Sample records for distribution function brdf

  1. Measurement of the Spatial Distribution of the Spectral Response Variation in the Field of View of the ASD Spectrometer Input Optics

    DTIC Science & Technology

    2014-12-01

    development. It will be used for the measurement of the spectro-polarimetric BRDF (Bidirectional Reflectance Distribution function). For practical reasons...goniomètre est en développement. Il sera utilisé pour les mesures de BRDF (fonction de distribution de réflectance bidirectionnelle) spectrales et...by the independent measurements of the spectral and Bidirectional Reflectance Distribution Function ( BRDF ). The BRDF is the measurement of the

  2. Robust categorization of microfacet BRDF models to enable flexible application-specific BRDF adaptation

    NASA Astrophysics Data System (ADS)

    Butler, Samuel D.; Marciniak, Michael A.

    2014-09-01

    Since the development of the Torrance-Sparrow bidirectional re ectance distribution function (BRDF) model in 1967, several BRDF models have been created. Previous attempts to categorize BRDF models have relied upon somewhat vague descriptors, such as empirical, semi-empirical, and experimental. Our approach is to instead categorize BRDF models based on functional form: microfacet normal distribution, geometric attenua- tion, directional-volumetric and Fresnel terms, and cross section conversion factor. Several popular microfacet models are compared to a standardized notation for a microfacet BRDF model. A library of microfacet model components is developed, allowing for creation of unique microfacet models driven by experimentally measured BRDFs.

  3. Measurement and application of bidirectional reflectance distribution function

    NASA Astrophysics Data System (ADS)

    Liao, Fei; Li, Lin; Lu, Chengwen

    2016-10-01

    When a beam of light with certain intensity and distribution reaches the surface of a material, the distribution of the diffused light is related to the incident angle, the receiving angle, the wavelength of the light and the types of the material. Bidirectional Reflectance Distribution Function (BRDF) is a method to describe this distribution. For an optical system, the optical and mechanical materials' BRDF are unique, and if we want to calculate stray light of the system we should know the correct BRDF data of the whole materials. There are fundamental significances in the area of space remote sensor where BRDF is needed in the precise radiation calibration. It is also important in the military field where BRDF can be used in the object identification and target tracking, etc. In this paper, 11 kinds of aerospace materials' BRDF are measured and more than 310,000 groups of BRDF data are achieved , and also a BRDF database is established in China for the first time. With the BRDF data of the database, we can create the detector model, build the stray light radiation surface model in the stray light analysis software. In this way, the stray radiation on the detector can be calculated correctly.

  4. Dynamic data driven bidirectional reflectance distribution function measurement system

    NASA Astrophysics Data System (ADS)

    Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.

    2014-09-01

    The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.

  5. Extended bidirectional reflectance distribution function for polarized light scattering from subsurface defects under a smooth surface.

    PubMed

    Shen, Jian; Deng, Degang; Kong, Weijin; Liu, Shijie; Shen, Zicai; Wei, Chaoyang; He, Hongbo; Shao, Jianda; Fan, Zhengxiu

    2006-11-01

    By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions.

  6. Comparison of Unscented Kalman Filter and Unscented Schmidt Kalman Filter in Predicting Attitude and Associated Uncertainty of a Geosynchronous Satellite

    DTIC Science & Technology

    2014-09-01

    the MLI coating, and similarly, the surface model as represented by the bidirectional reflectance distribution function ( BRDF ) will never be...surface model as represented by the bidirectional reflectance distribution function ( BRDF ) will never be identical to that found on actual space objects... BRDF model and how it compares to the Ashikhmin-Shirley BRDF [14] using similar nomenclature can be found in Ref. [15]. In this scenario, the state

  7. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.

    PubMed

    Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A

    2015-11-01

    The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.

  8. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.

    PubMed

    Hyde, M W; Schmidt, J D; Havrilla, M J

    2009-11-23

    A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

  9. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  10. Passive Optical Detection of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    modulation from any given surface? Clearly a detailed mathematical model of light scattering (i.e., BRDF ) is needed, so that we may take the partial...reflectance distribution function ( BRDF ): “The BRDF is a derivative, a distri- bution function, relating the irradiance incident from one given...direction to its contribution to the reflected radiance in another direction.” In other words, the BRDF is a multidimensional surface: the relevant variables

  11. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    PubMed

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  12. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  13. PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh

    2016-11-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  14. PolarBRDF: A general purpose Python package for visualization and quantitative analysis of multi-angular remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.

    2016-12-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  15. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space.

    PubMed

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-01

    Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.

  16. Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film.

    PubMed

    Otremba, Zbigniew; Piskozub, Jacek

    2004-04-19

    The Bi-directional Reflectance Distribution Function (BRDF) of both clean seawaters and those polluted with oil film was determined using the Monte Carlo radiative transfer technique in which the spectrum of complex refractive index of Romashkino crude oil and the optical properties of case II water for chosen wavelengths was considered. The BRDF values were recorded for 1836 solid angular sectors of throughout the upper hemisphere. The visibility of areas polluted with oil observed from various directions and for various wavelengths is discussed.

  17. Polarbrdf: A General Purpose Python Package for Visualization Quantitative Analysis of Multi-Angular Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh

    2016-01-01

    The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.

  18. Rational BRDF.

    PubMed

    Pacanowski, Romain; Salazar Celis, Oliver; Schlick, Christophe; Granier, Xavier; Poulin, Pierre; Cuyt, Annie

    2012-11-01

    Over the last two decades, much effort has been devoted to accurately measuring Bidirectional Reflectance Distribution Functions (BRDFs) of real-world materials and to use efficiently the resulting data for rendering. Because of their large size, it is difficult to use directly measured BRDFs for real-time applications, and fitting the most sophisticated analytical BRDF models is still a complex task. In this paper, we introduce Rational BRDF, a general-purpose and efficient representation for arbitrary BRDFs, based on Rational Functions (RFs). Using an adapted parametrization, we demonstrate how Rational BRDFs offer 1) a more compact and efficient representation using low-degree RFs, 2) an accurate fitting of measured materials with guaranteed control of the residual error, and 3) efficient importance sampling by applying the same fitting process to determine the inverse of the Cumulative Distribution Function (CDF) generated from the BRDF for use in Monte-Carlo rendering.

  19. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record

    USDA-ARS?s Scientific Manuscript database

    Bidirectional Reflectance Distribution Function (BRDF) model parameters, Albedo quantities, and Nadir BRDF Adjusted Reflectance (NBAR) products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS), on the Suomi-NPP (National Polar-orbiting Partnership) satellite are evaluated through c...

  20. Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data

    USDA-ARS?s Scientific Manuscript database

    The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...

  1. Optical roughness BRDF model for reverse Monte Carlo simulation of real material thermal radiation transfer.

    PubMed

    Su, Peiran; Eri, Qitai; Wang, Qiang

    2014-04-10

    Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.

  2. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    DTIC Science & Technology

    2014-09-01

    has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function ( BRDF ) models . This paper...seeks to evaluate the impact of BRDF -consistent radiation pres- sure models compared to changes in the other BRDF parameters. The differences in...orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a

  3. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    PubMed

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  4. Sequential fitting-and-separating reflectance components for analytical bidirectional reflectance distribution function estimation.

    PubMed

    Lee, Yu; Yu, Chanki; Lee, Sang Wook

    2018-01-10

    We present a sequential fitting-and-separating algorithm for surface reflectance components that separates individual dominant reflectance components and simultaneously estimates the corresponding bidirectional reflectance distribution function (BRDF) parameters from the separated reflectance values. We tackle the estimation of a Lafortune BRDF model, which combines a nonLambertian diffuse reflection and multiple specular reflectance components with a different specular lobe. Our proposed method infers the appropriate number of BRDF lobes and their parameters by separating and estimating each of the reflectance components using an interval analysis-based branch-and-bound method in conjunction with iterative K-ordered scale estimation. The focus of this paper is the estimation of the Lafortune BRDF model. Nevertheless, our proposed method can be applied to other analytical BRDF models such as the Cook-Torrance and Ward models. Experiments were carried out to validate the proposed method using isotropic materials from the Mitsubishi Electric Research Laboratories-Massachusetts Institute of Technology (MERL-MIT) BRDF database, and the results show that our method is superior to a conventional minimization algorithm.

  5. Comparison of BRDF-Predicted and Observed Light Curves of GEO Satellites

    DTIC Science & Technology

    2015-10-18

    to validate the BRDF models . 7. ACKNOWLEDGEMENTS This work was partially funded by a Phase II SBIR (FA9453-14-C-029) from the AFRL Space...Bidirectional Reflectance Distribution Function ( BRDF ) models . These BRDF models have generally come from researchers in computer graphics and machine...characterization, there is a lack of research on the validation of BRDFs with regards to real data. In this paper, we compared telescope data provided by the

  6. Bidirectional reflectance distribution function measurements and analysis of retroreflective materials.

    PubMed

    Belcour, Laurent; Pacanowski, Romain; Delahaie, Marion; Laville-Geay, Aude; Eupherte, Laure

    2014-12-01

    We compare the performance of various analytical retroreflecting bidirectional reflectance distribution function (BRDF) models to assess how they reproduce accurately measured data of retroreflecting materials. We introduce a new parametrization, the back vector parametrization, to analyze retroreflecting data, and we show that this parametrization better preserves the isotropy of data. Furthermore, we update existing BRDF models to improve the representation of retroreflective data.

  7. Bidirectional reflectance distribution function of diffuse extreme ultraviolet scatterers and extreme ultraviolet baffle materials.

    PubMed

    Newell, M P; Keski-Kuha, R A

    1997-08-01

    Bidirectional reflectance distribution function (BRDF) measurements of a number of diffuse extreme ultraviolet (EUV) scatterers and EUV baffle materials have been performed with the Goddard EUV scatterometer. BRDF data are presented for white Spectralon SRS-99 at 121.6 nm; the data exhibit a non-Lambertian nature and a total hemispherical reflectance lower than 0.15. Data are also presented for an evaporated Cu black sample, a black Spectralon SRS-02 sample, and a Martin Optical Black sample at wavelengths of 58.4 and 121.6 nm and for angles of incidence of 15 degrees and 45 degrees. Overall Martin Optical Black exhibited the lowest BRDF characteristic, with a total hemispherical reflectance of the order of 0.01 and measured BRDF values as low as 2 x 10(-3) sr(-1).

  8. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    PubMed

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  9. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    PubMed

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  10. Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics.

    PubMed

    Hoover, Brian G; Gamiz, Victor L

    2006-02-01

    The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.

  11. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  12. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    DTIC Science & Technology

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  13. Establishing BRDF calibration capabilities through shortwave infrared

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  14. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED.

    PubMed

    Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% ( k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  15. Changes in Optical Properties of Spacecraft Materials Due to Combined Effects of Aging Factors in a Space Environment

    DTIC Science & Technology

    2013-07-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 16-07-2013 2...Bidirectional scattering distribution function (BSDF) and Bidirectional reflectance distribution function ( BRDF ) measurements were conducted for the...radiation (visible, ultraviolet, vacuum ultraviolet and soft X-ray radiation) at an altitude of 400 km 4) BSDF/ BRDF measurements have been conducted for

  16. Attitude Estimation for Unresolved Agile Space Objects with Shape Model Uncertainty

    DTIC Science & Technology

    2012-09-01

    Simulated lightcurve data using the Cook-Torrance [8] Bidirectional Reflectivity Distribution Function ( BRDF ) model was first applied in a batch estimation...framework to ellipsoidal SO models in geostationary orbits [9]. The Ashikhmin-Shirley [10] BRDF has also been used to study estimation of specular...non-convex 300 facet model and simulated lightcurves using a combination of Lambertian and Cook-Torrance (specular) BRDF models with an Unscented

  17. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    PubMed

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  18. BRDF of Salt Pan Regolith Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  19. Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene.

    PubMed

    Germer, Thomas A

    2017-11-20

    We measured the Mueller matrix bidirectional reflectance distribution function (BRDF) of a sintered polytetrafluoroethylene (PTFE) sample over the scattering hemisphere for six incident angles (0°-75° in 15° steps) and for four wavelengths (351 nm, 532 nm, 633 nm, and 1064 nm). The data for each wavelength were fit to a phenomenological description for the Mueller matrix BRDF, which is an extension of the bidirectional surface scattering modes developed by Koenderink and van Doorn [J. Opt. Soc. Am. A.15, 2903 (1998)JOAOD60740-323210.1364/JOSAA.15.002903] for unpolarized BRDF. This description is designed to be complete, to obey the appropriate reciprocity conditions, and to provide a full description of the Mueller matrix BRDF as a function of incident and scattering directions for each wavelength. The description was further extended by linearizing the surface scattering mode coefficients with wavelength. This data set and its parameterization provides a comprehensive on-demand description of the reflectance properties for this commonly used diffuse reflectance reference material over a wide range of wavelengths.

  20. Polarized BRDF measurement of the type E235B low carbon structural steel

    NASA Astrophysics Data System (ADS)

    Liu, Yanlei; Yu, Kun; Zhang, Kaihua; Liu, Yufang

    2018-01-01

    Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials. The polarized BRDF contains more information, especially for the painted objects and target recognition. In this letter, we measured the in plane polarized spectral BRDF for the steel E235B in the wavelength range of 450-600 nm. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The measuring results indicates that the wavelength of incident light has a positive effect on the BRDF near the specular direction, and has a negative influence for other direction. BRDF increases slowly with reflected zenith angle and decreases rapidly with peak occurs at specular direction, which may be attributed to the shadowing effect. In addition, the results presents that the polarization of incident light has a slight influence on the BRDF of the sample.

  1. Initial studies of the bidirectional reflectance distribution function of carbon nanotube structures for stray light control applications

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Georgiev, Georgi T.; Tveekrem, June L.; Quijada, Manuel; Getty, Stephanie; Hagopian, John G.

    2010-10-01

    The Bidirectional Reflectance Distribution Function (BRDF) at visible and near-infrared wavelengths of Multi-Wall Carbon NanoTubes (MWCNTs) grown on substrate materials are reported. The BRDF measurements were performed in the Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center, and results at 500nm and 900nm are reported here. In addition, the 8° Directional/Hemispherical Reflectance of the samples is reported from the ultraviolet to shortwave infrared. The 8° Directional/Hemispherical Reflectance was measured in the Optics Branch at NASA's Goddard Space Flight Center. The BRDF was measured at 0° and 45° incident angles and from -80° to +80° scatter angles using a monochromatic source. The optical scatter properties of the samples as represented by their BRDF were found to be strongly influenced by the choice of substrate. As a reference, the optical scattering properties of the carbon nanotubes are compared to the BRDF of Aeroglaze Z306TM and Rippey Ultrapol IVTM, a well-known black paint and black appliqué, respectively. The possibility, promise, and challenges of employing carefully engineered carbon nanotubes in straylight control applications particularly for spaceflight instrumentation is also discussed.

  2. Laboratory-Based Bidirectional Reflectance Distribution Functions of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2008-01-01

    Laboratory-based bidirectional reflectance distribution functions of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg, 10 deg, and 30 deg; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg. and 180 deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0o incident angle and 12% at 30 deg. incident angle. The fitted BRDF data shows a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  3. Barycentric parameterizations for isotropic BRDFs.

    PubMed

    Stark, Michael M; Arvo, James; Smits, Brian

    2005-01-01

    A bidirectional reflectance distribution function (BRDF) is often expressed as a function of four real variables: two spherical coordinates in each of the the "incoming" and "outgoing" directions. However, many BRDFs reduce to functions of fewer variables. For example, isotropic reflection can be represented by a function of three variables. Some BRDF models can be reduced further. In this paper, we introduce new sets of coordinates which we use to reduce the dimensionality of several well-known analytic BRDFs as well as empirically measured BRDF data. The proposed coordinate systems are barycentric with respect to a triangular support with a direct physical interpretation. One coordinate set is based on the BRDF model proposed by Lafortune. Another set, based on a model of Ward, is associated with the "halfway" vector common in analytical BRDF formulas. Through these coordinate sets we establish lower bounds on the approximation error inherent in the models on which they are based. We present a third set of coordinates, not based on any analytical model, that performs well in approximating measured data. Finally, our proposed variables suggest novel ways of constructing and visualizing BRDFs.

  4. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED

    PubMed Central

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region. PMID:29167593

  5. Space Object Classification and Characterization Via Multiple Model Adaptive Estimation

    DTIC Science & Technology

    2014-07-14

    BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science

  6. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    PubMed

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  7. Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS

    NASA Astrophysics Data System (ADS)

    Willison, A.; Bedard, D.

    This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where the contribution of each facet is proportionally integrated.

  8. Comparison of the bidirectional reflectance distribution function of various surfaces

    NASA Astrophysics Data System (ADS)

    Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.

    1989-04-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.

  9. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  10. Physically based reflectance model utilizing polarization measurement.

    PubMed

    Nakano, Takayuki; Tamagawa, Yasuhisa

    2005-05-20

    A surface bidirectional reflectance distribution function (BRDF) depends on both the optical properties of the material and the microstructure of the surface and appears as combination of these factors. We propose a method for modeling the BRDF based on a separate optical-property (refractive-index) estimation by polarization measurement. Because the BRDF and the refractive index for precisely the same place can be determined, errors cased by individual difference or spatial dependence can be eliminated. Our BRDF model treats the surface as an aggregation of microfacets, and the diffractive effect is negligible because of randomness. An example model of a painted aluminum plate is presented.

  11. Astrometric and Photometric Data Fusion for Mass and Surface Material Estimation using Refined Bidirectional Reflectance Distribution Functions-Solar Radiation Pressure Model

    DTIC Science & Technology

    2013-09-01

    model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The

  12. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  13. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  14. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the Radyo Project

    DTIC Science & Technology

    2013-09-30

    radiative transfer to model the BRDF of particulate surfaces. OBJECTIVES The major objective of this research is to understand the downwelling...of image and radiative transfer models used in the ocean. My near term ocean optics objectives have been: 1) to improve the measurement capability...directional Reflectance Distribution Function ( BRDF ) of benthic surfaces in the ocean, and 4) to understand the capabilities and limitations of using

  15. Comparison of the bidirectional reflectance distribution function of various surfaces

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.

    1988-01-01

    Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.

  16. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    PubMed

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  17. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  18. Using Multi-Angle WorldView-2 Imagery to Determine Ocean Depth Near Oahu, Hawaii

    DTIC Science & Technology

    2012-09-01

    Reflection geometry used in the definition of BRDF (From McConnon [2010...Visible/InfraRed Imaging Spectrometer BRDF : Bidirectional Reflectance Distribution Function DHMs: Digital Height Maps DNs: Digital Numbers EM...navigation and fisheries management, and are also helpful for improving models of ocean circulation, air-sea interaction, weather forecasting, and

  19. Simulated BRDF based on measured surface topography of metal

    NASA Astrophysics Data System (ADS)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  20. An empirical study on the utility of BRDF model parameters and topographic parameters for mapping vegetation in a semi-arid region with MISR imagery

    USDA-ARS?s Scientific Manuscript database

    Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...

  1. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  2. Deriving Albedo from Coupled MERIS and MODIS Surface Products

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Schaaf, Crystal; Jin, Yu-Fang; Lucht, Wolfgang; Strahler, Alan

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  3. Gloss evaluation from soft and hard metrologies.

    PubMed

    Wang, Zihao; Xu, Lihao; Hu, Yu; Mirjalili, Fereshteh; Luo, Ming Ronnier

    2017-09-01

    Recent advances in bidirectional reflectance distribution function (BRDF) acquisitions have provided a novel approach for appearance measurement and analysis. In particular, since gloss appearance is dependent on the directional reflective properties of surfaces, it is reasonable to leverage the BRDF for gloss evaluation. In this paper, we investigate gloss appearance from both soft metrology and hard metrology. A psychophysical experiment was conducted for the gloss assessment of 47 neutral-color samples. In the evaluation of gloss perception from gloss meter measurements, we report several ambiguous correspondences in the medium gloss range. In order to analyze and explain this phenomenon, the BRDF was acquired and examined using a commercial BRDF measuring device. With an improved correlation-to-visual perception, we propose a two-dimensional gloss model by combining a parameter, the standard deviation of the specular lobe, from Ward's BRDF model with measured gloss values.

  4. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    PubMed

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  5. Simplifying BRDF input data for optical signature modeling

    NASA Astrophysics Data System (ADS)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  6. Efficient polarimetric BRDF model.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D

    2015-11-30

    The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.

  7. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  8. A novel image-based BRDF measurement system and its application to human skin

    NASA Astrophysics Data System (ADS)

    Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy

    2016-09-01

    Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.

  9. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model.

    PubMed

    Prokhorov, Alexander

    2012-05-01

    This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.

  10. BRDF measurements of sunshield and baffle materials for the IRAS telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1982-01-01

    Measurements of the far-infrared bidirectional reflectance distribution functions (BRDF) of four samples of Martin Black coating and one sample of gold coated aluminum from the telescope to be flown on the Infrared Astronomy Satellite (IRAS) are presented. At incidence angles near 35 deg Martin Black is a diffuse reflector at wavelengths as long as 36 microns. The gold coated aluminum sample from the IRAS sunshield has a visible grain which causes a strong diffraction enhancement of the BRDF at large nonspecular angles. This enhancement from the sunshield will increase the stray light level inside the telescope.

  11. BRDF-dependent accuracy of array-projection-based 3D sensors.

    PubMed

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  12. A Comparative Study of the Bidirectional Reflectance Distribution Function of Several Surfaces as a Mid-wave Infrared Diffuse Reflectance Standard

    DTIC Science & Technology

    2009-03-01

    it for the symbology used in this document before reading this chapter. 2.1 BRDF Development In this section, the BRDF will first be briefly be...geometric occlusion term, which was de- picted in Figure 6. This term in the Cook-Torrance model describes the shadowing and masking effects, and is...where the min() function selects the least of the arguments. The first term in the minimum function is where no occlusion of any kind is occurring

  13. Cryo-scatter measurements of beryllium

    NASA Astrophysics Data System (ADS)

    Lippey, Barret; Krone-Schmidt, Wilfried

    1991-12-01

    Bi-directional Reflection Distribution Function measurements were performed as a function of cryogenic temperature for various substrates. Substrates investigated include HIPed and sputtered beryllium produced from different powders and by various manufacturing and polishing processes. In some samples investigated, the BRDF at 10.6 microns increased by a factor of 2 to 5 during cooling from 300 to 30 Kelvin. On repeated temperature cycling the change in BRDF appeared to be totally elastic. The cryo-scatter effect does not occur for all types of beryllium.

  14. Directional Degradation of Spectralon Diffuser Under Ionizing Radiation for Calibration of Space-Based Sensors

    NASA Technical Reports Server (NTRS)

    Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.

    2012-01-01

    Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing

  15. The measurement and evaluation of bidirectional reflectance characteristics of Dunhuang radiometric calibration test site

    NASA Astrophysics Data System (ADS)

    Zhao, Chun-yan; Li, Xin; Wei, Wei; Zheng, Xiao-bing

    2016-10-01

    With the progress of quantitative remote sensing, the acquisition of surface BRDF becomes more and more important. In order to improve the accuracy of the surface BRDF measurements, a VNIR-SWIR Bidirectional Reflectance Automatic Measurement System, which was developed by Hefei Institutes of Physical Science (HIPS), is introduced that allows in situ measurements of hyperspectral bidirectional reflectance data. Hyperspectral bidirectional reflectance distribution function data sets taken with the BRDF automatic measurement system nominally cover the spectral range between 390 and 2390 nm in 971 bands. In July 2007, September 2008, June 2011, we acquired a series of the BRDF data covered Dunhuang radiometric calibration test site in terms of the BRDF measurement system. We have not obtained such comprehensive and accurate data as they are, since 1990s when the site was built up. These data are applied to calibration for FY-2 and other satellites sensors. Field BRDF data of a Dunhuang site surface reveal a strong spectral variability. An anisotropy factor (ANIF), defined as the ratio between the directional reflectance and nadir reflectance over the hemisphere, is introduced as a surrogate measurement for the extent of spectral BRDF effects. The ANIF data show a very high correlation with the solar zenith angle due to multiple scattering effects over a desert site. Since surface geometry, multiple scattering, and BRDF effects are related, these findings may help to derive BRDF model parameters from the in-situ BRDF measurement remotely sensed hyperspectral data sets.

  16. Modeling of forest canopy BRDF using DIRSIG

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  17. Bidirectional reflectance distribution function /BRDF/ measurements of stray light suppression coatings for the Space Telescope /ST/

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1979-01-01

    The paper considers the bidirectional reflectance distribution function (BRDF) of black coatings used on stray light suppression systems for the Space Telescope (ST). The ST stray light suppression requirement is to reduce earth, moon, and sun light in the focal plane to a level equivalent to one 23 Mv star per square arcsecond, an attenuation of 14 orders of magnitude. It is impractical to verify the performance of a proposed baffle system design by full scale tests because of the large size of the ST, so that a computer analysis is used to select the design. Accurate computer analysis requires a knowledge of the diffuse scatter at all angles from the surface of the coatings, for all angles of incident light. During the early phases of the ST program a BRDF scanner was built at the Marshall Space Flight Center to study the scatter from black materials; the measurement system is described and the results of measurements on samples proposed for use on the ST are presented.

  18. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  19. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  20. Creation and Validation of Sintered PTFE BRDF Targets & Standards

    PubMed Central

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2016-01-01

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206

  1. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    PubMed

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  2. BRDF profile of Tyvek and its implementation in the Geant4 simulation toolkit.

    PubMed

    Nozka, Libor; Pech, Miroslav; Hiklova, Helena; Mandat, Dusan; Hrabovsky, Miroslav; Schovanek, Petr; Palatka, Miroslav

    2011-02-28

    Diffuse and specular characteristics of the Tyvek 1025-BL material are reported with respect to their implementation in the Geant4 Monte Carlo simulation toolkit. This toolkit incorporates the UNIFIED model. Coefficients defined by the UNIFIED model were calculated from the bidirectional reflectance distribution function (BRDF) profiles measured with a scatterometer for several angles of incidence. Results were amended with profile measurements made by a profilometer.

  3. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  4. Gonioreflectometric properties of metal surfaces

    NASA Astrophysics Data System (ADS)

    Jaanson, P.; Manoocheri, F.; Mäntynen, H.; Gergely, M.; Widlowski, J.-L.; Ikonen, E.

    2014-12-01

    Angularly resolved measurements of scattered light from surfaces can provide useful information in various fields of research and industry, such as computer graphics, satellite based Earth observation etc. In practice, empirical or physics-based models are needed to interpolate the measurement results, because a thorough characterization of the surfaces under all relevant conditions may not be feasible. In this work, plain and anodized metal samples were prepared and measured optically for bidirectional reflectance distribution function (BRDF) and mechanically for surface roughness. Two models for BRDF (Torrance-Sparrow model and a polarimetric BRDF model) were fitted to the measured values. A better fit was obtained for plain metal surfaces than for anodized surfaces.

  5. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    PubMed

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  6. BOREAS RSS-20 POLDER C-130 Measurements of Surface BRDF

    NASA Technical Reports Server (NTRS)

    Leroy, Marc; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    This Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-20 data set contains measurements of surface bidirectional reflectance distribution function (BRDF) made by the polarization and Directionality of Earth reflectances (POLDER) instrument over several surface types (pine, spruce, fen) of the BOREAS southern study area (SSA) during the 1994 intensive field campaigns (IFCs). Single-point BRDF values were acquired either from the NASA Ames Research Center (ARC) C-130 aircraft or from a NASA Wallops Flight Facility (WFF) helicopter. A related data set collected from the helicopter platform is available as is POLDER imagery acquired from the C-130. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.

  8. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  9. Observing system simulations for small satellite formations estimating bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  10. [Modeling polarimetric BRDF of leaves surfaces].

    PubMed

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  11. [Application of BaSO4 diffuser plate in 250-400 nm spectral radiance calibration].

    PubMed

    Jia, Hui; Li, Fu-tian

    2004-01-01

    Sprayed BaSO4 diffuser plate is the most Lambertian surface actually used in spectral radiance calibration known by now. Its hemispheric reflectance and Bi-directional Reflectance Distribution Functions (BRDF) were measured in the experiment. Its diffuse characteristics were compared with Lambertian surface. In order to calibrate spectral radiance more accurately, the small variation of diffuser's BRDF with scattered angles and the nonuniformity of spectral irradiance on diffuser surface illuminated by the standard lamp should be considered. By integrating the radiation flux reflected by the element area and that entering the entrance slit within the viewing area of spectrometer, the measured spectral radiance can be calculated. Furthermore, the spectral radiance of Lambertian surface whose BRDF was derived from hemispheric reflectance was compared with that from the average of the measured BRDF.

  12. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  13. Far-ultraviolet Bidirectional Photometry of Apollo Soil 10084: New Results from The Southwest Ultraviolet Reflectance Chamber (SwURC).

    NASA Astrophysics Data System (ADS)

    Raut, U.

    2017-12-01

    We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.

  14. Monitoring Bio-Optical Processes Using NPP-VIIRS and MODIS-Aqua Ocean Color Products

    DTIC Science & Technology

    2013-01-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...account for satellite sensor and solar zenith angles. Additionally, the Bidirectional Reflectance Distribution Function ( BRDF ) of the water particles is...similarly dependent on satellite and solar zenith and azimuth angles 4 . The influence of BRDF is more pronounced in a high scattering environment

  15. Spectralon solar diffuser BRDF variation for NPP, JPSS J1 and J2

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Johnson, Lindsay; Klein, Staci

    2017-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite as well as the upcoming Joint Polar Satellite System (JPSS). VIIRS collects Earth radiometric and imagery data in 22 spectral bands from 0.4 to 12.5 μm. Radiometric calibration of the reflective bands in the 0.4 to 2.5 μm wavelength range is performed by measuring the sunlight reflectance from Spectralon®. Reflected sun light is directly proportional to the Bidirectional Reflectance Distribution Function (BRDF) of the Spectralon. This paper presents the BRDF measurements of the Spectralon for JPSS J2 in the 0.4 - 1.63 μm wavelength using PASCAL (Polarization And Scatter Characterization Analysis of Lambertian materials) with an uncertainty better than 1.2%. PASCAL makes absolute measurements of the BRDF in an analogous fashion to the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reflectance Reflectometer (STARR) facility. Unique additional features of this instrument include the ability to vary the sample elevation and roll / clock the sample about its normal, allowing measurement of BRDF in the as used geometry. Comparison of BRDF in the as used configuration for NPP, J1, and J2 shows variation of up to 3%. The sign of the change from panel to panel depends on the angle of incidence and view angle. The results demonstrate lot to lot variability in Spectralon and emphasize the necessity of characterizing each panel. A pattern in the BRDF variation is also presented.

  16. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen R.; Warren, Stephen G.; Brandt, Richard E.; Grenfell, Thomas C.; Six, Delphine

    2006-09-01

    The bidirectional reflectance distribution function (BRDF) of snow was measured from a 32-m tower at Dome C, at latitude 75°S on the East Antarctic Plateau. These measurements were made at 96 solar zenith angles between 51° and 87° and cover wavelengths 350-2400 nm, with 3- to 30-nm resolution, over the full range of viewing geometry. The BRDF at 900 nm had previously been measured at the South Pole; the Dome C measurement at that wavelength is similar. At both locations the natural roughness of the snow surface causes the anisotropy of the BRDF to be less than that of flat snow. The inherent BRDF of the snow is nearly constant in the high-albedo part of the spectrum (350-900 nm), but the angular distribution of reflected radiance becomes more isotropic at the shorter wavelengths because of atmospheric Rayleigh scattering. Parameterizations were developed for the anisotropic reflectance factor using a small number of empirical orthogonal functions. Because the reflectance is more anisotropic at wavelengths at which ice is more absorptive, albedo rather than wavelength is used as a predictor in the near infrared. The parameterizations cover nearly all viewing angles and are applicable to the high parts of the Antarctic Plateau that have small surface roughness and, at viewing zenith angles less than 55°, elsewhere on the plateau, where larger surface roughness affects the BRDF at larger viewing angles. The root-mean-squared error of the parameterized reflectances is between 2% and 4% at wavelengths less than 1400 nm and between 5% and 8% at longer wavelengths.

  17. Hyperspectral Vehicle BRDF Learning: An Exploration of Vehicle Reflectance Variation and Optimal Measures of Spectral Similarity for Vehicle Reacquisition and Tracking Algorithms

    NASA Astrophysics Data System (ADS)

    Svejkosky, Joseph

    The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.

  18. Retrieval of background surface reflectance with BRD components from pre-running BRDF

    NASA Astrophysics Data System (ADS)

    Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo

    2016-10-01

    Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of comparing BSR with VGT-S1, bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. They are very reasonable results, so we confirm that BSR is similar to VGT-S1. And weakness of this study is missing pixel in BSR which are observed less time to retrieve BRD components. If missing pixels are filled, BSR is better to retrieve surface products with more accuracy. And we think that after filling the missing pixel and being more accurate, it can be useful data to retrieve surface product which made by surface reflectance like cloud masking and retrieving aerosol.

  19. Detailed validation of the bidirectional effect in various Case I and Case II waters.

    PubMed

    Gleason, Arthur C R; Voss, Kenneth J; Gordon, Howard R; Twardowski, Michael; Sullivan, James; Trees, Charles; Weidemann, Alan; Berthon, Jean-François; Clark, Dennis; Lee, Zhong-Ping

    2012-03-26

    Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.

  20. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  1. A BRDF study on the visual appearance properties of titanium in the heating process

    NASA Astrophysics Data System (ADS)

    Liu, Yanlei; Yu, Kun; Li, Longfei; Zhao, Yuejin; Liu, Zilong; Liu, Yufang

    2018-04-01

    Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials, i.e. the visual appearance properties of materials. In this letter, the visual appearance properties of titanium in the heating process are investigated by BRDF. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The in-plane spectral BRDF in visible region of heated commercial pure Ti at different incident and reflected zenith angles are measured. The experimental result indicates that the change tendency of BRDF vs. wavelength is not influenced by incident and reflected zenith angle, which implying that the colours of Ti may be pigment colouration rather than the structural colouration. Scanning electron microscopy (SEM) and the X-ray diffraction (XRD) testing are performed, and no titanium oxides are detected. The testing results imply that the colours may be generated by intermediate products during heated process. The powder samples are prepared, and the same colours as that of flake samples indirectly prove the validity of our conclusion. In addition, the spectral BRDF of optically smooth samples are measured, the results verify the reliability of our conclusion.

