network to charge. We focus on the order parameter and its fluctuations close to the phase transition, and show that the critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more equitable in proportional fairness than in max-flow.

  16. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  17. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  18. Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.

    2015-11-01

    Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.

  19. Multi-spectral Metasurface for Different Functional Control of Reflection Waves.

    PubMed

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-03-22

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.

  20. Statistical plant set estimation using Schroeder-phased multisinusoidal input design

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    A frequency domain method is developed for plant set estimation. The estimation of a plant 'set' rather than a point estimate is required to support many methods of modern robust control design. The approach here is based on using a Schroeder-phased multisinusoid input design which has the special property of placing input energy only at the discrete frequency points used in the computation. A detailed analysis of the statistical properties of the frequency domain estimator is given, leading to exact expressions for the probability distribution of the estimation error, and many important properties. It is shown that, for any nominal parametric plant estimate, one can use these results to construct an overbound on the additive uncertainty to any prescribed statistical confidence. The 'soft' bound thus obtained can be used to replace 'hard' bounds presently used in many robust control analysis and synthesis methods.

  1. First Results From the Alcator C-Mod Lower Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Parker, Ronald; Bernabei, Stefano; Grimes, Montgomery; Hosea, Joel; Johnson, David; Wilson, Randy

    2005-10-01

    A lower hybrid system operating at 4.6 GHz and capable of 3 MW source power has been installed on Alcator C-Mod. The grill facing the plasma consists of 4 rows of 24 waveguides. Electronic control of the amplitude and phase of the 12 klystrons supplying the RF power enables the launcher's n|| spectrum to be dynamically controlled over a wide range with a time response of 1 ms. Since the deposition of current depends on n|| as well as the temperature profile, the spatial distribution of the driven current can be varied with the same time response. Detection of fast electron Bremsstrahlung is the primary means of monitoring the driven current profile. Initial measurements at the 100 kW power level show that reflection coefficients as low as 7% are obtained at optimal phasing and density at the grill mouth. Comparison of these results with modeling predictions will be presented in a companion paper.

  2. Statistical moments of quantum-walk dynamics reveal topological quantum transitions.

    PubMed

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-04-22

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.

  3. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    PubMed Central

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  4. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    PubMed Central

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-01-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206

  5. Progress in the Phase 0 Model Development of a STAR Concept for Dynamics and Control Testing

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Armand, Sasan C.

    2003-01-01

    The paper describes progress in the development of a lightweight, deployable passive Synthetic Thinned Aperture Radiometer (STAR). The spacecraft concept presented will enable the realization of 10 km resolution global soil moisture and ocean salinity measurements at 1.41 GHz. The focus of this work was on definition of an approximately 1/3-scaled, 5-meter Phase 0 test article for concept demonstration and dynamics and control testing. Design requirements, parameters and a multi-parameter, hybrid scaling approach for the dynamically scaled test model were established. The El Scaling Approach that was established allows designers freedom to define the cross section of scaled, lightweight structural components that is most convenient for manufacturing when the mass of the component is small compared to the overall system mass. Static and dynamic response analysis was conducted on analytical models to evaluate system level performance and to optimize panel geometry for optimal tension load distribution.

  6. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  7. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-12-01

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

  8. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  9. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    PubMed

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  10. Power law scaling in synchronization of brain signals depends on cognitive load.

    PubMed

    Tinker, Jesse; Velazquez, Jose Luis Perez

    2014-01-01

    As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors.

  11. Solar power satellite system definition study. Volume 3: Reference system description, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.

  12. Defense Small Business Innovation Research Program (SBIR), Volume 4, Defense Agencies Abstracts of Phase 1 Awards 1991

    DTIC Science & Technology

    1991-01-01

    EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE

  13. Distributed Knowledge Base Systems for Diagnosis and Information Retrieval.

    DTIC Science & Technology

    1988-04-08

    cycle. For example, patients with cerebral palsy , a disease affecting motor control, typically have several muscles that function improperly in...different phases of the gait cycle. The malfunctions in the case of cerebral palsy are improper contractions of the muscles -- both in terms of the...generally resulted in the neural network level not being a serious contender for Al theory formation and system construction until a new generation

  14. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Correcting Classifiers for Sample Selection Bias in Two-Phase Case-Control Studies

    PubMed Central

    Theis, Fabian J.