  2. Polarized BRDF for coatings based on three-component assumption

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Zhu, Jingping; Wang, Kai; Xu, Rong

    2017-02-01

    A pBRDF(polarized bidirectional reflection distribution function) model for coatings is given based on three-component reflection assumption in order to improve the polarized scattering simulation capability for space objects. In this model, the specular reflection is given based on microfacet theory, the multiple reflection and volume scattering are given separately according to experimental results. The polarization of specular reflection is considered from Fresnel's law, and both multiple reflection and volume scattering are assumed depolarized. Simulation and measurement results of two satellite coating samples SR107 and S781 are given to validate that the pBRDF modeling accuracy can be significantly improved by the three-component model given in this paper.

  3. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    NASA Technical Reports Server (NTRS)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  4. Synthesis and Analysis of Custom Bi-directional Reflectivity Distribution Functions in DIRSIG

    NASA Astrophysics Data System (ADS)

    Dank, J.; Allen, D.

    2016-09-01

    The bi-directional reflectivity distribution (BRDF) function is a fundamental optical property of materials, characterizing important properties of light scattered by a surface. For accurate radiance calculations using synthetic targets and numerical simulations such as the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, fidelity of the target BRDFs is critical. While fits to measured BRDF data can be used in DIRSIG, obtaining high-quality data over a large spectral continuum can be time-consuming and expensive, requiring significant investment in illumination sources, sensors, and other specialized hardware. As a consequence, numerous parametric BRDF models are available to approximate actual behavior; but these all have shortcomings. Further, DIRSIG doesn't allow direct visualization of BRDFs, making it difficult for the user to understand the numerical impact of various models. Here, we discuss the innovative use of "mixture maps" to synthesize custom BRDFs as linear combinations of parametric models and measured data. We also show how DIRSIG's interactive mode can be used to visualize and analyze both available parametric models currently used in DIRSIG and custom BRDFs developed using our methods.

  5. Spectral bidirectional reflectance distribution function measurements on well-defined textured surfaces: direct observation of shadowing, masking, inter-reflection, and transparency effects.

    PubMed

    Wilen, Larry; Dasgupta, Bivash R

    2011-11-01

    We present results for the bidirectional reflectance distribution function (BRDF) for samples of uniform rectangular and triangular grooves constructed from polydimethylsilicone replicas. The measurements are performed with the detector in the plane of incidence, but with varying groove orientations with respect to that plane. The samples are opaque in some cases and semitransparent in others. By measuring the BRDF for colored samples over a wide spectral range, we explicitly probe the effect of sample albedo, which is important for inter-reflections. For the opaque samples, we compare the results with exact theoretical results either taken from the literature (for the triangular geometry) or worked out here (for the rectangular geometry). For both geometries, we also extend the theoretical results to finite length grooves. There is generally very good agreement between theory and the experiment. Shadowing, masking, and inter-reflection are clearly observed, as well as effects that may be due to polarization and asperity scattering. For semitransparent samples, we observe the effect of increasing transparency on the BRDF.

  6. Temperature dependent BRDF facility

    NASA Astrophysics Data System (ADS)

    Airola, Marc B.; Brown, Andrea M.; Hahn, Daniel V.; Thomas, Michael E.; Congdon, Elizabeth A.; Mehoke, Douglas S.

    2014-09-01

    Applications involving space based instrumentation and aerodynamically heated surfaces often require knowledge of the bi-directional reflectance distribution function (BRDF) of an exposed surface at high temperature. Addressing this need, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed a BRDF facility that features a multiple-port vacuum chamber, multiple laser sources covering the spectral range from the longwave infrared to the ultraviolet, imaging pyrometry and laser heated samples. Laser heating eliminates stray light that would otherwise be seen from a furnace and requires minimal sample support structure, allowing low thermal conduction loss to be obtained, which is especially important at high temperatures. The goal is to measure the BRDF of ceramic-coated surfaces at temperatures in excess of 1000°C in a low background environment. Most ceramic samples are near blackbody in the longwave infrared, thus pyrometry using a LWIR camera can be very effective and accurate.

  7. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  8. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  9. Real reproduction and evaluation of color based on BRDF method

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Yang, Weiping; Yang, Jia; Li, Hongning; Luo, Yanlin; Long, Hongli

    2013-12-01

    It is difficult to reproduce the original color of targets really in different illuminating environment using the traditional methods. So a function which can reconstruct the characteristics of reflection about every point on the surface of target is required urgently to improve the authenticity of color reproduction, which known as the Bidirectional Reflectance Distribution Function(BRDF). A method of color reproduction based on the BRDF measurement is introduced in this paper. Radiometry is combined with the colorimetric theories to measure the irradiance and radiance of GretagMacbeth 24 ColorChecker by using PR-715 Radiation Spectrophotometer of PHOTO RESEARCH, Inc, USA. The BRDF and BRF (Bidirectional Reflectance Factor) values of every color piece corresponding to the reference area are calculated according to irradiance and radiance, thus color tristimulus values of 24 ColorChecker are reconstructed. The results reconstructed by BRDF method are compared with values calculated by the reflectance using PR-715, at last, the chromaticity coordinates in color space and color difference between each other are analyzed. The experimental result shows average color difference and sample standard deviation between the method proposed in this paper and traditional reconstruction method depended on reflectance are 2.567 and 1.3049 respectively. The conclusion indicates that the method of color reproduction based on BRDF has the more obvious advantages to describe the color information of object than the reflectance in hemisphere space through the theoretical and experimental analysis. This method proposed in this paper is effective and feasible during the research of reproducing the chromaticity.

  10. The Bidirectional Reflectance Distribution Function and Albedo Analysis for Various Land-Cover Types in the Midwestern United States for the Tempo Satellite

    NASA Astrophysics Data System (ADS)

    Marshall, Bethany

    The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite, scheduled to be launched around the year 2020, is the first phase of NASA's next generation of missions that will study the composition of the Earth's atmosphere. TEMPO provides a new set of high-resolution ( 0.4 nm) spectral data in the ultraviolet and visible portion of the electromagnetic spectrum that can be used to measure atmospheric pollutants. Due to its high spectral resolution and hourly temporal resolution covering entire North America, TEMPO data can also be used along with the calculation of spectral indices using the bidirectional reflection distribution functions (BRDF) or albedo to improve crop growth and yield monitoring for regional food security. The objectives of this thesis research were to 1) characterize BRDF/albedo of various land-cover types in Midwestern United States that can be used to remove land surface competent from at-sensor TEMPO radiances for accurate estimation of atmospheric chemistry and 2) evaluation of TEMPO data for regional agro-ecosystem studies. To this end, we: (1) collected 461 upwelling and downwelling solar irradiances and spectral albedo of various land-cover types (e.g., grapevine, maize, soybean, tomato, rock, asphalt road and concrete pave way, clean and turbid waters) at 110 sites in the States of Missouri, Illinois, Indiana, and Colorado using a PSR-3500 hand-held Spectroradiometer; (2) conducted a field and manned aircraft data collection campaign in Maryland Heights, Missouri using the Geo-TASO flight instrument flown onboard the NASA HU-25C Falcon aircraft on August 13, 2014; and (3) utilized Ross-Li Kernel BRDF model and MODTRAN radiative transfer simulations to characterize BRDF/albedo of various land-cover types. TEMPO retrieval of atmospheric gases must account for the effects of surface BRDF/albedo. Since BRDF is an inherent optical properties of surface, this research will contribute to the TEMPO mission by providing high-resolution spectral BRDF/albedo database, which may also promote the use of the TEMPO data for agricultural and ecosystem monitoring.

  11. BRDF Calibration of Sintered PTFE in the SWIR

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  12. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil

    NASA Technical Reports Server (NTRS)

    Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.

    1994-01-01

    An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.

  13. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  14. A BRDF-BPDF database for the analysis of Earth target reflectances

    NASA Astrophysics Data System (ADS)

    Breon, Francois-Marie; Maignan, Fabienne

    2017-01-01

    Land surface reflectance is not isotropic. It varies with the observation geometry that is defined by the sun, view zenith angles, and the relative azimuth. In addition, the reflectance is linearly polarized. The reflectance anisotropy is quantified by the bidirectional reflectance distribution function (BRDF), while its polarization properties are defined by the bidirectional polarization distribution function (BPDF). The POLDER radiometer that flew onboard the PARASOL microsatellite remains the only space instrument that measured numerous samples of the BRDF and BPDF of Earth targets. Here, we describe a database of representative BRDFs and BPDFs derived from the POLDER measurements. From the huge number of data acquired by the spaceborne instrument over a period of 7 years, we selected a set of targets with high-quality observations. The selection aimed for a large number of observations, free of significant cloud or aerosol contamination, acquired in diverse observation geometries with a focus on the backscatter direction that shows the specific hot spot signature. The targets are sorted according to the 16-class International Geosphere-Biosphere Programme (IGBP) land cover classification system, and the target selection aims at a spatial representativeness within the class. The database thus provides a set of high-quality BRDF and BPDF samples that can be used to assess the typical variability of natural surface reflectances or to evaluate models. It is available freely from the PANGAEA website (doi:10.1594/PANGAEA.864090). In addition to the database, we provide a visualization and analysis tool based on the Interactive Data Language (IDL). It allows an interactive analysis of the measurements and a comparison against various BRDF and BPDF analytical models. The present paper describes the input data, the selection principles, the database format, and the analysis tool

  15. Virtual gonio-spectrophotometer for validation of BRDF designs

    NASA Astrophysics Data System (ADS)

    Mihálik, Andrej; Ďurikovič, Roman

    2011-10-01

    Measurement of the appearance of an object consists of a group of measurements to characterize the color and surface finish of the object. This group of measurements involves the spectral energy distribution of propagated light measured in terms of reflectance and transmittance, and the spatial energy distribution of that light measured in terms of the bidirectional reflectance distribution function (BRDF). In this article we present the virtual gonio-spectrophotometer, a device that measures flux (power) as a function of illumination and observation. Virtual gonio-spectrophotometer measurements allow the determination of the scattering profile of specimens that can be used to verify the physical characteristics of the computer model used to simulate the scattering profile. Among the characteristics that we verify is the energy conservation of the computer model. A virtual gonio-spectrophotometer is utilized to find the correspondence between industrial measurements obtained from gloss meters and the parameters of a computer reflectance model.

  16. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  17. Surface Roughness Retrieval By Inversion Of Hapke Model: A Multi-scale Approach

    NASA Astrophysics Data System (ADS)

    Labarre, S.; Ferrari, C. C.; Jacquemoud, S.

    2015-12-01

    Surface roughness is a key property of soils that affects the various processes involved in their evolution such as solar absorption, erosion or moisture, both on Earth and other Solar System surfaces. In the 80's, B.Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. The effect of roughness on the BRDF is modeled as a shadowing function of the so-called roughness parameter, which is the mean slope angle of the facets composing the surface integrated over all scales from the sub-millimeter to the kilometer scales. Hapke model is widely used in planetary sciences to retrieve the roughness parameter from observed BRDFs. Yet the physical meaning of the retrieved roughness is not clear as the scale at which it happens is not defined. This work aims at understanding the relative impact of the roughness defined at each scale to the BRDF in order to test the ability of the singly retrieved roughness parameter at describing the ground truth. We propose to perform a wavelet analysis on meter-sized digital elevation models (DEM) generated from various volcanic and sedimentary terrains at high-mm-scale spatial resolution. It consists in splitting the DEM in several spatial frequencies and in simulating the BRDF at each scale with a ray-tracing code. Also the global BRDF is simulated so that the relative contribution of each scale can be studied. Then the Hapke model is fitted to the global BRDF to retrieve the roughness parameter. We will expose and discuss the results of this study. Figure: BRDF of a'a lava DEM simulated at varying azimut (φi) and incidence angles (i), in the principal plan. The direction of the light source is given by the colored squares. Mean slope angle of the surface is 36°.

  18. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  19. Metrological issues related to BRDF measurements around the specular direction in the particular case of glossy surfaces

    NASA Astrophysics Data System (ADS)

    Obein, Gaël.; Audenaert, Jan; Ged, Guillaume; Leloup, Frédéric B.

    2015-03-01

    Among the complete bidirectional reflectance distribution function (BRDF), visual gloss is principally related to physical reflection characteristics located around the specular reflection direction. This particular part of the BRDF is usually referred to as the specular peak. A good starting point for the physical description of gloss could be to measure the reflection properties around this specular peak. Unfortunately, such a characterization is not trivial, since for glossy surfaces the width of the specular peak can become very narrow (typically a full width at half maximum inferior to 0.5° is encountered). In result, new BRDF measurement devices with a very small solid angle of detection are being introduced. Yet, differences in the optical design of BRDF measurement instruments engender different measurement results for the same specimen, complicating direct comparison of the measurement results. This issue is addressed in this paper. By way of example, BRDF measurement results of two samples, one being matte and the other one glossy, obtained by use of two high level goniospectrophotometers with a different optical design, are described. Important discrepancies in the results of the glossy sample are discussed. Finally, luminance maps obtained from renderings with the acquired BRDF data are presented, exemplifying the large visual differences that might be obtained. This stresses the metrological aspects that must be known for using BRDF data. Indeed, the comprehension of parameters affecting the measurement results is an inevitable step towards progress in the metrology of surface gloss, and thus towards a better metrology of appearance in general.

  20. Light scattering of semitransparent sintered polytetrafluoroethylene films.

    PubMed

    Li, Qinghe; Lee, Bong Jae; Zhang, Zhuomin M; Allen, David W

    2008-01-01

    Polytetrafluoroethylene (PTFE) is a strongly scattering material and has been regarded to have optical properties similar to biological tissues. In the present study, the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) of several PTFE films, with thicknesses from 0.11 to 10 mm, are measured using a laser scatterometer at the wavelength of 635 nm. The directional-hemispherical reflectance (R) and transmittance (T) were obtained by integrating BRDF and BTDF for normal incidence. Comparison of the ratio of the measured R and T with that calculated from the adding-doubling method allows the determination of the reduced scattering coefficient. Furthermore, the effect of surface scattering is investigated by measuring the polarization-dependent BRDF and BTDF at oblique incidence. By analyzing the measurement uncertainty of BTDF in the near-normal observation angles at normal incidence, the present authors found that the scattering coefficient of PTFE should exceed 1200 cm(-1), which is much greater than that of biological tissues. On the other hand, the absorption coefficient of PTFE must be less than 0.01 cm(-1), much smaller than that of biological tissues, a necessary condition to achieve R > or =0.98 with a 10-mm-thick slab.

  1. The effect of weave orientation on the BRDF of tarp samples

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Butler, James J.

    2003-10-01

    The results of bi-directional reflectance distribution function (BRDF) measurements of four tarp samples obtained from NASA"s Stennis Space Center (SSC) are presented. The measurements were performed in the Diffuser Calibration Facility (DCaF) at NASA"s Goddard Space Flight Center (GSFC). The samples are of similar material structure but different reflectance. The experimental data were obtained with a Xe arc lamp/monochromator light source as well as laser light sources in the ultraviolet, visible, and near infrared spectral regions. The BRDF data were recorded at four incident zenith angles and at five incident azimuth angles. The dependence of the measured BRDF on weave orientation was analyzed and presented. 8 degree irectional/hemispherical reflectance data were also measured for each tarp sample, and those results are also reported. All results are NIST traceable through calibrated standard plates. The specular and diffuse scatter data obtained from these studies are used by NASA"s SSC in their field-based, vicarious calibration of satellite and airborne remote sensing instruments.

  2. Retrieving background surface reflectance of Himawari-8/AHI using BRDF modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungwon; Seo, Minji; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    In these days, remote sensing is more important than past. And retrieving surface reflectance in remote sensing is also important. So there are many ways to retrieve surface reflectance by my countries with polar orbit and geostationary satellite. We studied Bidirectional Reflectance Distribution Function (BRDF) which is used to retrieve surface reflectance. In BRDF equation, we calculate surface reflectance using BRD components and angular data. BRD components are to calculate 3 of scatterings, isotropic geometric and volumetric scattering. To make Background Surface Reflectance (BSR) of Himawari-8/AHI. We used 5 bands (band1, band2, band3, band4, band5) with BRDF. And we made 5 BSR for 5 channels. For validation, we compare BSR with Top of canopy (TOC) reflectance of AHI. As a result, bias are from -0.00223 to 0.008328 and Root Mean Square Error (RMSE) are from 0.045 to 0.049. We think BSR can be used to replace TOC reflectance in remote sensing to improve weakness of TOC reflectance.

  3. A laparoscopy-based method for BRDF estimation from in vivo human liver.

    PubMed

    Nunes, A L P; Maciel, A; Cavazzola, L T; Walter, M

    2017-01-01

    While improved visual realism is known to enhance training effectiveness in virtual surgery simulators, the advances on realistic rendering for these simulators is slower than similar simulations for man-made scenes. One of the main reasons for this is that in vivo data is hard to gather and process. In this paper, we propose the analysis of videolaparoscopy data to compute the Bidirectional Reflectance Distribution Function (BRDF) of living organs as an input to physically based rendering algorithms. From the interplay between light and organic matter recorded in video images, we propose the definition of a process capable of establishing the BRDF for inside-the-body organic surfaces. We present a case study around the liver with patient-specific rendering under global illumination. Results show that despite the limited range of motion allowed within the body, the computed BRDF presents a high-coverage of the sampled regions and produces plausible renderings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.

  5. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    Using an onboard sunlit solar diffuser (SD) as the primary radiance source, the visible infrared imaging radiometer suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs radiometric calibration of its reflective solar bands (RSBs). The SD bidirectional reflectance distribution function (BRDF) value decreases over time. A numerical degradation factor is used to quantify the degradation and is determined by an onboard SD stability monitor (SDSM), which observes the sun and the sunlit SD at almost the same time. We had shown previously that the BRDF degradation factor was angle-dependent. Consequently, due to that the SDSM and the RSB view the SD at very different angles relative to both the solar and the SD surface normal vectors, directly applying the BRDF degradation factor determined by the SDSM to the VIIRS RSB calibration can result in large systematic errors. We develop a phenomenological model to calculate the BRDF degradation factor for the RSB SD view from the degradation factor for the SDSM SD view. Using the yearly undulations observed in the VIIRS detector gains for the M1-M4 bands calculated with the SD BRDF degradation factor for the SDSM SD view and the difference between the VIIRS detector gains calculated from the SD and the lunar observations, we obtain the model parameter values and thus establish the relation between the BRDF degradation factors for the RSB and the SDSM SD view directions.

  6. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  7. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  8. [The study of aluminium diffuser calibration in the UV].

    PubMed

    Li, Cong; Wang, Yong-Mei; Zhang, Zhong-Mou

    2008-04-01

    A bi-directional reflectance distribution function (BRDF) measurement setup in the ultraviolet spectral range was established. The BRDF of the aluminium diffusers at a given orientation was measured. The relative accuracy of the BRDF measurement is better than 2.5%. The hemispheric reflectance of the aluminium diffusers was measured in the wavelength range from 250 to 650 nm. It increases with the wavelength, and changes about 6% from 300 to 360 nm. It decreases with the time. Since the diffuser was made (about one year ago), from 250 to 300 nm, the peak decrease in the hemispheric reflectance can reach 2.6%, and the average decrease is 1.5%. From 300 to 360 nm, it has an average decrease of 0.9% decrease, and 0.8% when wavelength is longer than 360 nm.

  9. Point Pairing Method Based on the Principle of Material Frame Indifference for the Characterization of Unknown Space Objects using Non-Resolved Photometry Data

    DTIC Science & Technology

    2013-09-01

    provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB...the satellite. The material constitutive laws of interest are the bidirectional reflectance distribution functions ( BRDF ) for diffuse and specular...solar panel can be related to each other using the BRDF definition. This creates a set of three independent equations and three unknowns, which can be

  10. Comparison of measured and modeled BRDF of natural targets

    NASA Astrophysics Data System (ADS)

    Boucher, Yannick; Cosnefroy, Helene; Petit, Alain D.; Serrot, Gerard; Briottet, Xavier

    1999-07-01

    The Bidirectional Reflectance Distribution Function (BRDF) plays a major role to evaluate or simulate the signatures of natural and artificial targets in the solar spectrum. A goniometer covering a large spectral and directional domain has been recently developed by the ONERA/DOTA. It was designed to allow both laboratory and outside measurements. The spectral domain ranges from 0.40 to 0.95 micrometer, with a resolution of 3 nm. The geometrical domain ranges 0 - 60 degrees for the zenith angle of the source and the sensor, and 0 - 180 degrees for the relative azimuth between the source and the sensor. The maximum target size for nadir measurements is 22 cm. The spatial target irradiance non-uniformity has been evaluated and then used to correct the raw measurements. BRDF measurements are calibrated thanks to a spectralon reference panel. Some BRDF measurements performed on sand and short grass and are presented here. Eight bidirectional models among the most popular models found in the literature have been tested on these measured data set. A code fitting the model parameters to the measured BRDF data has been developed. The comparative evaluation of the model performances is carried out, versus different criteria (root mean square error, root mean square relative error, correlation diagram . . .). The robustness of the models is evaluated with respect to the number of BRDF measurements, noise and interpolation.

  11. The effects of mineral aerosol deposits on the BRDF (bidirectional reflectance distribution function) of sea ice for the calibration of satellite remote sensing products: an experimental and modelling study.

    NASA Astrophysics Data System (ADS)

    Lamare, Maxim; Hedley, John; King, Martin

    2016-04-01

    Knowledge of the albedo in the cryosphere is essential to monitor a range of climatic processes that have an impact on a global scale. Optical Earth Observation satellites are ideal for the synoptic observation of expansive and inaccessible areas, providing large datasets used to derive essential products, such as albedo. The application of remote sensing to investigate climate processes requires the combination of data from different sensors. However, although there is significant value in the analysis of data from individual sensors, global observing systems require accurate knowledge of sensor-to-sensor biases. Therefore, the inter-calibration of sensors used for climate studies is essential to avoid inconsistencies, which may mask climate effects. CEOS (Committee on Earth Observing Satellites) has established a number of natural Earth targets to serve as international reference standards, amongst which sea ice has great potential. The reflectance of natural surfaces is not isotropic and reflectance varies with the illumination and viewing geometries, consequently impacting satellite observations. Furthermore, variations in the physical properties (sea ice type, thickness) and the light absorbing impurities deposited in the sea ice have a strong impact on reflectance. Thus, the characterisation of the bi-directional reflectance distribution function (BRDF) of sea ice is a fundamental step toward the inter-calibration of optical satellite sensors. This study provides a characterisation of the effects of mineral aerosol and black carbon deposits on the BRDF of three different sea ice types. BRDF measurements were performed on bare sea ice grown in an experimental ice tank, using a state-of-the-art laboratory goniometer. The sea ice was "poisoned" with concentrations of mineral dust and black carbon varying between 100 and 5 000 ng g-1 deposited uniformly in a 5 cm surface layer. Using measurements from the experimental facility, novel information about sea ice BRDF as a function of sea ice type, thickness and light-absorbing impurities was derived using a radiative-transfer model (PlanarRad). This extensive characterisation of the multi angular reflectance of sea ice reveals the importance of BRDF for the validation and calibration of Earth Observation satellite sensor data.

  12. Handheld directional reflectometer: an angular imaging device to measure BRDF and HDR in real time

    NASA Astrophysics Data System (ADS)

    Mattison, Phillip R.; Dombrowski, Mark S.; Lorenz, James M.; Davis, Keith J.; Mann, Harley C.; Johnson, Philip; Foos, Bryan

    1998-10-01

    Many applications require quantitative measurements of surface light scattering, including quality control on production lines, inspection of painted surfaces, inspection of field repairs, etc. Instruments for measuring surface scattering typically fall into two main categories, namely bidirectional reflectometers, which measure the angular distribution of scattering, and hemispherical directional reflectometers, which measure the total scattering into the hemisphere above the surface. Measurement of the bi-directional reflectance distribution function (BRDF) gives the greatest insight into how light is scattered from a surface. Measurements of BRDF, however, are typically very lengthy measurements taken by moving a source and detector to map the scattering. Since BRDF has four angular degrees of freedom, such measurements can require hours to days to complete. Instruments for measuring BRDF are also typically laboratory devices, although a field- portable bi-directional reflectometer does exist. Hemispherical directional reflectance (HDR) is a much easier measurement to make, although care must be taken to use the proper methodology when measuring at wavelengths beyond 10 micrometer, since integrating spheres (typically used to make such measurements) are very energy inefficient and lose their integrating properties at very long wavelengths. A few field- portable hemispherical directional reflectometers do exist, but typically measure HDR only at near-normal angles. Boeing Defense and Space Group and Surface Optics Corporation, under a contract from the Air Force Research Laboratory, have developed a new hand-held instrument capable of measuring both BRDF and HDR using a unique, patented angular imaging technique. A combination of an hemi-ellipsoidal mirror and an additional lens translate the angular scatter from a surface into a two-dimensional spatial distribution, which is recorded by an imaging array. This configuration fully maps the scattering from a half-hemisphere above the surface with more than 30,000 angularly-resolved points and update rates to 60 measurements per second. The instrument then computes HDR from the measured BDR. For ease of use, the instrument can also compare both the BRDF and HDR to preset limits, generating a Pass/Fail indicator for HDR and a high-acceptable-low image display of BRDF. Beam incidence elevation is variable from normal incidence ((theta) equals 0 degrees) to 5 degrees off grazing ((theta) equals 85 degrees), while scattering is measured to nearly 90 degrees off normal. Such capability is extremely important for any application requiring knowledge of surface appearance at oblique viewing angles. The current instrument operates over the range of 3 micrometer to 12 micrometer, with extension into the visible band possible.

  13. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.

    PubMed

    Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y

    2015-11-20

    Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.

  14. Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  15. Wave optics simulation of statistically rough surface scatter

    NASA Astrophysics Data System (ADS)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  16. BRDF invariant stereo using light transport constancy.

    PubMed

    Wang, Liang; Yang, Ruigang; Davis, James E

    2007-09-01

    Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.

  17. Polarized BRDF measurement of steel E235B in the near-infrared region: Based on a self-designed instrument with absolute measuring method

    NASA Astrophysics Data System (ADS)

    Liu, Yanlei; Yu, Kun; Liu, Zilong; Zhao, Yuejin; Liu, Yufang

    2018-06-01

    The spectral bidirectional reflectance distribution (BRDF) offers a complete description of the optical properties of the opaque material. Numerous studies on BRDF have been conducted for its important role in scientific research and industrial production. However, most of these studies focus on the visible region and unpolarized BRDF, and the spectral polarized BRDF in the near-infrared region is rarely reported. In this letter, we propose an absolute method to measure the spectral BRDF in the near-infrared region, and the detailed derivation is presented. A self-designed instrument is set up for the absolute measurement of BRDF. The reliability of this method is verified by comparing the experimental data of the three metal (aluminum, silver and gold) mirrors with the reference data. The in-plane polarized BRDF of steel E235B are measured, and the influence of incident angle and roughness on the BRDF are discussed. The degree of linear polarization (DOLP) are determined based on the polarized BRDF. The results indicate that both the roughness and incident angle have distinct influence on the BRDF and DOLP.

  18. An Inherent-Optical-Property-Centered Approach to Correct the Angular Effects in Water-Leaving Radiance

    DTIC Science & Technology

    2011-07-01

    10%. These results demonstrate that the IOP-based BRDF correction scheme (which is composed of the R„ model along with the IOP retrieval...distribution was averaged over 10 min 5. Validation of the lOP-Based BRDF Correction Scheme The IOP-based BRDF correction scheme is applied to both...oceanic and coastal waters were very consistent qualitatively and quantitatively and thus validate the IOP- based BRDF correction system, at least

  19. Integrated three-dimensional shape and reflection properties measurement system.

    PubMed

    Krzesłowski, Jakub; Sitnik, Robert; Maczkowski, Grzegorz

    2011-02-01

    Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface's reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object's intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.

  20. Assessment of Biases in MODIS Surface Reflectance Due to Lambertian Approximation

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei I.; Privette, Jeffrey L.; Cook, Robert B.; SanthanaVannan, Suresh K.; Vermote, Eric F.; Schaaf, Crystal

    2010-01-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  1. Patient-specific bronchoscopy visualization through BRDF estimation and disocclusion correction.

    PubMed

    Chung, Adrian J; Deligianni, Fani; Shah, Pallav; Wells, Athol; Yang, Guang-Zhong

    2006-04-01

    This paper presents an image-based method for virtual bronchoscope with photo-realistic rendering. The technique is based on recovering bidirectional reflectance distribution function (BRDF) parameters in an environment where the choice of viewing positions, directions, and illumination conditions are restricted. Video images of bronchoscopy examinations are combined with patient-specific three-dimensional (3-D) computed tomography data through two-dimensional (2-D)/3-D registration and shading model parameters are then recovered by exploiting the restricted lighting configurations imposed by the bronchoscope. With the proposed technique, the recovered BRDF is used to predict the expected shading intensity, allowing a texture map independent of lighting conditions to be extracted from each video frame. To correct for disocclusion artefacts, statistical texture synthesis was used to recreate the missing areas. New views not present in the original bronchoscopy video are rendered by evaluating the BRDF with different viewing and illumination parameters. This allows free navigation of the acquired 3-D model with enhanced photo-realism. To assess the practical value of the proposed technique, a detailed visual scoring that involves both real and rendered bronchoscope images is conducted.

  2. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  3. Initial Results from the Bloomsburg University Goniometer Laboratory

    NASA Technical Reports Server (NTRS)

    Shepard, M. K.

    2002-01-01

    The Bloomsburg University Goniometer Laboratory (B.U.G. Lab) consists of three systems for studying the photometric properties of samples. The primary system is an automated goniometer capable of measuring the entire bi-directional reflectance distribution function (BRDF) of samples. Secondary systems include a reflectance spectrometer and digital video camera with macro zoom lens for characterizing and documenting other physical properties of measured samples. Works completed or in progress include the characterization of the BRDF of calibration surfaces for the 2003 Mars Exploration Rovers (MER03), Martian analog soils including JSC-Mars-1, and tests of photometric models.

  4. Estimating Slopes In Images Of Terrain By Use Of BRDF

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.

    1995-01-01

    Proposed method of estimating slopes of terrain features based on use of bidirectional reflectivity distribution function (BRDF) in analyzing aerial photographs, satellite video images, or other images produced by remote sensors. Estimated slopes integrated along horizontal coordinates to obtain estimated heights; generating three-dimensional terrain maps. Method does not require coregistration of terrain features in pairs of images acquired from slightly different perspectives nor requires Sun or other source of illumination to be low in sky over terrain of interest. On contrary, best when Sun is high. Works at almost all combinations of illumination and viewing angles.

  5. Presentation of a new BRDF measurement device

    NASA Astrophysics Data System (ADS)

    Serrot, Gerard; Bodilis, Madeleine; Briottet, Xavier; Cosnefroy, Helene

    1998-12-01

    The bi-directional reflectance distribution function (BRDF) plays a major role to evaluate or analyze signals reflected by Earth in the solar spectrum. A BRDF measurement device that covers a large spectral and directional domain was recently developed by ONERA/DOTA. It was designed to allow both laboratory and outside measurements. Its main characteristics are a spectral domain: 0.42-0.95 micrometers ; a geometrical domain: 0-60 degrees for zenith angle, 0-180 degrees for azimuth; a maximum target size for nadir measurements: 22 cm. For a given zenith angle of the source, the BRDF device needs about seven minutes to take measurements for a viewing zenith angle varying from 0-60 degrees and relative azimuth angle varying from 0-180 degrees. The performances, imperfections and properties of each component of the measurement chain are studied. A part of the work was devoted to characterize precisely the source, and particularly the spatial variability of the irradiance at the target level, the temporal stability and the spectral profile of the lamp. Some of these imperfections are modeled and taken into account in corrections of BRDF measurements. Concerning the sensor, a calibration in wavelength was done. Measurements of bi- directional reflectance of which is well known. A software was developed to convert all the raw data acquired automatically into BRDF values. To illustrate measurements taken by this device, some results are also presented here. They are taken over sand and short grass, for different wavelengths and geometrical conditions.

  6. New BRDF Model for Desert and Gobi Using Equivalent Mirror Plane Method, Establishment and Validation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Rong, Z.

    2017-12-01

    The surface Bidirectional Reflectance Distribution Function (BRDF) is a key parameter that affects the vicarious calibration accuracy of visible channel remote sensing instrument. In the past 30 years, many studies have been made and a variety of models have been established. Among them, the Ross-li model was highly approved and widely used. Unfortunately, the model doesn't suitable for desert and Gobi quite well because of the scattering kernel it contained, needs the factors such as plant height and plant spacing. A new BRDF model for surface without vegetation, which is mainly used in remote sensing vicarious calibration, is established. That was called Equivalent Mirror Plane (EMP) BRDF. It is used to characterize the bidirectional reflectance of the near Lambertian surface. The accuracy of the EMP BRDF model is validated by the directional reflectance data measured on the Dunhuang Gobi and compared to the Ross-li model. Results show that the regression accuracy of the new model is 0.828, which is similar to the Ross-li model (0.825). Because of the simple form (contains only four polynomials) and simple principle (derived by the Fresnel reflection principle, don't include any vegetation parameters), it is more suitable for near Lambertian surface, such as Gobi, desert, Lunar and reference panel. Results also showed that the new model could also maintain a high accuracy and stability in sparse observation, which is very important for the retrieval requirements of daily updating BRDF remote sensing products.

  7. Representations and uses of light distribution functions

    NASA Astrophysics Data System (ADS)

    Lalonde, Paul Albert

    1998-11-01

    At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.

  8. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  9. Surface roughness estimation by inversion of the Hapke photometric model on optical data simulated using a ray tracing code

    NASA Astrophysics Data System (ADS)

    Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.

    2013-12-01

    Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles

  10. Retrieval of seasonal dynamics of forest understory reflectance from semiarid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing M.; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael E.; Karnieli, Arnon; Sprinstin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-03-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. In this communication, we retrieved seasonal courses of understory normalized difference vegetation index (NDVI) from multiangular Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function (MODIS BRDF)/albedo data. We compared satellite-based seasonal courses of understory NDVI to understory NDVI values measured in different types of forests distributed along a wide latitudinal gradient (65.12°N-31.35°N). Our results indicated that the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated.

  11. Flight Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.

  12. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  13. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  14. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    PubMed

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  15. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  16. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  17. BI-DIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION (BRDF) OF SMOOTH CORDGRASS (SPARTINA ALTERNIFLORA). (R826944)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Analytical fitting model for rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  19. Recipe creation for automated defect classification with a 450mm surface scanning inspection system based on the bidirectional reflectance distribution function of native defects

    NASA Astrophysics Data System (ADS)

    Yathapu, Nithin; McGarvey, Steve; Brown, Justin; Zhivotovsky, Alexander

    2016-03-01

    This study explores the feasibility of Automated Defect Classification (ADC) with a Surface Scanning Inspection System (SSIS). The defect classification was based upon scattering sensitivity sizing curves created via modeling of the Bidirectional Reflectance Distribution Function (BRDF). The BRDF allowed for the creation of SSIS sensitivity/sizing curves based upon the optical properties of both the filmed wafer samples and the optical architecture of the SSIS. The elimination of Polystyrene Latex Sphere (PSL) and Silica deposition on both filmed and bare Silicon wafers prior to SSIS recipe creation and ADC creates a challenge for light scattering surface intensity based defect binning. This study explored the theoretical maximal SSIS sensitivity based on native defect recipe creation in conjunction with the maximal sensitivity derived from BRDF modeling recipe creation. Single film and film stack wafers were inspected with recipes based upon BRDF modeling. Following SSIS recipe creation, initially targeting maximal sensitivity, selected recipes were optimized to classify defects commonly found on non-patterned wafers. The results were utilized to determine the ADC binning accuracy of the native defects and evaluate the SSIS recipe creation methodology. A statistically valid sample of defects from the final inspection results of each SSIS recipe and filmed substrate were reviewed post SSIS ADC processing on a Defect Review Scanning Electron Microscope (SEM). Native defect images were collected from each statistically valid defect bin category/size for SEM Review. The data collected from the Defect Review SEM was utilized to determine the statistical purity and accuracy of each SSIS defect classification bin. This paper explores both, commercial and technical, considerations of the elimination of PSL and Silica deposition as a precursor to SSIS recipe creation targeted towards ADC. Successful integration of SSIS ADC in conjunction with recipes created via BRDF modeling has the potential to dramatically reduce the workload requirements of a Defect Review SEM and save a significant amount of capital expenditure for 450mm SSIS recipe creation.

  20. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for directional reflectance retrieval

    NASA Astrophysics Data System (ADS)

    Che, X.; Feng, M.; Sexton, J. O.; Channan, S.; Yang, Y.; Song, J.

    2017-12-01

    Reflection of solar radiation from Earth's surface is the basis for retrieving many higher-level terrestrial attributes such as vegetation indices and albedo. However, reflectance varies with the illumination and viewing geometry of observation (Bi-directional Reflectance Distribution Function (BRDF)) even with constant surface properties, and correcting for these artifacts increases precision of comparisons of images and time series acquired from satellites with different illumination and observation geometries. The operational MODIS processing inverts MODIS BRDF/Albedo Model Parameters (MCD43A1) to retrieve directional reflectance at any solar and view angles, and recently the MCD43A1 (Collection 6) was updated and distributed. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance compared to Collection 5 and tested whether changes in the land surface change over a 16-day composite period affect time series of directional reflectance. Correcting the Terra MODIS daily Surface Reflectance (MOD09GA) to the illumination and view geometries of coincidental Aqua MODIS daily Surface Reflectance (MYD09GA), MCD43A4 Collection 6 and Landsat-5 TM imagery show that the BRDF-corrected results using MCD43A1 Collection 6 hold a higher consistency with higher R2 (0.63 0.955), the slopes close to unity (0.718 0.955) and the lower RMSD (0.422 3.142) and MAE (0.282 1.735) reduced by about 10% than Collection 5. A simple parameter calibration to evaluate the variability of the roughness (R) and the volumetric (V) BRDF parameters for MCD43A1 Collection 6 shows that the assumption of stable land surface characteristic over 16-days composite period, used for BRDF parameters inversion, is plausible in spite of small improvement of directional reflectance and BRDF parameters time series. The larger fluctuations for the MCD43A1 Collection 6 do not have a discernable impact on the reflectance time series. All of these results shows that MCD43A1 Collection 6 product with daily temporal resolution is a valuable product representing the anisotropy of surface features, and reasonably more accurate for directional reflectance derivation at any solar and view geometries than Collection 5, which holds a great potential for many Earth's science research.

  1. Modeling and validation of spectral BRDF on material surface of space target

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei

    2014-11-01

    The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.

  2. Spectral scattering characteristics of space target in near-UV to visible bands.

    PubMed

    Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun

    2014-04-07

    In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.

  3. Evaluation of directional normalization methods for Landsat TM/ETM+ over primary Amazonian lowland forests

    NASA Astrophysics Data System (ADS)

    Van doninck, Jasper; Tuomisto, Hanna

    2017-06-01

    Biodiversity mapping in extensive tropical forest areas poses a major challenge for the interpretation of Landsat images, because floristically clearly distinct forest types may show little difference in reflectance. In such cases, the effects of the bidirectional reflection distribution function (BRDF) can be sufficiently strong to cause erroneous image interpretation and classification. Since the opening of the Landsat archive in 2008, several BRDF normalization methods for Landsat have been developed. The simplest of these consist of an empirical view angle normalization, whereas more complex approaches apply the semi-empirical Ross-Li BRDF model and the MODIS MCD43-series of products to normalize directional Landsat reflectance to standard view and solar angles. Here we quantify the effect of surface anisotropy on Landsat TM/ETM+ images over old-growth Amazonian forests, and evaluate five angular normalization approaches. Even for the narrow swath of the Landsat sensors, we observed directional effects in all spectral bands. Those normalization methods that are based on removing the surface reflectance gradient as observed in each image were adequate to normalize TM/ETM+ imagery to nadir viewing, but were less suitable for multitemporal analysis when the solar vector varied strongly among images. Approaches based on the MODIS BRDF model parameters successfully reduced directional effects in the visible bands, but removed only half of the systematic errors in the infrared bands. The best results were obtained when the semi-empirical BRDF model was calibrated using pairs of Landsat observation. This method produces a single set of BRDF parameters, which can then be used to operationally normalize Landsat TM/ETM+ imagery over Amazonian forests to nadir viewing and a standard solar configuration.

  4. Time-varying BRDFs.

    PubMed

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  5. BIDIRECTIONAL DISTRIBUTION FUNCTION (BRDF) CHARACTERISTICS OF SMOOTH CORDGRASS (SPARTINA ALTERNIFLORA) OBTAINED USING A SANDMEIER FIELD GONIOMETER. (R826944)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  7. Do BRDF effects dominate seasonal changes in tower-based remote sensing imagery?

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Morton, D. C.; Rubio, J.; Cook, B. D.; Rishmawi, K.

    2014-12-01

    In situ remote sensing complements data from airborne and space-based sensors, in particular for intensive study sites where optical imagery can be paired with detailed ground and tower measurements. The characteristics of tower-mounted imaging systems are quite different from the nadir viewing geometry of other remote sensing platforms. In particular, tower-mounted systems are quite sensitive to artifacts of seasonal and diurnal sun angle variations. Most systems are oriented in a fixed north or south direction (depending on latitude), placing them in the principal plane at solar noon. The strength of the BRDF (Bidirectional Reflectance Distribution Function) effect is strongest for images acquired at that time. Phenological metrics derived from tower based oblique angle imaging systems are particularly prone to BRDF effects, as shadowing within and between tree crowns varies seasonally. For sites in the northern hemisphere, the fraction of sunlit and shaded vegetation declines following the June solstice to leaf senescence in September. Correcting tower-based remote sensing imagery for artifacts of BRDF is critical to isolate real changes in canopy phenology and reflectance. Here, we used airborne lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT) to develop a 3D forest scene for Harvard Forest in the Discrete Anisotrophic Radiative Transfer (DART) model. Our objective was to model the contribution of changes in shadowing and illumination to observations of changes in greenness from the Phenocam image time series at the Harvard Forest site. Diurnal variability in canopy greenness from the Phenocam time series provides an independent evaluation of BRDF effects from changes in illumination and sun-sensor geometries. The overall goal of this work is to develop a look-up table solution to correct major components of BRDF for tower-mounted imaging systems such as Phenocam, based on characteristics of the forest structure (forest height, canopy rugosity, fractional cover, and composition) and viewing geometry of the sensor. Given the sensitivity of tower-based systems to BRDF effects, efforts to correct artifacts of BRDF in phenology time series is critical to isolate seasonal changes in vegetation reflectance.

  8. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).

  9. Estimation of Canopy Clumping Index From MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Wei, S.; Fang, H.

    2016-12-01

    The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.

  10. Broadband Spectral-Polarimetric BRDF Scan System and Data for Spacecraft Materials

    DTIC Science & Technology

    2011-09-01

    Function ( BRDF ) measurement system from 350nm to 2500nm with 1nm wavelength resolution is providing data for satellite radiance modeling and specifically...multilayer insulation (MLI) and solar cells is presented. The continuum nature of the data indicates that either dedicated BRDF models or a method for...but the BRDFs will be difficult to model . Judgments whether to use texturing, or an average BRDF , or perhaps optical cross section (OCS) values, or

  11. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  12. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  13. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  14. Algorithm applying a modified BRDF function in Λ-ridge concentrator of solar radiation

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2015-05-01

    This paper presents an algorithm that uses the modified BRDF function. It allows the calculation of the parameters of Λ-ridge concentrator system. The concentrator directs reflected solar radiation on photovoltaic surface, increasing its efficiency. The efficiency of the concentrator depends on the surface characteristics of the material which it is made of, the angle of the photovoltaic panel and the resolution of the tracking system. It shows a method of modeling the surface by using the BRDF function and describes its basic parameters, e.g. roughness and the components of the reflected stream. A cost calculation of chosen models with presented in this article BRDF function modification has been made. The author's own simulation program allows to choose the appropriate material for construction of a Λ-ridge concentrator, generate micro surface of the material, and simulate the shape and components of the reflected stream.

  15. Comparison of Bi-directional Reflectance Distribution Functions of Black Spruce Forest in Snow and No-snow Seasons in Alaska

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2011-12-01

    The Bidirectional Reflectance Distribution Function (BRDF) of the forest is an important clue for remote sensing to reveal the forest structure such as Leaf Area Index (LAI) and above-ground biomass. The BRDF is required for the robust development of forest radiative transfer model, which is applied to the forest structure analysis based on satellite data. To acquire in-situ BRDF of the forest, we carried out the field survey of BRDFs at a boreal forest in no-snow season (July 2010) and snow season (March 2011) in Alaska, and compared them. A black spruce forest, a typical boreal evergreen forest in Alaska, located in the Poker Flat Research Range of University of Alaska Fairbanks (65 07'24"N, 147 29'15"W, 210 m MSL) was targeted. Since the forest homogeneously extends about 500 m wide and the terrain is relatively even, this forest site is highly suitable for the validation of the remote sensing measurement. The tree stand density was about 4000 tree/ha, and the highest tree was 6.4 m. The forest floor is covered by the green vegetation such as moss and grass in summer, while the vegetation on the floor is completely covered by snow during winter and early spring. The observations of the BRDF taken place around the noon of July 7 and 8, 2010 (no-snow season) and March 16 and 17, 2011 (snow season) from the top of the tower (17 m) constructed in the forest. We measured the reflected irradiance from the forest by the spectroradiometer (MS-720; EKO Instruments) changing the viewing angle from 20 to 70 degrees and -20 to -70 degrees(off-nadir angle; positive and negative angles mean forward and back scatter angles, respectively) with 5 degrees interval in the principal plane. Irradiances in the orthogonal (cross) plane were also measured in the same manner. The global radiation was simultaneously measured by the other spectroradiometer for the calculation of the reflectance. The BRDF in the principal plane in the no-snow season showed a kind of bowl-shape distribution with its minimum and maximum at approximately 30 and -70 degrees in visible and near-infrared bands, respectively, that is, the forward scatter was generally smaller than the back scatter. By contrast, in the snow season, the back scatter was generally smaller than the forward scatter, that is, the reverse of that in the no-snow season. These results will be used for the development of the forest radiative transfer model aimed to evaluate the forest biodiversity and ecosystem functions.

  16. Detection of Spatially Unresolved (Nominally Sub-Pixel) Submerged and Surface Targets Using Hyperspectral Data

    DTIC Science & Technology

    2012-09-01

    Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be

  17. Bidirectional reflectance modeling of non-homogeneous plant canopies

    NASA Technical Reports Server (NTRS)

    Norman, John M.

    1986-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. Leaf bidirectional reflectance and transmittance distribution functions were measured for corn and soybean leaves. The measurements clearly show that leaves are complex scatterers and considerable specular reflectance is possible. Because of the character of leaf reflectance, true leaf reflectance is larger than the nadir reflectances that are normally used to represent leaves. A 3-dimensional reflectance model, named BIGAR (Bidirectional General Array Model), was developed and compared with measurements from corn and soybean. The model is based on the concept that heterogeneous canopies can be described by a combination of many subcanopies, which contain all the foliage, and these subcanopy envelopes can be characterized by ellipsoids of various sizes and shapes. The model/measurement comparison results indicate that this relatively simple model captures the essential character of row crop BRDF's. Finally, two soil BDRF models were developed: one represents soil particles as rectangular blocks and the other represents soil particles as spheres. The sphere model was found to be superior.

  18. Comparison of BRDF-Predicted and Observed Light Curves of GEO Satellites

    NASA Astrophysics Data System (ADS)

    Ceniceros, A.; Dao, P.; Gaylor, D.; Rast, R.; Anderson, J.; Pinon, E., III

    Although the amount of light received by sensors on the ground from Resident Space Objects (RSOs) in geostationary orbit (GEO) is small, information can still be extracted in the form of light curves (temporal brightness or apparent magnitude). Previous research has shown promising results in determining RSO characteristics such as shape, size, reflectivity, and attitude by processing simulated light curve data with various estimation algorithms. These simulated light curves have been produced using one of several existing analytic Bidirectional Reflectance Distribution Function (BRDF) models. These BRDF models have generally come from researchers in computer graphics and machine vision and have not been shown to be realistic for telescope observations of RSOs in GEO. While BRDFs have been used for SSA analysis and characterization, there is a lack of research on the validation of BRDFs with regards to real data. In this paper, we compared telescope data provided by the Air Force Research Laboratory (AFRL) with predicted light curves from the Ashikhmin-Premoze BRDF and two additional popular illumination models, Ashikhmin-Shirley and Cook-Torrance. We computed predicted light curves based on two line mean elements (TLEs), shape model, attitude profile, observing ground station location, observation time and BRDF. The predicted light curves were then compared with AFRL telescope data. The selected BRDFS provided accurate apparent magnitude trends and behavior, but uncertainties due to lack of attitude information and deficiencies in our satellite model prevented us from obtaining a better match to the real data. The current findings present a foundation for ample future research.

  19. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu

    2017-01-01

    The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.

  20. Products of the SNPP VIIRS SD Screen Transmittance and the SD BRDFs From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2017-01-01

    To ensure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs on-orbit radiometric calibration of its 22 spectral bands. The primary radiance source for the calibration of the VIIRS reflective solar bands (RSBs) is a sunlit onboard solar diffuser (SD).During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The sunlight, scattered off the SD of near-Lambertian property, is used for the calibration. Consequently, the spectral radiance of the scattered sunlight is proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF) value at the observation direction. The BRDF value is decomposed to the product of its initial value at launch and a numerical degradation factor that quantifies the decrease from the initial value. The degradation factor is determined by an onboard SD stability monitor (SDSM). During the BRDF degradation factor determination process, the SDSM receives the SD scattered sunlight and the sunlight that goes through another perforated plate at almost the same time. The ratio of the signal strengths from the two observations is used to determine the BRDF degradation factor. Consequently, the RSB radiometric calibration requires the accurate knowledge of the product of the SD screen transmittance and the initial BRDF value as sensed by the RSB and the SDSM detectors. We use both yaw maneuver and a small portion of regular on-orbit data to determine the products.

  1. Surface Material Characterization from Non-resolved Multi-band Optical Observations

    DTIC Science & Technology

    2012-09-01

    functions ( BRDFs ) — then a forward model of the spectral signature of the entire body could be constructed by summing contributions from all reflecting...buffering). 3.3.2 Material Bi-directional Reflectance Distribution Functions ( BRDFs ) Notably, the satellite wire-frame and attitude models together...environments and/or created numerical BRDF models . For instance, BRDFs for several spacecraft materials — such as solar array panels, milled aluminum

  2. Non-destructive Techniques for Classifying Aircraft Coating Degradation

    DTIC Science & Technology

    2015-03-26

    model is bidirectional reflectance distribution func- tions ( BRDF ) which describes how much radiation is reflected for each solid angle and each...incident angle. An intermediate model between ideal reflectors and BRDF is to assume all reflectance is a combination of diffuse and specular reflectance...19 K-Fold Cross Validation

  3. Research of BRDF effects on remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Nina, Peng; Kun, Wang; Tao, Li; Yang, Pan

    2011-08-01

    The gray distribution and contrast of the optical satellite remote sensing imagery in the same kind of ground surface acquired by sensor is quite different, it depends not only on the satellite's observation and the sun incidence orientation but also the structural and optical properties of the surface. Therefore, the objectives of this research are to analyze the different BRDF characters of soil, vegetation, water and urban surface and also their BRDF effects on the quality of satellite image through 6S radiative transfer model. Furthermore, the causation of CCD blooming and spilling by ground reflectance is discussed by using QUICKBIRD image data and the corresponding ground image data. The general conclusion of BRDF effects on remote sensing imagery is proposed.

  4. Assessment of Refueling Hose Visibility

    DTIC Science & Technology

    2012-10-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...10 7 Basic Model of Contrast Loss through Aircraft Windscreen Due To Haze ..................... 10 8...known as a bidirectional (azimuth and elevation) reflectance distribution function or BRDF . This is extremely time-consuming and impractical. In

  5. Product of the SNPP VIIRS SD Screen Transmittance and the SD BRDF (RSB) From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    To assure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) regularly performs on-orbit radiometric calibrations of its 22 spectral bands. The primary calibration radiance source for the reflective solar bands (RSBs) is a sunlit solar diffuser (SD). During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The SD scattered sunlight is used for the calibration, with the spectral radiance proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF). The BRDF is decomposed to the product of its value at launch and a numerical factor quantifying its change since launch. Therefore, the RSB calibration requires accurate knowledge of the product of the SD screen transmittance and the BRDF (RSB; launch time). Previously, we calculated the product with yaw maneuver data and found that the product had improved accuracy over the prelaunch one. With both yaw maneuver and regular on orbit data, we were able to improve the accuracy of the SDSM screen transmittance and the product for the solar diffuser stability monitor SD view. In this study, we use both yaw maneuver and a small portion of regular on-orbit data to determine the product for the RSB SD view.

  6. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  7. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  8. Variability in Surface BRDF at Different Spatial Scales (30m-500m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.

    2012-01-01

    Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.

  9. Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhousen; King, Michael D.

    2011-01-01

    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.

  10. Analysis of Accuracy of Modis BRDF Product (MCD43 C6) Based on Misr Land Surface Brf Product - a Case Study of the Central Part of Northeast Asia

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, S.; Qin, W.; Murefu, M.; Wang, Y.; Yu, Y.; Zhen, Z.

    2018-04-01

    EOS/MODIS land surface Bi-directional Reflectance Distribution Function (BRDF) product (MCD43), with the latest version C6, is one of the most important operational BRDF products with global coverage. The core sub-product MCD43A1 stores 3 parameters of the RossThick-LiSparseR semi-empirical kernel-driven BRDF model. It is important for confident use of the product to evaluate the accuracy of bi-directional reflectance factor (BRF) predicted by MCD43A1 BRDF model (mBRF). A typical region in the central part of Northeast Asia is selected as the study area. The performance of MCD43A1 BRDF model is analyzed in various observation geometries and phenological phases, using Multi-angle Imaging SpectroRadiometer (MISR) land-surface reflectance factor product (MILS_BRF) as the reference data. In addition, MODIS products MCD12Q1 and MOD/MYD10A1 are used to evaluate the impacts of land cover types and snow covers on the model accuracy, respectively. The results show an overall excellent performance of MCD43A1 in representing the anisotropic reflectance of land surface, with root mean square error (RMSE) of 0.0262 and correlation coefficient (R) of 0.9537, for all available comparable samples of MILS_BRF and mBRF pairs. The model accuracy varies in different months, which is related to the phenological phases of the study area. The accuracy for pixels labelled as `snow' by MCD43 is obviously low, with RMSE/R of 0.0903/0.8401. Ephemeral snowfall events further decrease the accuracy, with RMSE/R of 0.1001/0.7715. These results provide meaningful information to MCD43 users, especially those, whose study regions are subject to phenological cycles as well as snow cover and change.

  11. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  12. Plasma etched surface scanning inspection recipe creation based on bidirectional reflectance distribution function and polystyrene latex spheres

    NASA Astrophysics Data System (ADS)

    Saldana, Tiffany; McGarvey, Steve; Ayres, Steve

    2014-04-01

    The continual increasing demands upon Plasma Etching systems to self-clean and continue Plasma Etching with minimal downtime allows for the examination of SiCN, SiO2 and SiN defectivity based upon Surface Scanning Inspection Systems (SSIS) wafer scan results. Historically all Surface Scanning Inspection System wafer scanning recipes have been based upon Polystyrene Spheres wafer deposition for each film stack and the subsequent creation of light scattering sizing response curves. This paper explores the feasibility of the elimination of Polystyrene Latex Sphere (PSL) and/or process particle deposition on both filmed and bare Silicon wafers prior to Surface Scanning Inspection System recipe creation. The study will explore the theoretical maximal Surface Scanning Inspection System sensitivity based on PSL recipe creation in conjunction with the maximal sensitivity derived from Bidirectional Reflectance Distribution Function (BRDF) maximal sensitivity modeling recipe creation. The surface roughness (Root Mean Square) of plasma etched wafers varies dependent upon the process film stack. Decrease of the root mean square value of the wafer sample surface equates to higher surface scanning inspection system sensitivity. Maximal sensitivity SSIS scan results from bare and filmed wafers inspected with recipes created based upon Polystyrene/Particle Deposition and recipes created based upon BRDF modeling will be overlaid against each other to determine maximal sensitivity and capture rate for each type of recipe that was created with differing recipe creation modes. A statistically valid sample of defects from each Surface Scanning Inspection system recipe creation mode and each bare wafer/filmed substrate will be reviewed post SSIS System processing on a Defect Review Scanning Electron Microscope (DRSEM). Native defects, Polystyrene Latex Spheres will be collected from each statistically valid defect bin category/size. The data collected from the DRSEM will be utilized to determine the maximum sensitivity capture rate for each recipe creation mode. Emphasis will be placed upon the sizing accuracy of PSL versus BRDF modeling results based upon automated DRSEM defect sizing. An examination the scattering response for both Mie and Rayleigh will be explored in relationship to the reported sizing variance of the SSIS to make a determination of the absolute sizing accuracy of the recipes there were generated based upon BRDF modeling. This paper explores both the commercial and technical considerations of the elimination of PSL deposition as a precursor to SSIS recipe creation. Successful integration of BRDF modeling into the technical aspect of SSIS recipe creation process has the potential to dramatically reduce the recipe creation timeline and vetting period. Integration of BRDF modeling has the potential to greatly reduce the overhead operation costs for High Volume Manufacturing sites by eliminating the associated costs of third party PSL deposition.

  13. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  14. Grating scattering BRDF and imaging performances: A test survey performed in the frame of the flex mission

    NASA Astrophysics Data System (ADS)

    Harnisch, Bernd; Deep, Atul; Vink, Ramon; Coatantiec, Claude

    2017-11-01

    Key components in optical spectrometers are the gratings. Their influence on the overall infield straylight of the spectrometer depends not only on the technology used for grating fabrication but also on the potential existence of ghost images caused by irregularities of the grating constant. For the straylight analysis of spectrometer no general Bidirectional Reflectance Distribution Function (BRDF) model of gratings exist, as it does for optically smooth surfaces. These models are needed for the determination of spectrometer straylight background and for the calculation of spectrometer out of band rejection performances. Within the frame of the Fluorescence Earth Explorer mission (FLEX), gratings manufactured using different technologies have been investigated in terms of straylight background and imaging performance in the used diffraction order. The gratings which have been investigated cover a lithographically written grating, a volume Bragg grating, two holographic gratings and an off-the-shelf ruled grating. In this paper we present a survey of the measured bidirectional reflectance/transmittance distribution function and the determination of an equivalent surface micro-roughness of the gratings, describing the scattering of the grating around the diffraction order. This is specifically needed for the straylight modeling of the spectrometer.

  15. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    PubMed

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  16. Modeling of polarimetric BRDF characteristics of painted surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wang, Zeying; Zhao, Huijie

    2014-11-01

    In this paper a pBRDF (polarimetric Bidirectional Reflectance Distribution Function) model of painted surfaces coupled with atmospheric polarization characteristics is built and the method of simulating polarimetric radiation reaching the imaging system is advanced. Firstly, the composition of the radiation reaching the sensor is analyzed. Then, the pBRDF model of painted surfaces is developed according to the microfacet theory presented by G. Priest and the downwelled skylight polarization is modeled based on the vector radiative transfer model RT3. Furthermore, the modeled polarization state of reflected light from the surfaces was achieved through integrating the directional polarimetric information of the whole hemisphere, adding the modeled polarimetric factors of incident diffused skylight. Finally, the polarimetric radiance reaching the sensor is summed up with the assumption that the target-sensor path is assumed to be negligible since it is relatively short in the current imaging geometry. The modeled results are related to the solar-sensor geometry, atmospheric conditions and the features of the painted surfaces. This result can be used to simulate the imaging under different weather conditions and further work for the validation experiments of the model need to be done.

  17. In vivo measurement of skin microrelief using photometric stereo in the presence of interreflections.

    PubMed

    Sohaib, Ali; Farooq, Abdul R; Atkinson, Gary A; Smith, Lyndon N; Smith, Melvyn L; Warr, Robert

    2013-03-01

    This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.

  18. Detailed Validation of the Bidirectional Effect in Various Case 1 and Case 2 Waters

    DTIC Science & Technology

    2012-03-26

    of the viewing direction, i.e., they assumed a completely diffuse BRDF . Previous efforts to model / understand the actual BRDF [4-10] have produced...places. Second, the MAG2002 BRDF tables were developed from a radiative transfer (RT) model that used scattering particle phase functions that...situ measurements from just 3 locations to validate their model ; here we used a much larger data set across a wide variety of inherent optical

  19. Data Association Algorithms for Tracking Satellites

    DTIC Science & Technology

    2013-03-27

    validation of the new tools. The description provided here includes the mathematical back ground and description of the models implemented, as well as a...simulation development. This work includes the addition of higher-fidelity models in CU-TurboProp and validation of the new tools. The description...ode45(), used in Ananke, and (3) provide the necessary inputs to the bidirectional reflectance distribution function ( BRDF ) model provided by Pacific

  20. Optical Characterization of Deep-Space Object Rotation States

    DTIC Science & Technology

    2014-09-01

    surface bi-directional reflectance distribution function ( BRDF ), and then estimate the asteroid’s shape via a best-fit parameterized model . This hybrid...approach can be used because asteroid BRDFs are relatively well studied, but their shapes are generally unknown [17]. Asteroid shape models range...can be accomplished using a shape-dependent method that employs a model of the shape and reflectance characteristics of the object. Our analysis

  1. A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Thomas, G. E.; Grainger, R. G.

    2010-07-01

    A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  2. A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Thomas, G. E.; Grainger, R. G.

    2010-03-01

    A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  3. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that VIIRS can provide comparable albedo products with MODIS. The accuracy of both products can meet the requirement for climate and biosphere models. In situ albedo also can be gained from Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc., which will be used in future validation work.

  4. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    NASA Astrophysics Data System (ADS)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  5. Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Roujean, Jean-Louis; Hautecoeur, Olivier; Elias, Thierry

    2010-05-01

    This paper presents an innovative method for obtaining a daily estimate of a quality-controlled aerosol optical thickness (AOT) of a vertical column of the atmosphere over the continents. Because properties of land surface are more stationary than the atmosphere, the temporal dimension is exploited for simultaneous retrieval of the surface and aerosol bidirectional reflectance distribution function (BRDF) coming from a kernel-driven reflectance model. Off-zenith geometry of illumination enhances the forward scattering peak of the aerosol, which improves the retrieval of AOT from the aerosol BRDF. The solution is obtained through an unconstrained linear inversion procedure and perpetuated in time using a Kalman filter. On the basis of numerical experiments using the 6S atmospheric code, the validity of the BRDF model is demonstrated. The application is carried out with data from the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) instrument on board the geostationary Meteosat Second Generation (MSG) satellite from June 2005 to August 2007 for midlatitude regions and from March 2006 to June 2006 over desert sites. The satellite-derived SEVIRI AOT compares favorably with Aerosol Robotic Network (AERONET) measurements for a number of contrasted stations and also similar Moderate Resolution Imaging Spectroradiometer (MODIS) products, within 20% of relative accuracy. The method appears competitive for tracking anthropogenic aerosol emissions in the troposphere and shows a potential for the challenging estimate of dust events over bright targets. Moreover, a high-frequency distribution of AOT provides hints as to the variability of pollutants according to town density and, potentially, motor vehicle traffic. The outcomes of the present study are expected to promote a monitoring of the global distributions of natural and anthropogenic sources and sinks of aerosol, which are receiving increased attention because of their climatic implications.

  6. Floristic composition and across-track reflectance gradient in Landsat images over Amazonian forests

    NASA Astrophysics Data System (ADS)

    Muro, Javier; doninck, Jasper Van; Tuomisto, Hanna; Higgins, Mark A.; Moulatlet, Gabriel M.; Ruokolainen, Kalle

    2016-09-01

    Remotely sensed image interpretation or classification of tropical forests can be severely hampered by the effects of the bidirectional reflection distribution function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the influence of reflectance anisotropy can be sufficiently strong to introduce a cross-track reflectance gradient. If the BRDF could be assumed to be linear for the limited swath of Landsat, it would be possible to remove this gradient during image preprocessing using a simple empirical method. However, the existence of natural gradients in reflectance caused by spatial variation in floristic composition of the forest can restrict the applicability of such simple corrections. Here we use floristic information over Peruvian and Brazilian Amazonia acquired through field surveys, complemented with information from geological maps, to investigate the interaction of real floristic gradients and the effect of reflectance anisotropy on the observed reflectances in Landsat data. In addition, we test the assumption of linearity of the BRDF for a limited swath width, and whether different primary non-inundated forest types are characterized by different magnitudes of the directional reflectance gradient. Our results show that a linear function is adequate to empirically correct for view angle effects, and that the magnitude of the across-track reflectance gradient is independent of floristic composition in the non-inundated forests we studied. This makes a routine correction of view angle effects possible. However, floristic variation complicates the issue, because different forest types have different mean reflectances. This must be taken into account when deriving the correction function in order to avoid eliminating natural gradients.

  7. Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing

    2017-04-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.

  8. Generation of a Combined Dataset of Simulated Radar and Electro-Optical Imagery

    DTIC Science & Technology

    2005-10-05

    directional reflectance distribution function (BRDF) predictions and the geometry of a line scanner. Using programs such as MODTRAN and FASCODE, images can be...DIRSIG tries to accurately model scenes through various approaches that model real- world occurrences. MODTRAN is an atmospheric radiative transfer code...used to predict path transmissions and radiances within the atmosphere (DIRSIG Manual, 2004). FASCODE is similar to MODTRAN , however it works as a

  9. The Focusing of Light Scattered from Diffuse Reflectors Using Phase Modulation

    DTIC Science & Technology

    2012-03-22

    was recently demonstrated for imaging otherwise hidden scene information through the collection and radiometric modeling of light reflecting off of...effectively reducing the radiometric model to that of the previously demonstrated dual photography, and leading to much-simplified results. This...angle. The fundamental geometric descriptor of reflectance is given by the bidirectional reflectance distribution function ( BRDF ) fr (θi, φi; θs, φs

  10. Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness.

    PubMed

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-02-20

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  11. Correlation of 0.67um scatter with local stress in Ge impacted with the modified Cambridge liquid jet device

    NASA Astrophysics Data System (ADS)

    Wilson, Michael; Price, D.; Strohecker, Steve

    1994-09-01

    Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.

  12. Radiative Transfer Simulations of the Two-Dimensional Ocean Glint Reflectance and Determination of the Sea Surface Roughness

    NASA Technical Reports Server (NTRS)

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-01-01

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  13. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements.

    PubMed

    Ross, Vincent; Dion, Denis; St-Germain, Daniel

    2012-05-01

    Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

  14. Color characterization of coatings with diffraction pigments.

    PubMed

    Ferrero, A; Bernad, B; Campos, J; Perales, E; Velázquez, J L; Martínez-Verdú, F M

    2016-10-01

    Coatings with diffraction pigments present high iridescence, which needs to be characterized in order to describe their appearance. The spectral bidirectional reflectance distribution functions (BRDFs) of six coatings with SpectraFlair diffraction pigments were measured using the robot-arm-based goniospectrophotometer GEFE, designed and developed at CSIC. Principal component analysis has been applied to study the coatings of BRDF data. From data evaluation and based on theoretical considerations, we propose a relevant geometric factor to study the spectral reflectance and color gamut variation of coatings with diffraction pigments. At fixed values of this geometric factor, the spectral BRDF component due to diffraction is almost constant. Commercially available portable goniospectrophotometers, extensively used in several industries (automotive and others), should be provided with more aspecular measurement angles to characterize the complex reflectance of goniochromatic coatings based on diffraction pigments, but they would not require either more than one irradiation angle or additional out-of-plane geometries.

  15. Color representation and interpretation of special effect coatings.

    PubMed

    Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A

    2014-02-01

    A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.

  16. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  17. Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Liang, Shunlin; He, Tao; Yu, Yunyue

    2013-11-01

    surface albedo (LSA), part of the Visible Infrared Imaging Radiometer Suite (VIIRS) surface albedo environmental data record (EDR), is an essential variable regulating shortwave energy exchange between the land surface and the atmosphere. Two sub-algorithms, the dark pixel sub-algorithm (DPSA) and the bright pixel sub-algorithm (BPSA), were proposed for retrieving LSA from VIIRS data. The BPSA estimates LSA directly from VIIRS top-of-atmosphere (TOA) reflectance through simulation of atmospheric radiative transfer. Several changes have been made to improve the BPSA since the deployment of VIIRS. A database of the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) is collected and converted to bidirectional reflectance at VIIRS bands. The converted reflectance is then used as input to the atmospheric radiative transfer model to generate a look-up table (LUT) of regression coefficients with consideration of surface BRDF. Before its implementation in the operational system, the new BPSA is tested on the local infrastructure. The incorporation of the surface BRDF improves the accuracy of LSA estimation and reduces the temporal variation of LSA over stable surfaces. VIIRS LSA retrievals agree well with the MODIS albedo products. Comparison with field measurements at seven Surface Radiation (SURFRAD) Network sites shows that VIIRS LSA retrieved from the LUT with surface BRDF has an R2 value of 0.80 and root mean square error of 0.049, better than MODIS albedo products. The VIIRS results have a slight negative bias of 0.004, whereas the MODIS albedo is underestimated with a larger negative bias of 0.026.