    2017-01-01

    Epidemiological studies often utilize stratified data in which rare outcomes or exposures are artificially enriched. This design can increase precision in association tests but distorts predictions when applying classifiers on nonstratified data. Several methods correct for this so-called sample selection bias, but their performance remains unclear especially for machine learning classifiers. With an emphasis on two-phase case-control studies, we aim to assess which corrections to perform in which setting and to obtain methods suitable for machine learning techniques, especially the random forest. We propose two new resampling-based methods to resemble the original data and covariance structure: stochastic inverse-probability oversampling and parametric inverse-probability bagging. We compare all techniques for the random forest and other classifiers, both theoretically and on simulated and real data. Empirical results show that the random forest profits from only the parametric inverse-probability bagging proposed by us. For other classifiers, correction is mostly advantageous, and methods perform uniformly. We discuss consequences of inappropriate distribution assumptions and reason for different behaviors between the random forest and other classifiers. In conclusion, we provide guidance for choosing correction methods when training classifiers on biased samples. For random forests, our method outperforms state-of-the-art procedures if distribution assumptions are roughly fulfilled. We provide our implementation in the R package sambia. PMID:29312464

  16. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  17. Studying Three-Phase Supply in School

    ERIC Educational Resources Information Center

    Singhal, Amit Kumar; Arun, P.

    2009-01-01

    The power distributions of nearly all major countries have accepted three-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires a three-phase supply. While physics students are given an introduction to this in passing, no experimental work is done with three-phase…

  18. The Circadian System Contributes to Apnea Lengthening across the Night in Obstructive Sleep Apnea.

    PubMed

    Butler, Matthew P; Smales, Carolina; Wu, Huijuan; Hussain, Mohammad V; Mohamed, Yusef A; Morimoto, Miki; Shea, Steven A

    2015-11-01

    To test the hypothesis that respiratory event duration exhibits an endogenous circadian rhythm. Within-subject and between-subjects. Inpatient intensive physiologic monitoring unit at the Brigham and Women's Hospital. Seven subjects with moderate/severe sleep apnea and four controls, age 48 (SD = 12) years, 7 males. Subjects completed a 5-day inpatient protocol in dim light. Polysomnography was recorded during an initial control 8-h night scheduled at the usual sleep time, then through 10 recurrent cycles of 2 h 40 min sleep and 2 h 40 min wake evenly distributed across all circadian phases, and finally during another 8-h control sleep period. Event durations, desaturations, and apnea-hypopnea index for each sleep opportunity were assessed according to circadian phase (derived from salivary melatonin), time into sleep, and sleep stage. Average respiratory event durations in NREM sleep significantly lengthened across both control nights (21.9 to 28.2 sec and 23.7 to 30.2 sec, respectively). During the circadian protocol, event duration in NREM increased across the circadian phases that corresponded to the usual sleep period, accounting for > 50% of the increase across normal 8-h control nights. AHI and desaturations were also rhythmic: AHI was highest in the biological day while desaturations were greatest in the biological night. The endogenous circadian system plays an important role in the prolongation of respiratory events across the night, and might provide a novel therapeutic target for modulating sleep apnea. © 2015 Associated Professional Sleep Societies, LLC.

  19. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media.

    PubMed

    Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi

    2013-05-14

    Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.

  20. Device Oriented Project Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions havemore » been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.« less

  1. Biological half-life and organ distribution of [3H]8-arginine vasopressin following administration of vasopressin receptor antagonist OPC-31260.