  18. [Model and analysis of spectropolarimetric BRDF of painted target based on GA-LM method].

    PubMed

    Chen, Chao; Zhao, Yong-Qiang; Luo, Li; Pan, Quan; Cheng, Yong-Mei; Wang, Kai

    2010-03-01

    Models based on microfacet were used to describe spectropolarimetric BRDF (short for bidirectional reflectance distribution function) with experimental data. And the spectropolarimetric BRDF values of targets were measured with the comparison to the standard whiteboard, which was considered as Lambert and had a uniform reflectance rate up to 98% at arbitrary angle of view. And then the relationships between measured spectropolarimetric BRDF values and the angles of view, as well as wavelengths which were in a range of 400-720 nm were analyzed in details. The initial value needed to be input to the LM optimization method was difficult to get and greatly impacted the results. Therefore, optimization approach which combines genetic algorithm and Levenberg-Marquardt (LM) was utilized aiming to retrieve parameters of nonlinear models, and the initial values were obtained using GA approach. Simulated experiments were used to test the efficiency of the adopted optimization method. And the simulated experiment ensures the optimization method to have a good performance and be able to retrieve the parameters of nonlinear model efficiently. The correctness of the models was validated by real outdoor sampled data. The parameters of DoP model retrieved are the refraction index of measured targets. The refraction index of the same color painted target but with different materials was also obtained. Conclusion has been drawn that the refraction index from these two targets are very near and this slight difference could be understood by the difference in the conditions of paint targets' surface, not the material of the targets.

  19. Simulating the directional, spectral and textural properties of a large-scale scene at high resolution using a MODIS BRDF product

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Goodenough, Adam A.; Schott, John R.

    2016-10-01

    Many remote sensing applications rely on simulated scenes to perform complex interaction and sensitivity studies that are not possible with real-world scenes. These applications include the development and validation of new and existing algorithms, understanding of the sensor's performance prior to launch, and trade studies to determine ideal sensor configurations. The accuracy of these applications is dependent on the realism of the modeled scenes and sensors. The Digital Image and Remote Sensing Image Generation (DIRSIG) tool has been used extensively to model the complex spectral and spatial texture variation expected in large city-scale scenes and natural biomes. In the past, material properties that were used to represent targets in the simulated scenes were often assumed to be Lambertian in the absence of hand-measured directional data. However, this assumption presents a limitation for new algorithms that need to recognize the anisotropic behavior of targets. We have developed a new method to model and simulate large-scale high-resolution terrestrial scenes by combining bi-directional reflectance distribution function (BRDF) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data, high spatial resolution data, and hyperspectral data. The high spatial resolution data is used to separate materials and add textural variations to the scene, and the directional hemispherical reflectance from the hyperspectral data is used to adjust the magnitude of the MODIS BRDF. In this method, the shape of the BRDF is preserved since it changes very slowly, but its magnitude is varied based on the high resolution texture and hyperspectral data. In addition to the MODIS derived BRDF, target/class specific BRDF values or functions can also be applied to features of specific interest. The purpose of this paper is to discuss the techniques and the methodology used to model a forest region at a high resolution. The simulated scenes using this method for varying view angles show the expected variations in the reflectance due to the BRDF effects of the Harvard forest. The effectiveness of this technique to simulate real sensor data is evaluated by comparing the simulated data with the Landsat 8 Operational Land Image (OLI) data over the Harvard forest. Regions of interest were selected from the simulated and the real data for different targets and their Top-of-Atmospheric (TOA) radiance were compared. After adjusting for scaling correction due to the difference in atmospheric conditions between the simulated and the real data, the TOA radiance is found to agree within 5 % in the NIR band and 10 % in the visible bands for forest targets under similar illumination conditions. The technique presented in this paper can be extended for other biomes (e.g. desert regions and agricultural regions) by using the appropriate geographic regions. Since the entire scene is constructed in a simulated environment, parameters such as BRDF or its effects can be analyzed for general or target specific algorithm improvements. Also, the modeling and simulation techniques can be used as a baseline for the development and comparison of new sensor designs and to investigate the operational and environmental factors that affects the sensor constellations such as Sentinel and Landsat missions.

  20. Interactive Acoustic Simulation in Urban and Complex Environments

    DTIC Science & Technology

    2015-03-21

    and validity of the solution given by the two methods. Transfer functions are used to model two-way couplings to allow multiple orders of acoustic...Function ( BRDF )[79, 137]. The ray models have also been applied to inhomogeneous outdoor media by numerical integration of the differential ray...surface, the interaction can be modeled by specular reflection, Snell’s law refraction, or BRDF -based reflection, depending on the surface properties

  1. Intercomparison of two BRDF models in the estimation of the directional emissivity in MIR channel from MSG1-SEVIRI data.

    PubMed

    Jiang, Geng-Ming; Li, Zhao-Liang

    2008-11-10

    This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.

  2. A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth

    NASA Technical Reports Server (NTRS)

    Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.

  3. Matrix Determination of Reflectance of Hidden Object via Indirect Photography

    DTIC Science & Technology

    2012-03-01

    the hidden object. This thesis provides an alternative method of processing the camera images by modeling the system as a set of transport and...Distribution Function ( BRDF ). Figure 1. Indirect photography with camera field of view dictated by point of illumination. 3 1.3 Research Focus In an...would need to be modeled using radiometric principles. A large amount of the improvement in this process was due to the use of a blind

  4. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  5. NIST High Accuracy Reference Reflectometer-Spectrophotometer

    PubMed Central

    Proctor, James E.; Yvonne Barnes, P.

    1996-01-01

    A new reflectometer-spectrophotometer has been designed and constructed using state-of-the-art technology to enhance optical properties of materials measurements over the ultraviolet, visible, and near-infrared (UV-Vis-NIR) wavelength range (200 nm to 2500 nm). The instrument, Spectral Tri-function Automated Reference Reflectometer (STARR), is capable of measuring specular and diffuse reflectance, bidirectional reflectance distribution function (BRDF) of diffuse samples, and both diffuse and non-diffuse transmittance. Samples up to 30 cm by 30 cm can be measured. The instrument and its characterization are described. PMID:27805081

  6. A measurement concept for hot-spot BRDFs from space

    NASA Technical Reports Server (NTRS)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  7. The Bidirectional Reflectance Distribution Function (BRDF) of the Ocean: Effects of Wave Representation

    NASA Astrophysics Data System (ADS)

    Eide, H.; Stamnes, K.; Ottaviani, M.

    2004-12-01

    The specular reflection of the Sun off the ocean, or sun glint, is of major concern for ocean remote sensing. Typically, data from in and around the sunglint region are discarded because of the unknown contribution to the measured radiances or because of sensor saturation. On the other hand, accurate knowledge of the sunglint properties enables retrievals of atmospheric parameters. The challenge of the ocean retrieval problem is to get the ``water leaving radiance'', Lw, by subtracting the Rayleigh scattering, aerosol scattering, water vapor, ozone, and sun glint from the measured radiances at the top of the atmosphere (TOA). Thus, the task is to correct for both the atmospheric contribution and for surface effects. Two simplifying assumptions that are frequently employed in ocean remote sensing are that the ocean BRDF is isotropic and that one can de-couple the radiative properties of the atmosphere from those of the surface. Our previous studies have shown that neglecting the inherit coupling between the atmosphere and surface can lead to large errors in the retrievals. In order to do retrievals over bright, as well as darker surfaces, it is necessary to account for this coupling between the surface and the atmosphere. In the present study we use models for the reflection of light off the ocean surface to calculate the ocean BRDF. The differences between the various models are investigated as is the effect of using different types of wave statistics (e.g. Cox Munk). We present results from calculations where we vary the wind speed and direction as well as other parameters affecting the ocean surface. The error introduced in ocean retrievals by assuming an isotropic BRDF is assessed, and methods for improved treatment of sunglint are suggested.

  8. Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site

    NASA Astrophysics Data System (ADS)

    Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi

    2012-11-01

    For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).

  9. A New Approach to Computing Information in Measurements of Non-Resolved Space Objects by the Falcon Telescope Network

    DTIC Science & Technology

    2014-09-01

    Analysis Simulation for Advanced Tracking (TASAT) satellite modeling tool [8,9]. The method uses the bi-reflectance distribution functions ( BRDF ...directional Reflectance Model Validation and Utilization, Air Force Avionics Laboratory Technical Report, AFAL-TR-73-303, October 1973. [10] Hall, D...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2014 2. REPORT

  10. A Study of the Effects of Material Type and Configuration on Optical Cross Section

    DTIC Science & Technology

    2012-09-01

    a whole. In order to understand these optical signatures, a means to accurately measure, model , and simulate the space objects is necessary. The space...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 as Bidrectional Reflectivity Distribution Function ( BRDF ) can

  11. Leonardo-BRDF: A New Generation Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in alongtrack or cross-track mode, or anything in between, at ground command. This provides inherent system redundancy and cross-calibration capability. Several "wing-man" satellites in non-static orbits fly in formation up to 1000 km out from the keystone satellites to provide additional along- and cross-track angular sampling. They view the target(s) observed by the keystone satellites from different zenith and azimuth angles and are maneuverable within a limited range of zenith angle using thrusters, and within a large range of azimuth angle using clever orbit design. The wing-man satellites carry single miniature imaging radiometers with just a few wavelength bands in order to be lighter and more agile.

  12. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua

    2009-09-01

    With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.

  13. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    NASA Technical Reports Server (NTRS)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  14. Detailed validation of the bidirectional effect in various Case 1 waters for application to Ocean Color imagery

    NASA Astrophysics Data System (ADS)

    Voss, K. J.; Morel, A.; Antoine, D.

    2007-06-01

    The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties and this variation is called the bidirectional effect, or BRDF of the water. This BRDF depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model by Morel et al. (2002) depends on modeled water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We found that the average error of the model, when compared to the data was less than 1%, while the RMS difference between the model and data was on the order of 0.02-0.03. This is well within the statistical noise of the data, which was on the order of 0.04-0.05, due to environmental noise sources such as wave focusing.

  15. Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects

    NASA Astrophysics Data System (ADS)

    Adler-Golden, Steven; Less, David; Jin, Xuemin; Rynes, Peter

    2016-05-01

    Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved "apparent" values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.

  16. Radiometric spectral and band rendering of targets using anisotropic BRDFs and measured backgrounds

    NASA Astrophysics Data System (ADS)

    Hilgers, John W.; Hoffman, Jeffrey A.; Reynolds, William R.; Jafolla, James C.

    2000-07-01

    Achievement of ultra-high fidelity signature modeling of targets requires a significant level of complexity for all of the components required in the rendering process. Specifically, the reflectance of the surface must be described using the bi-directional distribution function (BRDF). In addition, the spatial representation of the background must be high fidelity. A methodology and corresponding model for spectral and band rendering of targets using both isotropic and anisotropic BRDFs is presented. In addition, a set of tools will be described for generating theoretical anisotropic BRDFs and for reducing data required for a description of an anisotropic BRDF by 5 orders of magnitude. This methodology is hybrid using a spectrally measured panoramic of the background mapped to a large hemisphere. Both radiosity and ray-tracing approaches are incorporated simultaneously for a robust solution. In the thermal domain the spectral emission is also included in the solution. Rendering examples using several BRDFs will be presented.

  17. Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouflage

    NASA Astrophysics Data System (ADS)

    Haag, Justin Mathew

    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral downward irradiance profiles at blue (~470~nm) and green (~560~nm) wavelengths, collected at Pacific and Atlantic field stations, provide insight into the presence of Raman (inelastic) scattering effects at mesopelagic depths. The radiometers were also used to collect in situ flashes of bioluminescence. Collaborations utilizing both the downward irradiance and bioluminescence data sets are planned.

  18. Harmonizing Landsat and Sentinel-2 Reflectances for Better Land Monitoring

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey; Vermote, Eric; Franch, Belen; Roger, Jean-Claude; Skakun, Sergii; Claverie, Martin; Dungan, Jennifer

    2016-01-01

    When combined, Landsat and ESA Sentinel-2 observations can provide 2-4 day coverage for the global land area. A collaboration among NASA GSFC (Goddard Space Flight Center), University of Maryland, and NASA Ames has developed a processing chain to create seamless, "harmonized" reflectance products using standardized atmospheric correction, BRDF (Bidirectional Reflectance Distribution Function) adjustment, spectral bandpass adjustment, and gridding algorithms. These products point the way to a "30-m MODIS (Moderate Resolution Imaging Spectroradiometer)" capability for agricultural and ecosystem monitoring by leveraging international sensors.

  19. State of the Art Satellite and Airborne Marine Oil Spill Remote Sensing: Application to the BP Deepwater Horizon Oil Spill

    DTIC Science & Technology

    2012-01-01

    numerical oil spill model validation showing the need for improvedmodel param- eterizations of basic oil spill processes (Cheng et al., 2010). 3.1.2...2004). Modelling the bidirectional reflectance distribution function ( BRDF ) of seawater polluted by an oil film. Optics Express, 12, 1671–1676. Pilon...display a currently valid OMB control number. 1. REPORT DATE 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND

  20. Ocean and Polarization Observations from Active Remote Sensing: Atmospheric and Ocean Science Applications

    DTIC Science & Technology

    2015-11-05

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...ratio of cirrus clouds2 • The analysis of the precipitable water and development of a new Millimeter-Wave Propagation Model for the W-Band...Distribution Function ( BRDF )12. As we are studying dense surface signal, saturation may happen for the strongest values of the ocean surface signal8

  1. Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobelspiesse, Kirk D.; Cairns, Brian; Schmid, Beat

    2008-10-21

    The surface spectral albedo is an important component of climate models since it determines the amount of incident solar radiation that is absorbed by the ground. The albedo can be highly heterogeneous, both in space and time, and thus adequate measurement and modeling is challenging. One source of measurements that constrain the surface albedo are satellite instruments that observe the Earth, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF) by correcting top of the atmosphere (TOA) radiances for atmospheric effects and accumulating observations at a variety of viewing geometries. The BRDFmore » can then be used to determine the albedo that is required in climate modeling. Other measurements that provide a more direct constraint on surface albedo are those made by upward and downward looking radiometers at the ground. One product in particular, the Best Estimate Radiation Flux (BEFLUX) value added product of the Department of Energy’s Atmospheric Radiation Measurement (ARM) Program at the Southern Great Plains Central Facility (SGP CF) in central Oklahoma, has been used to evaluate the quality of the albedo products derived from MODIS BRDF estimates. These comparisons have highlighted discrepancies between the energy absorbed at the surface that is calculated from the BEFLUX products and that is predicted from the MODIS BRDF product. This paper attempts to investigate these discrepancies by using data from an airborne scanning radiometer, the Research Scanning Polarimeter (RSP) that was flown at low altitude in the vicinity of the SGP CF site during the Aerosol Lidar Validation Experiment (ALIVE) in September of 2005. The RSP is a polarimeter that scans in the direction of the aircraft ground track, and can thus estimate the BRDF in a period of seconds, rather than the days required by MODIS to accumulate enough viewing angles. Atmospheric correction is aided by the Ames Airborne Tracking Sunphotometer (AATS-14), which was operated on the same aircraft as the RSP. The RSP data can therefore be used to validate the MODIS BRDF product and diagnose the reason for the discrepancies with BEFLUX. Our analysis indicates that MODIS and RSP estimates of surface absorption and BEFLUX measurements do agree and that previously noticed differences between MODIS albedo products and BEFLUX were due as much to the analysis techniques used as to any instrumental effects. We conclude that the MODIS BRDF products provide a useful measure of surface albedo that can be used to determine whether the surface radiative heating in climate models has a realistic spatial and seasonal variation.« less

  2. Radiometric Block Adjusment and Digital Radiometric Model Generation

    NASA Astrophysics Data System (ADS)

    Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.

    2013-05-01

    In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.

  3. Observational Tests of the Surface Reflectance Boundary Condition for Aerosol Retrievals using Multiangle Spectropolarimetric Imagery

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Martonchik, J. V.; Sanghavi, S.; Xu, F.; Garay, M. J.; Bradley, C.; Chipman, R.; McClain, S.

    2011-12-01

    Passive retrievals of aerosol properties from aircraft or satellite must account for surface reflection at the lower boundary. Future missions such as Aerosol-Cloud-Ecosystem (ACE) will use multiangular, multispectral, and polarimetric imagery for aerosol remote sensing. Interpreting such multidimensional measurements requires representing the aerosols by a set of optical and microphysical parameters and modeling the surface bidirectional reflectance distribution function (BRDF). We are developing a surface model represented by a matrix BRDF that describes both intensity and polarization. The BRDF is the sum of a depolarizing volumetric (diffuse) scattering term represented by the modified Rahman-Pinty-Verstraete (mRPV) function, and a specular reflection term corresponding to a distribution of tilted microfacets, each of which reflects according to the Fresnel laws. In order to limit the number of parameters that need to be retrieved, empirical constraints are placed on the surface reflection model, e.g., that the volumetric component can be written as the product of a function only of wavelength and a function only of illumination and view geometry and that the polarized surface reflectance is spectrally neutral. Validation of these assumptions is required to establish a successful surface reflectance model that can be used as part of the aerosol retrievals. The Ground-based and Airborne Multiangle SpectroPolarimetric Imagers (GroundMSPI and AirMSPI) are pushbroom cameras that use a novel dual-photoelastic modulator (PEM) design to measure the Stokes vector components I, Q, and U, degree of linear polarization (DOLP), and angle of linear polarization (AOLP) with high accuracy. Intensity bands are centered at 355, 380, 445, 555, 660, 865, and 935 nm, and polarization channels are at 470, 660, and 865 nm. GroundMSPI and AirMSPI data collected on clear days are being used to further develop and validate the parametric surface model. For GroundMSPI, time sequences of intensity and polarization imagery are acquired throughout the day, and motion of the Sun through the sky provides variable scattering angle. AirMSPI acquires multiangular imagery from the NASA ER-2 aircraft by pointing the camera at different angles using a motorized gimbal. In this paper, we will present examples of GroundMSPI and AirMSPI imagery and explore how well the parametric surface model is able to represent the measured intensity and polarization data.

  4. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  5. Retrieval of BRDF/Albedo by the Angular and Spectral Kernel Driven Model with Global Soil and Leaf Optical Database

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, J.; Xiao, Q.; You, D.

    2016-12-01

    Operational algorithms for land surface BRDF/Albedo products are mainly developed from kernel-driven model, combining atmospherically corrected, multidate, multiband surface reflectance to extract BRDF parameters. The Angular and Spectral Kernel Driven model (ASK model), which incorporates the component spectra as a priori knowledge, provides a potential way to make full use of the multi-sensor data with multispectral information and accumulated observations. However, the ASK model is still not feasible for global BRDF/Albedo inversions due to the lack of sufficient field measurements of component spectra at the large scale. This research outlines a parameterization scheme on the component spectra for global scale BRDF/Albedo inversions in the frame of ASK. The parameter γ(λ) can be derived from the ratio of the leaf reflectance and soil reflectance, supported by globally distributed soil spectral library, ANGERS and LOPEX leaf optical properties database. To consider the intrinsic variability in both the land cover and spectral dimension, the mean and standard deviation of γ(λ) for 28 soil units and 4 leaf types in seven MODIS bands were calculated, with a world soil map used for global BRDF/Albedo products retrieval. Compared to the retrievals from BRF datasets simulated by the PROSAIL model, ASK model shows an acceptable accuracy on the parameterization strategy, with the RMSE 0.007 higher at most than inversion by true component spectra. The results indicate that the classification on ratio contributed to capture the spectral characteristics in BBRDF/Albedo retrieval, whereas the ratio range should be controlled within 8% in each band. Ground-based measurements in Heihe river basin were used to validate the accuracy of the improved ASK model, and the generated broadband albedo products shows good agreement with in situ data, which suggests that the improvement of the component spectra on the ASK model has potential for global scale BRDF/Albedo inversions.

  6. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat

    PubMed Central

    Huang, Wenjiang; Yang, Qinying; Pu, Ruiliang; Yang, Shaoyuan

    2014-01-01

    Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected from ground-based hyperspectral reflectance measurements recorded at the Xiaotangshan Precision Agriculture Experimental Base in 2003, 2004 and 2007. The view zenith angles (1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at nadir, 20° and 30° were selected as optical view angles to estimate foliage nitrogen density (FND) at an upper, middle and bottom layer, respectively. For each layer, three optimal PLSR analysis models with FND as a dependent variable and two vegetation indices (nitrogen reflectance index (NRI), normalized pigment chlorophyll index (NPCI) or a combination of NRI and NPCI) at corresponding angles as explanatory variables were established. The experimental results from an independent model verification demonstrated that the PLSR analysis models with the combination of NRI and NPCI as the explanatory variables were the most accurate in estimating FND for each layer. The coefficients of determination (R2) of this model between upper layer-, middle layer- and bottom layer-derived and laboratory-measured foliage nitrogen density were 0.7335, 0.7336, 0.6746, respectively. PMID:25353983

  7. Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat.

    PubMed

    Huang, Wenjiang; Yang, Qinying; Pu, Ruiliang; Yang, Shaoyuan

    2014-10-28

    Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected from ground-based hyperspectral reflectance measurements recorded at the Xiaotangshan Precision Agriculture Experimental Base in 2003, 2004 and 2007. The view zenith angles (1) at nadir, 40° and 50°; (2) at nadir, 30° and 40°; and (3) at nadir, 20° and 30° were selected as optical view angles to estimate foliage nitrogen density (FND) at an upper, middle and bottom layer, respectively. For each layer, three optimal PLSR analysis models with FND as a dependent variable and two vegetation indices (nitrogen reflectance index (NRI), normalized pigment chlorophyll index (NPCI) or a combination of NRI and NPCI) at corresponding angles as explanatory variables were established. The experimental results from an independent model verification demonstrated that the PLSR analysis models with the combination of NRI and NPCI as the explanatory variables were the most accurate in estimating FND for each layer. The coefficients of determination (R2) of this model between upper layer-, middle layer- and bottom layer-derived and laboratory-measured foliage nitrogen density were 0.7335, 0.7336, 0.6746, respectively.

  8. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NASA Astrophysics Data System (ADS)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-04-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI's sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.

  9. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    NASA Technical Reports Server (NTRS)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  10. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    NASA Astrophysics Data System (ADS)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  11. A next generation field-portable goniometer system

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  12. Small-Angle Scatter Measurement.

    NASA Astrophysics Data System (ADS)

    Wein, Steven Jay

    The design, analysis, and performance of a small -angle scatterometer are presented. The effects of the diffraction background, geometrical aberrations and system scatter at the small-angles are separated. Graphs are provided that quantify their contribution. The far-field irradiance distributions of weakly truncated and untruncated Gaussian beams are compared. The envelope of diffraction ringing is shown to decrease proportionately with the level of truncation in the pupil. Spherical aberration and defocus are shown to have little effect on the higher-order diffraction rings of Gaussian apertures and as such will have a negligible effect on most scatter measurements. A method is presented for determining the scattered irradiance level for a given BRDF in relation to the peak irradiance of the point spread function. A method of Gaussian apodization is presented and tested that allows the level of diffraction ringing to become a design parameter. Upon sufficient reduction of the diffraction background, the scattered light from the scatterometers' primary mirror is seen to be the limiting component of the small-angle instrument profile. The scatterometer described was able to make a meaningful measurement close enough to the specular direction at 0.6328mum in order to observe the characteristic height and width of the scatter function. This allowed the rms roughness and autocorrelation length of the surface to be determined from the scatter data at this wavelength. The inferred rms roughness agreed well with an independent optical profilometer measurement of the surface. The BRDF of the samples were also measured at 10.6mum. The rms roughness inferred from this scatter data did not agree with the other measurements. The BRDF did not scale in accordance with the scaler diffraction theory of microrough surfaces. The scattering in the visible was dominated by the effects of surface roughness whereas the scattering in the far-infrared was apparently dominated by the effects of contaminants and surface defects. The model for the surface statistics is investigated. A K_0 (modified Bessel function) autocorrelation function is shown to predict the scattered light distribution of these samples much better than the conventional negative -exponential function. Additionally, a sampling theory is developed that addresses the negative-exponentially correlated output of lock-in amplifiers, detectors, and electronic circuits in general. It is shown that the optimum sampling rate is approximately one sample per time constant and at this rate the improvement in SNR is sqrt {N/2} where N is the number of measurements.

  13. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  14. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We made modifications to the linear kernel bidirectional reflectance distribution function (BRDF) models from Roujean et al. and Wanner et al. that extend the spectral range into the thermal infrared (TIR). With these TIR BRDF models and the IGBP land-cover product, we developed a classification-based emissivity database for the EOS/MODIS land-surface temperature (LST) algorithm and used it in version V2.0 of the MODIS LST code. Two V2.0 LST codes have been delivered to the MODIS SDST, one for the daily L2 and L3 LST products, and another for the 8-day 1km L3 LST product. New TIR thermometers (broadband radiometer with a filter in the 10-13 micron window) and an IR camera have been purchased in order to reduce the uncertainty in LST field measurements due to the temporal and spatial variations in LST. New improvements have been made to the existing TIR spectrometer in order to increase its accuracy to 0.2 C that will be required in the vicarious calibration of the MODIS TIR bands.

  15. Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery

    NASA Astrophysics Data System (ADS)

    Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo

    2014-11-01

    Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.

  16. Artist Material BRDF Database for Computer Graphics Rendering

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Justin C.

    The primary goal of this thesis was to create a physical library of artist material samples. This collection provides necessary data for the development of a gonio-imaging system for use in museums to more accurately document their collections. A sample set was produced consisting of 25 panels and containing nearly 600 unique samples. Selected materials are representative of those commonly used by artists both past and present. These take into account the variability in visual appearance resulting from the materials and application techniques used. Five attributes of variability were identified including medium, color, substrate, application technique and overcoat. Combinations of these attributes were selected based on those commonly observed in museum collections and suggested by surveying experts in the field. For each sample material, image data is collected and used to measure an average bi-directional reflectance distribution function (BRDF). The results are available as a public-domain image and optical database of artist materials at art-si.org. Additionally, the database includes specifications for each sample along with other information useful for computer graphics rendering such as the rectified sample images and normal maps.

  17. An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1992-01-01

    Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.

  18. The Improved Dual-view Field Goniometer System FIGOS

    PubMed Central

    Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I.

    2008-01-01

    In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed. PMID:27873805

  19. The Improved Dual-view Field Goniometer System FIGOS.

    PubMed

    Schopfer, Jürg; Dangel, Stefan; Kneubühler, Mathias; Itten, Klaus I

    2008-08-28

    In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, which describes the reflectance characteristic of a specific surface area, is called the bidirectional reflectance distribution function (BRDF). BRDF knowledge is essential for both correction of directional effects in RS data and quantitative retrieval of surface parameters. Ground-based spectrodirectional measurements are usually performed with goniometer systems. An accurate retrieval of the bidirectional reflectance factors (BRF) from field goniometer measurements requires hyperspectral knowledge of the angular distribution of the reflected and the incident radiation. However, prior to the study at hand, no operational goniometer system was able to fulfill this requirement. This study presents the first dual-view field goniometer system, which is able to simultaneously collect both the reflected and the incident radiation at high angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the incoming diffuse radiation is characterized for various atmospheric conditions and the BRF retrieval is performed for an artificial target and compared to laboratory spectrodirectional measurement results obtained with the same goniometer system. Suggestions for further improving goniometer systems are given and the need for intercalibration of various goniometers as well as for standardizing spectrodirectional measurements is expressed.

  20. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Technical Reports Server (NTRS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-01-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  1. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  2. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required DeltaV to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated DeltaV's are calculated to maintain the formation in the presence of perturbations.

  3. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  4. Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Chen, Xuexia; Xiong, Xiaoxiong

    2015-01-01

    The Visible Infrared Imaging Radiometer Suiteaboard the Suomi National Polar-orbiting Partnership (SNPP) satellite performs radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function(BRDF) degradation factor is determined by an onboard SD stability monitor (SDSM), which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor.The degradation-factor-versus-time curves were found to have a number of very large unphysical undulations likely due to the inaccuracy in the prelaunch determined SDSM screen transmittance.To refine the SDSM screen transmittance, satellite yaw maneuvers were carried out. With the SDSM screen relative transmittance determined from the yaw maneuver data, the computed BRDFdegradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and a small portion of regular on-orbit data to determine the SDSM screen relative transmittance at a fine angular scale. We determine that the error standard deviation of the calculated relative transmittance ranges from 0.00030 (672 nm) to 0.00092 (926 nm). With the newly determined SDSM screen relative transmittance, the computed BRDF degradation factor behaves much more smoothly over time.

  5. Prototype global burnt area algorithm using the AVHRR-LTDR time series

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Pereira, José Miguel; Aires, Filipe

    2013-04-01

    One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05° spatial resolution and is available for the 1981-1999 time period. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR dataset, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for year 1998, which was selected because of a positive fire anomaly, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.

  6. Expression of the degree of polarization based on the geometrical optics pBRDF model.

    PubMed

    Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng

    2017-02-01

    An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.

  7. Apollo 11 and 16 Soil Bi-directional Solar Reflectance Measurements, Models and LRO Diviner Observations

    NASA Astrophysics Data System (ADS)

    Foote, E. J.; Paige, D. A.; Shepard, M. K.; Johnson, J. R.; Biggar, S. F.; Greenhagen, B. T.; Allen, C.

    2010-12-01

    We have compared laboratory solar reflectance measurements of Apollo 11 and 16 soil samples to Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo landing sites. The soil samples are two representative end member samples from the moon, low albedo lunar maria (sample 10084) and high albedo lunar highlands (sample 68810). Bidirectional reflectance distribution function (BRDF) measurements of the soil samples were conducted at Bloomsburg University (BUG) and at the University of Arizona [1,2]. We collected two different types of BUG datasets: a standard set of BRDF measurements at incidence angles of 0-60°, emission angles of 0-80°, and phase angles of 3-140°, and a high-incidence angle set of measurements along and perpendicular to the principal plane at incidence angles of 0-75° and phase angles of 3-155°. The BUG measurements generated a total of 765 data points in four different filters 450, 550, 750 and 950 nm. The Blacklab measurements were acquired at incidence angles of 60-88°, emission angles 60-82°, and phase angles of 17-93° at wavelengths of 455, 554, 699, 949nm. The BUG data were fit to two BRDF models: Hapke’s model [3] as described by Johnson et al, 2010 [4], and a simplified empirical function. The fact that both approaches can satisfactorily fit the BUG data is not unexpected, given the similarities between the functions and their input parameters, and the fact that the BRDF for dark lunar soil is dominated by the single scattering phase functions of the individual soil particles. To compare our lunar sample measurements with LRO Diviner data [5], we selected all daytime observations acquired during the first year of operation within 3 km square boxes centered at the landing sites. We compared Diviner Channel 1 (0.3 - 3 µm) Lambert albedos with model calculated Lambert albedos of the lunar samples at the same photometric angles. In general, we found good agreement between the laboratory and Diviner measurements, particularly at intermediate incidence angles. We are currently reconciling any differences observed between our two datasets to provide mutual validation, and to better understand the Diviner solar reflectance measurements in terms of lunar regolith properties. [1] Shepard, M.K., Solar System Remote Sensing Symposium, #4004, LPI, 2002; [2] Biggar, S.F. et al, Proc. Soc. Photo-Opt. Instrum. Eng. 924:232-240, 1988; [3] Hapke, B. Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 1993; [4] Johnson J.R. et al, Fall AGU 2010; [5] Paige, D.A. et al, Space Science Reviews, 150:125-160, 2010;

  8. Lunar BRDF Correction of Suomi-NPP VIIRS Day/Night Band Time Series Product

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Kalb, V.; Stokes, E.; Miller, S. D.

    2015-12-01

    Since the first-light images from the Suomi-NPP VIIRS low-light visible Day/Night Band (DNB) sensor were received in November 2011, the NASA Suomi-NPP Land Science Investigator Processing System (SIPS) has focused on evaluating this new capability for quantitative science applications, as well as developing and testing refined algorithms to meet operational and Land science research needs. While many promising DNB applications have been developed since the Suomi-NPP launch, most studies to-date have been limited by the traditional qualitative image display and spatial-temporal aggregated statistical analysis methods inherent in current heritage algorithms. This has resulted in strong interest for a new generation of science-quality products that can be used to monitor both the magnitude and signature of nighttime phenomena and anthropogenic sources of light emissions. In one particular case study, Román and Stokes (2015) demonstrated that tracking daily dynamic DNB radiances can provide valuable information about the character of the human activities and behaviors that influence energy, consumption, and vulnerability. Here we develop and evaluate a new suite of DNB science-quality algorithms that can exclude a primary source of background noise: i.e., the Lunar BRDF (Bidirectional Reflectance Distribution Function) effect. Every day, the operational NASA Land SIPS DNB algorithm makes use of 16 days worth of DNB-derived surface reflectances (SR) (based on the heritage MODIS SR algorithm) and a semiempirical kernel-driven bidirectional reflectance model to determine a global set of parameters describing the BRDF of the land surface. The nighttime period of interest is heavily weighted as a function of observation coverage. These gridded parameters, combined with Miller and Turner's [2009] top-of-atmosphere spectral irradiance model, are then used to determine the DNB's lunar radiance contribution at any point in time and under specific illumination conditions.

  9. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  10. Colour computer-generated holography for point clouds utilizing the Phong illumination model.

    PubMed

    Symeonidou, Athanasia; Blinder, David; Schelkens, Peter

    2018-04-16

    A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.

  11. Angular dependance of spectral reflection for different materials

    NASA Astrophysics Data System (ADS)

    Kiefer, Pascal M.

    2017-10-01

    Parameters like the sun angle as well as the measurement angle mostly are not taken into account when simulating because their influence on the reflectivity is weak. Therefore the impact of a changing measurement and illumination angle on the reflectivity is investigated. Furthermore the impact of humidity and chlorophyll in the scenery is studied by analyzing reflectance spectra of different vegetative background areas. It is shown that the measurement as well as the illumination angle has an important influence on the absolute reflection values which raises the importance of measurements of the bidirectional reflectance distribution function (BRDF).

  12. A precise laboratory goniometer system to collect spectral BRDF data of materials

    NASA Astrophysics Data System (ADS)

    Jiao, Guangping; Jiao, Ziti; Wang, Jie; Zhang, Hu; Dong, Yadong

    2014-11-01

    This paper presents a precise laboratory goniometer system to quickly collect bidirectional reflectance distribution factor(BRDF)of typical materials such soil, canopy and artificial materials in the laboratory. The system consists of the goniometer, SVC HR1024 spectroradiometer, and xenon long-arc lamp as light source. the innovation of cantilever slab can reduce the shadow of the goniometer in the principle plane. The geometric precision of the footprint centre is better than +/-4cm in most azimuth directions, and the angle-controlling accuracy is better than 0.5°. The light source keeps good stability, with 0.8% irradiance decrease in 3 hours. But the large areal heterogeneity of the light source increase the data processing difficulty to capture the accurate BRDF. First measurements are taken from soil in a resolution of 15° and 30° in zenith and azimuth direction respectively, with the +/-50° biggest view angle. More observations are taken in the hot-spot direction. The system takes about 40 minutes to complete all measurements. A spectralon panel is measured at the beginning and end of the whole period. A simple interactive interface on the computer can automatically control all operations of the goniometer and data-processing. The laboratory experiment of soil layer and grass lawn shows that the goniometer can capture the the multi-angle variation of BRDF.

  13. Study on light scattering characterization for polishing surface of optical elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo

    2017-02-01

    Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.

  14. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.

    2017-12-01

    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  15. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  16. Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle.

    PubMed

    Åkerlind, Christina; Arwin, Hans; Hallberg, Tomas; Landin, Jan; Gustafsson, Johan; Kariis, Hans; Järrendahl, Kenneth

    2015-07-01

    Optical properties of natural photonic structures can inspire material developments in diversified areas, such as the spectral design of surfaces for camouflage. Here, reflectance, scattering, and polarization properties of the cuticle of the scarab beetle Cyphochilus insulanus are studied with spectral directional hemispherical reflectance, bidirectional reflection distribution function (BRDF) measurements, and Mueller-matrix spectroscopic ellipsometry (MMSE). At normal incidence, a reflectance (0.6-0.75) is found in the spectral range of 400-1600 nm and a weaker reflectance <0.2 in the UV range as well as for wavelengths >1600  nm. A whiteness of W=42 is observed for mainly the elytra of the beetle. Chitin is a major constituent of the insect cuticle which is verified by the close similarity of the measured IR spectrum to that of α-chitin. The BRDF signal shows close-to-Lambertian properties of the beetle for visible light at small angles of incidence. From the MMSE measurement it is found that the beetles appear as dielectric reflectors reflecting linearly polarized light at oblique incidence with low gloss and a low degree of polarization. The measured beetle properties are properties that can be beneficial in a camouflage material.

  17. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  18. RenderView: physics-based multi- and hyperspectral rendering using measured background panoramics

    NASA Astrophysics Data System (ADS)

    Talcott, Denise M.; Brown, Wade W.; Thomas, David J.

    2003-09-01

    As part of the survivability engineering process it is necessary to accurately model and visualize the vehicle signatures in multi- or hyperspectral bands of interest. The signature at a given wavelength is a function of the surface optical properties, reflection of the background and, in the thermal region, the emission of thermal radiation. Currently, it is difficult to obtain and utilize background models that are of sufficient fidelity when compared with the vehicle models. In addition, the background models create an additional layer of uncertainty in estimating the vehicles signature. Therefore, to meet exacting rendering requirements we have developed RenderView, which incorporates the full bidirectional reflectance distribution function (BRDF). Instead of using a modeled background we have incorporated a measured calibrated background panoramic image to provide the high fidelity background interaction. Uncertainty in the background signature is reduced to the error in the measurement which is considerably smaller than the uncertainty inherent in a modeled background. RenderView utilizes a number of different descriptions of the BRDF, including the Sandford-Robertson. In addition, it provides complete conservation of energy with off axis sampling. A description of RenderView will be presented along with a methodology developed for collecting background panoramics. Examples of the RenderView output and the background panoramics will be presented along with our approach to handling the solar irradiance problem.

  19. Infrared Communications for Small Spacecraft: From a Wireless Bus to Cluster Concepts

    NASA Technical Reports Server (NTRS)

    Webb, Suzanne C.; Schneider, Wolfger; Darrin, M. Ann G.; Boone, Bradley G.; Luers, Philip J.; Day, John H. (Technical Monitor)

    2001-01-01

    Nanosatellites operating singly or in clusters are anticipated for future space science missions. To implement this new communications paradigm, we are approaching cluster communications by first developing an infrared (IR) intra-craft wireless bus capability, following initially the MIL-STD-1553B protocol. Benefits of an IR wireless bus are low mass, size, power, and cost, simplicity of implementation, ease of use, minimum EMI, and efficient and reliable data transfer. Our goals are to maximize the reliable link margin in order to afford greater flexibility in receiver placement, which will ease technology insertion. We have developed a concept demonstration using a high-speed visible-band silicon PIN photodiode and a high-efficiency visible LED operating at a data rate up to 4 Mb/sec. In designing an internal IR wireless bus, we have characterized various candidate materials, emitters, and geometries, assuming a single reflection. Thus, we have measured the bidirectional reflectance distribution function (BRDF) for five different materials characteristic of typical spacecraft structures, which range from nearly Lambertian to highly specular. We have fit our data to empirical BRDF functions and modeled the detected irradiance anywhere in the plane of incidence for a divergent (LED) emitter. We have also determined the angular limits on the link geometry to remain within the required bit error rate by determining the received signal-to-noise ratio (SNR) for minimum values of irradiance received at the detector.

  20. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  1. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    NASA Astrophysics Data System (ADS)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.

  2. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic Ocean and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micron), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micron). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 degree IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 deg. viewing angle from the CAR.

  3. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-02-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.

  4. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). Part 3: Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.

    2012-01-01

    This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.

  5. Prototype Global Burnt Area Algorithm Using a Multi-sensor Approach

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Pereira, J.; Aires, F.

    2013-05-01

    One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05Deg spatial resolution and is available for the 1981-1999 time period. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has been on orbit in the Terra platform since late 1999 and in Aqua since mid 2002; surface reflectance products, MYD09CMG and MOD09CMG, are available at 0.05Deg spatial resolution. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR and the aforementioned MODIS products, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for years 1998 to 2002, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.

  6. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  7. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  8. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    NASA Astrophysics Data System (ADS)

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  9. Modeling the effect of reflection from metallic walls on spectroscopic measurements.

    PubMed

    Zastrow, K-D; Keatings, S R; Marot, L; O'Mullane, M G; de Temmerman, G

    2008-10-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  10. Estimation of optical properties of aerosols and bidirectional reflectance from PARASOL/POLDER data over land

    NASA Astrophysics Data System (ADS)

    Kusaka, Takashi; Miyazaki, Go

    2014-10-01

    When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.

  11. Joint DEnKF-albedo assimilation scheme that considers the common land model subgrid heterogeneity and a snow density-based observation operator for improving snow depth simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Zhang, Feifei; Zhao, Yi; Shu, Hong; Zhong, Kaiwen

    2016-07-01

    For the large-area snow depth (SD) data sets with high spatial resolution in the Altay region of Northern Xinjiang, China, we present a deterministic ensemble Kalman filter (DEnKF)-albedo assimilation scheme that considers the common land model (CoLM) subgrid heterogeneity. In the albedo assimilation of DEnKF-albedo, the assimilated albedos over each subgrid tile are estimated with the MCD43C1 bidirectional reflectance distribution function (BRDF) parameters product and CoLM calculated solar zenith angle. The BRDF parameters are hypothesized to be consistent over all subgrid tiles within a specified grid. In the SCF assimilation of DEnKF-albedo, a DEnKF combining a snow density-based observation operator considers the effects of the CoLM subgrid heterogeneity and is employed to assimilate MODIS SCF to update SD states over all subgrid tiles. The MODIS SCF over a grid is compared with the area-weighted sum of model predicted SCF over all the subgrid tiles within the grid. The results are validated with in situ SD measurements and AMSR-E product. Compared with the simulations, the DEnKF-albedo scheme can reduce errors of SD simulations and accurately simulate the seasonal variability of SD. Furthermore, it can improve simulations of SD spatiotemporal distribution in the Altay region, which is more accurate and shows more detail than the AMSR-E product.

  12. Experimentally validated modification to Cook-Torrance BRDF model for improved accuracy

    NASA Astrophysics Data System (ADS)

    Butler, Samuel D.; Ethridge, James A.; Nauyoks, Stephen E.; Marciniak, Michael A.

    2017-09-01

    The BRDF describes optical scatter off realistic surfaces. The microfacet BRDF model assumes geometric optics but is computationally simple compared to wave optics models. In this work, MERL BRDF data is fitted to the original Cook-Torrance microfacet model, and a modified Cook-Torrance model using the polarization factor in place of the mathematically problematic cross section conversion and geometric attenuation terms. The results provide experimental evidence that this modified Cook-Torrance model leads to improved fits, particularly for large incident and scattered angles. These results are expected to lead to more accurate BRDF modeling for remote sensing.

  13. The reflectance of Ames 24E, Infrablack, and Martin black. [anodizing coatings for far-infrared space telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.

    1989-01-01

    Results are reported from measurements of the specular reflectances (SRs) and bidirectional reflectance distribution functions (BRDFs) of three black optical coatings in the FIR wavelength range. The nonspecular reflectometer apparatus described by Smith (1984) is employed, and the data are presented in tables and graphs and discussed in detail. It is found that Ames 24E has an FIR SR one order of magnitude lower than that of Martin black (MB), with BRDF values characteristic of a nearly Lambertian surface, while Infrablack has SR two orders lower than MB and a specular-diffuse surface; MB itself has a very specular surface.

  14. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-10

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters. © 2012 Optical Society of America

  15. Simulation of oceanic whitecaps and their reflectance characteristics in the short wavelength infrared.

    PubMed

    Schwenger, Frédéric; Repasi, Endre

    2017-02-20

    The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and is presented for two different wind speeds.

  16. Modeling the microstructure of surface by applying BRDF function

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  17. Experimental and Theoretical Basis for a Closed-Form Spectral BRDF Model

    DTIC Science & Technology

    2015-09-17

    EXPERIMENTAL AND THEORETICAL BASIS FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, Major, USAF AFIT-ENP-DS-15-S-021 DEPARTMENT...SPECTRAL BRDF MODEL DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...FOR A CLOSED-FORM SPECTRAL BRDF MODEL DISSERTATION Samuel D. Butler, BS, MS Major, USAF Committee Membership: Michael A. Marciniak, PhD Chairman Kevin

  18. Four-parameter model for polarization-resolved rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  19. Analysis of speckle and material properties in laider tracer

    NASA Astrophysics Data System (ADS)

    Ross, Jacob W.; Rigling, Brian D.; Watson, Edward A.

    2017-04-01

    The SAL simulation tool Laider Tracer models speckle: the random variation in intensity of an incident light beam across a rough surface. Within Laider Tracer, the speckle field is modeled as a 2-D array of jointly Gaussian random variables projected via ray tracing onto the scene of interest. Originally, all materials in Laider Tracer were treated as ideal diffuse scatterers, for which the far-field return computed uses the Lambertian Bidirectional Reflectance Distribution Function (BRDF). As presented here, we implement material properties into Laider Tracer via the Non-conventional Exploitation Factors Data System: a database of properties for thousands of different materials sampled at various wavelengths and incident angles. We verify the intensity behavior as a function of incident angle after material properties are added to the simulation.

  20. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  1. Laser Pulse Bidirectional Reflectance from CALIPSO Mission

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Liu, Zhaoyan; Vaughan, Mark; Lucker, Patricia; Trepte, Charles

    2017-01-01

    In this Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) study, we present a simple way of determining laser pulse bidirectional reflectance over snow/ice surface using the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) 532 nanometer polarization channels' measurements. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The method overview and initial assessment of the method performance will be presented. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and Moderate Resolution Imaging Spectroradiometer (Earth Observing System (EOS)) (MODIS) Bi-directional Reflectance Distribution Function (BRDF) / Albedo model parameters. The comparisons show that the snow surface bidirectional reflectance over Antarctica for saturation region are generally reliable with a mean value of about 0.90 plus or minus 0.10, while the mean surface reflectance from cloud cover region is about 0.84 plus or minus 0.13 and the calculated MODIS reflectance at 555 nanometers from the BRDF / Albedo model with near nadir illumination and viewing angles is about 0.96 plus or minus 0.04. The comparisons here demonstrate that the snow surface reflectance underneath the cloud with cloud optical depth of about 1 is significantly lower than that for a clear sky condition.

  2. Influence of target reflection on three-dimensional range gated reconstruction.

    PubMed

    Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong

    2016-08-20

    The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.

  3. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  4. Multiplatform observations enabling albedo retrievals with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Riihelä, Aku; Manninen, Terhikki; Key, Jeffrey; Sun, Qingsong; Sütterlin, Melanie; Lattanzio, Alessio; Schaaf, Crystal

    2017-04-01

    In this paper we show that combining observations from different polar orbiting satellite families (such as AVHRR and MODIS) is physically justifiable and technically feasible. Our proposed approach will lead to surface albedo retrievals at higher temporal resolution than the state of the art, with comparable or better accuracy. This study is carried out in the World Meteorological Organization (WMO) Sustained and coordinated processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM) project SCM-02 (http://www.scope-cm.org/projects/scm-02/). Following a spectral homogenization of the Top-of-Atmosphere reflectances of bands 1 & 2 from AVHRR and MODIS, both observation datasets are atmospherically corrected with a coherent atmospheric profile and algorithm. The resulting surface reflectances are then fed into an inversion of the RossThick-LiSparse-Reciprocal surface bidirectional reflectance distribution function (BRDF) model. The results of the inversion (BRDF kernels) may then be integrated to estimate various surface albedo quantities. A key principle here is that the larger number of valid surface observations with multiple satellites allows us to invert the BRDF coefficients within a shorter time span, enabling the monitoring of relatively rapid surface phenomena such as snowmelt. The proposed multiplatform approach is expected to bring benefits in particular to the observation of the albedo of the polar regions, where persistent cloudiness and long atmospheric path lengths present challenges to satellite-based retrievals. Following a similar logic, the retrievals over tropical regions with high cloudiness should also benefit from the method. We present results from a demonstrator dataset of a global combined AVHRR-GAC and MODIS dataset covering the year 2010. The retrieved surface albedo is compared against quality-monitored in situ albedo observations from the Baseline Surface Radiation Network (BSRN). Additionally, the combined retrieval dataset is compared against MODIS C6 albedo/BRDF datasets to assess the quality of the multiplatform approach against current state of the art. This approach is not limited to AHVRR and MODIS observations. Provided that the spectral homogenization produces an acceptably good match, any instrument observing the Earth's surface in the visible and near-infrared wavelengths could, in principal, be included to further enhance the temporal resolution and accuracy of the retrievals. The SCOPE-CM initiative provides a potential framework for such expansion in the future.

  5. Albedo climatology for European land surfaces retrieved from AVHRR data (1990-2014) and its spatial and temporal analysis from green-up to vegetation senescence

    NASA Astrophysics Data System (ADS)

    Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.

    2016-07-01

    Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.

  6. Material appearance acquisition from a single image

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Cui, Shulin; Cui, Hanwen; Yang, Lin; Wu, Tao

    2017-01-01

    The scope of this paper is to present a method of material appearance acquisition(MAA) from a single image. In this paper, material appearance is represented by spatially varying bidirectional reflectance distribution function(SVBRDF). Therefore, MAA can be reduced to the problem of recovery of each pixel's BRDF parameters from an original input image, which include diffuse coefficient, specular coefficient, normal and glossiness based on the Blinn-Phone model. In our method, the workflow of MAA includes five main phases: highlight removal, estimation of intrinsic images, shape from shading(SFS), initialization of glossiness and refining SVBRDF parameters based on IPOPT. The results indicate that the proposed technique can effectively extract the material appearance from a single image.

  7. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  8. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  9. Modeling and analysis of the solar concentrator in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mroczka, Janusz; Plachta, Kamil

    2015-06-01

    The paper presents the Λ-ridge and V-trough concentrator system with a low concentration ratio. Calculations and simulations have been made in the program created by the author. The results of simulation allow to choose the best parameters of photovoltaic system: the opening angle between the surface of the photovoltaic module and mirrors, resolution of the tracking system and the material for construction of the concentrator mirrors. The research shows the effect each of these parameters on the efficiency of the photovoltaic system and method of surface modeling using BRDF function. The parameters of concentrator surface (eg. surface roughness) were calculated using a new algorithm based on the BRDF function. The algorithm uses a combination of model Torrance-Sparrow and HTSG. The simulation shows the change in voltage, current and output power depending on system parameters.

  10. Modeling the Effects of Solar Cell Distribution on Optical Cross Section for Solar Panel Simulation

    DTIC Science & Technology

    2012-09-01

    cell material. The solar panel was created as a CAD model and simulated with the imaging facility parameters with TASAT. TASAT uses a BRDF to apply...1 MODELING THE EFFECTS OF SOLAR CELL DISTRIBUTION ON OPTICAL CROSS SECTION FOR SOLAR PANEL SIMULATION Kelly Feirstine Meiling Klein... model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of “solar cell” material

  11. Assessment of BRDF effect of Kunlun Mountain glacier on Tibetan Plateau as a potential pseudo-invariant calibration site

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Hu, Xiuqing; Chen, Lin

    2017-09-01

    Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF model is 3.60%, which is only half of the RMSE when using Ross-Li model.

  12. Measurement, modeling and perception of painted surfaces: A Multi-scale Analysis of the Touch-up Problem

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Suparna Kishore

    Real-world surfaces typically have geometric features at a range of spatial scales. At the microscale, opaque surfaces are often characterized by bidirectional reflectance distribution functions (BRDF), which describes how a surface scatters incident light. At the mesoscale, surfaces often exhibit visible texture -- stochastic or patterned arrangements of geometric features that provide visual information about surface properties such as roughness, smoothness, softness, etc. These textures also affect how light is scattered by the surface, but the effects are at a different spatial scale than those captured by the BRDF. Through this research, we investigate how microscale and mesoscale surface properties interact to contribute to overall surface appearance. This behavior is also the cause of the well-known "touch-up problem" in the paint industry, where two regions coated with exactly the same paint, look different in color, gloss and/or texture because of differences in application methods. At first, samples were created by applying latex paint to standard wallboard surfaces. Two application methods- spraying and rolling were used. The BRDF and texture properties of the samples were measured, which revealed differences at both the microscale and mesoscale. This data was then used as input for a physically-based image synthesis algorithm, to generate realistic images of the surfaces under different viewing conditions. In order to understand the factors that govern touch-up visibility, psychophysical tests were conducted using calibrated, digital photographs of the samples as stimuli. Images were presented in pairs and a two alternative forced choice design was used for the experiments. These judgments were then used as data for a Thurstonian scaling analysis to produce psychophysical scales of visibility, which helped determine the effect of paint formulation, application methods, and viewing and illumination conditions on the touch-up problem. The results can be used as base data towards development of a psychophysical model that relates physical differences in paint formulation and application methods to visual differences in surface appearance.

  13. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves

    PubMed Central

    Biliouris, Dimitrios; Verstraeten, Willem W.; Dutré, Phillip; van Aardt, Jan A.N.; Muys, Bart; Coppin, Pol

    2007-01-01

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectional reflectance Factor (BRF) of a sample, using a halogen light source and an Analytical Spectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance data readings covering the spectrum from 350 nm to 2500 nm by independent positioning of the sensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and 15 degrees, respectively. CLabSpeG is used to collect BRF data and extract Bidirectional Reflectance Distribution Function (BRDF) data of non-isotropic vegetation elements such as bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of the apparatus, correction for the conicality of the light source, while sufficient radiometric stability and repeatability between measurements are obtained. The bidirectional reflectance data collection is automated and remotely controlled and takes approximately two and half hours for a BRF measurement cycle over a full hemisphere with 125 cm radius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leaf collection and measurement was established in order to investigate the possibility to extract BRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leaf effects induce a reflectance change during the BRF measurements due to the laboratory illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented. PMID:28903201

  14. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves.

    PubMed

    Biliouris, Dimitrios; Verstraeten, Willem W; Dutré, Phillip; Van Aardt, Jan A N; Muys, Bart; Coppin, Pol

    2007-09-07

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectionalreflectance Factor (BRF) of a sample, using a halogen light source and an AnalyticalSpectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance datareadings covering the spectrum from 350 nm to 2500 nm by independent positioning of thesensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and15 degrees, respectively. CLabSpeG is used to collect BRF data and extract BidirectionalReflectance Distribution Function (BRDF) data of non-isotropic vegetation elements suchas bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of theapparatus, correction for the conicality of the light source, while sufficient radiometricstability and repeatability between measurements are obtained. The bidirectionalreflectance data collection is automated and remotely controlled and takes approximatelytwo and half hours for a BRF measurement cycle over a full hemisphere with 125 cmradius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leafcollection and measurement was established in order to investigate the possibility to extractBRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leafeffects induce a reflectance change during the BRF measurements due to the laboratorySensors 2007, 7 1847 illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented.

  15. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    PubMed

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  16. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    NASA Astrophysics Data System (ADS)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  17. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product

    NASA Astrophysics Data System (ADS)

    He, Liming; Liu, Jane; Chen, Jing M.; Croft, Holly; Wang, Rong; Sprintsin, Michael; Zheng, Ting; Ryu, Youngryel; Pisek, Jan; Gonsamo, Alemu; Deng, Feng; Zhang, Yongqin

    2016-02-01

    Clumping index quantifies the level of foliage aggregation, relative to a random distribution, and is a key structural parameter of plant canopies and is widely used in ecological and meteorological models. In this study, the inter- and intra-annual variations in clumping index values, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product, are investigated at six forest sites, including conifer forests, a mixed deciduous forest and an oak-savanna system. We find that the clumping index displays large seasonal variation, particularly for the deciduous sites, with the magnitude in clumping index values at each site comparable on an intra-annual basis, and the seasonality of clumping index well captured after noise removal. For broadleaved and mixed forest sites, minimum clumping index values are usually found during the season when leaf area index is at its maximum. The magnitude of MODIS clumping index is validated by ground data collected from 17 sites. Validation shows that the MODIS clumping index can explain 75% of variance in measured values (bias = 0.03 and rmse = 0.08), although with a narrower amplitude in variation. This study suggests that the MODIS BRDF product has the potential to produce good seasonal trajectories of clumping index values, but with an improved estimation of background reflectance.

  18. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  19. Experimental and model based investigation of the links between snow bidirectional reflectance and snow microstructure

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.

    2017-12-01

    Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained thanks to the use of ray tracing models on tomography images of the snow microstructure.

  20. Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces

    NASA Astrophysics Data System (ADS)

    Stowell, W. K.; Orazio, Fred D.

    1983-12-01

    The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.

  1. Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces

    NASA Astrophysics Data System (ADS)

    Stowell, W. K.

    1984-10-01

    The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.

  2. Chevron beam dump for ITER edge Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatsuka, E.; Hatae, T.; Bassan, M.

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due tomore » nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.« less

  3. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  4. The Characterization of a DIRSIG Simulation Environment to Support the Inter-Calibration of Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel

    2016-01-01

    Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed..

  5. Reflective properties of randomly rough surfaces under large incidence angles.

    PubMed

    Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J

    2014-06-01

    The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

  6. The characterization of a DIRSIG simulation environment to support the inter-calibration of spaceborne sensors

    NASA Astrophysics Data System (ADS)

    Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel

    2016-09-01

    Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed.

  7. MODTRAN Radiance Modeling of Multi-Angle Worldview-2 Imagery

    DTIC Science & Technology

    2013-09-01

    this thesis, multi-angle CHRIS data has been used to validate canopy BRDF models generated using PROSPECT and SAILH radiative transfer models (D’Urso...67 1. MODTRAN Modeling using BRDF Algorithms .............................67 2. MODTRAN Modeling of Hyperspectral Data...associated with BRDF , and (2) develop software- 2 based atmospheric models , using parameters similar to those found in the imagery, for comparison to

  8. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  9. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  10. Upgrade of goniospectrophtometer GEFE for near-field scattering and fluorescence radiance measurements

    NASA Astrophysics Data System (ADS)

    Bernad, Berta; Ferrero, Alejandro; Pons, Alicia; Hernanz, M. L.; Campos, Joaquín.

    2015-03-01

    The goniospectrophotometer GEFE, designed and developed at IO-CSIC (Instituto de Optica, Agencia Estatal Consejo Superior de Investigaciones Cientificas), was conceived to measure the spectral Bidirectional Reflectance Distribution Function (BRDF) at any pair of irradiation and detection directions. Although the potential of this instrument has largely been proved, it still required to be upgraded to deal with some important scattering features for the assessment of the appearance. Since it was not provided with a detector with spatial resolution, it simply could not measure spectrophotometric quantities to characterize texture through the Bidirectional Texture Function (BTF) or translucency through the more complex Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF). Another requirement in the GEFE upgrading was to provide it with the capability of measuring fluorescence at different geometries, since some of the new pigments used in industry are fluorescent, which can have a non-negligible impact in the color of the product. Then, spectral resolution at irradiation and detection had to be available in GEFE. This paper describes the upgrading of the goniospectrophotometer GEFE, and its new capabilities through the presentation of sparkle and goniofluorescence measurements. In addition, the potential of the instrument to evaluate translucency by the measurement of the BSSRDF is briefly discussed.

  11. There is no bidirectional hot-spot in Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Li, Z.; Roy, D. P.; Zhang, H.

    2017-12-01

    The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, RSE. 199, 25-38. Zhang, H. K., Roy, D.P., Kovalskyy, V., 2016, Optimal solar geometry definition for global long term Landsat time series bi-directional reflectance normalization, IEEE TGRS. 54(3), 1410-1418.

  12. A BRDF statistical model applying to space target materials modeling

    NASA Astrophysics Data System (ADS)

    Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen

    2017-10-01

    In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.

  13. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    NASA Technical Reports Server (NTRS)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  14. Suomi NPP VIIRS solar diffuser screen transmittance model and its applications.

    PubMed

    Lei, Ning; Xiong, Xiaoxiong; Mcintire, Jeff

    2017-11-01

    The visible infrared imaging radiometer suite on the Suomi National Polar-orbiting Partnership satellite calibrates its reflective solar bands through observations of a sunlit solar diffuser (SD) panel. Sunlight passes through a perforated plate, referred to as the SD screen, before reaching the SD. It is critical to know whether the SD screen transmittance measured prelaunch is accurate. Several factors such as misalignments of the SD panel and the measurement apparatus could lead to errors in the measured transmittance and thus adversely impact on-orbit calibration quality through the SD. We develop a mathematical model to describe the transmittance as a function of the angles that incident light makes with the SD screen, and apply the model to fit the prelaunch measured transmittance. The results reveal that the model does not reproduce the measured transmittance unless the size of the apertures in the SD screen is quite different from the design value. We attribute the difference to the orientation alignment errors for the SD panel and the measurement apparatus. We model the alignment errors and apply our transmittance model to fit the prelaunch transmittance to retrieve the "true" transmittance. To use this model correctly, we also examine the finite source size effect on the transmittance. Furthermore, we compare the product of the retrieved "true" transmittance and the prelaunch SD bidirectional reflectance distribution function (BRDF) value to the value derived from on-orbit data to determine whether the prelaunch SD BRDF value is relatively accurate. The model is significant in that it can evaluate whether the SD screen transmittance measured prelaunch is accurate and help retrieve the true transmittance from the transmittance with measurement errors, consequently resulting in a more accurate sensor data product by the same amount.

  15. Sentinel-2 diffuser on-ground calibration

    NASA Astrophysics Data System (ADS)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  16. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2

  17. New Methods for the Computational Fabrication of Appearance

    DTIC Science & Technology

    2015-06-01

    disadvantage is that it does not model phenomena such as retro-reflection and grazing-angle e↵ects. We find that previously proposed BRDF metrics performed well...Figure 3.15-right shows the mean BRDF in blue and the corresponding error bars. In order to interpret our data, we fit a parametric model to slices of the...and Wojciech Matusik. Image-driven navigation of analytical brdf models . In Eurographics Symposium on Rendering, 2006. 107 [40] F. E. Nicodemus, J. C

  18. Radiative Transfer Model for Contaminated Rough Surfaces

    DTIC Science & Technology

    2013-02-01

    grey). Right: reconstructed 3D BRDF . ........................................................ 14 Figure 6. Results of fitting the decay model to...in Section 3.2.5 and 4.2.2 that the decay model can allow the use of auxiliary H0 measurements. 2.2 RESULTS 2.2.1 BRDF FOR GOLD AND ALUMINUM Our...Reflectance Angle () R ef le ct an ce Meas. BRDF Lambertian 15 Figure 6. Results of fitting the decay model to angular reflectance for rough aluminum

  19. Characterization and Measurements from the Infrared Grazing Angle Reflectometer

    DTIC Science & Technology

    2012-06-14

    18 3. List of sample scatter pattern fitting values. All values were taken from Ngan’s paper ”Experimental Analysis of BRDF Models - Supplemental” [1...using a BRDF model , and the absorptance can be modeled using a Fresnel absorptance. After defining both of these values, we can calculate the power seen... BRDF model of the face of the detector. This paper will examine the case of a flat detector with some index of refraction n. This air-detector

  20. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  1. Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars.

    PubMed

    Hui, Zhuo; Sankaranarayanan, Aswin C

    2017-10-01

    This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.

  2. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  3. Positional dependence of the SNPP VIIRS SD BRDF degradation factor

    NASA Astrophysics Data System (ADS)

    Lei, Ning; Chen, Xuexia; Chang, Tiejun; Xiong, Xiaoxiong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager. The VIIRS regularly performs on-orbit radiometric calibration of its reflective solar bands (RSBs) through observing an onboard sunlit solar diffuser (SD). The reflectance of the SD changes over time and the change is denoted as the SD bidirectional reflectance distribution function degradation factor. The degradation factor, measured by an onboard solar diffuser stability monitor, has been shown to be both incident sunlight and outgoing direction dependent. In this Proceeding, we investigate the factor's dependence on SD position. We develop a model to relate the SD degradation factor with the amount of solar exposure. We use Earth measurements to evaluate the effectiveness of the model.

  4. The use of the Sonoran Desert as a pseudo-invariant site for optical sensor cross-calibration and long-term stability monitoring

    USGS Publications Warehouse

    Angal, A.; Chander, Gyanesh; Choi, Taeyoung; Wu, Aisheng; Xiong, Xiaoxiong

    2010-01-01

    The Sonoran Desert is a large, flat, pseudo-invariant site near the United States-Mexico border. It is one of the largest and hottest deserts in North America, with an area of 311,000 square km. This site is particularly suitable for calibration purposes because of its high spatial and spectral uniformity and reasonable temporal stability. This study uses measurements from four different sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Aqua MODIS, and Landsat 5 (L5) Thematic Mapper (TM), to assess the suitability of this site for long-term stability monitoring and to evaluate the “radiometric calibration differences” between spectrally matching bands of all four sensors. In general, the drift in the top-of-atmosphere (TOA) reflectance of each sensor over a span of nine years is within the specified calibration uncertainties. Monthly precipitation measurements of the Sonoran Desert region were obtained from the Global Historical Climatology Network (GHCN), and their effects on the retrieved TOA reflectances were evaluated. To account for the combined uncertainties in the TOA reflectance due to the surface and atmospheric Bi-directional Reflectance Distribution Function (BRDF), a semi-empirical BRDF model has been adopted to monitor and reduce the impact of illumination geometry differences on the retrieved TOA reflectances. To evaluate calibration differences between the MODIS and Landsat sensors, correction for spectral response differences using a hyperspectral sensor is also demonstrated.

  5. Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance

    NASA Technical Reports Server (NTRS)

    Fulbright, Jon; Lei, Ning; Efremova, Boryana; Xiong, Xiaoxiong

    2015-01-01

    When illuminated by the Sun, the onboard solar diffuser (SD) panel provides a known spectral radiance source to calibrate the reflective solar bands of the Visible Infrared Imaging Radiometer Suite on the Suomi-NPP satellite. The SD bidirectional reflectance distribution function (BRDF) degrades over time due to solar exposure, and this degradation is measured using the SD stability monitor (SDSM). The SDSM acts as a ratioing radiometer, comparing solar irradiance measurements off the SD panel to those from a direct Sun view. We discuss the design and operations of the SDSM, the SDSM data analysis, including improvements incorporated since launch, and present the results through 1000 days after launch. After 1000 days, the band-dependent H-factors, a quantity describing the relative degradation of the BRDF of the SD panel since launch, range from 0.716 at 412 nanometers to 0.989 at 926 nanometers. The random uncertainty of these H-factors is about 0.1 percent, which is confirmed by the similar standard deviation values computed from the residuals of quadratic exponential fits to the H-factor time trends. The SDSM detector gains have temperature sensitivity of up to about 0.36 percent per kelvin, but this does not affect the derived H-factors. An initial error in the solar vector caused a seasonal bias to the H-factors of up to 0.5 percent. The total exposure of the SD panel to UV light after 1000 orbits is equivalent to about 100 hours of direct sunlight illumination perpendicular to the SD panel surface.

  6. Empirical measurement and model validation of infrared spectra of contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay

    2015-05-01

    Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.

  7. Simulation of laser beam reflection at the sea surface

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  8. Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.; Yu, Y.

    2016-12-01

    Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.

  9. Investigating Bidirectional Reflectance in the Los Angeles Megacity Using CLARS Multiangle and Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    Zeng, Z. C.; Natraj, V.; Pongetti, T.; Shia, R. L.; Sander, S. P.; Yung, Y. L.