    PubMed

    Molnár, Andor H; Varga, Csaba; Janáky, Tamás; Tóth, Gábor; Tóth, Géza; Farkas, Judit; László, Ferenc; László, Ferenc A

    2007-06-07

    The effects of the antidiuretic (V(2)) non-peptide receptor antagonist OPC-31260 on the plasma vasopressin level and the biological half-life and organ distribution of radiochemically pure, biologically active [(3)H]8-arginine vasopressin [spec. act.: 15.9 mCi/mmol (588 GBq/mmol)] were studied in Wistar rats. The plasma vasopressin level increased significantly throughout the whole experimental period (24 h). There was no change in the fast phase of the curves of total radioactivity disappearance from the plasma after the administration of [(3)H]arginine vasopressin (control: 1.51+/-0.17 min, OPC-31260-treated: 1.42+/-0.12 min, n=10). The fast phase of the disappearance curves of intact [(3)H]arginine vasopressin did not change either following the administration of OPC-31260 in a dose of 30 mg/kg p.o. (control: 1.06+/-0.19 min, OPC-31260-treated: 1.00+/-0.15 min, n=6). The slow phase of the biological half-life, which is characteristic for the examined compound, proved to be significantly longer (total radioactivity control: 9.29+/-0.61 min, OPC-31260-treated: 12.33+/-0.42 min, P<0.05, n=10; [(3)H]arginine vasopressin radioactivity: control: 5.96+/-0.58 min, OPC-31260-treated: 8.90+/-0.37 min, P<0.05, n=6). In the control rats, the radioactivity was accumulated to the greatest extent in the neurohypophysis, adenohypophysis and kidney. Following OPC-31260 administration, significantly more radioactive compounds accumulated in the kidney (control: 0.30+/-0.052 total radioactivity %/100 mg organ weight, OPC-31260-treated: 0.50+/-0.133 total radioactivity %/100 mg organ weight, P<0.05, n=10) and neurohypophysis (control: 0.37+/-0.053 total radioactivity %/100 mg organ weight, OPC-31260-treated: 0.52+/-0.076 total radioactivity %/100 mg organ weight, P<0.05, n=10). Our results permit the conclusion that the antidiuretic antagonist OPC-31260 not only blocks the V(2) receptors, but also increases the biological half-life of vasopressin. The longer biological half-life of vasopressin following OPC-31260 administration may play a role in the elevation of the plasma vasopressin level.

  2. Power flow control using distributed saturable reactors

    DOEpatents

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  3. Speedup of minimum discontinuity phase unwrapping algorithm with a reference phase distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yihang; Han, Yu; Li, Fengjiao; Zhang, Qican

    2018-06-01

    In three-dimensional (3D) shape measurement based on phase analysis, the phase analysis process usually produces a wrapped phase map ranging from - π to π with some 2 π discontinuities, and thus a phase unwrapping algorithm is necessary to recover the continuous and nature phase map from which 3D height distribution can be restored. Usually, the minimum discontinuity phase unwrapping algorithm can be used to solve many different kinds of phase unwrapping problems, but its main drawback is that it requires a large amount of computations and has low efficiency in searching for the improving loop within the phase's discontinuity area. To overcome this drawback, an improvement to speedup of the minimum discontinuity phase unwrapping algorithm by using the phase distribution on reference plane is proposed. In this improved algorithm, before the minimum discontinuity phase unwrapping algorithm is carried out to unwrap phase, an integer number K was calculated from the ratio of the wrapped phase to the nature phase on a reference plane. And then the jump counts of the unwrapped phase can be reduced by adding 2K π, so the efficiency of the minimum discontinuity phase unwrapping algorithm is significantly improved. Both simulated and experimental data results verify the feasibility of the proposed improved algorithm, and both of them clearly show that the algorithm works very well and has high efficiency.

  4. The size distribution of Jupiter's main ring from Galileo imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Esposito, Larry W.; Showalter, Mark R.; Throop, Henry B.