    2017-12-01

    The surface reflectance is a key ingredient in the remote sensing of surface and atmospheric properties from space. The determination of atmospheric composition, including greenhouse gas (GHG) and aerosol concentrations, from reflected sunlight requires accurate knowledge of the contribution from the underlying surface. Over megacity areas, such as the Los Angeles (LA) basin, which are major sources of GHGs and anthropogenic aerosols, the quantification of surface reflectance is challenging due to the associated complex land use types. In this study, we investigate the bidirectional reflectance in the Los Angeles megacity area using multiangle and hyperspectral radiance measurements from the California Laboratory for Atmospheric Remote Sensing (CLARS). The CLARS facility is located near the top of Mt. Wilson, at an altitude of 1670 m a.s.l., overlooking the LA megacity area with an FTS operating since 2011 to continuously monitor the GHGs and near-surface aerosols in the basin. The CLARS-FTS offers continuous high-resolution spectral measurements in the visible, near infrared and shortwave infrared spectral regions. The CLARS measurements mimic the off-nadir viewing of a low-Earth orbiting instrument, such as GOSAT and OCO-2, but with daily viewing capability. Eight surface targets with different land use types, including urban parks, industrial and residential areas, are selected in this study. The surface reflectance for specific solar incident and viewing angles is calculated by dividing, for non-absorbing spectral channels on clear days (such that gas and aerosol extinction can be ignored), the observed radiance reflected from surface targets by the observed irradiance. The non-linear Rahman-Pinty-Verstraete (RPV) model is used to model the Bidirectional Reflectance Distribution Function (BRDF) by fitting the multiangle and hyperspectral measurements. By evaluating the retrieved RPV parameters, we find that the RPV model provides a good representation of the BRDF in the LA megacity area. The fitted RPV parameters and their dependence on wavelength provides quantification of BRDF and potentially contributes towards reducing uncertainties in retrievals of GHGs and aerosols in megacity from space.

  10. Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies

    NASA Technical Reports Server (NTRS)

    Norman, J. M. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.

  11. Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Minnis, Patrick; Doelling, David; Ayers, J. Kirk; Sun-Mack, Szedung

    2012-03-01

    A method for estimating effective ice particle radius Re at the tops of tropical deep convective clouds (DCC) is developed on the basis of precomputed look-up tables (LUTs) of brightness temperature differences (BTDs) between the 3.7 and 11.0 μm bands. A combination of discrete ordinates radiative transfer and correlated k distribution programs, which account for the multiple scattering and monochromatic molecular absorption in the atmosphere, is utilized to compute the LUTs as functions of solar zenith angle, satellite zenith angle, relative azimuth angle, Re, cloud top temperature (CTT), and cloud visible optical thickness τ. The LUT-estimated DCC Re agrees well with the cloud retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for the NASA Clouds and Earth's Radiant Energy System with a correlation coefficient of 0.988 and differences of less than 10%. The LUTs are applied to 1 year of measurements taken from MODIS aboard Aqua in 2007 to estimate DCC Re and are compared to a similar quantity from CloudSat over the region bounded by 140°E, 180°E, 0°N, and 20°N in the Western Pacific Warm Pool. The estimated DCC Re values are mainly concentrated in the range of 25-45 μm and decrease with CTT. Matching the LUT-estimated Re with ice cloud Re retrieved by CloudSat, it is found that the ice cloud τ values from DCC top to the vertical location where LUT-estimated Re is located at the CloudSat-retrieved Re profile are mostly less than 2.5 with a mean value of about 1.3. Changes in the DCC τ can result in differences of less than 10% for Re estimated from LUTs. The LUTs of 0.65 μm bidirectional reflectance distribution function (BRDF) are built as functions of viewing geometry and column amount of ozone above upper troposphere. The 0.65 μm BRDF can eliminate some noncore portions of the DCCs detected using only 11 μm brightness temperature thresholds, which result in a mean difference of only 0.6 μm for DCC Re estimated from BTD LUTs.

  12. Spectropolarimetric Imaging Observations

    NASA Astrophysics Data System (ADS)

    Bradley, Christine Lavella

    The capability to map anthropogenic aerosol quantities and properties over land can provide significant insights for climate and environmental studies on global and regional scales. One of the primary challenges in aerosol information monitoring is separating two signals measured by downward-viewing airborne or spaceborne instruments: the light scattered from the aerosols and light reflected from the Earth's surface. In order to study the aerosols independently, the surface signal needs to be subtracted out from the measurements. Some observational modalities, such as multispectral and multiangle, do not provide enough information to uniquely define the Earth's directional reflectance properties for this task due to the high magnitude and inhomogeneity of albedo for land surface types. Polarization, however, can provide additional information to define surface reflection. To improve upon current measurement capabilities of aerosols over urban areas, Jet Propulsion Laboratory developed the Multiangle SpectroPolarimetric Imager (MSPI) that can accurately measure the Degree of Linear Polarization to 0.5%. In particular, data acquired by the ground-based prototype, GroundMSPI, is used for directional reflectance studies of outdoor surfaces in this dissertation. This work expands upon an existing model, the microfacet model, to characterize the polarized bidirectional reflectance distribution function (pBRDF) of surfaces and validate an assumption, the Spectral Invariance Hypothesis, on the surface pBRDF that is used in aerosol retrieval algorithms. The microfacet model is commonly used to represent the pBRDF of Earth's surface types, such as ocean and land. It represents a roughened surface comprised of randomly oriented facets that specularly reflect incoming light into the upward hemisphere. The analytic form of the pBRDF for this model assumes only a single reflection of light from the microfaceted surface. If the incoming illumination is unpolarized, as it is with natural light from the Sun, the reflected light is linearly polarized perpendicular to the plane that contains the illumination and view directions, the scattering plane. However, previous work has shown that manmade objects, such as asphalt and brick, show a polarization signature that differs from the single reflection microfacet model. Using the polarization ray-tracing (PRT) program POLARIS-M, a numerical calculation for the pBRDF is made for a roughened surface to account for multiple reflections that light can experience between microfacets. Results from this numerical PRT method shows rays that experience two or more reflections with the microfacet surface can be polarized at an orientation that differs from the analytical single reflection microfacet model. This PRT method is compared against GroundMSPI data of manmade surfaces. An assumption made regarding the pBRDF for this microfacet model is verified with GroundMSPI data of urban areas. This is known as the Spectral Invariance Hypothesis and asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is the same for all wavelengths. This simplifies the microfacet model by assuming some surface parameters such as the index of refraction are spectrally neutral. GroundMSPI acquires the pBRF for five prominent region types, asphalt, brick, cement, dirt, and grass, for day-long measurements on clear sky conditions. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The pBRF is measured for the three polarimetric wavelengths of GroundMSPI, 470, 660, and 865nm, and the best fit slope of the spectral correlation is reported. This investigation shows agreement to the Spectral Invariance Hypothesis within 10% for all region types excluding grass. Grass measurements show a large mean deviation of 31.1%. This motivated an angle of linear polarization (AoLP) analysis of cotton crops to isolate single reflection cases, or specular reflections, from multiple scattering cases of light in vegetation. Results from this AoLP method show that specular reflections off the top surface of leaves follow the Spectral Invariance Hypothesis.

  13. Derivation of Coefficients for the Bidirectional Reflection Distribution Function from AVHRR-data over Europe, under Consideration of the Helmholtz Reciprocity Law

    NASA Astrophysics Data System (ADS)

    Billing, H.; Koslowsky, D.

    In the AVHRR data of the polar orbiting NOAA Satellites, directional reflectance under a certain view from satellite and a certain illumination by the sun is measured. Due to the nearly sunsynchroneous orbit of the NOAA satellite, each area is seen under different viewing angles in successive days. Only after approximately 9 days, the conditions are again similar. Areas, seen in specular direction, may appear only half as bright, as if seen in antispecular direction. This deviation from a Lambertian reflector is a function of the surface roughness and the degree of coverage with vegetation. The NOAA afternoon satellites drift by half an hour from year to year. Thus even data from the same season, but different years, are seen under different illumination conditions. To derive the bidirectional reflection distribution function in dependence on satellite viewing angle and solar illumination becomes a very complicated procedure. Using the Helmholtz reciprocity principle (HRP), i.e. the symetrie in viewing and illumination, reduces the problem by one dimension. For different bidimensional reflection laws it will be tested, whether they can be formulated to fullfill the HRP. Via regression, the parameters will be deduced for time series of AVHRR data of 10 years from NOAA 11,14,16 and 17. Brdfunctions, suggested by Rao as well as a law, suggested by Ba seem to become unstable for low sun resp. large viewing zenit angles. Only brdfs with 4 coefficients can fit the observed distributions. A nonlinear temporal angular model (NTAM), suggested by Latifovic,Cihlar and Chen, seems to be suitable to describe even the hot spot and the dependence on plant growth. The coefficients of these brdf-function will be derived via regression for monthly series of cloud free data for the European area, where AVHRR data in full resolution are received in Berlin. Using these coefficients, monthly maps of surface roughness are produced for the above area for the time since 1985. Ba, M.B., Deschamps, P.-Y.,Frouin, R. 1995. Error reduction in NOAA satellite monitoring of the land surface vegetation during FIFE. J. Geophys. Res., 100: 25537-25548. Rao, C.R.N., Chen, J., 1994. Post-launch calibration of the visible and near infrared channels of the advanced very high resolution radiometer on NOAA-7,- 9, and -11 spacecraft. NOAA Technical Report NESDIS 78. Latifovic, R., Chilar, J., Chen, J., 2003. A Comparison of BRDF Models for the Normalisation of Satellite Optical Data to a Standard Sun-Target- Sensor Geometry. IEEE Transactions on Geoscience and Remote Sensing, Vol.41, No.8, 1889 - 1898.

  14. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  15. Estimation of Crop Gross Primary Production (GPP): I. Impact of MODIS Observation Footprint and Impact of Vegetation BRDF Characteristics

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Xiao, Xiangming; Suyker, Andrew; Verma, Shashi; Tan, Bin; Middleton, Elizabeth M.

    2014-01-01

    Accurate estimation of gross primary production (GPP) is essential for carbon cycle and climate change studies. Three AmeriFlux crop sites of maize and soybean were selected for this study. Two of the sites were irrigated and the other one was rainfed. The normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the green band chlorophyll index (CIgreen), and the green band wide dynamic range vegetation index (WDRVIgreen) were computed from the moderate resolution imaging spectroradiometer (MODIS) surface reflectance data. We examined the impacts of the MODIS observation footprint and the vegetation bidirectional reflectance distribution function (BRDF) on crop daily GPP estimation with the four spectral vegetation indices (VIs - NDVI, EVI, WDRVIgreen and CIgreen) where GPP was predicted with two linear models, with and without offset: GPP = a × VI × PAR and GPP = a × VI × PAR + b. Model performance was evaluated with coefficient of determination (R2), root mean square error (RMSE), and coefficient of variation (CV). The MODIS data were filtered into four categories and four experiments were conducted to assess the impacts. The first experiment included all observations. The second experiment only included observations with view zenith angle (VZA) = 35? to constrain growth of the footprint size,which achieved a better grid cell match with the agricultural fields. The third experiment included only forward scatter observations with VZA = 35?. The fourth experiment included only backscatter observations with VZA = 35?. Overall, the EVI yielded the most consistently strong relationships to daily GPP under all examined conditions. The model GPP = a × VI × PAR + b had better performance than the model GPP = a × VI × PAR, and the offset was significant for most cases. Better performance was obtained for the irrigated field than its counterpart rainfed field. Comparison of experiment 2 vs. experiment 1 was used to examine the observation footprint impact whereas comparison of experiment 4 vs. experiment 3 was used to examine the BRDF impact. Changes in R2, RMSE,CV and changes in model coefficients "a" and "b" (experiment 2 vs. experiment 1; and experiment 4 vs. experiment 3) were indicators of the impacts. The second experiment produced better performance than the first experiment, increasing R2 (?0.13) and reducing RMSE (?0.68 g C m-2 d-1) and CV (?9%). For each VI, the slope of GPP = a × VI × PAR in the second experiment for each crop type changed little while the slope and intercept of GPP = a × VI × PAR + b varied field by field. The CIgreen was least affected by the MODIS observation footprint in estimating crop daily GPP (R2, ?0.08; RMSE, ?0.42 g C m-2 d-1; and CV, ?7%). Footprint most affected the NDVI (R2, ?0.15; CV, ?10%) and the EVI (RMSE, ?0.84 g C m-2 d-1). The vegetation BRDF impact also caused variation of model performance and change of model coefficients. Significantly different slopes were obtained for forward vs. backscatter observations, especially for the CIgreen and the NDVI. Both the footprint impact and the BRDF impact varied with crop types, irrigation options, model options and VI options.

  16. Analytic double product integrals for all-frequency relighting.

    PubMed

    Wang, Rui; Pan, Minghao; Chen, Weifeng; Ren, Zhong; Zhou, Kun; Hua, Wei; Bao, Hujun

    2013-07-01

    This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals—the integral of the product of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique for static scenes with dynamic, spatially varying BRDFs, which can generate more accurate shadows than the state-of-the-art real-time PRT methods.

  17. Numerical modeling of laser assisted tape winding process

    NASA Astrophysics Data System (ADS)

    Zaami, Amin; Baran, Ismet; Akkerman, Remko

    2017-10-01

    Laser assisted tape winding (LATW) has become more and more popular way of producing new thermoplastic products such as ultra-deep sea water riser, gas tanks, structural parts for aerospace applications. Predicting the temperature in LATW has been a source of great interest since the temperature at nip-point plays a key role for mechanical interface performance. Modeling the LATW process includes several challenges such as the interaction of optics and heat transfer. In the current study, numerical modeling of the optical behavior of laser radiation on circular surfaces is investigated based on a ray tracing and non-specular reflection model. The non-specular reflection is implemented considering the anisotropic reflective behavior of the fiber-reinforced thermoplastic tape using a bidirectional reflectance distribution function (BRDF). The proposed model in the present paper includes a three-dimensional circular geometry, in which the effects of reflection from different ranges of the circular surface as well as effect of process parameters on temperature distribution are studied. The heat transfer model is constructed using a fully implicit method. The effect of process parameters on the nip-point temperature is examined. Furthermore, several laser distributions including Gaussian and linear are examined which has not been considered in literature up to now.

  18. Seven-parameter statistical model for BRDF in the UV band.

    PubMed

    Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua

    2012-05-21

    A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.

  19. [Estimating Winter Wheat Nitrogen Vertical Distribution Based on Bidirectional Canopy Reflected Spectrum].

    PubMed

    Yang, Shao-yuan; Huang, Wen-jiang; Liang, Dong; Uang, Lin-sheng; Yang, Gui-jun; Zhang, Gui-jan; Cai, Shu-Hong

    2015-07-01

    The vertical distribution of crop nitrogen is increased with plant height, timely and non-damaging measurement of crop nitrogen vertical distribution is critical for the crop production and quality, improving fertilizer utilization and reducing environmental impact. The objective of this study was to discuss the method of estimating winter wheat nitrogen vertical distribution by exploring bidirectional reflectance distribution function (BRDF) data using partial least square (PLS) algorithm. The canopy reflectance at nadir, +/-50 degrees and +/- 60 degrees; at nadir, +/- 30 degrees and +/- 40 degrees; and at nadir, +/- 20 degrees and +/- 30 degrees were selected to estimate foliage nitrogen density (FND) at upper layer, middle layer and bottom layer, respectively. Three PLS analysis models with FND as the dependent variable and vegetation indices at corresponding angles as the explicative variables were. established. The impact of soil reflectance and the canopy non-photosynthetic materials, was minimized by seven kinds of modifying vegetation indices with the ratio R700/R670. The estimated accuracy is significant raised at upper layer, middle layer and bottom layer in modeling experiment. Independent model verification selected the best three vegetation indices for further research. The research result showed that the modified Green normalized difference vegetation index (GNDVI) shows better performance than other vegetation indices at each layer, which means modified GNDVI could be used in estimating winter wheat nitrogen vertical distribution

  20. Airborne Spectral Measurements of Ocean Directional Reflectance

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens

    2004-01-01

    During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.

  1. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  2. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects

    PubMed Central

    Lambers, Martin; Kolb, Andreas

    2017-01-01

    In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data. PMID:29271888

  3. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  4. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects.

    PubMed

    Bulczak, David; Lambers, Martin; Kolb, Andreas

    2017-12-22

    In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data.

  5. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS measurements in our algorithm. We validated three case studies with AErosol Robotic NETwork (AERONET) AOD, and the results show that the AOD retrieval was improved compared to C6_DT AOD, with the increase of within expected accuracy ±(0.05 + 15%) by ranging from 2.7% to 7.5% for the best quality only (Quality Assurance =3), and from 5.8% to 9.5% for the marginal and better quality (Quality Assurance ≥ 1).

  6. Assessment of Satellite Albedos Using NASA-CAR Airborne Data

    NASA Astrophysics Data System (ADS)

    Kharbouche, S.; Charles, G.; Muller, J. P.

    2016-12-01

    Airborne BRF (Bidirectional Reflectance Factor) data has been acquired at multiple altitudes by the NASA CAR (Cloud Absorption Radiometer) multi-spectral instrument since the late 1990s in order to study the reflectance over different types of landscapes depending upon wavelengths, view angles and spatial scales, and to assess derived BRFs from multispectral satellites. As the measured BRFs are taken over a very short period (< 2 minutes), we minimise the effects of solar angles and atmospheric effects. This allows the derivation of a dense set of BRFs which allow direct display of polar plots of the BRDF for different sites in the Arctic. Also, as the measurements have been taken at different flight heights, the upscaling issue can be addressed and detailed with concrete samples. The CAR instrument is well calibrated (back to NIST standards) and can be compared with some ground measurements on the ground. So the derived BRF data for this instrument are likely to be highly reliable and can be used in the validation of some satellites products like radiance, reflectance and albedo, as well as in the BRDF (Bidirectional Reflectance Distribution Function) modelling and in the development of new atmospheric correction techniques. The NASA-CAR, developed by NASA-GSFC can be carried and integrated into many experimental aircraft. So, CAR can be considered as an airborne multi-wavelength scanning radiometer that can measure radiance with instantaneous fields of view of 1°. Over targeted sites, the CAR flies circularly and scans through 180° from straight above, through the horizon to straight down. Data are recorded in 14 narrow spectral bands located in the ultraviolet, visible and near-infrared regions in the electromagnetic spectrum (0.340-2.301 mm). The ray or spot at nadir depends on the flight height. It varies from 1m (height=110m) to 48m (height=5500m). We will show in this presentation the accuracy of BRF, BRDF and Black-Sky-Albedo of MODIS, MISR, MERIS, VGT, Landsat-7 and AVHRR, over vegetated, non-vegetated and ice-covered sites. We will show also how CAR data are arranged and how can be read and deployed. This work was supported by QA4ECV, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405

  7. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.

  8. Further Studies into Synthetic Image Generation using CameoSim

    DTIC Science & Technology

    2011-08-01

    preparation of the validation effort a study of BRDF models has been completed, which includes the physical plausibility of models , how measured data...the visible to shortwave infrared. In preparation of the validation effort a study of BRDF models has been completed, which includes the physical...Example..................................................................................................................... 17 4. MODELLING BRDFS

  9. Reflectance from images: a model-based approach for human faces.

    PubMed

    Fuchs, Martin; Blanz, Volker; Lensch, Hendrik; Seidel, Hans-Peter

    2005-01-01

    In this paper, we present an image-based framework that acquires the reflectance properties of a human face. A range scan of the face is not required. Based on a morphable face model, the system estimates the 3D shape and establishes point-to-point correspondence across images taken from different viewpoints and across different individuals' faces. This provides a common parameterization of all reconstructed surfaces that can be used to compare and transfer BRDF data between different faces. Shape estimation from images compensates deformations of the face during the measurement process, such as facial expressions. In the common parameterization, regions of homogeneous materials on the face surface can be defined a priori. We apply analytical BRDF models to express the reflectance properties of each region and we estimate their parameters in a least-squares fit from the image data. For each of the surface points, the diffuse component of the BRDF is locally refined, which provides high detail. We present results for multiple analytical BRDF models, rendered at novel orientations and lighting conditions.

  10. A New Satellite System for Measuring BRDF from Space

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  11. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  12. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    NASA Technical Reports Server (NTRS)

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  13. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  14. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    DTIC Science & Technology

    2012-01-10

    water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ... model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with...proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing

  15. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the RaDyO Project

    DTIC Science & Technology

    2011-09-30

    radiative transfer to model the BRDF of particulate surfaces. OBJECTIVES The major objective of this research is to understand the downwelling spectral...in the water, was also used by the two major modeling groups in RaDyO, to successfully validate their radiative transfer models . This work is...image and radiative transfer models used in the ocean. My near term ocean optics objectives have been: 1) to improve the measurement capability of

  16. Combined Effect of Reduced Band Number and Increased Bandwidth on Shallow Water Remote Sensing: The Case of WorldView 2

    DTIC Science & Technology

    2013-05-01

    shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...functions ( BRDF ) were compared with measurements made just beneath the water’s surface. In Case I water, the set of simulations that varied the particle...scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models . In Case II water, however, the

  17. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  18. Signature simulation of mixed materials

    NASA Astrophysics Data System (ADS)

    Carson, Tyler D.; Salvaggio, Carl

    2015-05-01

    Soil target signatures vary due to geometry, chemical composition, and scene radiometry. Although radiative transfer models and function-fit physical models may describe certain targets in limited depth, the ability to incorporate all three signature variables is difficult. This work describes a method to simulate the transient signatures of soil by first considering scene geometry synthetically created using 3D physics engines. Through the assignment of spectral data from the Nonconventional Exploitation Factors Data System (NEFDS), the synthetic scene is represented as a physical mixture of particles. Finally, first principles radiometry is modeled using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. With DIRSIG, radiometric and sensing conditions were systematically manipulated to produce and record goniometric signatures. The implementation of this virtual goniometer allows users to examine how a target bidirectional reflectance distribution function (BRDF) will change with geometry, composition, and illumination direction. By using 3D computer graphics models, this process does not require geometric assumptions that are native to many radiative transfer models. It delivers a discrete method to circumnavigate the significant cost of time and treasure associated with hardware-based goniometric data collections.

  19. Automated Synthetic Scene Generation

    DTIC Science & Technology

    2014-07-01

    Using the Beard-Maxwell BRDF model , the BRDF from Equations (3.3) and (3.4) is composed of specular, diffuse, and volumetric terms such that x y zSun... models help organizations developing new remote sensing instruments anticipate sensor performance by enabling the ability to create synthetic imagery...for proposed sensor before a sensor is built. One of the largest challenges in modeling realistic synthetic imagery, however, is generating the

  20. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods

    Treesearch

    Zhuosen Wang; Crystal B. Schaaf; Alan H. Strahler; Mark J. Chopping; Miguel O. Román; Yanmin Shuai; Curtis E. Woodcock; David Y. Hollinger; David R. Fitzjarrald

    2014-01-01

    This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and...

  1. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; hide

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of 0.006. These synthetic time series provide much greater spatial detail than the 500 meter gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 kilometers by 14 kilometers) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF-Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30-meter resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  2. An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao

    2014-01-01

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach respectively with that from the "concurrent" approach and the coincident MODIS operational surface albedo products. Using the tower measurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the "pre-MODIS era" LUT approach is highly consistent (R(exp 2) = 0.988, the scene-averaged low RMSE = 0.009 and bias = -0.005) with that generated by the earlier "concurrent" approach. The Landsat albedo also exhibits more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the "pre-MODIS" LUT and "concurrent" approaches provide a practical way to retrieve long-term Landsat albedo from the historic Landsat archives as far back as the 1980s, as well as the current Landsat-8 mission, and thus support investigations into the evolution of the albedo of terrestrial biomes at fine resolution.

  3. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  4. Virtual ellipsometry on layered micro-facet surfaces.

    PubMed

    Wang, Chi; Wilkie, Alexander; Harcuba, Petr; Novosad, Lukas

    2017-09-18

    Microfacet-based BRDF models are a common tool to describe light scattering from glossy surfaces. Apart from their wide-ranging applications in optics, such models also play a significant role in computer graphics for photorealistic rendering purposes. In this paper, we mainly investigate the computer graphics aspect of this technology, and present a polarisation-aware brute force simulation of light interaction with both single and multiple layered micro-facet surfaces. Such surface models are commonly used in computer graphics, but the resulting BRDF is ultimately often only approximated. Recently, there has been work to try to make these approximations more accurate, and to better understand the behaviour of existing analytical models. However, these brute force verification attempts still emitted the polarisation state of light and, as we found out, this renders them prone to mis-estimating the shape of the resulting BRDF lobe for some particular material types, such as smooth layered dielectric surfaces. For these materials, non-polarising computations can mis-estimate some areas of the resulting BRDF shape by up to 23%. But we also identified some other material types, such as dielectric layers over rough conductors, for which the difference turned out to be almost negligible. The main contribution of our work is to clearly demonstrate that the effect of polarisation is important for accurate simulation of certain material types, and that there are also other common materials for which it can apparently be ignored. As this required a BRDF simulator that we could rely on, a secondary contribution is that we went to considerable lengths to validate our software. We compare it against a state-of-art model from graphics, a library from optics, and also against ellipsometric measurements of real surface samples.

  5. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    DTIC Science & Technology

    2011-09-30

    BRDF model was developed for coastal waters, and validated on the data of the two LISCO instruments, and its comparison with MODIS satellite imagery...in field conditions to validate radiative transfer modeling and assess possibilities for the separation of organic and inorganic particulate...to retrieve water components and compared with NOMAD and field CCNY data. Simulated datasets were also used to develop a BRDF model for coastal

  6. Initialization of Formation Flying Using Primer Vector Theory

    NASA Technical Reports Server (NTRS)

    Mailhe, Laurie; Schiff, Conrad; Folta, David

    2002-01-01

    In this paper, we extend primer vector analysis to formation flying. Optimization of the classical rendezvous or free-time transfer problem between two orbits using primer vector theory has been extensively studied for one spacecraft. However, an increasing number of missions are now considering flying a set of spacecraft in close formation. Missions such as the Magnetospheric MultiScale (MMS) and Leonardo-BRDF (Bidirectional Reflectance Distribution Function) need to determine strategies to transfer each spacecraft from the common launch orbit to their respective operational orbit. In addition, all the spacecraft must synchronize their states so that they achieve the same desired formation geometry over each orbit. This periodicity requirement imposes constraints on the boundary conditions that can be used for the primer vector algorithm. In this work we explore the impact of the periodicity requirement in optimizing each spacecraft transfer trajectory using primer vector theory. We first present our adaptation of primer vector theory to formation flying. Using this method, we then compute the AV budget for each spacecraft subject to different formation endpoint constraints.

  7. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  8. APEX - the Hyperspectral ESA Airborne Prism Experiment

    PubMed Central

    Itten, Klaus I.; Dell'Endice, Francesco; Hueni, Andreas; Kneubühler, Mathias; Schläpfer, Daniel; Odermatt, Daniel; Seidel, Felix; Huber, Silvia; Schopfer, Jürg; Kellenberger, Tobias; Bühler, Yves; D'Odorico, Petra; Nieke, Jens; Alberti, Edoardo; Meuleman, Koen

    2008-01-01

    The airborne ESA-APEX (Airborne Prism Experiment) hyperspectral mission simulator is described with its distinct specifications to provide high quality remote sensing data. The concept of an automatic calibration, performed in the Calibration Home Base (CHB) by using the Control Test Master (CTM), the In-Flight Calibration facility (IFC), quality flagging (QF) and specific processing in a dedicated Processing and Archiving Facility (PAF), and vicarious calibration experiments are presented. A preview on major applications and the corresponding development efforts to provide scientific data products up to level 2/3 to the user is presented for limnology, vegetation, aerosols, general classification routines and rapid mapping tasks. BRDF (Bidirectional Reflectance Distribution Function) issues are discussed and the spectral database SPECCHIO (Spectral Input/Output) introduced. The optical performance as well as the dedicated software utilities make APEX a state-of-the-art hyperspectral sensor, capable of (a) satisfying the needs of several research communities and (b) helping the understanding of the Earth's complex mechanisms. PMID:27873868

  9. Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice

    NASA Astrophysics Data System (ADS)

    Dorofy, Peter T.

    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.

  10. Improved Range Estimation Model for Three-Dimensional (3D) Range Gated Reconstruction

    PubMed Central

    Chua, Sing Yee; Guo, Ningqun; Tan, Ching Seong; Wang, Xin

    2017-01-01

    Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works. PMID:28872589

  11. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  12. Radiative transfer model for contaminated rough slabs.

    PubMed

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.

  13. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  14. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed

    Todd, James T; Egan, Eric J L; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination.

  15. Is the perception of 3D shape from shading based on assumed reflectance and illumination?

    PubMed Central

    Todd, James T.; Egan, Eric J. L.; Phillips, Flip

    2014-01-01

    The research described in the present article was designed to compare three types of image shading: one generated with a Lambertian BRDF and homogeneous illumination such that image intensity was determined entirely by local surface orientation irrespective of position; one that was textured with a linear intensity gradient, such that image intensity was determined entirely by local surface position irrespective of orientation; and another that was generated with a Lambertian BRDF and inhomogeneous illumination such that image intensity was influenced by both position and orientation. A gauge figure adjustment task was used to measure observers' perceptions of local surface orientation on the depicted surfaces, and the probe points included 60 pairs of regions that both had the same orientation. The results show clearly that observers' perceptions of these three types of stimuli were remarkably similar, and that probe regions with similar apparent orientations could have large differences in image intensity. This latter finding is incompatible with any process for computing shape from shading that assumes any plausible reflectance function combined with any possible homogeneous illumination. PMID:26034561

  16. Investigation of Field-Collected Data Using Diffuse and Specular, Forward and Reverse Radiative Transfer Models

    DTIC Science & Technology

    2015-03-26

    Statement It is very difficult to obtain and use spectral BRDFs due to aforementioned reasons, while the need to accurately model the spectral and...Lambertian and MERL nickel-shaped BRDF models (Butler, 2014:1- 3 10), suggesting that accurate BRDFs are required to account for the significance of... BRDF -based radiative transfer models . Research Objectives /Hypotheses The need to represent the spectral reflected radiance of a material using

  17. Calculation of the angular radiance distribution for a coupled atmosphere and canopy

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1993-01-01

    The radiative transfer equations for a coupled atmosphere and canopy are solved numerically by an improved Gauss-Seidel iteration algorithm. The radiation field is decomposed into three components: unscattered sunlight, single scattering, and multiple scattering radiance for which the corresponding equations and boundary conditions are set up and their analytical or iterational solutions are explicitly derived. The classic Gauss-Seidel algorithm has been widely applied in atmospheric research. This is its first application for calculating the multiple scattering radiance of a coupled atmosphere and canopy. This algorithm enables us to obtain the internal radiation field as well as radiances at boundaries. Any form of bidirectional reflectance distribution function (BRDF) as a boundary condition can be easily incorporated into the iteration procedure. The hotspot effect of the canopy is accommodated by means of the modification of the extinction coefficients of upward single scattering radiation and unscattered sunlight using the formulation of Nilson and Kuusk. To reduce the computation for the case of large optical thickness, an improved iteration formula is derived to speed convergence. The upwelling radiances have been evaluated for different atmospheric conditions, leaf area index (LAI), leaf angle distribution (LAD), leaf size and so on. The formulation presented in this paper is also well suited to analyze the relative magnitude of multiple scattering radiance and single scattering radiance in both the visible and near infrared regions.

  18. Assessing Surface BRDF-related Biases Using Target Mode Retrievals from the Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Natraj, V.; McDuffie, J. L.; O'Dell, C.; Eldering, A.; Fu, D.; Wunch, D.; Wennberg, P. O.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first dedicated Earth remote sensing satellite to study atmospheric carbon dioxide from space, and was launched successfully on July 2, 2014. In the target mode of observation, the Observatory will lock its view onto a specific surface location, and will scan back and forth over that target while flying overhead. A target track pass can last for up to 9 minutes. Over that time period, the Observatory can acquire as many as 12,960 samples at local zenith angles that vary between 0° and 85°. Here, we analyze target track measurements over several of the OCO-2 validation sites where ground-based solar-looking Fourier Transform Spectrometers are located. Preliminary analysis of target mode retrievals using the operational algorithm show biases that appear to be due to not accounting for bidirectional surface reflection (BRDF) effects, i.e., the non-isotropic nature of surface reflection. To address this issue, we implement a realistic BRDF model. The column averaged CO2 dry air mole fraction (XCO2) results using this new model show much less variation with scattering angle (or airmass). Further, the retrieved aerosol optical depth (AOD) is in much better agreement with coincident AERONET values. We also use information content analysis to evaluate the degrees of freedom with respect to BRDF parameters, and investigate cross-correlations between the parameters.

  19. Enhancement of diffusers BRDF accuracy

    NASA Astrophysics Data System (ADS)

    Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto

    2017-11-01

    This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.

  20. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  1. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial resolution remotely sensed albedo products.

  2. Comparison of Sentinel-2A and Landsat-8 Nadir BRDF Adjusted Reflectance (NBAR) over Southern Africa

    NASA Astrophysics Data System (ADS)

    Li, J.; Roy, D. P.; Zhang, H.

    2016-12-01

    The Landsat satellites have been providing moderate resolution imagery of the Earth's surface for over 40 years with continuity provided by the Landsat 8 and planned Landsat 9 missions. The European Space Agency Sentinel-2 satellite was successfully launched into a polar sun-synchronous orbit in 2015 and carries the Multi Spectral Instrument (MSI) that has Landsat-like bands and acquisition coverage. These new sensors acquire images at view angles ± 7.5° (Landsat) and ± 10.3° (Sentinel-2) from nadir that result in small directional effects in the surface reflectance. When data from adjoining paths, or from long time series are used, a model of the surface anisotropy is required to adjust observations to a uniform nadir view (primarily for visual consistency, vegetation monitoring, or detection of subtle surface changes). Recently a generalized approach was published that provides consistent Landsat view angle corrections to provide nadir BRDF-adjusted reflectance (NBAR). Because the BRDF shapes of different terrestrial surfaces are sufficiently similar over the narrow 15° Landsat field of view, a fixed global set of MODIS BRDF spectral model parameters was shown to be adequate for Landsat NBAR derivation with little sensitivity to the land cover type, condition, or surface disturbance. This poster demonstrates the application of this methodology to Sentinel-2 data over a west-east transect across southern Africa. The reflectance differences between adjacent overlapping paths in the forward and backward scatter directions are quantified for both before and after BRDF correction. Sentinel-2 and Landsat-8 reflectance and NBAR inter-comparison results considering different stages of cloud and saturation filtering, and filtering to reduce surface state differences caused by acquisition time differences, demonstrate the utility of the approach. The relevance and limitations of the corrections for providing consistent moderate resolution reflectance are discussed.

  3. Land cover change mapping using MODIS time series to improve emissions inventories

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  4. Study on inverse estimation of radiative properties from directional radiances by using statistical RPSO algorithm

    NASA Astrophysics Data System (ADS)

    Han, Kuk-Il; Kim, Do-Hwi; Choi, Jun-Hyuk; Kim, Tae-Kuk; Shin, Jong-Jin

    2016-09-01

    Infrared signals are widely used to discriminate objects against the background. Prediction of infrared signal from an object surface is essential in evaluating the detectability of the object. Appropriate and easy method of procurement of the radiative properties such as the surface emissivity, bidirectional reflectivity is important in estimating infrared signals. Direct measurement can be a good choice but a costly and time consuming way of obtaining the radiative properties for surfaces coated with many different newly developed paints. Especially measurement of the bidirectional reflectivity usually expressed by the bidirectional reflectance distribution function (BRDF) is the most costly job. In this paper we are presenting an inverse estimation method of the radiative properties by using the directional radiances from the surface of concern. The inverse estimation method used in this study is the statistical repulsive particle swarm optimization (RPSO) algorithm which uses the randomly picked directional radiance data emitted and reflected from the surface. In this paper, we test the proposed inverse method by considering the radiation from a steel plate surface coated with different paints at a clear sunny day condition. For convenience, the directional radiance data from the steel plate within a spectral band of concern are obtained from the simulation using the commercial software, RadthermIR, instead of the field measurement. A widely used BRDF model called as the Sandford-Robertson(S-R) model is considered and the RPSO process is then used to find the best fitted model parameters for the S-R model. The results obtained from this study show an excellent agreement with the reference property data used for the simulation for directional radiances. The proposed process can be a useful way of obtaining the radiative properties from field measured directional radiance data for surfaces coated with or without various kinds of paints of unknown radiative properties.

  5. Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  6. Generating a Long-Term Land Data Record from the AVHRR and MODIS Instruments

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey; Devadiga, Sadashiva; Masuoka, Edward; Brown, Molly; Pinzon, Jorge; Tucker, Compton; Vermote, Eric; Prince, Stephen; Nagol, Jyotheshwar; Justice, Christopher; hide

    2007-01-01

    The goal of NASA's Land Long Term Iiata Record (LTDR) project is to produce a consistent long term data set from the AVHRR and MODIS instruments for land climate studies. The project will create daily surface reflectance and normalized difference vegetation index (NDVI) products at a resolution of 0.05 deg., which is identical to the Climate Modeling Grid (CMG) used for MODIS products from EOS Terra and Aqua. Higher order products such as burned area, land surface temperature, albedo, bidirectional reflectance distribution function (BRDF) correction, leaf area index (LAI), and fraction of photosyntheticalIy active radiation absorbed by vegetation (fPAR), will be created. The LTDR project will reprocess Global Area Coverage (GAC) data from AVHRR sensors onboard NOAA satellites by applying the preprocessing improvements identified in the AVHRR Pathfinder Il project and atmospheric and BRDF corrections used in MODIS processing. The preprocessing improvements include radiometric in-flight vicarious calibration for the visible and near infrared channels and inverse navigation to relate an Earth location to each sensor instantaneous field of view (IFOV). Atmospheric corrections for Rayleigh scattering, ozone, and water vapor are undertaken, with aerosol correction being implemented. The LTDR also produces a surface reflectance product for channel 3 (3.75 micrometers). Quality assessment (QA) is an integral part of the LTDR production system, which is monitoring temporal trands in the AVHRR products using time-series approaches developed for MODIS land product quality assessment. The land surface reflectance products have been evaluated at AERONET sites. The AVHRR data record from LTDR is also being compared to products from the PAL (Pathfinder AVHRR Land) and GIMMS (Global Inventory Modeling and Mapping Studies) systems to assess the relative merits of this reprocessing vis-a-vis these existing data products. The LTDR products and associated information can be found at http://ltdr.nascom.nasa.gov/ltdr/ltdr.html.

  7. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  8. A uniform geostationary visible calibration approach to achieve a climate quality dataset

    NASA Astrophysics Data System (ADS)

    Haney, C.; Doelling, D.; Bhatt, R.; Scarino, B. R.; Gopalan, A.

    2013-12-01

    The geostationary (GEO) weather satellite visible and IR image record has surpassed 30 years. They have been preserved in the ISCCP-B1U 3-hourly dataset and other archives such as McIDAS, EUMETSAT, and NOAA CLASS. Since they were designed to aid in weather forecasting, long-term calibration stability was not a high priority. All GEO imagers lack onboard visible calibration and suffer from optical degradation after they are launched. In order to piece together the 35+ GEO satellite record both in time and space, a uniform calibration approach is desired to remove individual GEO temporal trends, as well as GEO spectral band differences. Otherwise, any artificial discontinuities caused by sequential GEO satellite records or spurious temporal trends caused by optical degradation may be interpreted as a change in climate. The approach relies on multiple independent methods to reduce the overall uncertainty of the GEO calibration coefficients. Consistency among methods validates the approach. During the MODIS record (2000 to the present) the GEO satellites are inter-calibrated against MODIS using ray-matched or bore-sighted radiance pairs. The MODIS and the VIIRS follow on instruments are equipped with onboard calibration thereby providing a stable calibration reference. The GEO spectral band differences are accounted for using a Spectral Band Adjustment Factor (SBAF) based on hyper-spectral SCIAMACHY data. During the pre-MODIS era, invariant earth targets of deserts and deep convective clouds (DCC) are used. Since GEO imagers have maintained their imaging scan schedules, GEO desert and DCC bidirectional reflectance distribution functions (BRDF) can be constructed and validated during the MODIS era. The BRDF models can then be applied to historical GEO imagers. Consistency among desert and DCC GEO calibration gains validates the approach. This approach has been applied to the GEO record beginning in 1985 and the results will be presented at the meeting.

  9. Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-09-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  10. A Field Portable Hyperspectral Goniometer for Coastal Characterization

    NASA Technical Reports Server (NTRS)

    Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Fusina, Robert A.; Musser, Joseph A.; Vermillion, Michael; Doctor, Katarina; White, Maurice; Georgiev, Georgi

    2012-01-01

    During an airborne multi-sensor remote sensing experiment at the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site in June 2011 (VCR '11), first measurements were taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). GOPHER measures the angular distribution of hyperspectral reflectance. GOPHER was constructed for NRL by Spectra Vista Corporation (SVC) and the University of Lethbridge through a capital equipment purchase in 2010. The GOPHER spectrometer is an SVC HR -1024, which measures hyperspectral reflectance over the range from 350 -2500 nm, the visible, near infrared, and short-wave infrared. During measurements, the spectrometer travels along a zenith quarter -arc track that can rotate in azimuth, allowing for measurement of the bi-directional reflectance distribution function (BRDF) over the whole hemisphere. The zenith arc has a radius of approximately 2m, and the spectrometer scan pattern can be programmed on the fly during calibration and validation efforts. The spectrometer and zenith arc assembly can be raised and lowered along a mast to allow for measurement of uneven terrain or vegetation canopies of moderate height. Hydraulics on the chassis allow for leveling of the instrument in the field. At just over 400 lbs, GOPHER is a field portable instrument and can be transformed into a compact trailer assembly for movement over long distances in the field.

  11. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    NASA Astrophysics Data System (ADS)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  12. Dem Reconstruction Using Light Field and Bidirectional Reflectance Function from Multi-View High Resolution Spatial Images

    NASA Astrophysics Data System (ADS)

    de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.

    2016-06-01

    This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  13. The challenges encountered in the integration of an early test wafer surface scanning inspection system into a 450mm manufacturing line

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey; McGarvey, Steve

    2013-04-01

    The introduction of early test wafer (ETW) 450mm Surface Scanning Inspection Systems (SSIS) into Si manufacturing has brought with it numerous technical, commercial, and logistical challenges on the path to rapid recipe development and subsequent qualification of other 450mm wafer processing equipment. This paper will explore the feasibility of eliminating the Polystyrene Latex Sphere deposition process step and the subsequent creation of SSIS recipes based upon the theoretical optical properties of both the SSIS and the process film stack(s). The process of Polystyrene Latex Sphere deposition for SSIS recipe generation and development is generally accepted on the previous technology nodes for 150/200/300mm wafers. PSL is deposited with a commercially available deposition system onto a non-patterned bare Si or non-patterned filmed Si wafer. After deposition of multiple PSL spots, located in different positions on a wafer, the wafer is inspected on a SSIS and a response curve is generated. The response curve is based on the the light scattering intensity of the NIST certified PSL that was deposited on the wafer. As the initial 450mm Si wafer manufacturing began, there were no inspection systems with sub-90nm sensitivities available for defect and haze level verification. The introduction of a 450mm sub-30nm inspection system into the manufacturing line generated instant challenges. Whereas the 450mm wafers were relatively defect free at 90nm, at 40nm the wafers contained several hundred thousand defects. When PSL was deposited onto wafers with these kinds of defect levels, PSL with signals less than the sub-90nm defects were difficult to extract. As the defectivity level of the wafers from the Si suppliers rapidly improves the challenges of SSIS recipe creation with high defectivity decreases while at the same time the cost of PSL deposition increases. The current cost per wafer is fifteen thousand dollars for a 450mm PSL deposition service. When viewed from the standpoint of the generations of hundreds of SSIS recipes for the global member companies of ISMI, it is simply not economically viable to create all recipes based on PSL based light scattering response curves. This paper will explore the challenges/end results encountered with the PSL based SSIS recipe generation and compare those against the challenges/end results of SSIS recipes generated based strictly upon theoretical Bidirectional reflectance distribution function (BRDF) light scattering modeling. The BRDF modeling will allow for the creation of SSIS recipes without PSL deposition, which is greatly appealing for a multitude of both technical and commercial considerations. This paper will also explore the technical challenges of SSIS recipe generation based strictly upon BRDF modeling.

  14. Estimating Terra MODIS Polarization Effect Using Ocean Data

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.; Brinkmann, Jake; Wu, Aisheng; Xiong, Jack

    2016-01-01

    Terra MODIS has been known since pre-launch to have polarization sensitivity, particularly in shortest-wavelength bands 8 and 9. On-orbit reflectance trending of pseudo-invariant sites show a variation in reflectance as a function of band and scan mirror angle of incidence consistent with time-dependent polarization effects from the rotating double-sided scan mirror. The MODIS Characterization Support Team [MCST] estimates the Mueller matrix trending from this variation as observed from a single desert site, but this effect is not included in Collection 6 [C6] calibration. Here we extend the MCSTs current polarization sensitivity monitoring to two ocean sites distributed over latitude to helpestimate the uncertainties in the derived Mueller matrix. The Mueller matrix elements derived for polarization-sensitive Band 8 for a given site are found to be fairly insensitive to surface brdf modeling. The site-to-site variation is a measure of the uncertainty in the Mueller estimation.Results for band 8 show that the polarization correction reduces mirror-side striping by up to 50% and reduces the instrument polarization effect on reflectance time series of an ocean target.

  15. Characterizing bidirectional reflectance and spectral albedo of various land cover types in Midwest using GeoTASO Summer-2014 campaign

    NASA Astrophysics Data System (ADS)

    Wulamu, A.; Fishman, J.; Maimaitiyiming, M.; Leitch, J. W.; Zoogman, P.; Liu, X.; Chance, K.; Marshall, B.

    2015-12-01

    Understanding the bi-directional reflectance function (BRDF) and spectral albedo of various land-cover types is critical for retrieval of trace gas measurements from planned geostationary satellites such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO). Radiant energy, which will be measured by these instruments at the top of atmosphere (TOA) at unprecedented spectral resolution, is strongly influenced by how this energy is reflected by the underlying surface. Thus, it is critical that we understand this phenomenon at comparable wavelength resolution. As part of the NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project, we carried out synchronous field and airborne data collection campaigns in the St Louis Metro region in Summer 2014. We collected spectral reflectance data of various land cover types on the ground within hours of a GeoTASO overpass using a field-based hyperspectral spectroradiometer (model PSR3500 from Spectral Evolution). Field measurements collecting in-situ spectral albedo and bidirectional reflectance factors were also obtained in July and August of 2015. In this study, we present our preliminary findings from in-situ and airborne GeoTASO derived spectral albedo and BRDF characteristics of major land cover types at TEMPO spectral profiles, which are necessary for the accurate retrieval of tropospheric trace gases and aerosols. First, a spectral database of various targets (e.g., plants, soils, rocks, man-made objects and water) was developed using field measurements. Next, the GeoTASO airborne data were corrected using MODTRAN and field measurements to derive spectral albedo and BRDF. High spatial resolution land-cover types were extracted using satellite images (e.g., Landsat, WorldView, IKONOS, etc.) at resolutions from 2 m - 30 m. Lastly, spectral albedo/BRDFs corresponding to various land cover types were analyzed using both field and GeoTASO measurements.

  16. Retrieval of seasonal dynamics of forest understory reflectance over a set of boreal, sub-boreal and temperate forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.

    2013-12-01

    Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.

  17. PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.

    PubMed

    Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  18. Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  19. PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING

    PubMed Central

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712

  20. LAI inversion algorithm based on directional reflectance kernels.

    PubMed

    Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D

    2007-11-01

    Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.

  1. Evaluation of the Main Ceos Pseudo Calibration Sites Using Modis Brdf/albedo Products

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2016-06-01

    This work describes our findings about an evaluation of the stability and the consistency of twenty primary PICSs (Pseudo-Invariant Calibration Sites). We present an analysis of 13 years of 8-daily MODIS products of BRDF parameters and white-sky-albedos (WSA) over the shortwave band. This time series of WSA and BRDFs shows the variation of the "stability" varies significantly from site to site. Using a 10x10 km window size over all the sites, the change in of WSA stability is around 4% but the isotropicity, which is an important element in inter-satellite calibration, can vary from 75% to 98%. Moreover, some PICS, especially, Libya-4 which is one of the PICS which is most employed, has significant and relatively fast changes in wintertime. PICS observations of BRDF/albedo shows that the Libya-4 PICS has the best performance but it is not too far from some sites such as Libya-1 and Mali. This study also reveals that Niger-3 PICS has the longest continuous period of high stability per year, and Sudan has the most isotropic surface. These observations have important implications for the use of these sites.

  2. The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.

    PubMed

    Chandraker, Manmohan

    2016-07-01

    Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper proposes a theory that addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to surface depth, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show differential stereo may not determine shape for general BRDFs, but suffices to yield an invariant for several restricted (still unknown) BRDFs exhibited by common materials. For the perspective case, we show that differential stereo yields the surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on the BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We also illustrate trends shared by theories on shape from differential motion of light source, object or camera, to relate the hardness of surface reconstruction to the complexity of imaging setup.

  3. Landsat and Sentinel-2A Surface Albedo Estimation and Evaluation Against In Situ Measurements Across the US SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Franch, B.; Skakun, S.; Vermote, E.; Roger, J. C.

    2017-12-01

    Surface albedo is an essential parameter not only for developing climate models, but also for most energy balance studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are mainly focused on agricultural applications, require a high spatial resolution. The albedo, estimated through the angular integration of the BRDF, requires an appropriate angular sampling of the surface. However, Sentinel-2A sampling characteristics, with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albedo product. In this work, we apply an algorithm developed to derive a Landsat surface albedo to Sentinel-2A. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) CMG surface reflectance product (M{O,Y}D09) using the VJB method (Vermote et al., 2009). Sentinel-2A unsupervised classification images are used to disaggregate the BRDF parameters to the Sentinel-2 spatial resolution. We test the results over five different sites of the US SURFRAD network and plot the results versus albedo field measurements. Additionally, we also test this methodology using Landsat-8 images.

  4. Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2016-01-01

    In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.

  5. Bidirectional reflectance correction model for coastal water and its application to minimization of uncertainties in satellite and in-situ water leaving radiances at Long Island Sound Coastal Observatory site

    NASA Astrophysics Data System (ADS)

    Hlaing, Soe Min

    Ocean Color data validation is the absolute requirement to provide the steady and reliable Ocean Color data stream. In the validation of Ocean Color data, water-leaving radiances, retrieved from in situ or satellite measurements, need to be compared in very accurate manner. Both in-situ and satellite data to be used in the comparisons are required to be the representative of the typical water and environmental condition at the site without being affected by the unexpected natural and environmental perturbation. As the result, assessments of the uncertainties in the water leaving radiance data must be carried out in the measurement and the every step of data processing procedure. With the hyper- and multi-spectral water leaving radiance data retrieved for the different viewing geometries of the instruments at the Long Island Sound Coastal Observatory (LISCO), uncertainties in the water leaving radiance data and processing procedures have been assessed and quantified. Recommendations and algorithm improvements have been also made to reduce the uncertainties in the processing and validation of Ocean Color data. Particularly, remote sensing reflectance model to correct the bidirectional angular dependencies in both in-situ and satellite data have been proposed. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyper-spectral radiometers which have different viewing geometries installed at LISCO. Match-ups and inter-comparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with spectral average improvement of 2.4%. LISCO's time series data has also been used to evaluate improvements in the match-up comparisons of MODIS satellite data when the proposed Bidirectional Reflectance Distribution Function (BRDF) correction is used in lieu of the current algorithm. It has been shown that the discrepancies between coincident in-situ sea-based and satellite data were decreased by 3.15% with the use of the proposed algorithm. Possibility of the application of the developed BRDF algorithm for the open ocean conditions is also considered.

  6. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  7. Effect of wildfires on surface reflectance from a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Gatebe, C. K.; Ichoku, C. M.; Varnai, T.

    2015-12-01

    During an airborne field campaign in South Africa in 2005, NASA's Cloud Absorption Radiometer (CAR) flew aboard South Africa Weather Service, Aerocommander 690A and measured surface bidirectional reflectance-distribution function (BRDF) over savanna comprised mostly of grasses and a few scattered trees. Savannas cover half the surface of Africa, large areas of Australia, South America, and India. . The region that was studied is located in Kruger National Park in northeastern South Africa, which was heavily affected by the wildfires. The CAR measured surface reflectance along its flight path covering both burned and unburned areas. . In this study, we compared surface reflectance between burnt and un-burnt areas at various wavelengths (340nm, 380nm, 472nm, 682nm, 870nm, 1036nm, 1219nm, 1273nm, and 2205nm) at satellite sub-pixel scales. We found a relative burnt surface reflectance decrease of between 8 and 65% due to fires. These results not only serve to highlight the importance of biomass burning and effects on the energy budgets, but also the need to determine the effects of albedo changes due to fires on soil moisture budget, evapotranspiration, infiltration, and runoff, all of which govern the land-surface component of the water cycle.

  8. Monitoring of mirror degradation of fluorescence detectors at the Pierre Auger Observatory due to dust sedimentation

    NASA Astrophysics Data System (ADS)

    Nozka, L.; Hiklova, H.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Palatka, M.; Pech, M.; Ridky, J.; Schovanek, P.

    2018-05-01

    We present results of the monitoring method we have used to characterize the optical performance deterioration due to the dust of our mirror segments produced for fluorescence detectors used in astrophysics experiments. The method is based on the measurement of scatter profiles of reflected light. The scatter profiles and the reflectivity of the mirror segments sufficiently describe the performance of the mirrors from the perspective of reconstruction algorithms. The method is demonstrated on our mirror segments installed in frame of the Pierre Auger Observatory project. Although installed in air-conditioned buildings, both the dust sedimentation and the natural aging of the reflective layer deteriorate the optical throughput of the segments. In the paper, we summarized data from ten years of operation of the fluorescence detectors. During this time, we periodically measured in-situ scatter characteristics represented by the specular reflectivity and the reflectivity of the diffusion part at the wavelength of 670 nm of the segment surface (measured by means of the optical scatter technique as well). These measurements were extended with full Bidirectional Reflectance Distribution Functions (BRDF) profiles of selected segments made in the laboratory. Cleaning procedures are also discussed in the paper.

  9. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  10. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  11. Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa

    2015-01-01

    Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).

  12. Improved Discrete Ordinate Solutions in the Presence of an Anisotropically Reflecting Lower Boundary: Upgrades of the DISORT Computational Tool

    NASA Technical Reports Server (NTRS)

    Lin, Z.; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. J.; Stamnes, K.

    2015-01-01

    A successor version 3 of DISORT (DISORT3) is presented with important upgrades that improve the accuracy, efficiency, and stability of the algorithm. Compared with version 2 (DISORT2 released in 2000) these upgrades include (a) a redesigned BRDF computation that improves both speed and accuracy, (b) a revised treatment of the single scattering correction, and (c) additional efficiency and stability upgrades for beam sources. In DISORT3 the BRDF computation is improved in the following three ways: (i) the Fourier decomposition is prepared "off-line", thus avoiding the repeated internal computations done in DISORT2; (ii) a large enough number of terms in the Fourier expansion of the BRDF is employed to guarantee accurate values of the expansion coefficients (default is 200 instead of 50 in DISORT2); (iii) in the post processing step the reflection of the direct attenuated beam from the lower boundary is included resulting in a more accurate single scattering correction. These improvements in the treatment of the BRDF have led to improved accuracy and a several-fold increase in speed. In addition, the stability of beam sources has been improved by removing a singularity occurring when the cosine of the incident beam angle is too close to the reciprocal of any of the eigenvalues. The efficiency for beam sources has been further improved from reducing by a factor of 2 (compared to DISORT2) the dimension of the linear system of equations that must be solved to obtain the particular solutions, and by replacing the LINPAK routines used in DISORT2 by LAPACK 3.5 in DISORT3. These beam source stability and efficiency upgrades bring enhanced stability and an additional 5-7% improvement in speed. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency of DISORT3 compared to DISORT2.

  13. Land ECVs from QA4ECV using an optimal estimation framework

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Kharbouche, Said; Lewis, Philip; Danne, Olaf; Blessing, Simon; Giering, Ralf; Gobron, Nadine; Lanconelli, Christian; Govaerts, Yves; Schulz, Joerg; Doutriaux-Boucher, Marie; Lattanzio, Alessio; Aoun, Youva

    2017-04-01

    In the ESA-DUE GlobAlbedo project (http://www.GlobAlbedo.org), a 15 year record of land surface albedo was generated from the European VEGETATION & MERIS sensors using optimal estimation. This was based on 3 broadbands (0.4-0.7, 0.7-3, 0.4-3µm) and fused data at level-2 after converting from spectral narrowband to these 3 broadbands with surface BRFs. A 10 year long record of land surface albedo climatology was generated from Collection 5 of the MODIS BRDF product for these same broadbands. This was employed as an a priori estimate for an optimal estimation based retrieval of land surface albedo when there were insufficient samples from the European sensors. This so-called MODIS prior was derived at 1km from the 500m MOD43A1,2 BRDF inputs every 8 days using the QA bits and the method described in the GlobAlbedo ATBD which is available from the website (http://www.globalbedo.org/docs/GlobAlbedo_Albedo_ATBD_V4.12.pdf). In the ESA-STSE WACMOS-ET project, FastOpt generated fapar & LAI based on this GlobAlbedo BRDF with associated per pixel uncertainty using the TIP framework. In the successor EU-FP7-QA4ECV* project, we have developed a 33 year record (1981-2014) of Earth surface spectral and broadband albedo (i.e. including the ocean and sea-ice) using optimal estimation for the land and where available, relevant sensors for "instantaneous" retrievals over the poles (Kharbouche & Muller, this conference). This requires the longest possible land surface spectral and broadband BRDF record that can only be supplied by a 16 year of MODIS Collection 6 BRDFs at 500m but produced on a daily basis. The CEMS Big Data computer at RAL was used to generate 7 spectral bands and 3 broadband BRDF with and without snow and snow_only. We will discuss the progress made since the start of the QA4ECV project on the production of a new fused land surface BRDF/albedo spectral and broadband CDR product based on four European sensors: MERIS, (A)ATSR(2), VEGETATION, PROBA-V and two US sensors: MISR & MODIS. For the European sensors, an uniform atmospheric correction scheme has been employed to generate spectral BRF products and these have all been mapped into MODIS spectral bands whilst the US sensors have employed their own level-2 BRF retrieval schemes with associated uncertainty information. Progress is also demonstrated on the use of TIP for fapar/LAI retrieval from the broadband BRDFs as well as fapar from AVHRR based on retrievals from MERIS and OLCI. In parallel, work has taken place at two of our partners on the production of a new geostationary broadband BRF and associated albedo and their fusion with AVHRR-LTDR for a 33 year record. QA4ECV has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405

  14. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.

  15. Realistic uncertainties on Hapke model parameters from photometric measurement

    NASA Astrophysics Data System (ADS)

    Schmidt, Frédéric; Fernando, Jennifer

    2015-11-01

    The single particle phase function describes the manner in which an average element of a granular material diffuses the light in the angular space usually with two parameters: the asymmetry parameter b describing the width of the scattering lobe and the backscattering fraction c describing the main direction of the scattering lobe. Hapke proposed a convenient and widely used analytical model to describe the spectro-photometry of granular materials. Using a compilation of the published data, Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) recently studied the relationship of b and c for natural examples and proposed the hockey stick relation (excluding b > 0.5 and c > 0.5). For the moment, there is no theoretical explanation for this relationship. One goal of this article is to study a possible bias due to the retrieval method. We expand here an innovative Bayesian inversion method in order to study into detail the uncertainties of retrieved parameters. On Emission Phase Function (EPF) data, we demonstrate that the uncertainties of the retrieved parameters follow the same hockey stick relation, suggesting that this relation is due to the fact that b and c are coupled parameters in the Hapke model instead of a natural phenomena. Nevertheless, the data used in the Hapke (Hapke, B. [2012]. Icarus 221, 1079-1083) compilation generally are full Bidirectional Reflectance Diffusion Function (BRDF) that are shown not to be subject to this artifact. Moreover, the Bayesian method is a good tool to test if the sampling geometry is sufficient to constrain the parameters (single scattering albedo, surface roughness, b, c , opposition effect). We performed sensitivity tests by mimicking various surface scattering properties and various single image-like/disk resolved image, EPF-like and BRDF-like geometric sampling conditions. The second goal of this article is to estimate the favorable geometric conditions for an accurate estimation of photometric parameters in order to provide new constraints for future observation campaigns and instrumentations.

  16. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Govind, Ajit; Arndt, Stefan K.; Hocking, Darren; Wardlaw, Timothy J.; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard

    2015-03-01

    Clumping index is the measure of foliage grouping relative to a random distribution of leaves in space. It is a key structural parameter of plant canopies that influences canopy radiation regimes and controls canopy photosynthesis and other land-atmosphere interactions. The Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ˜6 km resolution and the Bidirectional Reflectance Distribution Function (BRDF) product from Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution. Most recently the algorithm was also applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this study for the first time we characterized and compared the three products over a set of sites representing diverse biomes and different canopy structures. The products were also directly validated with both in-situ vertical profiles and available seasonal trajectories of clumping index over several sites. We demonstrated that the vertical distribution of foliage and especially the effect of understory need to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements responded to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can propagate into the foliage clumping maps. Our results indicate that MODIS data and MISR data, with 275 m in particular, can provide good quality clumping index estimates at spatial scales pertinent for modeling local carbon and energy fluxes.

  17. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  18. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  19. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    PubMed Central

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-01-01

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0∘ to 75∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples. PMID:28241466

  20. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  1. Development and Evaluation of New Methods for Estimating Albedo-area for Stable GEOs

    NASA Astrophysics Data System (ADS)

    Payne, T. E.; Gregory, S. A.; Dentamaro, A.; Ernst, M.; Hollon, J.; Kruchten, A.; Chaudhary, A. B.; Dao, P. D.

    Although direct measurements of the projected areas of various Geosynchronous Earth Orbit (GEO) satellite facets are impossible without high-resolution imaging, estimates of the albedo-Area (aA) product lead to the possibility of inferring the area. Such size estimates are an integral part of its identity. We are engaged in parallel development of two methods for calculating aA for the body/communication antennae structures and one method for the solar panels. We have previously reported on the Two Facet Model (2FM) method for body aA, and here we discuss a method based on differences between new observations and a baseline catalog that has been constructed from the GEO Observations with Longitudinal Diversity Simultaneously (GOLDS) data. We report on evaluations of the 2FM and differential method (DM) algorithm results. We also discuss a new method of estimating solar panel aA by fitting new data that include specular glints. All of these measurement methods are compared to models and simulations that serve as a proxy for ground truth. Because of the partially directional nature of the composite Bi-directional Reflectivity Distribution Function (BRDF) of all bus-mounted appendages, variance of body aA results is expected to be significant. Short-term and long-term variance of the derived aAs will also be discussed.

  2. Hyperspectral imaging simulation of object under sea-sky background

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui

    2016-10-01

    Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.

  3. Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data

    NASA Astrophysics Data System (ADS)

    Pang, Y.; Li, Z.

    2016-12-01

    Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.

  4. GOSAT and OCO-2 Inter-comparison on Measured Spectral Radiance and Retrieved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Kuze, A.; Shiomi, K.; Suto, H.; Crisp, D.; Bruegge, C. J.; Schwandner, F. M.

    2016-12-01

    TANSO-FTS onboard GOSAT and grating spectrometer on OCO-2 use different measurement techniques to measure carbon dioxide (CO2) and molecular oxygen (O2). Both instruments observe sunlight reflected from the Earth's surface in almost the same spectral range. As a first step in cross calibrating these two instruments, we compared spectral radiance observations within the three short wave infrared (SWIR) spectral bands centered on the O2 A-band (O2A), the weak CO2 band near 1.6 microns (Weak-CO2) and 2.06 micons (Strong-CO2) bands at temporally coincident and spatially collocated points. In this work, we reconciled the different size of the footprints and evaluated at various types of surface targets such as ocean, desert and forest. For radiometric inter-comparisons, we consider long term instrument sensitivity degradation in orbit and differences in viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF). Measured spectral radiances agree very well within 5% for all bands. This presentation will summarize these comparisons of GOSAT and OCO-2 spectral radiance observations and associated estimates of carbon dioxide and related parameters retrieved with the same algorithm at matchup points. We will also discuss instrument related uncertainties from various target observations.

  5. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.

  6. Multi-satellites normalization of the FengYun-2s visible detectors by the MVP method

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na

    2013-08-01

    After January 13, 2012, FY-2F had successfully launched, the total number of the in orbit operating FengYun-2 geostationary meteorological satellites reached three. For accurate and efficient application of multi-satellite observation data, the study of the multi-satellites normalization of the visible detector was urgent. The method required to be non-rely on the in orbit calibration. So as to validate the calibration results before and after the launch; calculate day updating surface bidirectional reflectance distribution function (BRDF); at the same time track the long-term decay phenomenon of the detector's linearity and responsivity. By research of the typical BRDF model, the normalization method was designed. Which could effectively solute the interference of surface directional reflectance characteristics, non-rely on visible detector in orbit calibration. That was the Median Vertical Plane (MVP) method. The MVP method was based on the symmetry of principal plane, which were the directional reflective properties of the general surface targets. Two geostationary satellites were taken as the endpoint of a segment, targets on the intersecting line of the segment's MVP and the earth surface could be used as a normalization reference target (NRT). Observation on the NRT by two satellites at the moment the sun passing through the MVP brought the same observation zenith, solar zenith, and opposite relative direction angle. At that time, the linear regression coefficients of the satellite output data were the required normalization coefficients. The normalization coefficients between FY-2D, FY-2E and FY-2F were calculated, and the self-test method of the normalized results was designed and realized. The results showed the differences of the responsivity between satellites could up to 10.1%(FY-2E to FY-2F); the differences of the output reflectance calculated by the broadcast calibration look-up table could up to 21.1%(FY-2D to FY-2F); the differences of the output reflectance from FY-2D and FY-2E calculated by the site experiment results reduced to 2.9%(13.6% when using the broadcast table). The normalized relative error was also calculated by the self-test method, which was less than 0.2%.

  7. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi-empirical model. AHI band 1 (0.47μm) shows good matching with VIIRS band M3 with difference of 0.15%. AHI band 5 (1.69μm) shows largest difference in comparison with VIIRS M10.

  8. A merged surface reflectance product from the Landsat and Sentinel-2 Missions

    NASA Astrophysics Data System (ADS)

    Vermote, E.; Claverie, M.; Masek, J. G.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    This project is aimed at producing a merged surface product from the Landsat and Sentinel-2 missions to ultimately achieve high temporal coverage (~2 days repeat cycle) at high spatial resolution (20-60m). The goal is to achieve a seamless/consistent stream of surface reflectance data from the different sensors. The first part of this presentation discusses the basic requirements of such a product and the necessary processing steps: mainly calibration, atmospheric corrections, BRDF effect corrections, spectral band pass adjustments and gridding. We demonstrate the performance of those different corrections by using MODIS and VIIRS (Climate Modeling Grid at 0.05deg) data globally as well as Formosat-2 (8m spatial resolution) data (one crop site in South of France where 105 scenes were acquired during 2006-2010). The consistency of the surface reflectance product from MODIS and Formosat-2 ranges from 6 to 8% relative depending on the spectral bands (Green to NIR) with a bias between 2% (NIR) to 5% (green), which is acceptable given the cumulated limitation in cross-calibration, atmospheric correction and BRDF correction. The second part is devoted to the simulation of the merged Landsat and Sentinel-2 mission by using Landsat-7, LDCM (early) and SPOT-4 Take 5 dataset. SPOT-4 Take 5 dataset is a collection of 42 sites distributed globally and systematically acquired by SPOT-4 HRV every 5 days during the decommissioning phase of the SPOT4 mission (February-May 2013). Finally, the benefits of such a merged surface reflectance at high spatial and temporal resolution are discussed within the context of the agricultural monitoring, in particular in the perspective of the GEOGLAM (Global Earth Observation for Global Land Agriculture Monitoring) project.

  9. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall-off and minimum image distortion among the satellites, using Landsat's specifications. Attitude-specific constraints such as power consumption, response time, and stability were factored into the optimality computations. The algorithm can integrate cloud cover predictions, specific ground and air assets and angular constraints.

  10. Polarimetric phenomenology in the reflective regime: a case study using polarized hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gibney, Mark

    2016-05-01

    Understanding the phenomenology of polarimetric data is necessary if we want to obtain the maximum benefit when we exploit that data. To first order, polarimetric phenomenology is driven by two things; the target material type (specular or diffuse) and the illuminating source (point (sun) or extended (body emission)). Polarimetric phenomenology can then be broken into three basic categories; ([specular material/sun source], [diffuse/sun], [specular/body]) where we have assigned body emission to the IR passband where materials are generally specular. The task of interest determines the category of interest since the task determines the dominant target material and the illuminating source (eg detecting diffuse targets under trees in VNIR = [diffuse/sun] category). In this paper, a specific case study for the important [diffuse/sun] category will be presented. For the reflective regime (0.3 - 3.0um), the largest polarimetric signal is obtained when the sun illuminates a significant portion of the material BRDF lobe. This naturally points us to problems whose primary target materials are diffuse since the BRDF lobe for specular materials is tiny (low probability of acquiring on the BRDF lobe) and glinty (high probability of saturating the sensor when on lobe). In this case study, we investigated signatures of solar illuminated diffuse paints acquired by a polarimetric hyperspectral sensor. We will discuss the acquisition, reduction and exploitation of that data, and use it to illustrate the primary characteristics of reflective polarimetric phenomenology.