    2004-07-01

    Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ˜15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or "broken power law" distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production rates and/or lifetimes vary with size and may relate to the physical processes that control their evolution. The significant near arm/far arm asymmetry reported elsewhere (see Showalter et al., 1987, Icarus 69, 458-498; Ockert-Bell et al., 1999, Icarus 138, 188-213) persists in the data even after the main ring is isolated in the SSI images. However, the sense of the asymmetry seen in Galileo images differs from that seen in Voyager images. We interpret this asymmetry as a broad-scale, azimuthal brightness variation. No consistent association with the magnetic field of Jupiter has been observed. It is possible that these longitudinal variations may be similar to the random brightness fluctuations observed in Saturn's F ring by Voyager (Smith et al., 1982, Science 215, 504-537) and during the 1995 ring plane crossings (Nicholson et al., 1996, Science 272, 509-515; Bosh and Rivkin, 1996, Science 272, 518-521; Poulet et al., 2000, Icarus 144, 135-148). Stochastic events may thus play a significant role in the evolution of the jovian main ring.

  5. Simultaneous reduction and carburization of ilmenite

    NASA Astrophysics Data System (ADS)

    Coley, K. S.; Terry, B. S.; Grieveson, P.

    1995-05-01

    Western Australian ilmenite was reduced using “Collie” coal at temperatures in the range 1587 to 1790 K to form carbon-saturated iron and titanium oxycarbide. The oxycarbide phase formed from Ti3O5 at temperatures below 1686 K and from Ti2O3 at temperatures above 1686 K. At 1686 K, both mechanisms occurred. The reaction rate was controlled by oxidation of carbon by carbon dioxide generated by reduction of the oxide phase. The final product at temperatures up to 1686 K was a fine dispersion of titanium oxycarbide in iron. At 1790 K, the reducing oxide tended to remain intact and formed a coarser distribution. In general, manganese impurities from the ilmenite were confined to the iron phase in the product, although some of the coarser oxycarbide particles formed at 1790 K contained trapped manganese at the internal pores.

  6. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution.

    PubMed

    Sasaki, Takuma; Kakesu, Izumi; Mitsui, Yusuke; Rontani, Damien; Uchida, Atsushi; Sunada, Satoshi; Yoshimura, Kazuyuki; Inubushi, Masanobu

    2017-10-16

    We experimentally achieve common-signal-induced synchronization in two photonic integrated circuits with short external cavities driven by a constant-amplitude random-phase light. The degree of synchronization can be controlled by changing the optical feedback phase of the two photonic integrated circuits. The change in the optical feedback phase leads to a significant redistribution of the spectral energy of optical and RF spectra, which is a unique characteristic of PICs with the short external cavity. The matching of the RF and optical spectra is necessary to achieve synchronization between the two PICs, and stable synchronization can be obtained over an hour in the presence of optical feedback. We succeed in generating information-theoretic secure keys and achieving the final key generation rate of 184 kb/s using the PICs.

  7. Legacy systems: managing evolution through integration in a distributed and object-oriented computing environment.

    PubMed Central

    Lemaitre, D.; Sauquet, D.; Fofol, I.; Tanguy, L.; Jean, F. C.; Degoulet, P.

    1995-01-01

    Legacy systems are crucial for organizations since they support key functionalities. But they become obsolete with aging and the apparition of new techniques. Managing their evolution is a key issue in software engineering. This paper presents a strategy that has been developed at Broussais University Hospital in Paris to make a legacy system devoted to the management of health care units evolve towards a new up-to-date software. A two-phase evolution pathway is described. The first phase consists in separating the interface from the data storage and application control and in using a communication channel between the individualized components. The second phase proposes to use an object-oriented DBMS in place of the homegrown system. An application example for the management of hypertensive patients is described. PMID:8563252

  8. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  9. The Microstructural Design of Trimodal Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Ma, Kaka; Yang, Hanry; Li, Meijuan; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-06-01

    Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle-matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.

  10. Malaria control and prevention towards elimination: data from an eleven-year surveillance in Shandong Province, China.

    PubMed

    Kong, Xiangli; Liu, Xin; Tu, Hong; Xu, Yan; Niu, Jianbing; Wang, Yongbin; Zhao, Changlei; Kou, Jingxuan; Feng, Jun

    2017-01-31

    Shandong Province experienced a declining malaria trend of local-acquired transmission, but the increasing imported malaria remains a challenge. Therefore, understanding the epidemiological characteristics of malaria and the control and elimination strategy and interventions is needed for better planning to achieve the overall elimination goal in Shandong Province. A retrospective study was conducted and all individual cases from a web-based reporting system were reviewed and analysed to explore malaria-endemic characteristics in Shandong from 2005 to 2015. Annual malaria incidence reported in 2005-2015 were geo-coded and matched to the county-level. Spatial cluster analysis was performed to evaluate any identified spatial disease clusters for statistical significance. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level during 2005-2015. In total, 1564 confirmed malaria cases were reported, 27.1% of which (n = 424) were indigenous cases. Most of the indigenous case (n = 339, 80.0%) occurred from June to October. However, the number and scale of imported cases have been increased but no significant difference was observed during months. Shandong is endemic for both Plasmodium vivax (n = 730) and Plasmodium falciparum (n = 674). The disease is mainly distributed in Southern (n = 710) and Eastern region (n = 424) of Shandong, such as Jinning (n = 214 [13.7%]), Weihai (n = 151 [9.7%]), and Yantai (n = 107 [6.8%]). Furthermore, the spatial cluster analysis of malaria cases from 2005 to 2015 indicated that the diseased was not randomly distributed. For indigenous cases, a total of 15 and 2 high-risk counties were determined from 2005 to 2009 (control phase) and from 2010 to 2015 (elimination phase), respectively. For imported cases, a total of 26 and 29 high-risk counties were determined from 2005 to 2009 (control phase) and from 2010 to 2015 (elimination phase), respectively. The method of spatial scan statistics identified different 13 significant spatial clusters between 2005 and 2015. The space-time clustering analysis determined that the most likely cluster included 14 and 19 counties for indigenous and imported, respectively. In order to cope with the requirements of malaria elimination phase, the surveillance system should be strengthened particularity on the frequent migration regions as well as the effective multisectoral cooperation and coordination mechanisms. Specific response packages should be tailored among different types of cities and capacity building should also be improved mainly focus on the emergence response and case management. Fund guarantees for scientific research should be maintained both during the elimination and post-elimination phase to consolidate the achievements of malaria elimination.

  11. How old is this bird? The age distribution under some phase sampling schemes.

    PubMed

    Hautphenne, Sophie; Massaro, Melanie; Taylor, Peter

    2017-12-01

    In this paper, we use a finite-state continuous-time Markov chain with one absorbing state to model an individual's lifetime. Under this model, the time of death follows a phase-type distribution, and the transient states of the Markov chain are known as phases. We then attempt to provide an answer to the simple question "What is the conditional age distribution of the individual, given its current phase"? We show that the answer depends on how we interpret the question, and in particular, on the phase observation scheme under consideration. We then apply our results to the computation of the age pyramid for the endangered Chatham Island black robin Petroica traversi during the monitoring period 2007-2014.

  12. Bayesian Phase II optimization for time-to-event data based on historical information.

    PubMed

    Bertsche, Anja; Fleischer, Frank; Beyersmann, Jan; Nehmiz, Gerhard

    2017-01-01

    After exploratory drug development, companies face the decision whether to initiate confirmatory trials based on limited efficacy information. This proof-of-concept decision is typically performed after a Phase II trial studying a novel treatment versus either placebo or an active comparator. The article aims to optimize the design of such a proof-of-concept trial with respect to decision making. We incorporate historical information and develop pre-specified decision criteria accounting for the uncertainty of the observed treatment effect. We optimize these criteria based on sensitivity and specificity, given the historical information. Specifically, time-to-event data are considered in a randomized 2-arm trial with additional prior information on the control treatment. The proof-of-concept criterion uses treatment effect size, rather than significance. Criteria are defined on the posterior distribution of the hazard ratio given the Phase II data and the historical control information. Event times are exponentially modeled within groups, allowing for group-specific conjugate prior-to-posterior calculation. While a non-informative prior is placed on the investigational treatment, the control prior is constructed via the meta-analytic-predictive approach. The design parameters including sample size and allocation ratio are then optimized, maximizing the probability of taking the right decision. The approach is illustrated with an example in lung cancer.