  11. The comparison of BRDF model and validation of MCD43 products by the 2013 Dunhuang Gobi experiments

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na

    2014-11-01

    BRDF has numerous applications in on-orbit satellites vicarious calibration. The 2013 Dunhuang Gobi surface directional reflectance measurements experiment were held during Aug. 20 to Aug. 28. In order to match the spatial resolution (0.25-1.25km) of meteorological satellites, 3*3 sample points were selected covering the 10*10km area. All the data were measured during (3 hours before and after) the noon without taking into account the large sun zenith angle because of the lack of the satellite passing through. Totally 9 groups of directional reflectance (DREF) were measured by the use of ASD (350-2500nm), standard reference board and a portable DREF measurement system. At each point, DREF were measured by different observation zenith angle (0, 20, 40 and 60 degree) and azimuth angle (0, 45, 90, 135, 180, 225, 270, 315 and 360 degree) in 30 minutes. Different BRDF models were selected such as Walthall, Sine Walthall, Hapke, Roujean and Ross-Li. The model coefficients were derived corresponding to the observed data. The relative differences (RD) of the models with respect to the measured values were calculated. The accuracy of MCD43 products in the Julian day of 233 and 241 were also validated. Results showed that Ross-Li model had the smallest RD. The RD between the DREF from MCD43 products and the measured values were 10.26%(233) and 8.96% (241)@550nm, respectively.

  12. Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories

    NASA Astrophysics Data System (ADS)

    Berthier, S.; Padeletti, G.; Fermo, P.; Bouquillon, A.; Aucouturier, M.; Charron, E.; Reillon, V.

    2006-06-01

    Luster decoration of medieval and renaissance potteries constitutes one of the most important and sophisticated decoration techniques of the Mediterranean basin. Lusters consist in a thin layer of silver and copper nanocrystals immersed in a dielectric matrix. Different physical phenomena are responsible for the very brilliant and complex colored effect produced by the lusters. On one hand, according to the thickness of the thin layer, interferential effects occur giving rise to a classical iridescent effect. On the other hand, the nanostructure of the metallic compound leads to extra absorption, generally observed in the visible or near infrared, due to an external resonance associated with the excitation of a surface plasmon in the metallic particles. The position of this resonance, and so the color of the film, depends from many parameters, mainly: (1) the relative volume fraction p of the metal inclusions. (2) The mean size of the metal particle. (3) The shape of the particles and (4) the dielectric functions of the constituents. These two phenomena are not independent as the second one greatly affects the dielectric function of the film and, thus, its optical thickness. In this paper, the physical and optical properties of various lusters from Deruta and Gubbio (Italy) of the XVI century are presented. The structure and the composition of the different films have been determined by scanning electron microscope (SEM), ion beam analyses (PIXE and RBS) and low incidence X-ray diffraction. The optical properties have been determined by two different techniques: (a) hemispherical spectroscopic measurements under near-normal incidence; (b) gonioscopic measurements for a given angle of incidence and wavelength. The first one allows the determination of the effective index of refraction of the inhomogeneous layer, and the second one the determination of the bidirectional reflectance distribution function (BRDF) of the material.

  13. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.

  14. Contamination and Optics Degradation as Related to an Evolving Mission Design for the Terrestrial Planet Finder

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Lindensmith, C. A.

    1998-12-01

    Terrestrial Planet Finder (TPF) is an evolving mission in NASA's ORIGINS program designed to detect earth like planets and perform high-resolution interferometric imaging of astrophysics targets in the infrared. The planet detection concept involves the use of multiple collectors in formation flying spacecraft and nulling interferometry to isolate the image of the planet (located near a bright star) while the star image is canceled out. The concept development involves the search for 10 to 20 micron radiation from planets orbiting stars out to a distance of 3 to 15 pc using NGST type collectors passively cooled to 35 K with high quality thermal shields. The need to obtain a suitable null for planet detection results in strict requirements of signal amplitude and phase matching at the optics. This in turn implies very tight cleanliness requirements at the optics. Several contamination issues need to be taken into account in order to maintain the integrity of the optics as well as the thermal shields. Cryogenic optical surfaces, e.g., mirror surfaces, are susceptible to contamination due to formation of thin cryolayers from propulsion system exhaust and outgassing products. Detector optics at 5 to 7 K will condense almost all species with the exception of hydrogen and helium. Thermal control surfaces at 35 to 40 K will condense a host of species including water vapor, which because of the presence of several absorption peaks in the infrared, will increase the emissivity of low emissivity surfaces. The increased emissivity will result in a temperature rise for the surface which will lead to decreased performance of cryocoolers, which depend upon passive precooling of the working fluid, used to cool the detectors. The condensed contaminant film on optics will also increase non-specular reflection from the surface, i.e., an increase in Bi-directional Reflectance Distribution Function (BRDF), leading to a lowering of the image quality. Particles on optical surfaces also increase scatter and thus the surface BRDF. This results in an increase in straylight. In addition, the surface particle induced scatter will reduce the contrast of the dark rings of the Point Spread Function (PSF) and hence make separation of a fainter celestial object situated near a brighter object more difficult. Warm particles in the field-of-view of the sensors can be mistaken for a celestial body due to their thermal emission. Similarly, certain contaminant molecules in the field-of-view of the sensors can mimic the sought spectral signatures of the terrestrial type planet. Contamination is an important consideration in the development of the TPF and continued study will help to minimize its effects on the mission.

  15. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nm< 0.45) and acquired during several field campaigns. Results are compared with AERONET aerosol reference data. We also explore the benefits of AirMSPI's ultraviolet and polarimetric bands as well as the use of multiple view angles. References[1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. O. Dubovik et al. Atmos. Meas. Tech. 4, 975 (2011). [3]. F. Xu et al. Atmos. Meas. Tech. 9, 2877 (2016). [4]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [5]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974).

  16. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  17. Assessment of stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands using pseudo-invariant desert and Dome C sites

    NASA Astrophysics Data System (ADS)

    Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.

  18. Simulated Aging of Spacecraft External Materials on Orbit

    NASA Astrophysics Data System (ADS)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  19. Radiometry rocks

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2012-10-01

    Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.

  20. A business rules design framework for a pharmaceutical validation and alert system.

    PubMed

    Boussadi, A; Bousquet, C; Sabatier, B; Caruba, T; Durieux, P; Degoulet, P

    2011-01-01

    Several alert systems have been developed to improve the patient safety aspects of clinical information systems (CIS). Most studies have focused on the evaluation of these systems, with little information provided about the methodology leading to system implementation. We propose here an 'agile' business rule design framework (BRDF) supporting both the design of alerts for the validation of drug prescriptions and the incorporation of the end user into the design process. We analyzed the unified process (UP) design life cycle and defined the activities, subactivities, actors and UML artifacts that could be used to enhance the agility of the proposed framework. We then applied the proposed framework to two different sets of data in the context of the Georges Pompidou University Hospital (HEGP) CIS. We introduced two new subactivities into UP: business rule specification and business rule instantiation activity. The pharmacist made an effective contribution to five of the eight BRDF design activities. Validation of the two new subactivities was effected in the context of drug dosage adaption to the patients' clinical and biological contexts. Pilot experiment shows that business rules modeled with BRDF and implemented as an alert system triggered an alert for 5824 of the 71,413 prescriptions considered (8.16%). A business rule design framework approach meets one of the strategic objectives for decision support design by taking into account three important criteria posing a particular challenge to system designers: 1) business processes, 2) knowledge modeling of the context of application, and 3) the agility of the various design steps.

  1. The esa earth explorer land surface processes and interactions mission

    NASA Astrophysics Data System (ADS)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  2. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  3. Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Schaaf, Crystal; Zhang, Xiaoyang; Strahler, Alan; Roy, David; Morisette, Jeffrey; Wang, Zhuosen; Nightingale, Joanne; Nickeson, Jaime; Richardson, Andrew D.; hide

    2013-01-01

    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest.

  4. Laser pulse bidirectional reflectance from CALIPSO mission

    NASA Astrophysics Data System (ADS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Vaughan, Mark; Liu, Zhaoyan; Rodier, Sharon; Hunt, William; Powell, Kathy; Lucker, Patricia; Trepte, Charles

    2018-06-01

    This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m vertical resolution are discussed. The saturated laser pulse magnitudes from snow and ice surfaces are recovered based on information extracted from the tail end of the surface signal. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud-covered regions and MODIS BRDF-albedo model parameters. In addition to the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectances are calculated from the CALIOP lidar background data and compared with the bidirectional reflectances derived from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and are expected to have valuable applications for modelers.

  5. BOREAS RSS-20 POLDER Helicopter-Mounted Measurements of Surface BRDF

    NASA Technical Reports Server (NTRS)

    Leroy, Marc; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-9 team collected data on precipitation and strearnflow over portions of the NSA and SSA. This data set contains Cartesian maps of rain accumulation for I -hour and daily periods during the summer of 1994 over the SSA only (not the full view of the radar). A parallel set of 1-hour maps for the whole radar view has been prepared and is available upon request from the HYD-09 personnel. An incidental benefit of the areal selection was the elimination of some of the less accurate data,because for various reasons the radar rain estimates degrade considerably outside a range of about 100 km. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling

    NASA Astrophysics Data System (ADS)

    Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe

    2017-03-01

    Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non-polarized reflectance using the ROMC tool is done, and our model shows good agreement with the ROMC reference.

  7. Imaging spectroscopy calibration and applications for coastal wetland species composition and biomass mapping in the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Jensen, D.; Cavanaugh, K. C.; Simard, M.

    2016-12-01

    Coastal wetlands provide a wealth of ecosystem services, including improved water quality, protection from storm surges, and wildlife habitat. Louisiana's wetlands, however, are threatened by development, pollution, and relative sea level rise (RSLR)—the combination of sea level rise and subsidence rates. Beyond causing land loss, RSLR impacts Louisiana's wetland ecosystems by altering salinity, nutrient availability, flood duration, and flood frequency in the region. Despite widespread wetland loss, areas such as the Wax Lake and Atchafalaya river deltas are in fact growing due to their sediment loads, resulting in a complex of both degradation and aggradation along the Louisiana coast. In order to understand and model how coastal wetlands are responding to RSLR, there is a need for improved vegetation distribution mapping, biomass estimation, and ecosystem change modeling. To this end, high-resolution imaging spectroscopy offers the ability to accurately develop species-level distribution maps and predictive aboveground biomass (AGB) models. AVIRIS-NG data collected over the Atchafalaya River Delta were calibrated to reduce Bidirectional Reflectance Distribution Function (BRDF) effects and mosaicked, along with other scenes that coincided with field observations. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map salt marsh at the species level across our study area. Field observations were used to parameterize and validate our MESMA based approach. AGB was then mapped for this region using a partial least squares regression (PLSR) model developed from the same imagery and field measurements. Last, the Sea Level Affecting Marshes Model was applied to predict wetland loss and changes in marsh composition due to sea level rise, which was then paired with the AGB map to estimate carbon storage change. In doing so, this study addresses key concerns for coastal regions and demonstrates the ability of imaging spectroscopy to predict those impacts.

  8. Simultaneous Retrieval of Aerosol Optical Depth and Surface Reflectance over Land within Short Temporal Interval Using MSG Data

    NASA Astrophysics Data System (ADS)

    Li, C.; Xue, Y.; Li, Y. J.; Yang, L. K.; Hou, T. T.

    2012-04-01

    Aerosols cause a major uncertainty in the research of climatology and global change, whereas satellite aerosol remote sensing over land still remains a big challenge. Due to their short time repeat cycle, geostationary satellites are capable of monitoring the temporal features of aerosols, while its limited number of visible bands is an obstacle. On the other hand, a main uncertainty in aerosol retrieval is the difficulty to separate the relatively weaker contribution of the atmosphere to the signal received by the satellite from the contribution of the Earth's surface. In this paper, an analytical retrieval strategy is presented to solve the both problems above. For the lack of surface reflectance, we use the Ross-Li BRDF (Bidirectional Reflectance Distribution Function) model and assume that the surface reflective property changes mainly due to the change of illumination geometry in a short time interval while the kernals of Ross-Li model remain the same. For the limited visible band, we take advantage of the Aerosol Optical Depth (AOD) consistence within short distances, thus to reduce the number of unknown parameters. A parameterization of the atmospheric radiative transfer model is used which is proved to be proper to retrieve aerosol and surface parameters by sensitivity analysis. Taking the three kernels of kernel-driven BRDF model and AOD as unknown parameters and based on prior knowledge of aerosol types, a series of nonlinear equations can be established then. Both AOD and surface reflectance can be obtained by using a numerical method to solve these equations. By applying this method, called LABITS-MSG (Land Aerosol and Bidirectional reflectance Inversion by Time Series technique for MSG), to data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations on board Meteosat Second Generation (MSG), we obtain regional maps of AOD and surface reflectance in July 11, 2010 within a temporal interval of as short as 1 hour, and a spatial resolution of 10 km. Preliminary validation results by comparing our retrieved AOD with Aerosol Robotic Network (AERONET) data show that the correlation coefficient R is about 0.81, the root-mean-square error (RMSE) is less than 0.1, and the uncertainty is found to be Δτ = ± 0.05 ± 0.20τ. Time serial comparison of MSG and AERONET AODs on Granada site also shows a good fitting. To conclude, this algorithm shows its potential to retrieve real-time AODs over land from geostationary satellites.

  9. Visible and near-infrared reflectance spectroscopy of planetary analog materials. Experimental facility at Laboratoire de Planetologie de Grenoble.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.

    2007-08-01

    We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and solid samples and samples diluted in KBr pellets, infrared imaging microscope, numerical modeling of bidirectional reflectance spectra using laboratory-measured optical constants. We will present different examples of experimental results obtained on the reflectance spectroscopy facility: - Effects of particle size, mixtures between samples with different albedo and measurement geometries on the water-of-hydration near-infrared absorption signatures with implications for the Martian regolith water content. - BRDF of regolith analogs and natural snow. - Hydration and dehydration of planetary analogs. - Spectra of different kinds of mixtures between water ice and minerals. We will briefly discuss the planetary implications of each of these measurements and detail the future investigations that will be undertaken on our experimental facility.

  10. Retrieval of Understory NDVI in Sparse Boreal Forests By MODIS Brdf Data

    NASA Astrophysics Data System (ADS)

    Yang, W.; Kobayashi, H.; Suzuki, R.; Nasahara, K. N.

    2014-12-01

    Global products of leaf area index (LAI) usually show large uncertainties in sparsely vegetated areas. The reason is that the understory contribution is not negligible in reflectance modeling for the case of low to intermediate canopy cover. Therefore many efforts have been carried out on inclusion of understory properties in the LAI estimation algorithms. Compared with conventional data bank method, estimation of forest understory property from satellite data is superior in the studies at global or continental scale during a long periods. However, the existing remote sensing method based on multi-angular observations is very complicated to implement. Alternatively, a simple method to retrieve understory NDVI (NDVIu) for sparse boreal forests was proposed in this study. The method is based on the property that the bi-directional variation of NDVIu is much smaller than that of the canopy-level NDVI. To retrieve NDVIu for a certain pixel, linear extrapolation was applied using the pixels within a 5×5 target-pixel-centered window. The NDVI values were reconstructed from the MODIS BRDF data corresponding to eight different solar-view angles. NDVIu was estimated as the average of the NDVI values corresponding to the position where the stand NDVI has the smallest angular variation. Validation by noise-free simulation dataset yielded high agreement between estimated and true NDVIu with R2 and RMSE of 0.99 and 0.03, respectively. By the MODIS BRDF data, we got the estimate of NDVIu close to the in situ measured value (0.61 vs. 0.66 for estimate and measurement, respectively), and also reasonable seasonal patterns of NDVIu in 2010-2013. The results imply a potential application of the retrieved NDVIu to improve the estimation of overstory LAI for sparse boreal forests.

  11. Reflectance-Based Sensor Validation Over Ice Surfaces

    NASA Technical Reports Server (NTRS)

    Jaross, Glen; Dodge, James C. (Technical Monitor)

    2003-01-01

    During this period work was performed in the following areas. These areas are defined in the Work Schedule presented in the original proposal: BRDF development, Data acquisition and processing, THR Table generation and Presentations and Publications. BRDF development involves creating and/or modifying a reflectance model of the Antarctic surface. This model must, for a temporal and spatial average, be representative of the East Antarctic plateau and be expressed in terms of the three standard surface angles: solar zenith angle (SolZA), view zenith angle (SatZA), and relative azimuth angle (RelAZ). We successfully acquired a limited amount of NOAA-9 AVHRR data for radiance validation. The data were obtained from the Laboratory for Terrestrial Physics at Goddard Space Flight Center. We developed our own reading and unpacking software, which we used to select Channel 1 data (visible). We then applied geographic subsetting criteria (same as used for TOMS), and wrote only the relevant data to packed binary files. We proceeded with analysis of these data, which is not yet complete.

  12. SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.

    PubMed

    Wang, Ting-Chun; Chandraker, Manmohan; Efros, Alexei A; Ramamoorthi, Ravi

    2018-03-01

    Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

  13. Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Shepard, M.K.

    2004-01-01

    Interpretations of visible/near-infrared reflectance spectra of Mars are often complicated by the effects of dust coatings that obscure the underlying materials of interest. The ability to separate the spectral reflectance signatures of coatings and substrates requires an understanding of how their individual and combined reflectance properties vary with phase angle. Toward this end, laboratory multispectral observations of rocks coated with different amounts of Mars analog dust were acquired under variable illumination and viewing geometries using the Bloomsburg University Goniometer (BUG). These bidirectional reflectance distribution function (BRDF) data were fit with a two-layer radiative transfer model, which replicated BUG observations of dust-coated basaltic andesite substrates relatively well. Derived single scattering albedo and phase function parameters for the dust were useful in testing the model's ability to derive the spectrum of a "blind" substrate (unknown to the modeler) coated with dust. Subsequent tests were run using subsets of the BUG data restricted by goniometric or coating thickness coverage. Using the entire data set provided the best constraints on model parameters, although some reductions in goniometric coverage could be tolerated without substantial degradation. Predictably, the most thinly coated samples provided the best information on the substrate, whereas the thickest coatings best replicated the dust. Dust zenith optical thickness values ???0.6-0.8 best constrain the substrate and coating simultaneously, particularly for large ranges of incidence or emission angles. The lack of sufficient angles can be offset by having a greater number and range of coatings thicknesses. Given few angles and thicknesses, few constraints can be placed concurrently on the spectral properties of the coating and substrate. ?? 2004 Elsevier Inc. All rights reserved.

  14. Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters

    USDA-ARS?s Scientific Manuscript database

    Measuring and monitoring controls on wind erosion can facilitate detection and prediction of soil degradation important for food security. Ground cover is widely recognised as an important factor for controlling soil erosion by wind and water. Consequently, maintaining ground cover (e.g., vegetation...

  15. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit of the ISS results in varying illumination angles and fix-point spotlight imaging results in varying viewing angles, ideal for viewing steep slopes on glaciers and adjacent areas. Rapid events may be observed in progress by correlating changes in images over a single pass or between passes. We present a working design, data acquisition parameters, science objectives, and data processing strategy for a conceptual instrument, MUIR (Mission to Understand Ice Retreat).

  16. Application of a neural network for reflectance spectrum classification

    NASA Astrophysics Data System (ADS)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  17. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  18. Land Surface Albedo From EPS/AVHRR : Method For Retrieval and Validation

    NASA Astrophysics Data System (ADS)

    Jacob, G.

    2015-12-01

    The scope of Land Surface Analysis Satellite Applications Facility (LSA-SAF) is to increase benefit from EUMETSAT Satellites (MSG and EPS) data by providing added value products for the meteorological and environmental science communities with main applications in the fields of climate modelling, environmental management, natural hazards management, and climate change detection. The MSG/SEVIRI daily albedo product is disseminated operationally by the LSA-SAF processing centre based in Portugal since 2009. This product so-called MDAL covers Europe and Africa includes in the visible, near infrared and shortwave bands at a resolution of 3km at the equator. Recently, an albedo product at 1km so-called ETAL has been built from EPS/AVHRR observations in order to primarily MDAL product outside the MSG disk, while ensuring a global coverage. The methodology is common to MSG and EPS data and relies on the inversion of the BRDF (Bidirectional Reflectance Distribution Function) model of Roujean et al. On a given target, ETAL products exploits the variability of viewing angles whereas MDAL looks at the variations of solar illumination. The comparison of ETAL albedo product against MODIS and MSG/SEVIRI products over the year 2015 is instructive in many ways and shows in general a good agreement between them. The dispersion may be accounted by different factors that will be explained The additional information provided by EPS appears to be particularly beneficial for high latitudes during winter and for snow albedo.

  19. Simulation and modeling of return waveforms from a ladar beam footprint in USU LadarSIM

    NASA Astrophysics Data System (ADS)

    Budge, Scott; Leishman, Brad; Pack, Robert

    2006-05-01

    Ladar systems are an emerging technology with applications in many fields. Consequently, simulations for these systems have become a valuable tool in the improvement of existing systems and the development of new ones. This paper discusses the theory and issues involved in reliably modeling the return waveform of a ladar beam footprint in the Utah State University LadarSIM simulation software. Emphasis is placed on modeling system-level effects that allow an investigation of engineering tradeoffs in preliminary designs, and validation of behaviors in fabricated designs. Efforts have been made to decrease the necessary computation time while still maintaining a usable model. A full waveform simulation is implemented that models optical signals received on detector followed by electronic signals and discriminators commonly encountered in contemporary direct-detection ladar systems. Waveforms are modeled using a novel hexagonal sampling process applied across the ladar beam footprint. Each sample is weighted using a Gaussian spatial profile for a well formed laser footprint. Model fidelity is also improved by using a bidirectional reflectance distribution function (BRDF) for target reflectance. Once photons are converted to electrons, waveform processing is used to detect first, last or multiple return pulses. The detection methods discussed in this paper are a threshold detection method, a constant fraction method, and a derivative zero-crossing method. Various detection phenomena, such as range error, walk error, drop outs and false alarms, can be studied using these detection methods.

  20. NASA's Black Marble Nighttime Lights Product Suite

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas; hide

    2018-01-01

    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

  1. The Community Cloud retrieval for CLimate (CC4CL) - Part 2: The optimal estimation approach

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.; Poulsen, Caroline A.; Thomas, Gareth E.; Povey, Adam C.; Sus, Oliver; Stapelberg, Stefan; Schlundt, Cornelia; Proud, Simon; Christensen, Matthew W.; Stengel, Martin; Hollmann, Rainer; Grainger, Roy G.

    2018-06-01

    The Community Cloud retrieval for Climate (CC4CL) is a cloud property retrieval system for satellite-based multispectral imagers and is an important component of the Cloud Climate Change Initiative (Cloud_cci) project. In this paper we discuss the optimal estimation retrieval of cloud optical thickness, effective radius and cloud top pressure based on the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm. Key to this method is the forward model, which includes the clear-sky model, the liquid water and ice cloud models, the surface model including a bidirectional reflectance distribution function (BRDF), and the "fast" radiative transfer solution (which includes a multiple scattering treatment). All of these components and their assumptions and limitations will be discussed in detail. The forward model provides the accuracy appropriate for our retrieval method. The errors are comparable to the instrument noise for cloud optical thicknesses greater than 10. At optical thicknesses less than 10 modeling errors become more significant. The retrieval method is then presented describing optimal estimation in general, the nonlinear inversion method employed, measurement and a priori inputs, the propagation of input uncertainties and the calculation of subsidiary quantities that are derived from the retrieval results. An evaluation of the retrieval was performed using measurements simulated with noise levels appropriate for the MODIS instrument. Results show errors less than 10 % for cloud optical thicknesses greater than 10. Results for clouds of optical thicknesses less than 10 have errors up to 20 %.

  2. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    NASA Astrophysics Data System (ADS)

    von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.

    2011-02-01

    For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.

  3. A High Fidelity Approach to Data Simulation for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Hagerty, S.; Ellis, H., Jr.

    2016-09-01

    Space Situational Awareness (SSA) is vital to maintaining our Space Superiority. A high fidelity, time-based simulation tool, PROXOR™ (Proximity Operations and Rendering), supports SSA by generating realistic mission scenarios including sensor frame data with corresponding truth. This is a unique and critical tool for supporting mission architecture studies, new capability (algorithm) development, current/future capability performance analysis, and mission performance prediction. PROXOR™ provides a flexible architecture for sensor and resident space object (RSO) orbital motion and attitude control that simulates SSA, rendezvous and proximity operations scenarios. The major elements of interest are based on the ability to accurately simulate all aspects of the RSO model, viewing geometry, imaging optics, sensor detector, and environmental conditions. These capabilities enhance the realism of mission scenario models and generated mission image data. As an input, PROXOR™ uses a library of 3-D satellite models containing 10+ satellites, including low-earth orbit (e.g., DMSP) and geostationary (e.g., Intelsat) spacecraft, where the spacecraft surface properties are those of actual materials and include Phong and Maxwell-Beard bidirectional reflectance distribution function (BRDF) coefficients for accurate radiometric modeling. We calculate the inertial attitude, the changing solar and Earth illumination angles of the satellite, and the viewing angles from the sensor as we propagate the RSO in its orbit. The synthetic satellite image is rendered at high resolution and aggregated to the focal plane resolution resulting in accurate radiometry even when the RSO is a point source. The sensor model includes optical effects from the imaging system [point spread function (PSF) includes aberrations, obscurations, support structures, defocus], detector effects (CCD blooming, left/right bias, fixed pattern noise, image persistence, shot noise, read noise, and quantization noise), and environmental effects (radiation hits with selectable angular distributions and 4-layer atmospheric turbulence model for ground based sensors). We have developed an accurate flash Light Detection and Ranging (LIDAR) model that supports reconstruction of 3-dimensional information on the RSO. PROXOR™ contains many important imaging effects such as intra-frame smear, realized by oversampling the image in time and capturing target motion and jitter during the integration time.

  4. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  5. Reflectance Estimation from Urban Terrestrial Images: Validation of a Symbolic Ray-Tracing Method on Synthetic Data

    NASA Astrophysics Data System (ADS)

    Coubard, F.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2011-04-01

    Terrestrial geolocalized images are nowadays widely used on the Internet, mainly in urban areas, through immersion services such as Google Street View. On the long run, we seek to enhance the visualization of these images; for that purpose, radiometric corrections must be performed to free them from illumination conditions at the time of acquisition. Given the simultaneously acquired 3D geometric model of the scene with LIDAR or vision techniques, we face an inverse problem where the illumination and the geometry of the scene are known and the reflectance of the scene is to be estimated. Our main contribution is the introduction of a symbolic ray-tracing rendering to generate parametric images, for quick evaluation and comparison with the acquired images. The proposed approach is then based on an iterative estimation of the reflectance parameters of the materials, using a single rendering pre-processing. We validate the method on synthetic data with linear BRDF models and discuss the limitations of the proposed approach with more general non-linear BRDF models.

  6. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  7. Evaluation of sensor, environment and operational factors impacting the use of multiple sensor constellations for long term resource monitoring

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan

    Moderate resolution remote sensing data offers the potential to monitor the long and short term trends in the condition of the Earth's resources at finer spatial scales and over longer time periods. While improved calibration (radiometric and geometric), free access (Landsat, Sentinel, CBERS), and higher level products in reflectance units have made it easier for the science community to derive the biophysical parameters from these remotely sensed data, a number of issues still affect the analysis of multi-temporal datasets. These are primarily due to sources that are inherent in the process of imaging from single or multiple sensors. Some of these undesired or uncompensated sources of variation include variation in the view angles, illumination angles, atmospheric effects, and sensor effects such as Relative Spectral Response (RSR) variation between different sensors. The complex interaction of these sources of variation would make their study extremely difficult if not impossible with real data, and therefore, a simulated analysis approach is used in this study. A synthetic forest canopy is produced using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and its measured BRDFs are modeled using the RossLi canopy BRDF model. The simulated BRDF matches the real data to within 2% of the reflectance in the red and the NIR spectral bands studied. The BRDF modeling process is extended to model and characterize the defoliation of a forest, which is used in factor sensitivity studies to estimate the effect of each factor for varying environment and sensor conditions. Finally, a factorial experiment is designed to understand the significance of the sources of variation, and regression based analysis are performed to understand the relative importance of the factors. The design of experiment and the sensitivity analysis conclude that the atmospheric attenuation and variations due to the illumination angles are the dominant sources impacting the at-sensor radiance.

  8. Quantifying BRDF Effects in Comparing Landsat-7 and AVIRIS Near-Simultaneous Acquisitions for Studies of High Plains Vegetation Cover

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.

    1999-01-01

    Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.

  9. An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

    2014-05-01

    In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are important features to support the planning of rover paths. In addition annotations can be placed directly into the 3D scene, which also serve as landmarks to aid navigation. The presented visualization and planning tool is a valuable asset for scientific analysis of planetary mission data. It complements traditional methods by giving access to an interactive virtual 3D reconstruction, which is realistically rendered. Representative examples and further information about the interactive 3D visualization tool can be found on the FP7-SPACE Project PRoViDE web page http://www.provide-space.eu/interactive-virtual-3d-tool/. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 'PRoViDE'.

  10. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic data from Landsat and MODIS BRDF/albedo product

    USDA-ARS?s Scientific Manuscript database

    Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...

  11. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  12. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    NASA Technical Reports Server (NTRS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  13. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  14. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.

  15. Modeling the influence of the BRDF characteristics of vegetation on the retrieval of solar-induced chlorophyll fluorescence under different illumination conditions

    NASA Astrophysics Data System (ADS)

    Liu, Xinjie; Liu, Liangyun

    2017-04-01

    The Fraunhofer Line Discrimination (FLD) principle is the main approach used for the retrieval of solar-induced chlorophyll fluorescence (SIF). The basic assumption of the FLD principle is that the apparent reflectance spectra without SIF in-filling are smooth in the region of the absorption bands. However, in fact, this assumption is not valid due to the so-called "direct radiation in-filling" effect caused by the non-linear contribution of direct and diffuse radiation at the oxygen absorption bands, which are widely used for ground-based SIF retrieval. In this study, we first analyzed the physical mechanism of the direct radiation in-filling effect on the oxygen absorption bands and found that the bias in the SIF retrieval caused by the direct radiation in-filling effect at the O2-A band was less than 20% based on the use of a simulated dataset. Secondly, we established a simple correction model of the direct radiation in-filling effect. We found that the direct radiation in-filling effect at the O2-A band was directly proportional to the difference between the reflectance of the direct and diffuse radiation, and that the coefficient of proportionality was well correlated with the diffuse-to-global radiation ratio in the form of a quadratic function. The coefficient of determination (R-squared) for this correlation was 0.97. Finally, the model was validated using both simulated and field datasets. The validation results show that the bias in the SIF retrieval caused by the direct radiation in-filling effect can be efficiently corrected using the model proposed in this paper. This study thus provides a possible approach to estimating and correcting for the direct radiation-infilling effect using prior knowledge of the BRDF characteristics of direct and diffuse radiation for specific targets.

  16. Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Hewagama, Tilak; Georgiev, Georgi; Pasquale, Bert; Aslam, Shahid; Gatebe, Charles K.

    2017-01-01

    Multispectral snapshot imagers are capable of producing 2D spatial images with a single exposure at selected, numerous wavelengths using the same camera, therefore operate differently from push broom or whiskbroom imagers. They are payloads of choice in multi-angular, multi-spectral imaging missions that use small satellites flying in controlled formation, to retrieve Earth science measurements dependent on the targets Bidirectional Reflectance-Distribution Function (BRDF). Narrow fields of view are needed to capture images with moderate spatial resolution. This paper quantifies the dependencies of the imagers optical system, spectral elements and camera on the requirements of the formation mission and their impact on performance metrics such as spectral range, swath and signal to noise ratio (SNR). All variables and metrics have been generated from a comprehensive, payload design tool. The baseline optical parameters selected (diameter 7 cm, focal length 10.5 cm, pixel size 20 micron, field of view 1.15 deg) and snapshot imaging technologies are available. The spectral components shortlisted were waveguide spectrometers, acousto-optic tunable filters (AOTF), electronically actuated Fabry-Perot interferometers, and integral field spectrographs. Qualitative evaluation favored AOTFs because of their low weight, small size, and flight heritage. Quantitative analysis showed that waveguide spectrometers perform better in terms of achievable swath (10-90 km) and SNR (greater than 20) for 86 wavebands, but the data volume generated will need very high bandwidth communication to downlink. AOTFs meet the external data volume caps well as the minimum spectral (wavebands) and radiometric (SNR) requirements, therefore are found to be currently feasible in spite of lower swath and SNR.

  17. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    NASA Technical Reports Server (NTRS)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  18. GOSAILT: A hybrid of GOMS and SAILT with topography consideration

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wen, J.

    2017-12-01

    Heterogeneous terrain significantly complicated the energy, mass and momentum exchange between the atmosphere and terrestrial ecosystem. Understanding of topographic effect on the forest reflectance is critical for biophysical parameters retrieval over rugged area. In this paper, a new hybrid bidirectional reflectance distribution function (BRDF) model of geometric optical mutual shadowing and scattering-from-arbitrarily-inclined-leaves model coupled topography (GOSAILT) for sloping forest was proposed. The effects of slope, aspect, gravity field of tree crown, multiple scattering scheme, and diffuse skylight are considered. The area proportions of scene components estimated by the GOSAILT model were compared with the geometric optical model for sloping terrains (GOST) model. The 3-D discrete anisotropic radiative transfer (DART) simulations were used to evaluate the performance of GOSAILT. The results indicate that the canopy reflectance is distorted by the slopes with a maximum variation of 78.3% in the red band and 17.3% in the NIR band on a steep 60 º slope. Compared with the DART simulations, the proposed GOSAILT model can capture anisotropic reflectance well with a determine coefficient (R2) of 0.9720 and 0.6701, root-mean-square error (RMSE) of 0.0024 and 0.0393, mean absolute percentage error of 2.4% and 4.61% for the red and near-infrared (NIR) band. The comparison results indicate the GOSAIL model can accurately reproducing the angular feature of discrete canopy over rugged terrain conditions. The GOSAILT model is promising for the land surface biophysical parameters retrieval (e.g. albedo, leaf area index) over the heterogeneous terrain.

  19. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  20. Simulation of laser beam reflection at the sea surface modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2013-06-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.

Top