  13. Energy content of stormtime ring current from phase space mapping simulations

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.

    1993-01-01

    We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).

  14. Visualized measurement of the acoustic levitation field based on digital holography with phase multiplication

    NASA Astrophysics Data System (ADS)

    Zheng, Puchao; Li, Enpu; Zhao, Jianlin; Di, Jianglei; Zhou, Wangmin; Wang, Hao; Zhang, Ruifeng

    2009-11-01

    By using digital holographic interferometory with phase multiplication, the visualized measurement of the acoustic levitation field (ALF) with single axis is carried out. The digital holograms of the ALF under different conditions are recorded by use of CCD. The corresponding digital holographic interferograms reflecting the sound pressure distribution and the interference phase distribution are obtained by numerical reconstruction and phase subtraction, which are consistent with the theoretical results. It indicates that the proposed digital holographic interferometory with phase multiplication can successfully double the fringe number of the interference phase patterns of the ALF and improve the measurement precision. Compared with the conventional optical holographic interferometory, digital holographic interferometory has the merits of quasi real-time, more exactitude and convenient operation, and it provides an effective way for studying the sound pressure distribution of the ALF.

  15. Older cancer patients in cancer clinical trials are underrepresented. Systematic literature review of almost 5000 meta- and pooled analyses of phase III randomized trials of survival from breast, prostate and lung cancer.

    PubMed

    Dunn, Cita; Wilson, Andrew; Sitas, Freddy

    2017-12-01

    Older people represent increasing proportions of the population with cancer. To understand the representivity of cancer treatments in older people, we performed a systematic literature review using PRISMA guidelines of the age distribution of clinical trial participants for three leading cancer types, namely breast, prostate, and lung. We used PubMed to identify articles detailing meta or pooled-analyses of phase III, randomised controlled trials (RCTs) of survival for breast, prostate and lung cancer, published ≤5 years from 2016. We compared the age distribution of participants to that of these cancers for "More developed regions". 4993 potential papers were identified, but only three papers on breast cancer, three on lung cancer, and none on prostate cancer presented the age distribution of their participants. Except for one paper of breast cancer, participants ≥70 years in all other papers were underrepresented. We recommend the age distribution of patients be clearly reported in all clinical trials, as per guidelines. Clinical trials ought to be more representative of the populations most affected by the disease for which treatments are being tested. This should lead to better knowledge of effectiveness of treatments and better translation of trial results to optimal care of older cancer patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H.

    2013-09-01

    We investigated the cluster-size distribution of the residual nonwetting phase in a sintered glass-bead porous medium at two-phase flow conditions, by means of micro-computed-tomography (μCT) imaging with pore-scale resolution. Cluster-size distribution functions and cluster volumes were obtained by image analysis for a range of injected pore volumes under both imbibition and drainage conditions; the field of view was larger than the porosity-based representative elementary volume (REV). We did not attempt to make a definition for a two-phase REV but used the nonwetting-phase cluster-size distribution as an indicator. Most of the nonwetting-phase total volume was found to be contained in clusters that were one to two orders of magnitude larger than the porosity-based REV. The largest observed clusters in fact ranged in volume from 65% to 99% of the entire nonwetting phase in the field of view. As a consequence, the largest clusters observed were statistically not represented and were found to be smaller than the estimated maximum cluster length. The results indicate that the two-phase REV is larger than the field of view attainable by μCT scanning, at a resolution which allows for the accurate determination of cluster connectivity.

  17. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.

  18. Ergodicity of a singly-thermostated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold

    2016-03-01

    Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.

  19. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  20. Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.

    2008-06-01

    This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.

Top